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GENERATOR OF THE QUADRATIC SUBEXTENSION OF

AN ODD DIHEDRAL EXTENSION

Toru Komatsu

Abstract. In this paper we present an algorithm to make a generator
of the quadratic subextension of an odd dihedral extension. As an ap-
plication we solve the Galois group problem for the quintic polynomials
given by Kishi and Yamada.

1. Introduction

For an integer n greater than one let Cn and Dn denote the cyclic and the
dihedral group of degree n with order n and 2n, respectively. LetK be a field
of characteristic 0. For a polynomial f(X) over K with positive degree let
Spl(f/K) denote the minimal splitting field of f(X) over K, and Gal(f/K)
its Galois group Gal(Spl(f/K)/K). If f(X) is an irreducible polynomial over
K of degree n with Gal(f/K) ≃ Dn, then the fieldM = Spl(f/K) contains a
unique subfield N such that Gal(M/N) ≃ Cn and Gal(N/K) ≃ C2. When n
is not congruent to 1 modulo 4, the extensionN/K is generated by the square

root
√
discXf(X) of the discriminant discXf(X) of f(X) with respect to

X. For the case of n ≡ 1 (mod 4), the discriminant discXf(X) is square
in K since Dn is included in the alternating group An of degree n. In this
paper we present an algorithm to make a generator of the extension N/K
when n is odd. As an application we determine whether the Galois groups
of the quintic polynomials given by Kishi and Yamada [7] are isomorphic to
D5 or C5.

Theorem 1.1. Let f(X) be an irreducible polynomial over K of odd degree
n equal to or greater than 3 with Gal(f/K) ≃ Dn. For a root λ of f(X)
in M = Spl(f/K) we put L = K(λ) and decompose f(X) into irreducible
factors fi(X) over L such that f(X) = (X − λ)f1(X) · · · fr(X). For each
integer i with 1 ≤ i ≤ r let δi denote the discriminant discXfi(X) of fi(X)
and di its norm νL/K(δi) where νL/K is the norm map from L to K. Then r

is equal to (n− 1)/2 and the square root
√
di generates N over K for every

integer i with 1 ≤ i ≤ r where N is a unique subextension of M/K with
[N : K] = 2.
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Remark. For the calculation of irreducible factorization over a number field
the software packages Maple [9], PARI/GP [10] and Wolfram Mathematica
[12] are equipped with functions factor, factornf and Factor, respectively.

For nonzero rational numbers a, b and µ, Kishi and Yamada [7] treat
quintic polynomials of the form fKY

a,b,µ(X) = X5+abX3+a2X+a3µ ∈ Q[X]

under relation a = ai(b, µ) where a1(b, µ) = 144(b+ 2)2(2b+ 5)(6b2 + 15b+
10)/(54µ2) and a2(b, µ) = b2(b− 2)2(3b+ 5)2(3b− 10)/(55(b2 + b− 1)µ2).

Theorem 1.2 (Kishi and Yamada [7]). (1) Assume f(X) = fKY
a1(b,µ),b,µ

(X)

is irreducible over Q. Then Gal(f/Q) is isomorphic to C5 or D5, especially
for b > 0, Gal(f/Q) is isomorphic to D5.
(2) Assume f(X) = fKY

a2(b,µ),b,µ
(X) is irreducible over Q. Then Gal(f/Q) is

isomorphic to C5 or D5, especially for b > 10/3, Gal(f/Q) is isomorphic to
D5.

In this paper we show that every irreducible polynomial of the first family
fKY
a1(b,µ),b,µ

(X) gives a D5-extension of Q not only for b > 0 but also for

b ≤ 0 (Corollary 3.2) and that the second family fKY
a2(b,µ),b,µ

(X) with b <

2 or b > 10/3 yields D5-extensions of Q containing imaginary quadratic
fields (Corollary 3.4). For the case of 2 ≤ b ≤ 10/3, we give a simple
criterion for an irreducible polynomial fKY

a2(b,µ),b,µ
(X) to give a D5-extension

or a C5-extension of Q (Lemma 3.5). The main purpose in this paper is to
present an algorithm to make the generator of the quadratic subextension
contained in Dn-extension with an odd number n at the second section
(Theorem 2.3). We apply the algorithm to two quintic families of Kishi and
Yamada [7] described above at the third section, to the quintic family of
Brumer [1] and Hashimoto [5] at the fourth section and to the odd dihedral
families of Hashimoto and Miyake [4] at the final section. We also exhibit
the discriminants of the odd dihedral polynomials constructed by Hashimoto
and Miyake [4].

