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THE CHARACTERIZATIONS OF AN ALTERNATING

SIGN MATRICES USING A TRIPLET

Toyokazu Ohmoto

Abstract. An alternating sign matrix (ASM for short) is a square ma-
trix which consists of 0, 1 and −1. In this paper, we characterize an ASM
by showing a bijection between alternating sign matrix and six vertex
model, and a bijection between six vertex model and height function.
In order to show these bijections, we define a triplet (ai,j , ci,j , ri,j) for
each entry of an ASM. We also define a track for each index of height
function, and state more properties of height function.

1. Introduction

In this paper, we mainly deal with the alternating sign matricies which
were adovocated by Mills-Robbins-Rumsey [7]. An alternating sign matrix
is a square matrix consisting of 0, 1 and −1 which satisfies several conditions,
and is often abbreviated as ASM. Among the proofs of their enumeration,
the proof by Zeilberger [13] and the proof by Kuperberg [4] are famaous.
In the proof by Kuperberg [4], the six vertex models introduced from the
statistical physics is used. The six vertex model is described as a map
which gives direction to the edges of the lattice graph. On the other hands,
there is a related object called Fully pucked loop model, it is abbreviated as
FPL, which is described as a map such that it associates one of two colors
with each edges of a lattice graph. In order to get some characterizations
of ASMs which has degree n, a graph consisting of n × n vertices called
interiror vertex and 4n vertices called boundary vertices, where each interior
vertecies is adjacent to 4 edges is used. We denote this lattice graph as
Ln. Wieland [12] states a characterization using a operation which called
gyration defined for FPLs. As another approach, a (n + 1) × (n + 1) matrix
which called height function is defined for a ASM of size n, and it define
partial order for ASMs of size n. In this paper, we focus on the conditions of
ASM for the sum of a row (resp. column), and define a triplet (ai,j , ci,j , ri,j)
for each entries of a ASM. Then we describe a correspondence ASMs, six
vertex models and height functions by using the triplets (ai,j , ci,j , ri,j). The
fact that the state of each interior vertex (i, j) of Ln corresponds to the
(i, j)-entry of ASM is well known, but the main purpose is to describe that
correspondence more clearly by using the triplet (ai,j , ci,j , ri,j). The proof of
bijection between ASM and six vertex model, and between six vertex model
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and height functions are our own original proof. Moreover, we state the
properties of height functions about range of possible values of their entries.
From section 4 onwards, we introduce the characterizations of FPL by using
gyration which stated in [3], [12].

2. Alternating sign matrix

In this section we define the alternating sign matrices and related objects
called six vertex model and fully packed loop model. There are bijections
between these objects, and we explain those bijections in this section.

2.1. Alternating sign matrix (ASM). As it is well-known, each element
σ in Sn corresponds to its permutation matrix Pσ = (δi,σ(j))1≤i,j≤n. For ex-

ample, the permutation (1 2 3 4 5
2 4 1 5 3

) ∈ S5 corresponds to the following

square matrix:

⎛
⎜⎜⎜⎜⎜
⎝

0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0

⎞
⎟⎟⎟⎟⎟
⎠

.

A permutation matrix A = (ai,j)1≤i,j≤n of size n is characterized by the

properties (i) ai,j ∈ {0,1} for 1 ≤ i, j ≤ n and ∑ni=1 ai,j = ∑nj=1 ai,j = 1 for each
i, j. Now we define the alternating sign matrices whose entries consist of 0,1
or −1 and regarded as an extension of the permutation matrices.

Definition 1. A square matrix A = (ai,j)1≤i,j≤n of size n is called alternating

sign matrix (or ASM shortly) if it satisfies the following conditions:

ai,j ∈ {0,1,−1} (1 ≤ i, j ≤ n),(2.1a)

j

∑
k=1

ai,k,
i

∑
k=1

ak,j ∈ {0,1} (1 ≤ i, j ≤ n),(2.1b)

n

∑
i=1
ai,j =

n

∑
j=1

ai,j = 1 (1 ≤ i, j ≤ n).(2.1c)

Let An denote the set of all ASM’s of size n.

