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GENERATOR OF THE QUADRATIC SUBEXTENSION OF
AN ODD DIHEDRAL EXTENSION

TorU KOMATSU

ABSTRACT. In this paper we present an algorithm to make a generator
of the quadratic subextension of an odd dihedral extension. As an ap-
plication we solve the Galois group problem for the quintic polynomials
given by Kishi and Yamada.

1. INTRODUCTION

For an integer n greater than one let &, and ®,, denote the cyclic and the
dihedral group of degree n with order n and 2n, respectively. Let K be a field
of characteristic 0. For a polynomial f(X) over K with positive degree let
Spl(f/K) denote the minimal splitting field of f(X) over K, and Gal(f/K)
its Galois group Gal(Spl(f/K)/K). If f(X) is an irreducible polynomial over
K of degree n with Gal(f/K) ~ ©,, then the field M = Spl(f/K) contains a
unique subfield N such that Gal(M/N) ~ €, and Gal(N/K) ~ €. When n
is not congruent to 1 modulo 4, the extension N/ K is generated by the square
root \/discx f(X) of the discriminant discx f(X) of f(X) with respect to
X. For the case of n = 1 (mod 4), the discriminant discy f(X) is square
in K since ®,, is included in the alternating group 2, of degree n. In this
paper we present an algorithm to make a generator of the extension N/K
when n is odd. As an application we determine whether the Galois groups
of the quintic polynomials given by Kishi and Yamada [7] are isomorphic to
D5 or Cs.

Theorem 1.1. Let f(X) be an irreducible polynomial over K of odd degree
n equal to or greater than 3 with Gal(f/K) ~ ©,. For a root \ of f(X)
in M = Spl(f/K) we put L = K(X\) and decompose f(X) into irreducible
factors fi(X) over L such that f(X) = (X — N fi(X)--- fr(X). For each
integer i with 1 < i < r let 0; denote the discriminant discx fi(X) of fi(X)
and d; its norm VL/K(5Z‘) where vy is the norm map from L to K. Thenr
is equal to (n —1)/2 and the square root \/d; generates N over K for every
integer i with 1 < i < r where N is a unique subextension of M /K with
[N : K| =2.
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2 T. KOMATSU

Remark. For the calculation of irreducible factorization over a number field
the software packages Maple [9], PARI/GP [10] and Wolfram Mathematica
[12] are equipped with functions factor, factornf and Factor, respectively.

For nonzero rational numbers a,b and p, Kishi and Yamada [7] treat
quintic polynomials of the form ff;{u(X) = X+ abX?+a’X +a®p € Q[X]
under relation a = a;(b, 1) where a1 (b, p) = 144(b+ 2)?(2b + 5)(6b> + 15b +
10)/(5%u?) and az(b, p) = b2(b — 2)%(3b + 5)2(3b — 10) /(55 (b + b — 1)p?).

Theorem 1.2 (Kishi and Yamada [7]). (1) Assume f(X) = ;?é) ) bu(X)

is irreducible over Q. Then Gal(f/Q) is isomorphic to €5 or D5, especially
for b >0, Gal(f/Q) is isomorphic to Ds.

(2) Assume f(X) = (i}/b ) bu(X) is irreducible over Q. Then Gal(f/Q) is

isomorphic to €5 or D5, especially for b > 10/3, Gal(f/Q) is isomorphic to
Ds.

In this paper we show that every irreducible polynomial of the first family

ﬁé,u),b,u(x ) gives a Djs-extension of Q not only for b > 0 but also for

b < 0 (Corollary 3.2) and that the second family ff;{b ) bu(X) with b <

2 or b > 10/3 yields Ds-extensions of Q containing imaginary quadratic
fields (Corollary 3.4). For the case of 2 < b < 10/3, we give a simple

criterion for an irreducible polynomial ff;((b )b M(X ) to give a Ds-extension

or a Cs-extension of Q (Lemma 3.5). The main purpose in this paper is to
present an algorithm to make the generator of the quadratic subextension
contained in ®,-extension with an odd number n at the second section
(Theorem 2.3). We apply the algorithm to two quintic families of Kishi and
Yamada [7] described above at the third section, to the quintic family of
Brumer [1] and Hashimoto [5] at the fourth section and to the odd dihedral
families of Hashimoto and Miyake [4] at the final section. We also exhibit
the discriminants of the odd dihedral polynomials constructed by Hashimoto
and Miyake [4].