2. Generator of the quadratic subextension

Let f(X) be an irreducible polynomial over K of odd degree n ≥ 3 with
Gal(f/K) ≃ Dn. Denote M = Spl(f/K) and G = Gal(f/K). Fix a root
λ of f(X) in M and put L = K(λ). Let MH stand for the subfield of M
fixed by a subgroup H of G. There exists a unique element τ in G such that
L = M ⟨τ⟩ where ⟨τ⟩ is the subgroup of G generated by τ . Fix an element σ in
G with order n and put τi = σiτσ−i for each integer i. Then G decomposes
into two disjoint subsets S = {σi | 0 ≤ i ≤ n−1} and T = {τi | 0 ≤ i ≤ n−1}.
Note that σi are of odd order and τi are of order 2. By τσi ̸∈ S, the order of
τσi is equal to 2. Thus τσi is equal to its inverse (τσi)−1 = σ−iτ−1 = σ−iτ .
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For each integer i put Li = M ⟨τi⟩ and λi = σi(λ). Note that Li = Lj if and
only if i ≡ j (mod n). Thus L0, . . . , Ln−1 are distinct from one another.

Lemma 2.1. For every integer i we have Li = K(λi) and τ(λi) = λ−i.

Proof. It follows from τi(λi) = τi(σ
i(λ)) = σi(τ(λ)) = σi(λ) = λi that

K(λi) ⊂ Li. Since λi is a root of f(X), the degree [K(λi) : K] is equal to
n. Thus the equality K(λi) = Li holds. By τσi = σ−iτ we have τ(λi) =
τσi(λ) = σ−iτ(λ) = λ−i. □

Put fi(X) = (X−λi)(X−λn−i) for each integer i with 1 ≤ i ≤ (n−1)/2.

Lemma 2.2. For every integer i with 1 ≤ i ≤ (n − 1)/2 the polynomial
fi(X) is defined over L and irreducible over L.

Proof. Lemma 2.1 implies that fi(X) is defined overM ⟨τ⟩ = L. Since L = L0

does not contain Li (resp. Ln−i), the factor X − λi (resp. X − λn−i) is not
defined over L. Thus fi(X) is irreducible over L. □

For an integer i with 1 ≤ i ≤ (n − 1)/2 let δi denote the discriminant
discXfi(X) of fi(X), and di its norm νL/K(δi) where νL/K is the norm map

from L to K. Now put N = M ⟨σ⟩.

Theorem 2.3. The irreducible factorization of f(X) over L has form (X−
λ0)f1(X) · · · f(n−1)/2(X). For every i = 1, . . . , (n− 1)/2 the square root

√
di

of di generates N over K, that is, N = K(
√
di). The product d1 · · · d(n−1)/2

of d1, . . . , d(n−1)/2 is equal to the discriminant discXf(X) of f(X).

Let us investigate the actions of G on δi and
√
di. For an integer c

we define a finite set Pc consisting of the pairs of integers such that Pc =
{(c+ k, k) ∈ Z× Z | k = 0, 1, . . . , n− 1}.

Lemma 2.4. For every i = 1, . . . , (n − 1)/2 we have di =
∏

(a,b)∈P2i
(λa −

λb)
2.

Proof. The definition of fi(X) implies that δi = (λi − λ−i)
2. By Lemma 2.1

the norm di = νL/K(δi) =
∏n−1

k=0 σ
k(δi) is equal to

∏n−1
k=0(λi+k − λ−i+k)

2 =∏
(a,b)∈P2i

(λa − λb)
2. □

For an integer i = 1, . . . , (n−1)/2 we denote by γi the product
∏

(a,b)∈P2i
(λa−

λb) of which square is equal to the norm di.