The following is an example of ASM of size 4:

⎛
⎜⎜⎜
⎝

0 1 0 0
1 −1 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠

.
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2.2. Six vertex model and Fully packed loop model. Now we define
the six vertex model and fully packed loop model for the sake we provide
a rigorous approach. First we give the definition of a planary (simple and
finite) graph which we name Lm,n = (V (Lm,n),E(Lm,n)). The vertex set
V (Lm,n) = V0(m,n) ⊔ V1(m,n) and the edge set E(Lm,n) = E0(m,n) ⊔
E1(m,n) are composed of the two kinds of sets, respectively. Each vertex
set is defined as

V0(m,n) ∶= {(i, j) ∈ Z2 ∣1 ≤ i ≤m,1 ≤ j ≤ n} ,
which is called the set of interior vertices and

V1(m,n) ∶= {(i, j) ∣ i ∈ [m], j ∈ {0, n + 1}} ⊔ {(i, j) ∣ i ∈ {0,m + 1}, j ∈ [n]} ,
which is called the set of boundary vertices. In graph theory a pair of
vertices is called an edge. Here we call a pair of the form {(i, j), (i, j + 1)}
with (i, j), (i, j + 1) ∈ V (Lm,n) a horizontal edge, and a pair of the form
{(i, j), (i + 1, j)} with (i, j), (i + 1, j) ∈ V (Lm,n) a vertical edge. The edge
set E(Lm,n) of the graph Lm,n is, by definition, the set of all horizontal
and vertical edges. We also define E0(m,n) as the set of all edges, whose
endpoints are both interior vertices, and E1(m,n) as the set of edges such
that one of the endpoints is a boundary vertex. More precisely

E0(m,n) ∶={{(i, j), (i, j + 1)} ∣1 ≤ i ≤m, 1 ≤ j ≤ n − 1}
⊔ {{(i, j), (i + 1, j)} ∣1 ≤ i ≤m − 1, 1 ≤ j ≤ n} ,(2.2)

and

E1(m,n) ∶={{(i, j), (i, j + 1)} ∣1 ≤ i ≤m, j ∈ {0, n}}
⊔ {{(i, j), (i + 1, j)} ∣ i ∈ {0,m}, 1 ≤ j ≤ n} .(2.3)

We call an element of E1(m,n) a boundary edge. Especially, we denote
Ln,n as Ln. We can regard the graph Ln as the subset of xy-plane as
in Figure 1. We label the boundary edges counterclockwise with e1 =
{(1,0), (1,1)} , e2, . . .. starting from e1. For example, Figure 1 is the graph
L3, in which the double circle dots are the boundary vetices.

2.2.1. Six vertex model. A six vertex model is a type of statistical mechanics
model in which the Boltzmann weights are associated with each vertex in
the model. If this model has six possible states for each vertex, we call it a
six vertex model. A state of our model is obtained by giving a direction to
each edge of Lm,n. Recall that an edge of Lm,n is denoted by an unorderd
pair {u, v} of vertices. We use ordered pair (u, v) to denoted the directed
edge from u to v, and (v, u) to denote the opposite one. We call a map
which associate (u, v) or (v, u) to {u, v} for each edge {u, v} ∈ E (Lm,n)
orientation of Lm,n. Here, if the orientation φ satisfies φ({u, v}) = (u, v),
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Figure 1. L3

we say u is a source or the directed edge (u, v) goes out of u. On the other
hand, we say v is a sink or (u, v) comes in v. A state is, by definition, a way
asigning a direction to each edge. Since each interior vertex v has exactly
4 adjacent edges, there are 24 ways to orient these edges, We say a state
2-in-2-out if there are 2 edges in and 2 edges out for every vertex. Then
we call a orientation φ a state of six vertex model on Lm,n if each interior
vertex is 2-in-2-out. When φ is a state of six vertex model on Lm,n, we call
φ∣E1(m,n) boundary condition of φ. We usually fix a boundary condition.
Then the boundary condition on Ln like Figure 2 is called open boundary
condition. We denote the set of all six vertex model on Ln which has open
boundary condition as SV(n).
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Figure 2. An ex-
ample of boundary
condition
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Figure 3. An ex-
ample of a state of
Six vertex model

2.2.2. Fully packed loop model. We define the following map ψ∶E(Lm,n) →
{b,w}. Here, b comes from black and w comes from white. Let v be an
interior vertex, then we say v is 2-2-colored if 2 out of 4 edges which is
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incident to v are b, and the rest are w. We also call a ψ fully packed loop
model on Lm,n if each interior vertex is 2-2-colored, and it is abbreviated
as FPL. Figure 4 is an example of FPL on L3. In Figure 4, we draw edge
e with solid line (resp. dashed line) when e has color b (resp. w) for each
edge e ∈ E(L3).

