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THE DIJKGRAAF-WITTEN INVARIANTS FROM SECOND
CHERN CLASSES

TAKEFUMI NOSAKA

ABSTRACT. Given a 3-cocycle 9 in the cohomology of a finite group G,
we can define the Dijkgraaf-Witten invariant of closed 3-manifolds. In
this paper, we focus on the case where v is a 3-cocycle systematically
transferred from the second Chern class of a complex representation of
G, and show some procedures for computing the invariant, and clarify
its topological interpretation under some conditions.

1. INTRODUCTION

Let M be a connected oriented closed 3-manifold with orientation 3-class
[M] € H3(M;Z) = Z. Let G be a group, and BG be an Eilenberg-
MacLane space of type (G,1). If G = m(X), we can choose a classify-
ing map ¢ : M < Bmi(M), uniquely up to homotopy. Fix a group 3-
cocycle ¢ € H3(BG;A) = H3(G; A) with trivial coefficients. Then, for
a group homomorphism f : 7 (M) — G, we can consider the pairing
(f*(),[M]) € A. As an important example, if G is a Lie group with
discrete topology and v is a Chern-Simons 3-class, this pairing is called the
Chern-Simons invariant [CS] (see §A for the definition). Meanwhile, as an-
other example, the Dijkgraaf-Witten invariant [DW, §6] is a toy model of
the Chern-Simons invariant when G is of finite order (See Appendix A for
details). Precisely, the invariant is defined as the following formal sum in
the integral group ring Z[A|:

L) DW= Y 1)) eZlAl
f€Hom(r1 (M),G)

Here, 17 is the unit of Z. The DW invariant seems simple; however, there
are few examples of the resulting computations and studies of the invariant,
unless G is abelian or nilpotent.

To study such pairings and the invariant (1.1) it is a problem to examine
what kind of ¥ we should choose, and how we find an explicit expression of i
when G is not abelian. Since the Chern-Simons 3-class is, roughly speaking,
considered to be an inverse of a transgression of the second Chern class of
principal GL,,(C)-bundles (see, e.g., [CS] or [DW, §§3-5]), it is sensible to
focus on a class of group 3-cocycles, which are like such inverses from second
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Chern classes of G with |G| < oo. For this, if |G| < oo, notice the following
isomorphisms obtained from the cohomology long exact sequence and the
universal coefficient theorem:

5—1
(1.2) H"YG;Z) = H™"(G;Q/Z) = H,(G; Z),
where n > 1 and the first isomorphism is the inverse of the Bockstein map
induced from
(1.3) 0 —Z

inclusion Q —Q/Z — 0 (exact).

In addition, as seen in [Ev2, Th], any complex representation p : G —
GL,,(C) uniquely admits the Chern class ¢;(p) € H?*(G;Z). Thus, we have
a cohomology 3-class of the form

(1.4) B~ ea(p)) € H(G;Q/Z).

In this paper, as a finite-order model of the Chern-Simons 3-class, we con-
sider the Dijkgraaf-Witten invariant (1.1) with ¢ = 1287 (c2(p)). First, as
a result of a Riemann-Roch type theorem, we develop a formula for describ-
ing 12371 (ca(p)) (see Proposition 2.2), and show (Section 3) that, under a
certain condition, the twelvefold invariant can be computed from the coho-
mology rings of some covering spaces of M. For example, the condition holds
if G = SLy(FF,) with ¢ > 10; see Corollary 3.6 (see also Remark 3.12 for other
groups). In Section A, from a viewpoint of the Chern-Simons invariant, we
suggest a procedure for computing the Dijkgraaf-Witten invariants of some
Seifert 3-manifolds. Finally, in Section 4 we observe other approaches to the
invariants with 1 = 871(c2(p)).

Conventional notation. Let G be a finite group, and M be a connected
closed 3-manifold with orientation class [M] € H3(M;Z) = Z. By BG we
mean an Eilenberg-MacLane space of type (G, 1).

2. TWELVEFOLD SECOND CHERN CLASSES

Let p : G — GL,(C) be any complex representation, and ¢;(p) € H*(G;Z)
be the Chern class of p; see, e.g., [Ev2, Th] for the definition. The purpose
of this section is to develop an algorithm to describe the twelvefold 3-class
1287 (ca(p)).