2. GENERATOR OF THE QUADRATIC SUBEXTENSION

Let f(X) be an irreducible polynomial over K of odd degree n > 3 with
Gal(f/K) ~ ®,,. Denote M = Spl(f/K) and G = Gal(f/K). Fix a root
A of f(X)in M and put L = K()\). Let M stand for the subfield of M
fixed by a subgroup H of G. There exists a unique element 7 in G such that
L = M{™ where (1) is the subgroup of G generated by 7. Fix an element o in
G with order n and put 7; = 070~ for each integer i. Then G decomposes
into two disjoint subsets S = {o? |0 <i <n—1}and T = {r;|0 <i < n—1}.
Note that o’ are of odd order and 7; are of order 2. By 70! ¢ S, the order of
7o' is equal to 2. Thus 70° is equal to its inverse (70°)~! = 07771 = 577,
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For each integer i put L; = M (™) and )\; = ¢*(\). Note that L; = L; if and
only if i = j (mod n). Thus Ly,..., L,_1 are distinct from one another.

Lemma 2.1. For every integer i we have L; = K(X\;) and 7(X\;) = A_;.

Proof. Tt follows from 7;()\;) = 7:(c*(\)) = o'(7(\)) = ¢*(A\) = \; that
K()\;) C L;. Since A; is a root of f(X), the degree [K();) : K] is equal to
n. Thus the equality K()\;) = L; holds. By 70' = o7 we have 7()\;) =
7o' (A) = o7 'T(\) = Ay O

Put f;(X) = (X —X\)(X — \,—;) for each integer i with 1 <17 < (n—1)/2.

Lemma 2.2. For every integer i with 1 < i < (n — 1)/2 the polynomial
fi(X) is defined over L and irreducible over L.

Proof. Lemma 2.1 implies that f;(X) is defined over M) = L. Since L = L
does not contain L; (resp. L,_;), the factor X — \; (resp. X — \,,—;) is not
defined over L. Thus f;(X) is irreducible over L. O

For an integer ¢ with 1 < ¢ < (n — 1)/2 let §; denote the discriminant
discy fi(X) of fi(X), and d; its norm vy (;) where v,/ is the norm map
from L to K. Now put N = M),

Theorem 2.3. The irreducible factorization of f(X) over L has form (X —
X0) f1(X) - fne1)/2(X). For everyi=1,...,(n—1)/2 the square root \/d;
of d; generates N over K, that is, N = K(/d;). The product d - - “d(n—1)/2
of di,...,dn—1)/2 is equal to the discriminant discx f(X) of f(X).

Let us investigate the actions of G on &; and /d;. For an integer c
we define a finite set P. consisting of the pairs of integers such that P, =
{(c+k,k)€eZXxZ|k=0,1,...,n—1}.

Lemma 2.4. For every i = 1,...,(n —1)/2 we have d; = [, p)ep,;,(Aa —
Ap)?.

Proof. The definition of f;(X) implies that ¢; = (A\; — A_;)?. By Lemma 2.1
the norm d; = vy (5;) = TT7=8 o(6:) is equal to TTpZg Nk — Airk)? =
H(a,b)ePg,-()‘a - )\b)Q- O

For an integer i = 1,.. ., (n—1)/2 we denote by ; the product [ ], e p,, (Aa—

Ap) of which square is equal to the norm d;.