Lemma 2.5. For every i = 1, . . . , (n−1)/2 we have σ(γi) = γi and τ(γi) =
−γi.

Proof. Since σ(λi) = λi+1 and τ(λi) = λ−i by Lemma 2.1 one has
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σ(γi) =
∏

(a,b)∈P2i

σ(λa − λb) =
∏

(a,b)∈P2i

(λa+1 − λb+1) =
∏

(a′,b′)∈P2i

(λa′ − λb′) = γi,

τ(γi) =
∏

(a,b)∈P2i

τ(λa − λb) =
∏

(a,b)∈P2i

(λ−a − λ−b)

= (−1)n
∏

(a,b)∈P2i

(λ−b − λ−a) = (−1)n
∏

(a′,b′)∈P2i

(λa′ − λb′) = −γi

for odd n. □

Proof of Theorem 2.3. Since L0, . . . , Ln−1 are distinct from one another, so
are λ0, . . . , λn−1. This means that f(X) =

∏n−1
i=0 (X − λi). Lemma 2.2

implies the first assertion. Lemma 2.5 means that N = M ⟨σ⟩ = K(γi) =
K(

√
di), which is the second assertion. By the relation λa = λa+n, the

difference λa+k −λa for an odd k with 0 < k < n is equal to −(λa′+k′ −λa′)
for even k′ with 0 < k′ < n where a′ = a + k and k′ = n − k. Thus the
discriminant discXf(X) of f(X) has a decomposition into the product of di
such that

discXf(X) =
∏

0≤a<b≤n−1

(λa − λb)
2 =

(n−1)/2∏
i=1

∏
(a,b)∈P2i

(λa − λb)
2 =

(n−1)/2∏
i=1

di,

which is the third assertion. □

Theorem 2.3 shows Theorem 1.1.

Remark. In the case of K = Q Williamson [11, Proposition 3] gives the
same generator as Theorems 1.1 and 2.3 by using the resolvent. Williamson’s
method requires not only the computation of the resolvent with degree n(n−
1) but also its factorization over Q.

When we treat numerical examples, the resultant of two polynomials
is useful to calculate the norm di. For two polynomials g(X) = glX

l +
gl−1X

l−1+ · · ·+g1X+g0 and h(X) = hmXm+hm−1X
m−1+ · · ·+h1X+h0

with gl ̸= 0 and hm ̸= 0 we define the resultant ResX(g(X), h(X)) of g(X)
and h(X) by the determinant of (l +m)× (l +m) matrix

gl gl−1 · · · g1 g0 O
gl gl−1 · · · g1 g0

. . .
. . .

O gl gl−1 · · · g1 g0
hm hm−1 · · · h1 h0 O

hm hm−1 · · · h1 h0
. . .

. . .

O hm hm−1 · · · h1 h0


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called the Sylvester matrix. It is known that ResX(g(X), h(X)) is equal

to gml hlm
∏

i,j(αi − βj) = gml
∏

i h(αi) where g(X) = gl
∏l

i=1(X − αi) and

h(X) = hm
∏m

j=1(X − βj).

Lemma 2.6. For every i = 1, . . . , (n − 1)/2 the norm di is equal to the

resultant ResX(f(X), δ̃i(X)) where δ̃i(X) is a polynomial over K such that

δ̃i(λ) = δi.

Proof. Since δ̃i(X) is defined over K, the norm di =
∏n−1

k=0 σ
k(δi) is equal to∏n−1

k=0 δ̃i(λk) = ResX(f(X), δ̃i(X)). □

3. Two quintic families by Kishi and Yamada

Recall the quintic polynomials of Kishi and Yamada [7] with the form
fKY
a,b,µ(X) = X5+abX3+a2X+a3µ ∈ Q[X] and two specializations a1(b, µ) =

144(b+2)2(2b+5)(6b2+15b+10)/(54µ2) and a2(b, µ) = b2(b−2)2(3b+5)2(3b−
10)/(55(b2+ b−1)µ2). With one indeterminate b let Q(b) denote the field of
rational functions in b overQ and Z[b] the ring of polynomials in b over Z. We
consider fKY

ai(b,µ),b,µ
(X) as polynomials over Q(b). As described in the paper

[7, Remark 2], due to the relation fKY
ai(b,µ),b,µ

(X) = fKY
ai(b,1),b,1

(µX)/µ5 one

has that Spl(fKY
ai(b,µ),b,µ

/Q(b)) = Spl(fKY
ai(b,µ′),b,µ′/Q(b)) for nonzero µ and µ′.