Let ¢(p) € H*(G;Z) be the total Chern class, that is, ¢(p) = 14 ¢1(p) +
co2(p)+---+cn(p). Let Re(G) be the complex representation ring of G. As is
known as Brauer theorem, there are finitely many n;(p) € Z and subgroups
H; C G with one-dimensional representation ¢; : H; — GL1(C) such that

(2.1) p =" mi(p)Ind§ (¢1) € Re(G)

(2
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Here, Ind% () is the induced representation. By the Whitney sum formula
of ¢(p), we have

(22) e(p) = [[(1+ e1(Indf, (¢1)) + co(Indfy, (¢0)) + - )™ € H*(G;Z)

To summarize, to compute c2(p), we may focus only on ¢; (Indgi(qﬁi)) and
ea(Indf, ().

Thus, we shall restrict ourselves to a subgroup H C G and a one-
dimensional representation ¢ : H — GL;(C) = C*, and show Lemma 2.1
below. Identify Q/Z with the multiplicative subgroup {exp(2ry/—17) | r €
Q} c C*. Since |H| < oo, the image of ¢ is contained in Q/Z; we may
regard ¢ as a 1-cocycle of H with trivial coefficients. Denote the transfer
map by Tr : H™(H; A) — H™(G; A); see, e.g., [Br, §II1.9] for the definition.
Then, the following claims that the cohomology 3-class 12571 (cz (Indg(qﬁ)))
can be computed from 8 and the transfers.

Lemma 2.1. Take another subgroup H' C G with a representation ¢ :
H' — GL1(C). Then, the following two identities hold:

(23) 267! (a(Indf(9)) — er(Indfy(¢))) = 21§ () —qz B o Trf(¢),

(2.4) 1287 (c2(Indf(9))) = 6(Tx5 (9) —q/z BT (9)—Tx (6 — 5(9)))-
Here, —q/7 means the cup product with coefficients induced from the biad-

ditive map 7 x Q/7Z — Q/Z that sends (n,[a]) to [an|. Furthermore, if ¢
extends to a 1-cocycle G — Q/Z, then (2.4) vanishes.

Proof. Recall the integral Riemann-Roch theorem in group cohomology (see,
e.g., [Th, Theorem 6.3]), which partially! deduces

(2.5) 12¢5(Ind% (¢)) = 6¢1(IndF(¢))* — 6TrF (c1(¢) — c1(¢)) € HY(G; Z),

(2.6) 2¢1(Indf (¢)) = 2Tr(c1(9)) € H(G; Z).

Let us mention the identities c;(¢) = 3(¢) € H*(H;Z) from [Th, p. 68] and
(2.7)
Blu—qz v) =u —qz B(v),  forany u € H"(G;Z),v € H™(G;Q/Z),

from [Br, V.3.(3.3)]. Since Tr§ 08 = BoTr (see [Evl, Exercise 4.2.4]), the
right hand side of (2.5) is reduced to 63 (¢ —q,z c1 (Ind% (¢)) — Tr% (6 —Q/z
c1(¢))). By applying this to (2.7), we readily obtain (2.4) as desired. In

1We here explain the partial deduction in details: In [Th, Theorem 6.3], the theorem
states that, for any k € N, there are M} € N and a polynomial, s, of the Chern classes
such that My (s,(Ind%(¢)) — Tr&(sk(p))) = 0 € H?**(G;Z). In lower degree, M; = 2,
My =6 and s1(p) = c1(p), s2(p) = c1(p)® — 2c2(p) are known; these mean (2.5) and (2.6)

exactly. In particular, if p is a one-dimensional representation sa3(p) = c1(p)>.
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addition, we immediately obtain (2.3) from (2.6) and (2.7). Finally, the last
claim follows directly from the projection formula; see, e.g., [Br, V.(3.8)]. O

To summarize, by (2.2), we readily reach the following conclusion:

Proposition 2.2. For a representation p : G — GL,(C), we suppose (2.1).
Then,

(2.8) 12(87 (e2(p)) =
6 nilp (}:nj JTx, (65) — B0 o, (68)) — ey, (6 — Blow)) )
k=1

Remark 2.3. Let us make a remark on a topological meaning of the first
term in (2.8). In general, for any 1-cocycles ¢ : G — Q/7Z as in Trgj(qu)
and any homomorphism f : m (M) — G, we regard ¢ o f as first coho-
mology classes of M wvia H'(M;Q/Z) = Hom(m(M),Q/7Z). Hence, the
pairing (f*(¢), [M]) with ¢ = ¢; — B(¢y) can be computed from the coho-
mology ring H*(M;Q/Z) and the Bockstein maps (i.e., the linking form) of
M. In addition, the pairing can be computed in several ways: for example,
see [MOO)] for such computations from some quasitriangular Hopf algebras,
branched coverings, or Kirby diagrams. Meanwhile, the second term in (2.8)
will be topologically examined in Section 3.