P,

Lemma 2.5. For everyi=1,...,(n—1)/2 we have o(~;) = v; and 7(~;) =
—i-
Proof. Since o(\;) = A\j+1 and 7(\;) = A_; by Lemma 2.1 one has
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ovi)= Il oa=X)= TII Qari—der)= II Ao —) =,

(a,b)EPQi (a,b)epgi (a’,b/)epgi
)= Il 7a=N)= T (A-a—2)
(a,b)EPQi (a,b)EPQi
=" I QAoe—Aa)=(D)" JT Qo —Ay) =—w
(a,b)EPy; (a’ b )ePy;
for odd n. O
Proof of Theorem 2.3. Since Ly, ..., L,_1 are distinct from one another, so

are Ao, ..., A\,_1. This means that f(X) = [[') (X — \;). Lemma 2.2
implies the first assertion. Lemma 2.5 means that N = M) = K(v;) =
K(+/d;), which is the second assertion. By the relation \, = Agin, the
difference Ag4x — Aq for an odd k£ with 0 < k < n is equal to — (g1 — Ag/)
for even &k’ with 0 < ¥’ < n where @’ = a + k and ¥’ = n — k. Thus the
discriminant discx f(X) of f(X) has a decomposition into the product of d;
such that

. , (U7 =V

disecx f(X)= I  (Qa—N)*= ]I [T Qa=N)*= 1II d,
0<a<b<n-—1 i=1  (a,b)EPy; i=1

which is the third assertion. OJ

Theorem 2.3 shows Theorem 1.1.

Remark. In the case of K = Q Williamson [11, Proposition 3] gives the
same generator as Theorems 1.1 and 2.3 by using the resolvent. Williamson’s
method requires not only the computation of the resolvent with degree n(n—
1) but also its factorization over Q.

When we treat numerical examples, the resultant of two polynomials
is useful to calculate the norm d;. For two polynomials g(X) = ¢ X' +
G X g1 X 4 goand A(X) = hypy X™ 4 hyy 1 X™ V4o A X + hg
with ¢; # 0 and h,, # 0 we define the resultant Resx (g(X), h(X)) of g(X)
and h(X) by the determinant of (I +m) x (I +m) matrix

g 9-1 - 91 9o 07
g gi—-1 - 91 9o

O g gi—1 - 91 9o

hp, hyn—1 -+ h1  ho @)

hm hm—l to hl hO

O N D=1 -+ h1 hol
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called the Sylvester matrix. It is known that Resx(g(X),h(X)) is equal
to g7"hip [L; ;(ci = Bj) = g/" I1; h(c) where g(X) = g Hé:1(X — a;) and
MX) = hin [T52, (X = B)).

Lemma 2.6. For every i = 1,...,~(n — 1)/2 the norm d; is equal to the
resultant Resx (f(X),6:;(X)) where 6;(X) is a polynomial over K such that
0i(\) = ;.

Proof. Since §;(X) is defined over K, the norm d; = [[}Z3 0¥ (8;) is equal to
[Tizo 9i(Ae) = Resx (£(X), 6i(X)). B

3. TWO QUINTIC FAMILIES BY KISHI AND YAMADA

Recall the quintic polynomials of Kishi and Yamada [7] with the form
(f;’(“ (X) = Xo4abX3+a?X +a3u € Q[X] and two specializations ay (b, p) =
144(b+2) (2b+5)(6b2+15b+10) /(5% u2) and az (b, p) = b*(b—2)2(3b+5)%(3b—
10)/(5%(b? +b—1)pu?). With one indeterminate b let Q(b) denote the field of
rational functions in b over Q and Z[b] the ring of polynomials in b over Z. We

consider fKY (bop1), bu(X ) as polynomials over Q(b). As described in the paper
[7, Remark 2], due to the relation f b# bM(X) = 52271)@1(MX)//P one

has that Spl(fX bu bu/Q( )) = Spl(f¥ o, bu )bt ,/Q(b)) for nonzero p and .
We define fKYl( )= fKY (b (X)) With p = 223(b+2)/5% and fEY2(X) =

gé,u),b,u(X) with = b(b—2)(3b+5)/(53(b>+b—1)). Then fEY1(X) and

fg“m(X ) are monic polynomials over Z[b]. As a model over the function
field Q(b) we have

Proposition 3.1. For f(X) = fXYY(X) let N be a unique subeztension of
the extension M/Q(b) with [N : Q(b)] = 2 where M = Spl(f/Q(b)). Then
the square root \/—(b+ 2)(2b+ 5)(6b2 + 15b + 10) is a generator of N over
Q(b).