We define fKY1
b (X) = fKY

a1(b,µ),b,µ
(X) with µ = 223(b+2)/53 and fKY2

b (X) =

fKY
a2(b,µ),b,µ

(X) with µ = b(b− 2)(3b+5)/(53(b2+ b− 1)). Then fKY1
b (X) and

fKY2
b (X) are monic polynomials over Z[b]. As a model over the function
field Q(b) we have

Proposition 3.1. For f(X) = fKY1
b (X) let N be a unique subextension of

the extension M/Q(b) with [N : Q(b)] = 2 where M = Spl(f/Q(b)). Then

the square root
√

−(b+ 2)(2b+ 5)(6b2 + 15b+ 10) is a generator of N over
Q(b).

Proof. Put d = discXf(X) the discriminant of f(X). With a calculator one
sees that d = 24516θ21θ

10
2 θ103 θ24θ

2
5 where θ1 = θ1(b) = b + 2, θ2 = θ2(b) =

2b + 5, θ3 = θ3(b) = 6b2 + 15b + 10, θ4 = θ4(b) = 18b2 + 50b + 35 and
θ5 = θ5(b) = 54b2 + 225b + 230. Theorem 2.3 implies d = d1d2 under the
notation as in Theorem 2.3. Since f(X) is a monic polynomial over Z[b],
its roots λ are integral over Z[b] and so are di by Lemma 2.4. Thus d1
and d2 are divisors of d in Z[b], that is, there exist integers ci and ri,j ≥ 0

such that di = ciθ
ri,1
1 · · · θri,55 . Now put D = {d1, d2}. For example, using a

calculator, at b = 0 one can calculate the irreducible factorization f(X) =
(x−λ)f1(X)f2(X) over Q(λ), the discriminants δi of fi(X) and their norms
di such that D = {−28520232,−21052072}. To distinguish between d1 and d2
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when b moves, we focus on the prime 7. For each integer k with 0 ≤ k ≤ 5
put bk = 7k, and define a value d1,k to be the element in D having a factor
7 where D = {d1, d2} is calculated at b = bk. Also, d2,k is defined so that
{d1,k, d2,k} = D. Define a 6 × 6 matrix A = [aij ] and two 6 × 1 matrices
V1 = [v1,i] and V2 = [v2,i] such that aij = log |θj(bi−1)| for 1 ≤ j ≤ 5 and
ai6 = 1, and v1,i = log |d1,i−1| and v2,i = log |d2,i−1|. With a calculator one
sees that A−1V1 ≒ t[1 5 5 2 0 15.65] and A−1V2 ≒ t[1 5 5 0 2 12.88] where
≒ stands for approximate equality and the symbol t means the transpose
of a matrix. This implies that (r1,1, r1,2, r1,3, r1,4, r1,5) = (1, 5, 5, 2, 0) and
(r2,1, r2,2, r2,3, r2,4, r2,5) = (1, 5, 5, 0, 2). The values di,0 at b = 0 yield that
c1 = d1,0/(θ1(0)

1 · · · θ5(0)0) = −2458 and c2 = d2,0/(θ1(0)
1 · · · θ5(0)2) =

−58. Indeed, in such a case one has log |c1| = 15.648 . . . and log |c2| =
12.875 . . .. Hence we have d1 = −2458θ1θ

5
2θ

5
3θ

2
4 and d2 = −58θ1θ

5
2θ

5
3θ

2
5.