By Lemma 2.1, it is reasonable to describe explicit formula of 5 and Tr%
in the non-homogeneous complex of G. First, from the definition of the
Bockstein map, f(¢) : H x H — Z is represented by

©9) seon = { o o DIz

Here, for r € Q/Z, we uniquely choose the representative 7 € Q N [0,1).
Next, let us choose a complete set of representatives of the left cosets G/H,

T := {gl}ﬁém C G, such that TN H = {1¢}. For 0 € G, we fix notation
g:=HonNT, g:=o0(0) € H.

Then, according to [Br, Exercise 11.10.2], Tr% () : G — Q/Z is represented
by a correspondence

(2.10) o— > lgiogic V)/IG.

:1<i<|G/H|

In addition, for a 3-cocycle ¢ : H® — A, the transfer Tr%(l/}) is known to
be represented as a map G — A defined by setting

(2.11) (01,09,03) — > (gi01,5i0102,§i010203).
i1<i<|G/H|
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In summary, combing the above formulae (2.9)—(2.11) with Lemma 2.1, we
can concretely obtain a representative 3-cocycle of 1287 (c2(Ind%¢)) as a
map G® — Q/Z. In particular, if every 4-cocycle C € H*(G;Z) admits
a representation p : G — GL,(C) such that 12C = 12c¢2(p), then we can
obtain a representative G — Q/Z of twelvefold every 3-cocycle of G. For
example, if G has a periodic cohomology, G satisfies this condition; see [Th]
for the detail and other examples, in comparison with studies of the Chern
subring CH*(G) C H®*"(G;Z), where CH*(G) is defined to be the subring
generated by the Chern classes of all complex representations of G.

3. FINITE GROUPS OF TYPE C,; AND COVERING SPACES

In this section, we will introduce a class of finite groups (Definition 3.3),
and show (Theorem 3.4) that, if G lies in the class, some multiples of the
Dijkgraaf-Witten invariant of M can be computed from the cohomology
rings of some finite covering spaces of M. To this end, let us prepare the
following lemmas:

Lemma 3.1. For a surjective homomorphism f : mi(M) — G and a sub-
group j : H C G, let m : My — M be the finite covering associated with
the subgroup f~Y(H) C w1 (M). Let m be the greatest common divisor of
|H| and |G/H|, i.e., m = g.c.d(|H|,|G/H]|). Suppose ) € H>(G;Q/Z) and

W € H3(H;Q/Z) such that j*(¢)) = mi. Then,

(3.1)  m* (T (¥), fx 0 w([M])) = m* (¥, ves o 1.(f)([My,u])) € Q/Z.

Here, the fundamental 3-class [My g is canonically defined from [M] via the
covering Mgy — M. In particular, if v = ¢ — B(¢y) as in the second
term in (2.8), then the pairing (3.1) is computed from the cup product of the
space My py.

Proof. Choose s € N such that |G/H| = ms and (s,|H|) = 1. Since
H*(H;Q/Z) is annihilated by |H|, s is invertible in computing the pairing
on the cohomology of H. Since 7, ([My y]) = |G/H|[M] by the definition of
[M¢ k], we have

m*(Tefi (), fu o wu([M])) = s~ (T (my), fu 0 |G/ H|[M]))

(3.2) = s {TG (" (), fu om0 1l [My )
Let res(f) be the restriction of f on mi(My y). By fom, = j.ores(f) and
the familiar identity Tr% (5*(1)) = |G/H|1, (3.2) is reduced to

M, ju 0 ves(f) © (M, 1])) = m{5" (), res(f)x 0 u([My,u]))

(3.3) = m?(ih, res(f). o te([My 1)) € Q/Z.
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This computation means (3.1) exactly. U

We remark that the surjectivity of f is not so important; indeed, if f is not
surjective, we may replace H C G as H NIm(f) € GNIm(f).
We also give a sufficient condition for the assumption of Lemma 3.1:

Lemma 3.2. Suppose an inclusion j : H — G, and letm € N be g.c.d.(|H|,|G/H]|)
as above. Then, for any ¢ € H"(H;Q/Z), there exists 1 € H"(G;Q/Z)

such that j7*(¢) —map € Ker(Tr%). In particular, if Tr% is injective, j* () =

ma.