Proof. Put d = discx f(X) the discriminant of f(X). With a calculator one
sees that d = 245166020100100202 where 0 = 01(b) = b+ 2, O3 = 02(b) =
2b + 5, 03 = 03(b) = 6b> + 15b + 10, 04 = 04(b) = 18b> + 50b + 35 and
05 = 05(b) = 54b> + 225b + 230. Theorem 2.3 implies d = didy under the
notation as in Theorem 2.3. Since f(X) is a monic polynomial over Z[b],
its roots A are integral over Z[b] and so are d; by Lemma 2.4. Thus d;
and dy are divisors of d in Z[b], that is, there exist integers ¢; and r; ; > 0
such that d; = ¢;0]"" - 9 "> Now put D = {dy,ds2}. For example, using a
calculator, at b = 0 one can calculate the irreducible factorization f(X) =
(x =) f1(X) f2(X) over Q(A), the discriminants d; of f;(X) and their norms
d; such that D = {—28520232 21052072} " Ty distinguish between d; and d
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when b moves, we focus on the prime 7. For each integer k with 0 < k£ <5
put by = 7k, and define a value d; i to be the element in D having a factor
7 where D = {d;,ds} is calculated at b = b. Also, dy, is defined so that
{dik,d2} = D. Define a 6 x 6 matrix A = [a;;] and two 6 x 1 matrices
Vi = [v1,] and Vo = [vg,] such that a;; = log |6;(b;—1)| for 1 < j < 5 and
aj¢ = 1, and vy ; = log|d; ;—1| and v ; = log|dg,;—1|. With a calculator one
sees that A=1V; =1 5520 15.65] and A™1V5 = *[1 55 0 2 12.88] where
= stands for approximate equality and the symbol ! means the transpose
of a matrix. This implies that (?”1’1,?”172,7“173,7“174,7“1,5) = (1,5,5,2,0) and
(rea,r22,723,724,725) = (1,5,5,0,2). The values d; o at b = 0 yield that
cl = d170/(01(0)1 cee (95(0)0) = —2458 and Cy = d270/(91 (0)1 cee 95(0)2) =
—5%. Indeed, in such a case one has log|ci| = 15.648... and log|ca| =
12.875.... Hence we have di = —24589195’«9392 and dy = —58010§9§9§.
Theorem 2.3 verifies N = Q(b, v/d1) = Q(b, Vd2) = Q(b, v/—010203). O

As a specialization to Q we have

Corollary 3.2. Let b be a rational number such that f(X) = fEY1(X) is
irreducible over Q. Then Spl(f/Q) is a Ds-extension of Q containing a
quadratic field Q(\/q1(b)) where ¢1(b) = —(b+ 2)(2b+ 5)(6b* + 15b + 10).

Proof. Let us define two curves C' : ¢ = ¢1(b) and E : y?> + 2y = 2° — 32 — 3.
Then there exist birational maps

1 b+c+2)

_%+Tf®+?2
x + xr +
BQ:Eﬁcv(:I%y)H <_ 7 P y)

ﬂyC%E@@H(

22

such that 82 o 81 and By o B2 are identity maps. The curve E is an elliptic
curve of conductor 150 with LMFDB label 150.c4 in [8] and with Cremona
label 150al in [2]. Due to [2] and [8], the Mordell-Weil group E(Q) of E
over Q is E(Q) = {0, (2,—-1)} ~ Z/2Z where O is the point at infinity on
E. Thus the Q-rational points on C are two points g(O) = (—2,0) and
g(2,—1) = (=5/2,0). The polynomials fXY1(X) = (X + 10)2X (X — 10)?
and fﬁ};lz (X) = X5 are reducible over Q. Hence the value ¢; (b) is not square
in Q for any b € Q such that f(X) is irreducible over Q. O

Remark. In the paper [7] they say that they have not yet found any examples
of rational numbers b such that Gal( ffl\((b 1) b /Q) ~ &;5. Corollary 3.2 above

guarantees that no such examples exist.

By the same way as for the first family, one can see the following assertion
for the second one. As a model over the function field Q(b) we have
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Proposition 3.3. For f(X) = fXY2(X) let N be a unique subeztension of
the extension M /Q(b) with [N : Q(b)] = 2 where M = Spl(f/Q(b)). Then
the square root \/—5(b — 2)(3b — 10) is a generator of N over Q(b).