Theorem 2.3 verifies N = Q(b,
√
d1) = Q(b,

√
d2) = Q(b,

√
−θ1θ2θ3). □

As a specialization to Q we have

Corollary 3.2. Let b be a rational number such that f(X) = fKY1
b (X) is

irreducible over Q. Then Spl(f/Q) is a D5-extension of Q containing a

quadratic field Q(
√

q1(b)) where q1(b) = −(b+ 2)(2b+ 5)(6b2 + 15b+ 10).

Proof. Let us define two curves C : c2 = q1(b) and E : y2+xy = x3−3x−3.
Then there exist birational maps

β1 :C → E, (b, c) 7→
(
− 1

b+ 2
,
b+ c+ 2

2(b+ 2)2

)
,

β2 :E → C, (x, y) 7→
(
−2x+ 1

x
,
x+ 2y

x2

)
such that β2 ◦ β1 and β1 ◦ β2 are identity maps. The curve E is an elliptic
curve of conductor 150 with LMFDB label 150.c4 in [8] and with Cremona
label 150a1 in [2]. Due to [2] and [8], the Mordell-Weil group E(Q) of E
over Q is E(Q) = {O, (2,−1)} ≃ Z/2Z where O is the point at infinity on
E. Thus the Q-rational points on C are two points g(O) = (−2, 0) and
g(2,−1) = (−5/2, 0). The polynomials fKY1

−2 (X) = (X + 10)2X(X − 10)2

and fKY1
−5/2(X) = X5 are reducible over Q. Hence the value q1(b) is not square

in Q for any b ∈ Q such that f(X) is irreducible over Q. □

Remark. In the paper [7] they say that they have not yet found any examples
of rational numbers b such that Gal(fKY

a1(b,µ),b,µ
/Q) ≃ C5. Corollary 3.2 above

guarantees that no such examples exist.

By the same way as for the first family, one can see the following assertion
for the second one. As a model over the function field Q(b) we have
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Proposition 3.3. For f(X) = fKY2
b (X) let N be a unique subextension of

the extension M/Q(b) with [N : Q(b)] = 2 where M = Spl(f/Q(b)). Then

the square root
√
−5(b− 2)(3b− 10) is a generator of N over Q(b).

Proof. Put d = discXf(X). With a calculator one sees d = 56θ21θ
10
2 θ83θ

2
4θ

2
5

where θ1 = θ1(b) = b − 2, θ2 = θ2(b) = 3b − 10, θ3 = θ3(b) = b2 + b − 1,
θ4 = θ4(b) = 3b3 − 20b − 20 and θ5 = θ5(b) = 9b3 − 15b + 10. As for
the first family, by Theorem 2.3 and Lemma 2.4, the norms d1 and d2 are
divisors of d in Z[b], that is, there exist integers ci and ri,j ≥ 0 such that

di = ciθ
ri,1
1 · · · θri,55 . Now put D = {d1, d2}. For example, using a calculator,

at b = 3 one can calculate D = {53114, 2853114132}. To distinguish between
d1 and d2 when b moves, we focus on the prime 13. For each integer k with
0 ≤ k ≤ 5 put bk = 13k + 3, and define a value d1,k to be the element in
D having a factor 13 where D = {d1, d2} is calculated at b = bk. Also, d2,k
is defined so that {d1,k, d2,k} = D. Define a 6 × 6 matrix A = [aij ] and
two 6 × 1 matrices V1 = [v1,i] and V2 = [v2,i] such that aij = log |θj(bi−1)|
for 1 ≤ j ≤ 5 and ai6 = 1, and v1,i = log |d1,i−1| and v2,i = log |d2,i−1|.
With a calculator one sees that A−1V1 ≒ t[1 5 4 0 2 4.828] and A−1V2 ≒
t[1 5 4 2 0 4.828]. This implies that (r1,1, r1,2, r1,3, r1,4, r1,5) = (1, 5, 4, 0, 2)
and (r2,1, r2,2, r2,3, r2,4, r2,5) = (1, 5, 4, 2, 0). The values di,0 at b = 3 yield
that c1 = d1,0/(θ1(3)

1 · · · θ5(3)2) = −53 and c2 = d2,0/(θ1(3)
1 · · · θ5(3)0) =

−53. Indeed, in such a case one has log |c1| = log |c2| = 4.8283 . . .. Hence
we have d1 = −53θ1θ