Proof. Choose s € N such that |G/H| = ms and (s,|H|) = 1. Since
H"™(H;Q/Z) is annihilated by |H|, we can define 9 to be s~ 'Tr% (). By
the familiar equality |G/H|z = Te$%(j*(x)) for any 2 € H"(G;Q/Z), we
have Tré (j* (1)) — mab) = 0 as required. O

In general, Trg is far from being injective; to solve non-injectivity, it is
sensible to consider a class of finite groups satisfying the condition in Lemma
3.1 as follows:

Definition 3.3. For m € Z, we say a finite group G to be of type C,y,,
if there are finitely many subgroups j; : H; C G with one-dimensional
representation ¢; : H; — GL1(C) such that

(1) The subring of H*(G}; Z) generated by the total Chern classes c(Indgj (i)
with all ¢ includes the m—multiplication of the fourth cohomology
mH*(G;Z).

(2) For any i, g.c.d(|H;|, |G/H;|) is divisible by m, and there is k; €
H3(G;Z) such that jf (ki) = me; —qyz B(9:)-

Before giving such examples and their properties, we state Theorem 3.4
below. If 9 = ¢ — B(¢r), the left hand side of (3.1) is equal to the m?-
times of the second term in (2.8). As mentioned in Remark 2.3, the right
hand side of (3.1) can be computed from the linking form of the covering
space My p,. If G is of type (), the m—multiple of any cohomology 3-class
¥ is equal to a certain sum of the forms 5_1(02(Indgi (¢i))), and satisfies
the assumption of Lemma 3.1. In conclusion, we have a summary:

Theorem 3.4. Let G be a finite group of type Cp,. Let m’ € N be L.c.m.(12,m?).
Then, for any cohomology 3-class A € H3(G;Q/Z), the DW invariant (1.1)
with ¥ = m/X can be computed from the set Hom(m (M), G) and the linking
forms of the covering spaces My p,, where f runs over Hom(m (M), G).

Remark 3.5. The assumption of type Cyp, seems necessary because of un-
naturality of the transfer. To be precise, for any homomorphism f : K — G
and a subgroup H C G of finite indez, res(f)* o Tr% and Trff_l(H) o f* are
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not always equal. For instance, for any odd prime p € Z, if Z, =: H =
K C G:=6, and f is the inclusion K = Z, — &, then f* o Trg =0 and
TY?,l(H) o f* is the identity on H'(e;Z,). Thus, in general, (3.1) does not
always hold without the assumption.

We later show (Example 3.11) that SLy(IF,) in some cases is of type Cs.
Thus,

Corollary 3.6. Let G be SLy(FF,) with odd prime power ¢ > 10. Take a
generator ¢ of H3(G;Q/Z) = Z/(¢*> — 1)Z. Then, the DW invariant (1.1)
with ¢ = 12¢ can be computed from the set Hom(7; (M), G) and the linking
forms of some finite covering spaces of M.

We now give some properties of groups of C,,-type, and such examples.

Example 3.7 (Cyclic group). For any n € Z, every cyclic group Z/n is of
type C1 by definition. In fact we may let H; be G, since H3(G;Z) = Z/|G|
is generated by ¢ —q,z 8(¢), where ¢ : G — Q/Z is an inclusion map.

Example 3.8 (Dihedral group). Suppose integers a,n € N such that (a,n) =
1. Considering a surjective homomorphism Z/a — (Z/n)*, we obtain the
semi-direct product G := Z/n x Z/a. By transfer, we can easily show that
H*(G;7Z) # 0 if and only if a = 2. Thus, we may suppose a = 2, that is, G
is the dihedral group, D,,, of order 2n.

Let H C G be the subgroup Z/n x {0}. As is known (see, e.g., page 74 of
[Th)), 2H*(G;Z) = Z/n is generated by ca2(p), where p = Ind%;d). Namely,
the group D, is of type Cy. Here ¢ : Z/n — GL1(C) = C/Z is a 1-cocycle
that sends k to k/n.