Proof. Put d = discx f(X). With a calculator one sees d = 5°6201°0560262
where 0 = 01(b) = b— 2, 05 = 0(b) = 3b — 10, O3 = O3(b) = b> +b—1,
01 = 04(b) = 3b — 20b — 20 and 05 = 05(b) = 9> — 15b + 10. As for
the first family, by Theorem 2.3 and Lemma 2.4, the norms d; and dy are
divisors of d in Z[b], that is, there exist integers ¢; and r;; > 0 such that
di = c;0,"" -+ 05°. Now put D = {di,ds}. For example, using a calculator,
at b = 3 one can calculate D = {53114, 2853114132}, To distinguish between
di and dy when b moves, we focus on the prime 13. For each integer k with
0 <k <5 put by = 13k + 3, and define a value dj j, to be the element in
D having a factor 13 where D = {d;,d>} is calculated at b = b,. Also, da
is defined so that {diy,d2r} = D. Define a 6 x 6 matrix A = [a;;] and
two 6 x 1 matrices Vi = [v1;] and Vo = [vg;] such that a;; = log|6;(bi—1)|
for 1 < j < 5 and a;6 — 1, and V1: = 10g|d17i_1| and V2,; = 10g|d277;_1|.
With a calculator one sees that A='V; = [1 54 0 2 4.828] and AV, =
“l154 20 4.828]. This implies that (r11,712,71.3,71.4,715) = (1,5,4,0,2)
and (7“271,7"272,7“273,7“2’4,7‘2,5) = (1,5,4,2,0). The values d@o at b =3 yield
that Ccl = dljo/(el (3)1 e 95(3)2) = —53 and Cy = dz,g/(el(?))l cee 95(3)0) =

—53. Indeed, in such a case one has log|c;| = log|ca| = 4.8283.... Hence
we have di = —53919§9§9§ and dy = —5391030§GZ. Theorem 2.3 verifies
N =Q(b,Vdi) = Q(b, Vda) = Q(b, v/~56102). O

As a specialization to Q we have

Corollary 3.4. Let b be a rational number such that f(X) = fEY2(X) is
irreducible over Q. Put M = Spl(f/Q) and g2(b) = —5(b—2)(3b—10). Then
q2(b) is the square of a rational number if and only if M is a €5-extension
of Q, that is, a cyclic quintic field. If g2(b) is not square, then M is a Ds-
extension of Q containing a quadratic field Q(+/qz2(b)). In particular, when
b <2 orb>10/3, the quadratic field Q(+/q2(b)) is imaginary.

Lemma 3.5. For a rational number b, the value g2(b) = —5(b—2)(3b— 10)
is the square of a rational number if and only if b =2 or b= 2+4/(5t>+3)
for some rational number t.

Proof. One has that ¢2(2) = 0 and g2(2 + 4/(5t> + 3)) = 24522 /(5% + 3)2.
Conversely, if go(b) = s with b # 2 and s € Q, then —(3b—10)/(5b — 10) =
(s/(5b—10))? = 2, which implies b = (10t2 +10)/(5t*> +3) = 2+4/(5t> + 3)
for t = s/(5b — 10) € Q. O
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4. QUINTIC FAMILY BY BRUMER AND HASHIMOTO

Brumer [1] and Hashimoto [5] (see also [3, Section 2.3] and [6]) give a
Q-generic D5-polynomial
HX) =X+ (t—-3) X+ (—t+s+3)X3+ (12—t —25— )X+ sX +1
over Q(s,t) the field of rational functions over Q with two indeterminates s
and ¢.