e11e12e1

e2

e3

e4

e5 e6 e7

e8

e9

e10

b

w

Figure 4. an example of FPL on L3

Here, let ψ be a FPL on Lm,n and ei be the i-th boundary edge, then

τ = (ψ(e1), ψ(e2), . . . , ψ(e2m+2n))
is called boundary condition of ψ. We also denote fpl(n, τ) the set of all FPL
on Ln with a fixed boundary condition τ , when τ ∈ {b,w}4n is given. Now,
we denote the following boundary conditions on Ln as τ+ and τ− respectively:

τ+ ∶= (b,w, b,w,⋯, b,w) ,(2.4a)

τ− ∶= (w, b,w, b,⋯,w, b) .(2.4b)

These conditions have b and w arranged alternately. We usually consider
fpl(n, τ−). It is well-known that there is the correopondence between the
six vertex model on Ln which has the open boundary condition and the
FPL model on Ln with τ−. Here, we explain the well-known, stated in [12],
correspondence from a state φ to a FPL ψ. Firstly, we shall define parity of
vertex. When (i, j) ∈ V (Ln), we call (i, j) odd if i+j is odd, even otherwise.
Notice that each edge of Ln is incident to an odd vertex and an even vertex.
For each edge {u, v} ∈ E (Ln) which goes out of u (i.e., φ({u, v}) = (u, v)),
we set ψ({u, v}) = b (resp. w) if u is odd vertex (resp. even). In Figure 7,
we draw odd vertex (resp. even) as ○ (resp. ●).

2.2.3. Plaquette. We define subgraph of Ln called plaquette. For 0 ≤ i, j ≤ n,
we define αi,j = (V (αi,j),E(αi,j)) as follows:

V (αi,j) ∶= {(i, j), (i, j + 1), (i + 1, j), (i + 1, j + 1)} ∩ V (Ln),(2.5a)

E(αi,j) ∶= {e ∈ E(Ln) ∣ e incdents u, v (u, v ∈ V (αi,j))} .(2.5b)
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Figure 5. τ+
when n = 3
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Figure 6. τ−
when n = 3
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Figure 7. An example of assignment a six vertex model to
a FPL

We call αi,j interior plaquette if any vertex of αi,j is interior vertex, boundary
plaquette otherwise. Now, αi,j is interior plaquette if and only if 1 ≤ i, j ≤
n−1. We also define parity of plaquette αi,j . We call αi,j odd if i+ j is odd,
even otherwise.

2.3. The correpondence between six vertex model and ASM. It is
well known that there is a bijection SV(n) to An (e.g., mentioned in [12]).
We shall state the correpondence between six vertex model and ASM in this
section. Notice that each interior vertex (i, j) has 6 possible choise when
(i, j) is 2-in-2-out. Here, we respectively set the 4 edges which is incident
to interior vertex (i, j) as N = {(i, j), (i − 1, j)}, E = {(i, j), (i, j + 1)}, S =
{(i, j), (i + 1, j)}, W = {(i, j), (i, j − 1)}. Then, the 6 possible choices can
be expressed as NE, NS, NW , ES, EW , SW by specifying two edges goes
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out of (i, j). In Figure 8, we illustrate the 6 possible choise of an interior
vertex.

NE NS NW

ES EW SW

Figure 8. The 6 possible choise of an interior vertex

We shall asign a state of six vertex model on Ln to a square matrix of
degree n by using the choise of the interiror vertex (i, j) to determine the
(i, j)-entry for each i, j which satisfy 1 ≤ i, j ≤ n.

Definition 2. Let n be an positive integer. We define a map f ∶SV(n)→ An.
When we put f (φ) as (ai,j)1≤i,j≤n for a φ ∈ SV(n), we define ai,j as follows:
ai,j = 1 if the choice of (i, j) is NS, ai,j = −1 if the choice of (i, j) is EW ,
ai,j = 0 otherwise for each 1 ≤ i, j ≤ n.

Firstly, we shall show the matrix (ai,j)1≤i,j≤n which is obtained by defini-

tion 2 satisfies the conditions of ASM. Next, we introduce a triplet (ai,j , ci,j , ri,j)
for each 1 ≤ i, j ≤ n, we explain the reverse map by using the triplet. It is
our own original proof.