5
2θ

4
3θ

2
5 and d2 = −53θ1θ

5
2θ

4
3θ

2
4. Theorem 2.3 verifies

N = Q(b,
√
d1) = Q(b,

√
d2) = Q(b,

√
−5θ1θ2). □

As a specialization to Q we have

Corollary 3.4. Let b be a rational number such that f(X) = fKY2
b (X) is

irreducible over Q. Put M = Spl(f/Q) and q2(b) = −5(b−2)(3b−10). Then
q2(b) is the square of a rational number if and only if M is a C5-extension
of Q, that is, a cyclic quintic field. If q2(b) is not square, then M is a D5-

extension of Q containing a quadratic field Q(
√
q2(b)). In particular, when

b < 2 or b > 10/3, the quadratic field Q(
√
q2(b)) is imaginary.

Lemma 3.5. For a rational number b, the value q2(b) = −5(b− 2)(3b− 10)
is the square of a rational number if and only if b = 2 or b = 2+4/(5t2+3)
for some rational number t.

Proof. One has that q2(2) = 0 and q2(2 + 4/(5t2 + 3)) = 2452t2/(5t2 + 3)2.
Conversely, if q2(b) = s2 with b ̸= 2 and s ∈ Q, then −(3b− 10)/(5b− 10) =
(s/(5b−10))2 = t2, which implies b = (10t2+10)/(5t2+3) = 2+4/(5t2+3)
for t = s/(5b− 10) ∈ Q. □
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4. Quintic family by Brumer and Hashimoto

Brumer [1] and Hashimoto [5] (see also [3, Section 2.3] and [6]) give a
Q-generic D5-polynomial

fBr
s,t (X) = X5 + (t− 3)X4 + (−t+ s+ 3)X3 + (t2 − t− 2s− 1)X2 + sX + t

over Q(s, t) the field of rational functions over Q with two indeterminates s
and t.

Proposition 4.1. For f(X) = fBr
s,t (X) let N be a unique subextension of

the extension M/Q(s, t) with [N : Q(s, t)] = 2 where M = Spl(f/Q(s, t)).
Then the square root

√
−θ1 is a generator of N over Q(s, t) where

θ1 =4t5 − 4t4 − (24s+ 40)t3 − (s2 − 34s− 91)t2

+(30s2 + 14s− 4)t+ 4s3 − s2.

Proof. Put d = discXf(X). With a calculator one sees that d = θ21θ
2
2 where

θ1 = θ1(s, t) = 4t5 − 4t4 − (24s+ 40)t3 − (s2 − 34s− 91)t2

+(30s2 + 14s− 4)t+ 4s3 − s2

and θ2 = θ2(s, t) = t. As for Propositions 3.1 and 3.3, by Theorem 2.3 and
Lemma 2.4, the norms d1 and d2 are divisors of d in Z[s, t], that is, there
exist integers ci and ri,j ≥ 0 such that di = ciθ

ri,1
1 θ

ri,2
2 . For example, with a

calculator one can see that {d1, d2} = {−22739,−739}, {−22131,−131} and
{−241123,−1123} at (s, t) = (1,−2), (1, 2) and (1, 4), respectively. Note
that (θ1, θ2) = (739,−2), (131, 2) and (1123, 4) at (s, t) = (1,−2), (1, 2)
and (1, 4), respectively. Hence we conclude d1 = −θ1θ

2
2 and d2 = −θ1.

Theorem 2.3 verifies N = Q(s, t,
√
d1) = Q(s, t,

√
d2) = Q(s, t,

√
−θ1). □

Remark. Proposition 4.1 described above is already known in [3, Section
2.3] and [6].

Remark. Since fBr
s,t (X) is a Q-generic D5-polynomial, there exist rational

functions si(b) and ti(b) in Q(b) such that Spl(fBr
si(b),ti(b)

/Q(b)) is equal to

Spl(fKY
b

i/Q(b)) for each i = 1, 2. We find such functions as follows:

s1(b) =−10(2322b5 + 21204b4 + 75545b3 + 131460b2 + 112100b+ 37600)

(b+ 2)(54b2 + 225b+ 230)2
,

t1(b) =
4(18b2 + 50b+ 35)

54b2 + 225b+ 230
,

s2(b) =−5(9b7 − 45b6 − 78b5 + 322b4 + 334b3 − 500b2 − 200b+ 400)

(b− 2)(3b3 − 20b− 20)2
,

t2(b) =
9b3 − 15b+ 10

3b3 − 20b− 20
.