Example 3.9 (quaternion group). Fix n € N. Consider the generalized
quaternion group g, of order 4n, which has a presentation (x,y | 2" =
y?, xyz = y). Let H be the cyclic group generated by z. It is known that

Hi(Qun; Z) =2 7/4, H(Qun;Z) =20, H3(Qun;Z) = Z/4n,
and the inclusion H C Qg induces an injection Z/2n = H3(H) < H3(Qu4n)-
Thus, Qu, satisfies (ii). Hence, Qg is of type Co.

Next, to observe Example 3.11, we prepare a lemma, which is immediately
shown by definition.

Lemma 3.10. If the map H*(G;Q/Z) — ©Kca:Sylow subgroup (K; Q/Z)
induced by inclusions is surjective, and any Sylow subgroup of G is of type
Chn, then so is G.

Example 3.11. Using Lemma 3.10, we now show that, for any odd prime
power ¢ € Z with ¢ > 10, the special linear group SLa(FF,) is of type Co.
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In fact, it is classically known (see, e.g., [Hut]) that, the inclusion from any
p-Sylow subgroup, G, induces an injection H3(Gp;Z) — H3(SLa(Fy); Z) =
Z/q* — 1, and that if p is odd, then G,, is cyclic; the 2-Sylow subgroup Gs is
the generalized quaternion group of order 2! for some t € N, and contains a
cyclic subgroup Zg:-1 which is of type Cy as in Example 3.9. In conclusion,
since Hs(H;;Z) = HY(H;;Z) as in (1.4), every sylow subgroup of SLa(F,) is
of type Cy as desired; hence, SLa(IF) is of type Cy by Lemma 3.10.

Similarly, we can show that the projective group PSLy([F,) is also of type
Cy.

Remark 3.12. More generally, we can show that every finite group with
periodic group cohomology is of type Cy. Here, the cohomology is said to be
periodic if there is k € N such that H*T*(G;Z) = H*(G;Z). The proof is as
follows. It is known as Suzuki-Zassenhaus theorem (see [AM, IV.6] that such
groups are completely classified as some semi-direct products or 7Z./2-central
extensions of the above groups. Thus, we can determine the type Cy using
similar discussions in the above examples.

Example 3.13. Finally, let us give a simple computation of DW invariants
from the dihedral group. Let n € N be odd, and G be the dihedral group
D,, :== Z/n x Z/2. Hence, by (2.8) and (3.1), the 12-multiple of the DW
invariant (1.1) with 1 = 87%(c2(p)) can be computed from the cohomology
rings of some double covering spaces of M.

For more concrete computations, let us fix some 3-manifolds. Since Q4
is well known to be a subgroup of SU(2) = S3, we have a closed 3-manifold
M, = S3/Q4,. By the Lyndon-Hochschild-Serre spectral sequence, we
see that the projection @4, — D, induces a surjection H3(Q4n;Z) —
2H3(D,,;Z) = Z/n. Meanwhile, the fourfold covering space of M, by the
abelianization is the lens space L(n,q) for some ¢ € Z/n. Therefore, we
conclude that the covering L(n,q) — M, induces a canonical injection

B:7Z/n = Hom(m(L(n,q)),Z/n) — Hom(m1(M,), D),

such that the complement Hom(7; (M), Dy,) \ Im(B) consists of the trivial

map. Since DWg-1(,(g)2)(L(n,q)) = D27, 12(qj?/n) € Z|Q/Z] is known

(see, e.g, [DW, MOO]), by (3.1), we conclude DW g1, ) (M) = > 12(2qj%/n) €
ZQ/Z].

More generally, it is sensible to examine more examples of groups that are
(not) of type Cs, and to describe the second Chern classes with computations
of the associated Dijkgraaf-Witten invariants. For example, if G = SLy(FF,)
as in Corollary 3.6, we can compute the invariants via the procedure in
Remark 2.3; however, the resulting are complicated. In this paper, we omit
to add other examples of the computation; in fact, the resulting computation
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of even Seifert homology spheres with G = PSLy(F),) is hard to write and
seems complicated; see [Y] for the details (see also [No, Proposition 5.3] for
the complicated computation in nilpotent cases).

4. OTHER COHOMOLOGICAL APPROACHES TO SECOND CHERN CLASSES

We end this paper by suggesting other three approaches to second Chern
classes, and examining renormalization of the 12-multiplication in Proposi-
tion 2.2.