Proposition 4.1. For f(X) = E{(X) let N be a unique subeztension of
the extension M/Q(s,t) with [N : Q(s,t)] = 2 where M = Spl(f/Q(s,1t)).
Then the square oot \/—01 is a generator of N over Q(s,t) where
01 =4t° — 4t* — (245 + 40)t> — (s? — 34s — 91)t?
+(30s2 + 145 — 4)t + 4s% — 52,

Proof. Put d = discy f(X). With a calculator one sees that d = 765 where

01 = 01(s,t) =45 — 4t* — (24s + 40)t3 — (s% — 34s — 91)¢?
+(30s2 + 145 — 4)t + 45> — 52

and 0 = 05(s,t) = t. As for Propositions 3.1 and 3.3, by Theorem 2.3 and
Lemma 2.4, the norms d; and dy are divisors of d in Z[s, ], that is, there
exist integers ¢; and r;; > 0 such that d; = ¢;6,"'0,"*. For example, with a
calculator one can see that {dy,ds} = {—22739, —739}, {—22131,—131} and
{21123, 1123} at (s,t) = (1,—2), (1,2) and (1,4), respectively. Note
that (61,02) = (739,—2), (131,2) and (1123,4) at (s,t) = (1,-2), (1,2)
and (1,4), respectively. Hence we conclude d; = —9103 and do = —0;.
Theorem 2.3 verifies N = Q(s,t,v/d1) = Q(s,t,V/d2) = Q(s,t,/—0). O
Remark. Proposition 4.1 described above is already known in [3, Section
2.3] and [6].

Remark. Since ?{ (X) is a Q-generic Ds-polynomial, there exist rational

functions s;(b) and ¢;(b) in Q(b) such that Spl( Sfb) ti(b)/(@(b)) is equal to
Spl(fEY1/Q(b)) for each i = 1,2. We find such functions as follows:
~ 10(2322b° 4 21204b" + 75545b% + 131460b 4 1121005 + 37600)

b) =
51(0) (b + 2)(54b2 + 225b + 230)2 ’
4(18b* + 500 + 35)
h®) =5 995, + 230
5o(b) = — 5(967 — 4565 — 78b° + 322b* 4 334 — 50067 — 2000 + 400)
2 (b — 2)(36% — 20b — 20)2 ’
ta(b) = 9b° —15b + 10
2 T3 =200 — 20°

Then one has
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~ 2255(2b + 5)(6> + 15b + 10)hy (b)*
(b+ 2)3(546% + 225b + 230)6
53(3b — 10)(b2 + b — 1)%hy(b)?
(b — 2)3(3b% — 20b — 20)6

—01(51(),t1(b)) =

—01(s2(b),t2(b)) = —

where
hi(b) =2754b5 + 24840b° + 88005b* + 1536006% + 1334006
+480005 + 2000,
ha(b) = 81b% — 333b7 — 48685 + 2238b° + 1406b* — 3840b°
—400b% + 24006 — 800.
Hence we obtain the same assertions as Propositions 3.1 and 3.3. For the ver-
ification of the equalities Spl(fgfb)ii(b)/(@(b)) = Spl(fEY/Q(b)), it is enough
to check with a calculator that the resultant Resx ( fslfl("b)’ 1:(0) (X), FEYH(X +
Y)) € Q(b)[Y] decomposes into one irreducible polynomial of degree 5 and
two irreducible polynomials of degree 10 over Q(b) for each ¢ = 1,2. Indeed,
for two Dz-polynomials g(X) = [[°_,(X — ;) and h(X) = [[>_,(X — 5;)
over K, the resultant Resx (g9(X), h(X +Y)) is equal to [[; ;(Y + a; — ),
and the degree of —a; + 5 over K is 1 or 5 if K(oy) = K(5;), 10 if K(ay)
and K (B;) are not equal but conjugate over K and 25 otherwise.

5. ODD DIHEDRAL FAMILIES BY HASHIMOTO AND MIYAKE

Let n be an odd number greater than 1. Let { be a primitive n-th root of
unity in C, and put w = ¢ + ¢~'. For an integer i, we denote w; = (% 4 (~°
and & = (¢* — (79 /(¢ — (1) € Q(w). Hashimoto and Miyake [4] (see also
[3, Section 5.5]) give a Q(w)-generic ®,-polynomial fi™M(X) = Z(X) + ¢
with one indeterminate ¢t where Z(X) = H?;ol (X —&&iv1) € Q(w)[X]. Let
K represent the algebraic closure of a field K. As a model over the function
field Q(w,t) we have

Theorem 5.1 (Hashimoto-Miyake [4], cf. [3, Section 5.5]). For a root A of
FIM(X) in Q(w, t), let us fiz a root x of X2 —(w+A"NX+1 in Q(w,t). Then
we have fIM(X) = H?:_OI(X—)\i) where r; = (=&—12+&;) /(=& +E&i+1) and
N = 3 /(22 —wz;+1). In particular, we have Spl(fi™/Q(w,t)) = Q(w, t, )
and Gal(ff™ /Q(w,t)) ~ ®,. The group Gal(ff™ /Q(w,t)) is generated by
o and T of order n and 2 with o = To~! where o*(z) = z; and T(x) = 1/z.