Then one has
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−θ1(s1(b), t1(b)) =−2256(2b+ 5)(6b2 + 15b+ 10)h1(b)
2

(b+ 2)3(54b2 + 225b+ 230)6
,

−θ1(s2(b), t2(b)) =−53(3b− 10)(b2 + b− 1)2h2(b)
2

(b− 2)3(3b3 − 20b− 20)6

where
h1(b) = 2754b6 + 24840b5 + 88005b4 + 153600b3 + 133400b2

+48000b+ 2000,
h2(b) = 81b8 − 333b7 − 486b6 + 2238b5 + 1406b4 − 3840b3

−400b2 + 2400b− 800.

Hence we obtain the same assertions as Propositions 3.1 and 3.3. For the ver-
ification of the equalities Spl(fBr

si(b),ti(b)
/Q(b)) = Spl(fKY

b
i/Q(b)), it is enough

to check with a calculator that the resultant ResX(fBr
si(b),ti(b)

(X), fKY
b

i(X +

Y )) ∈ Q(b)[Y ] decomposes into one irreducible polynomial of degree 5 and
two irreducible polynomials of degree 10 over Q(b) for each i = 1, 2. Indeed,

for two D5-polynomials g(X) =
∏5

i=1(X − αi) and h(X) =
∏5

j=1(X − βj)

over K, the resultant ResX(g(X), h(X + Y )) is equal to
∏

i,j(Y + αi − βj),

and the degree of −αi + βj over K is 1 or 5 if K(αi) = K(βj), 10 if K(αi)
and K(βj) are not equal but conjugate over K and 25 otherwise.

5. Odd dihedral families by Hashimoto and Miyake

Let n be an odd number greater than 1. Let ζ be a primitive n-th root of
unity in C, and put ω = ζ + ζ−1. For an integer i, we denote ωi = ζi + ζ−i

and ξi = (ζi − ζ−i)/(ζ − ζ−1) ∈ Q(ω). Hashimoto and Miyake [4] (see also
[3, Section 5.5]) give a Q(ω)-generic Dn-polynomial fHM

t (X) = Ξ(X) + t

with one indeterminate t where Ξ(X) =
∏n−1

i=0 (X − ξiξi+1) ∈ Q(ω)[X]. Let

K represent the algebraic closure of a field K. As a model over the function
field Q(ω, t) we have

Theorem 5.1 (Hashimoto-Miyake [4], cf. [3, Section 5.5]). For a root λ of

fHM
t (X) in Q(ω, t), let us fix a root x of X2−(ω+λ−1)X+1 in Q(ω, t). Then

we have fHM
t (X) =

∏n−1
i=0 (X−λi) where xi = (−ξi−1x+ξi)/(−ξix+ξi+1) and

λi = xi/(x
2
i −ωxi+1). In particular, we have Spl(fHM

t /Q(ω, t)) = Q(ω, t, x)
and Gal(fHM

t /Q(ω, t)) ≃ Dn. The group Gal(fHM
t /Q(ω, t)) is generated by

σ and τ of order n and 2 with στ = τσ−1 where σi(x) = xi and τ(x) = 1/x.

Proposition 5.2. For f(X) = fHM
t (X) let N be a unique subextension of

the extension M/Q(ω, t) with [N : Q(ω, t)] = 2 where M = Spl(f/Q(ω, t)).
Then the square root

√
−θ1θ2 is a generator of N over Q(ω, t) where θ1 = t

and θ2 = (4− ω2)nt+ 4.