We fix i ∈ [n] arbitraily. There exists j ∈ [n] such that both of the
horizontal edges {(i, j), (i, j − 1)} and {(i, j), (i, j + 1)} come in or go out
of (i, j). In fact, if {(i, j), (i, j − 1)} come in (resp. go out of) (i, j) and
{(i, j), (i, j + 1)} go out of (resp. come in) (i, j) for each 1 ≤ j ≤ n, it con-
tradicts the boundary condition for {(i, n), (i, n + 1)} (resp. {(i,0), (i,1)}).
Moreover, both of the horizontal edge {(i, j), (i, j − 1)}and {(i, j), (i, j + 1)}
come in (i, j) for the smallest and the largest j such that both of the hori-
zontal edge {(i, j), (i, j − 1)}and {(i, j), (i, j + 1)} come in or go out of (i, j).
Then we remark that the choise of (i, j) is NS (resp. EW ) if both of the hor-
izontal edge {(i, j), (i, j − 1)} and {(i, j), (i, j + 1)} come in (resp. go out of)
(i, j), and ai,j is equal to 0 if either of the horizontal edge {(i, j), (i, j − 1)}
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and {(i, j), (i, j + 1)} comes in (i, j). Since a vertex such that both of the
horizontal edges come in the vertex and a vertex such that both of the
horizontal edges go out of the vertex appears except a vertices such that
either of the horizontal edges come in the vertex in the i-th row, the matrix
(ai,j)1≤i,j≤n satisfies ∑1≤l≤n ai,l = 1 and ∑1≤l≤j ai,l ∈ {0,1} for each 1 ≤ j ≤ n.
Then the matrix (ai,j)1≤i,j≤n satisfies the condition on row of ASM. The

same goes for columns.
Now, we denote ∑1≤k≤i ak,j as ci,j and ∑1≤l≤j ai,l as ri,j for each (i, j).

Then, we shall show that the choice of (i, j) can be determined by the
trilpet (ai,j , ci,j , ri,j) for each interior veretex (i, j). First, we state that
there are exactly 6 possible value for (ai,j , ci,j , ri,j). When ai,j = 0, (i, j) can
be devided into following the four cases:

(i) There exists i1 greater than i and j1 greater than j such that ai1,j =
ai,j1 = 1, ak,j = 0 for i ≤ k < i1 and ai,l = 0 for j ≤ l < j1,

(ii) There exists i1 greater than i and j0 less than j such that ai1,j = ai,j0 =
1, ak,j = 0 for i ≤ k < i1 and ai,l = 0 for j0 < l ≤ j,

(iii) There exists i0 less than i and j1 greater than j such that ai0,j = ai,j1 =
1, ak,j = 0 for i0 < k ≤ i and ai,l = 0 for j ≤ l < j1,

(iv) There exists i0 less than i and j0 less than j such that ai0,j = ai,j0 = 1,
ak,j = 0 for i0 < k ≤ i and ai,l = 0 for j0 < l ≤ j.

In each four cases, the triplet(ai,j , ci,j , ri,j) equals (0,0,0) when the case (i),
(0,0,1) when the case (ii), (0,1,0) when the case (iii) and (0,1,1) when
the case (iv). On the other hand, the triplet (ai,j , ci,j , ri,j) must be (1,1,1)
(resp. (−1,0,0)) when ai,j = 1 (resp. ai,j = −1) because 1 apper first except
0, and 1 and −1 alternatly appear except 0 for each row and column in ASM.
Then, the 6 possible value for the triplet (ai,j , ci,j , ri,j) are (0,0,0), (0,0,1),
(0,1,0), (0,1,1), (1,1,1) and (−1,0,0).

Now, the vertical edge {(i, j), (i − 1, j)} goes out of (resp. comes in) (i, j)
and {(i, j), (i + 1, j)} comes in (resp. goes out of) (i, j) if there exists i1
greater (resp. i0 less) than i such that ai1,j = 1 (resp. ai0,j = 1) and ak,j = 0
for i ≤ k < i1 (resp. i0 < k ≤ i) because the vertical edge {(i1, j), (i1 − 1, j)}
(resp. {(i0, j), (i0 + 1, j)}) goes out of (i1, j) (resp. (i0, j)) and either of
the vertical edges {(k, j), (k − 1, j)} and {(k, j), (k + 1, j)} comes in (k, j)
for i ≤ k < i1 (resp. i0 < k ≤ i). On the other hand, the horizontal edge
{(i, j), (i, j − 1)} comes in (goes out of) of (i, j) and {(i, j), (i, j + 1)} goes
out of (comes in) (i, j) if there exists j1 greater (resp. j0 less) than j such
that ai,j1 = 1 (resp. ai,j0 = 1) and ai,l = 0 for j ≤ l < j1 (resp. j0 < l ≤ j)
because the horizontal edge {(i, j1), (i, j1 − 1)} (resp. {(i, j0), (i, j0 + 1)})
comes in (i, j1) (resp. (i0, j)) and either of the vertical edges {(i, l), (i, l − 1)}
and {(i, l), (i, l + 1)} comes in (i, l) for j ≤ l < j1 (resp. j0 < l ≤ j).
Therefore the choice of (i, j) is NE when (ai,j , ci,j , ri,j) = (0,0,0), NW
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when (ai,j , ci,j , ri,j) = (0,0,1), ES when (ai,j , ci,j , ri,j) = (0,1,0), SW when
(ai,j , ci,j , ri,j) = (0,1,1), NS when (ai,j , ci,j , ri,j) = (1,1,1) and EW when
(ai,j , ci,j , ri,j) = (−1,0,0). Since the triplet (ai,j , ci,j , ri,j) are consitent for
each 1 ≤ i, j ≤ n if the image are consistent, the map f ∶SV(n) → An is
injective.