Proposition 5.2. For f(X) = f™(X) let N be a unique subestension of
the extension M/Q(w,t) with [N : Q(w,t)] = 2 where M = Spl(f/Q(w,1)).
Then the square root /—0162 is a generator of N over Q(w,t) where 01 =t
and 0y = (4 — w?)"t + 4.

Proof. Let notation be as in Theorem 5.1. Theorem 2.3 implies that the
irreducible factorization of f(X) over Q(w,t, A) is of the form f(X) = (X —
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A) H nl/2 fi(X). We calculate the explicit form of f;(X). Since {_1 = —1,
& =0 and &1 = 1, one has that zg = z and A\g = . The relation z; = o*(z)
implies that \; = o%()\). The relations 7(z) = 1/x and &, ; = —&; yield
7(z;) = 1/xp—; and 7(\;) = Ap—;. Thus we may have f;(X) = (X —\)(X —
An_;) foreachi =1,...,(n—1)/2. Note that z; —(*! = (¥ (z—¢T1) /(& +
&i+1), respectively. Thus A; and A,_; have representations

\i = i (& + &) (~&x + &)
Z_(:El_C)(xZ_Cil)_ $2—wx+1 )
Anoi =7(Ni) = (—Gim1z ™' +&)(=&a ™" + &ira)

2 —wrTl 41
_ (=&iv1z + &) (=&ix + &-1)

22 —wxr+1

)

respectively. Consider the discriminant d; of f;(X) and its norm d;. By the
relation &1 — &1 = w;, the difference \; — \j—; is Ay — Ay = —fz-wi(:n2 —
1)/(x? —wx + 1). The relation z + 27" = w + A~! implies that

(x+271)2 -4

&i :diSCXfi(X) = ()\1 - )\nfi)z = g?wzz 2

=W ((w+2)A+ 1) ((w —2)A + 1).

(x 4+ 271 —w)

Here one can see that &1 1+1/(w42) = (weir1F2)/(w?—4), H?:_ol (woit1+
2) =4 and H?:_Ol (w2i+1—2) = 0. Thus the norms v((w+2)A\+1) of (w£2)A+1
from Q(w,t,\) to Q(w,t) are

" 1
v+ 2A+1) = v(—(w+2))v —f—A) —(w+2) f(—m)
(e T (o T aen)
n w21+1 2\ _ n
—(w+2) <t+( 7012_4)_ (w+2)"t
n 4
respectively. Hence the norm d; of ¢; from Q(w,t,\) to Q(w,t) is equal to
4
2n 2n _ 9\n N —
di = v(8;) = w2 (W + 2)"(w — 2) t(t 7 _4)n)
= M4 — W)+ 4) = — €270,y
Theorem 2.3 verifies N = Q(w, t,v/d;) = Q(w, t,v/—0105). O

Remark. By |w| < 2, the coefficient (4 — w?)™ of ¢ in 0y is positive. Thus
Q(w,v/—0105) is totally imaginary when t € Q(w) is totally positive.
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Corollary 5.3. The discriminant discx fT™(X) of fAM(X) is equal to
nn(w2 _ 4)—n(n—1)/2t(n—1)/2((4 _ w2)nt + 4)(71—1)/2.

Proof. Theorem 2.3 implies discy fI™M(X) = Hgi}l)/ % d; where d; are the
norms in the proof of Proposition 5.2. Due to the relations HEZ{I)M(—&?) =
n(w? — 4)~(=1/2 and Hg";l)/z w? =1, we conclude HZ(»ZIUQ d; = n"(w? —

4)—n(n—l)/2t(n—1)/2((4 _ wE)nt + 4)(n—1)/2' 0
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