First, let us review [Ev2, Theorem 4]|. Take a subgroup H C G with a
representation ¢ : H — GL1(C). Let 7 = Ind%(1). Then, the theorem says
the equalities

(4.1) c1(Indf(9)) = Trf(e1()) + e1(m) € HA(G5Z),

(4.2)

eo(Ind;(6)) = N§(1 + e1(9)) + e (x) — TG (ea(6)) + ea(m) € HA(G1 ).
Here, N/ g is the multiplicative transfer of Evens (see [Evl, §6.1]), and
2¢1(m) = 0 and 12¢5(7) = 0 are known (compared with (2.5)).

As mentioned in [Sn| as an unpublished note, a representative 4-cocycle of
the first term in (4.2) is described as follows. Let &g, | be the symmetric
group of order |G/H| with a permutation action on the product HIG/HI,
We can define the semidirect product HIG/HI % S\c/m|- Take a group homo-
morphism ® : G — HIG/H| &|g/n| defined in [Evl, §5.2], which is called
the monomzial representation, and consider a non-homogeneous 4-cocycle
¢y (H IG/H] Sia/ H|)4 — Z in the non-homogeneous cochain group defined
by setting

[(hl,... ,h|G/H‘,O')|(h/1, 7hTG/H‘7O-/)|(h/1/7 cuy ‘//C¥/H|’O-//)|(h/1//"‘ .y T/é’/HMO-///)] —

(@3) D> (@) ho-1(6)s hgory-1(3) L) Mygrom-1 Gy Wrgromam-1(3)):
1<i#j<|G/H]|

where the 2-cocycle ¢1(¢) = [(¢) is represented by a map H x H — Z
as in (2.9). Then, NG(1 + c1(¢)) = ®*(¢4) is shown [Sn]. Moreover, in
general, for a non-homogeneous 4-cocycle Cy : G* — Z, the inverse 3~1(Cy)
is represented by a map

C ’ ) s §3
(44) GXGXGHQ/Z;(QLQQ,%)HZW,
geG
where we should notice that the sum gec Ca (9,91, 92, g3) is divisible by |G|

for any (g1, g2, 93) € G3. This formula (4.4) of 371(Cy) can be easily proved
from the definition of the Bockstein map. In conclusion, by (4.2)—(4.4), we
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can find a representative 3-cocycle of 57! (c2(Ind%(¢))) as a map G* — Q/Z.
Meanwhile, following an outline in [No, §5], for some 3-manifolds M, we
can sometimes describe concretely a chain 3-class of [M] and the induced
classifying map ¢4; hence, for any homomorphism f : m (M) — G, we can
find a 3-chain of the pushforward f.([M]) € H3(G;Z). In conclusion, by
combing the 3-chain with the presentation of co(Ind%(¢)), we can compute
the Dijkgraaf-Witten invariant with ¢ = 8~ co(Ind$% (¢)).

Incidentally, as pointed out in [Ev2, Sn], the 12-multiplication of Proposi-
tion 2.2 is essentially derived from the (stable) third homology H3(S,,;Z) =
Zlg@(ZQ)d” with relation to the stable homotopy group of spheres 7r§ = T4,
where dy = ds = 1, and d,, = 2 for n > 6. The third framed bordism group is
also isomorphic to 7r§ . Thus, a refinement of the 12-multiple DW invariant
may be interpreted from some obstructions of the sphere spectrum or some
(co)-homology operations.

As the second approach, let us observe a topological approach by the
splitting principle. Given a representation p : G — GL,(C), we can con-
struct a cellular map p : BG — Gr(n) such that ¢;(p) = p*(¢;), where
Gr(n) is the infinite-dimensional complex Grassmannian manifold and ¢; €
H?(Gr(n);Z) is the Chern class; see, e.g., [Th, §5] for the construction. Let
v be the tautological vector bundle on Gr(n) such that ¢; = ¢;(). For a
homomorphism f : (M) — G, the splitting principle admits a continuous
map py : My — M such that p} : H*(M;Z) — H*(My;Z) is injective and
the pullback p’} o f*(y) is decomposed as a Whitny sum of some line bundles
on My. As in (2.3), the cohomology 3-class B_lpjc o f*(c2(p)) can be com-
puted from the cohomology ring of M. In summary, if we can construct
M as a manifold and determine the cohomology ring H*(M§; Z/m) for any
m € N, we can compute the pairing (f*(87(c2(p))), t«[M]) € Q/Z.