(0,0,0) (1,1,1) (0,0,1)

(0,0,0) (−1,0,0) (0,1,1)

Figure 9. The triplet (ai,j , ci,j , ri,j) which correspond the
choise of (i, j)

Next, we shall show a state of six vertex model in SV(n) can be deter-
mined by using the triplet of each entries for any ASM. Let us take an ASM
(ai,j)1≤i,j≤n arbitrarily. In this manner, the direction of a horizontal (resp.

vertical) edage {(i, j), (i, j + 1)} (resp. {(i, j), (i + 1, j)}) can be determined
in two ways from (ai,j , ci,j , ri,j) and (ai,j+1, ci,j+1, ri,j+1) (resp. (ai,j , ci,j , ri,j)
and (ai+1,j , ci+1,j , ri+1,j) ). First, we shall show the two way determine the
same direction. For the edges W = {(i, j), (i, j − 1)}, E = {(i, j), (i, j + 1)},
N = {(i, j), (i − 1, j)} and S = {(i, j), (i + 1, j)}, the direction of them are
determined by ri,j − ai,j , ri,j , ci,j − ai,j and ci,j respectively. We write the
four value for 6 possible choice down in the table 1. The horizontal edge
{(i, j), (i, j − 1)} comes in (i, j) if ri,j − ai,j = 0, and {(i, j), (i, j + 1)} comes
in (i, j + 1) if ri,j = 0. The vertical edge {(i, j), (i − 1, j)} goes out of (i, j)
if ci,j − ai,j = 0, and {(i, j), (i + 1, j)} goes out of (i + 1, j) if ci,j = 0. Since
ri,j (resp. ci,j) equals ri,j+1 − ai,j+1 (resp. ci+1,j − ai+1,j), the two ways de-
termine the same. Then, the orientation of Ln is obtaioned by (ai,j)1≤i,j≤n,
and it satisfies 2-in-2-out. Further more, the orientation satisfies the bound-
ary conditions for e2, e3, . . . , en+1 (resp. e3n+2, e3n+3, . . . , e4n and e1) because



110 T. OHMOTO

NE NS NW ES EW SW
ri,j − ai,j 0 0 1 0 1 1
ri,j 0 1 1 0 0 1

ci,j − ai,j 0 0 0 1 1 1
ci,j 0 1 0 1 0 1

Table 1. each value for the 6 possible choices

rk,1 (resp. c1,k) equals ak,1 (resp. a1,k) for 1 ≤ k ≤ n. On the other hand,
the orientation satisfies the boundary conditions for e2n+2, e2n+3, . . . , e3n+1
(resp. en+2, en+3, . . . , e2n+1) because rk,n (resp. cn,k) equals 1 for 1 ≤ k ≤ n.
Therefore, a state of six vertex model in SV(n) cane be determined by the
triplet of each entries for any ASM.

3. Height function

Let m and n be positive integers. In this section, we make a state of
six vertex model on Lm,n correspond to a matrix of size (m + 1) × (n + 1).
Especially, we introduce a square matrix of size n + 1 which is called height
function of degree n, and we shall construct a bijection between SV(n) and
the set of all height function of degree n.

3.1. Properties of a boundary condition of six vertex model. As a
preparation to make a state of six vertex model correspond to a matrix, we
present the following lemma.

Lemma 3.1. Let m and n be positive integers. For any state of six vertex
model on Lm,n, the number of bounday edges which comes in the boundary
vertex equals m + n.