Proof. Let notation be as in Theorem 5.1. Theorem 2.3 implies that the
irreducible factorization of f(X) over Q(ω, t, λ) is of the form f(X) = (X −
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λ)
∏(n−1)/2

i=1 fi(X). We calculate the explicit form of fi(X). Since ξ−1 = −1,
ξ0 = 0 and ξ1 = 1, one has that x0 = x and λ0 = λ. The relation xi = σi(x)
implies that λi = σi(λ). The relations τ(x) = 1/x and ξn−i = −ξi yield
τ(xi) = 1/xn−i and τ(λi) = λn−i. Thus we may have fi(X) = (X−λi)(X−
λn−i) for each i = 1, . . . , (n−1)/2. Note that xi−ζ±1 = ζ±i(x−ζ±1)/(−ξix+
ξi+1), respectively. Thus λi and λn−i have representations

λi =
xi

(xi − ζ)(xi − ζ−1)
=

(−ξi−1x+ ξi)(−ξix+ ξi+1)

x2 − ωx+ 1
,

λn−i = τ(λi) =
(−ξi−1x

−1 + ξi)(−ξix
−1 + ξi+1)

x−2 − ωx−1 + 1

=
(−ξi+1x+ ξi)(−ξix+ ξi−1)

x2 − ωx+ 1
,

respectively. Consider the discriminant δi of fi(X) and its norm di. By the
relation ξi+1 − ξi−1 = ωi, the difference λi − λn−i is λi − λn−i = −ξiωi(x

2 −
1)/(x2 − ωx+ 1). The relation x+ x−1 = ω + λ−1 implies that

δi =discXfi(X) = (λi − λn−i)
2 = ξ2i ω

2
i

(x+ x−1)2 − 4

(x+ x−1 − ω)2

= ξ2i ω
2
i ((ω + 2)λ+ 1)((ω − 2)λ+ 1).

Here one can see that ξiξi+1+1/(ω±2) = (ω2i+1∓2)/(ω2−4),
∏n−1

i=0 (ω2i+1+

2) = 4 and
∏n−1

i=0 (ω2i+1−2) = 0. Thus the norms ν((ω±2)λ+1) of (ω±2)λ+1
from Q(ω, t, λ) to Q(ω, t) are

ν((ω + 2)λ+ 1) = ν(−(ω + 2))ν
(
− 1

ω + 2
− λ

)
= −(ω + 2)nf

(
− 1

ω + 2

)
=−(ω + 2)n

(
t+

n−1∏
i=0

(
− 1

ω + 2
− ξiξi+1

))
=−(ω + 2)n

(
t+ (−1)n

n−1∏
i=0

ω2i+1 − 2

ω2 − 4

)
= −(ω + 2)nt,

ν((ω − 2)λ+ 1) =−(ω − 2)n
(
t− 4

(ω2 − 4)n

)
,

respectively. Hence the norm di of δi from Q(ω, t, λ) to Q(ω, t) is equal to

di = ν(δi) = ξ2ni ω2n
i (ω + 2)n(ω − 2)nt

(
t− 4

(ω2 − 4)n

)
=−ξ2ni ω2n

i t((4− ω2)nt+ 4) = −ξ2ni ω2n
i θ1θ2.

Theorem 2.3 verifies N = Q(ω, t,
√
di) = Q(ω, t,

√
−θ1θ2). □

Remark. By |ω| < 2, the coefficient (4 − ω2)n of t in θ2 is positive. Thus
Q(ω,

√
−θ1θ2) is totally imaginary when t ∈ Q(ω) is totally positive.
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Corollary 5.3. The discriminant discXfHM(X) of fHM(X) is equal to

nn(ω2 − 4)−n(n−1)/2t(n−1)/2((4− ω2)nt+ 4)(n−1)/2.

Proof. Theorem 2.3 implies discXfHM(X) =
∏(n−1)/2

i=1 di where di are the

norms in the proof of Proposition 5.2. Due to the relations
∏(n−1)/2

i=1 (−ξ2i ) =

n(ω2 − 4)−(n−1)/2 and
∏(n−1)/2

i=1 ω2
i = 1, we conclude

∏(n−1)/2
i=1 di = nn(ω2 −

4)−n(n−1)/2t(n−1)/2((4− ω2)nt+ 4)(n−1)/2. □
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