Finally, we briefly mention modular representations. Choose distinct
primes p,f € N. While we considered only complex representations, we

can also obtain from any representation p : G — GL,(IF,) uniquely a Chern
class ¢i(p) € H%(G;Zy), where Zj is the f-adic integer ring; see [Kr] or [Th,
p.111] for the details. Therefore, similarly to (1.4), we have a cohomology
3-class B~ (ca(p)). If p, £ > 3, and a similar Riemann-Roch theorem is true,
we can easily obtain similar results in Sections 2 and 3. For example, the
cohomology H*(GLy(F,x); Z[1/p]) is generated by such Chern classes, as is
stated in the famous result of Quillen [Q], while GL,(F,x) is not of type
Cy,, for enough large n, k. Thus, to analyze the DW invariant, we might
employ Chern classes from some modular representations of G.
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APPENDIX A. RELATION TO THE CHERN-SIMONS INVARIANT

In this appendix, we explain the viewpoint of the DW invariant in terms
of the Chern-Simons invariant. As mentioned in [CS], the Chern-Simons
3-class can be considered as a group 3-cocycle CCS in C3(GLy(C);C/Z)
with N > 2. Thus, given a homomorphism F' : 7w (M) — GLy(C), the
Chern-Simons invariant, CS(F), is defined as (CCS, Fi.i.([M])) € C/Z.

Proposition A.1. Take a representation p : G — GLy(C). Then, the
image of p*(CCS) is contained in Q/Z, and

(A1) p*(CCS) = B (ea(p)) € H(G;Q/Z).

In particular, the DW invariant with v = 371 (ca(p)) is equal to > 12CS(po
f) € Z|Q/Z] where f runs over Hom(m (M), G).

There are many procedures to compute the Chern-Simons invariant. For
example, [JW] mentions relations from the e-invariant and n-invariant in
differential topology. If the image of F is contained in SLy(C), the cocycle
expression of 2CCS is described in [DZ]. As a special case, if M is a Seifert
manifold over S? and H,(M;Z) = H,(S3;Z) and the Seifertor? is sent to
trivial by f, Theorem C in [JW]? gives an explicit formula to compute the
2N-multiple Chern-Simons invariant 2N p*(CCS); In conclusion, following
Proposition A.1, the DW invariant with ¢» = 2N 37! (ca(p)) of Seifert homol-
ogy spheres can be sometimes easily computed with the help of a computer
program; see also [Ch, Y] for the computation of Hom(m (M), G).

Now, we give the proof of Proposition A.1. Let K be a complex Lie group
of finite connected components, and I (K, C) denote the ring consisting of
K-invariant polynomials on the Lie algebra . Recall from the classical
Chern-Weil theory that there is a natural homomorphism W : I, (K,C) —
H?F(BK'*P C), where BK'"P is the topological classifying space of K. Let
r denote the map H*(BK'P;7Z) — H*(BK"P;C) induced by the inclusion
Z — C. From [CS], consider

JE(K,C) := {(P,u) € I*(K,C) x H*(BK*?;7) | W(P) = r(u)}.

Then, in [CS], there is a homomorphism C-C-Sg : J*(K,C) — H***Y(BK;C/Z)
such that any homomorphism ¢ : G — K ensures the naturality ¢* o
C-C-Sg = C-C-Sk o ¢*; see also Page 1 of [DZ]. As important examples,

2As is known in low-dimensional topology, the center of w1 (M) contains Z and is called
the Seifertor.
3In the theorem C, the image is required to be contained in SLy(C); however, if we

. . . . A 0
consider the inclusion GLx(C) < SLy+1(C) which sends A to (O det(A)*l)’ we can

apply the theorem for the computation of CS(F).
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it is widely known that if K = GL,(C) and u = ¢ € H*(BK'P,Z) is the
Chern class, and P(A) = ((TrA)?—Tr(A?))/4n2, then C-C-Sk (P, u) = CCS.
Furthermore, if G is of finite order and u = co(p), then BG*P = BG and
I*(G,C) is zero; thus, C-C-Sg is equal to B(E}Z(CQ(p)) by definition, where
Bz is the Bockstein map from

(A.2) 0—Z—C—C/Z—0 (exact).

Proof of Proposition A.1. As mentioned above, IB(E/]'Z(CQ(/))) lies in H3(G;Q/Z).
Since 7! = @E}Z, the above naturality deduces to

B~ Hea(p) = B j(c2(p)) = C-C-Sa(p*(P), p*(e2))

= p*(C-C-Sk (P, c2)) = p*(CCS),
which is the required (A.1). O
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