Let φ be a state of six vertex model on Lm,n. First, we show the claim
when m = 1.

(I) When n = 1, the claim is clearly correct from the definition.
(II) When n > 2, we assume the claim holds up to n − 1. If the edge
{(1, n − 1), (1, n)} goes out of (resp. comes in) (1, n − 1), two (resp.
one) of the three boundary edges {(1, n), (0, n)}, {(1, n), (1, n + 1)}
and {(1, n), (2, n)} come in the bounday vertex. Moreover, n−1 (resp.
n) of the other 2n − 1 boundary edges come in the boundary vertex
from the hypothesis of induction. Therefore, n+ 1 of 2n+ 2 boundary
edges comes in the boundary vertex.

Then we showed the claim when m = 1. Next, we assume the claim hold
up to m − 1 when m > 2. Suppose that exactly k out of n vertical edges
{(m − 1, j), (m,j)} (1 ≤ j ≤ n) come in the below vertex in φ. Applying the
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hypothesis of induction to the state which is obtained by restricting φ to
the (m − 1) × n grid which has (1,1) as the leftmost interior veretx in the
top row, it follows that exactly m + n − k − 1 out of the other 2m + n − 2
boundary edges come in the boundary vertex. On the other hand, the 1 ×n
grid which has (m,1) as the mostleft interior vertex implies that exactly
k + 1 out of n + 2 boundary edges {(m,1), (m,0)}, {(m,n), (m,n + 1)} and
{(m,j), (m + 1, j)} (1 ≤ j ≤ n) come in the boundary vertex. Therefore
exactly m + n boundary edges come in the boundary vertex in φ. Then we
showed lemma 3.1. □

Now we have following claim as a corollary of lemma 3.1.

Corollary 3.2. Let n be a positive integer. For any state of sixvertex model
in SV(n) and any 1 ≤ i ≤ n, exactly i of n vertical edges {(i, j), (i + 1, j)}
(1 ≤ j ≤ n) comes in the below vertex, and n − i of n horizontal edges
{(j, i), (j, i + 1)} (1 ≤ j ≤ n) come in the right vertex.

3.2. The map from six vertex model to matrices. Let us take a state
φ of six vertex model on Lm,n arbitrary. We shall make φ of six vertex
model on Lm,n to correspond a (m + 1) × (n + 1) matrix (hi,j)0≤i≤m,0≤j≤n
which satisfies following conditions:

∣hi,j − hi,j−1∣ = 1 (0 ≤ i ≤m, 0 < j ≤ n) ,(3.1a)

∣hi,j − hi−1,j ∣ = 1 (0 < i ≤m, 0 ≤ j ≤ n) ,(3.1b)

h0,0 = 0.(3.1c)

Definition 3. Let m and n be positive integers. We define the matrix
(hi,j)0≤i≤m,0≤j≤n by setting hi,j − hi,j−1 (0 ≤ i ≤m, 0 < j ≤ n) and hi,j − hi−1,j
(0 < i ≤m, 0 ≤ j ≤ n) as follows:

hi,j − hi,j−1 =
⎧⎪⎪⎨⎪⎪⎩

1 if {(i, j), (i + 1, j)} comes in (i, j),
−1 otherwise,

(3.2a)

hi,j − hi−1,j =
⎧⎪⎪⎨⎪⎪⎩

1 if {(i, j), (i, j + 1)} goes out of (i, j),
−1 otherwise.

(3.2b)

Then we shall show the well-definedness in this way. Now, we set k0, k1,
l0 and l1 as follows respectively:

k0 =#{i ∈ [m] ∣ {(i,0), (i,1)} comes in (i,0)} ,(3.3a)

k1 =#{i ∈ [m] ∣ {(i, n), (i, n + 1)} comes in (i, n + 1)} ,(3.3b)

l0 =#{j ∈ [n] ∣ {(0, j), (1, j)} comes in (0, j)} ,(3.3c)

l1 =#{j ∈ [n] ∣ {(m,j), (m + 1, j)} comes in (m + 1, j)} .(3.3d)

First, we show that the values of hm,n are consistent when it is determined
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⋯ ⋯
⋮

⋮

⋯ ⋯

⋮

⋮

l0

l1

k0 k1

Figure 10. right;k0 = 2, k1 = 1, l0 = 2, l1 = 2.

clockwise by l0 and k1 and when it is determined counterclockwise by k0
and l1. If we determine hm,n clockwise, then we have

hm,n = 2 (k1 + l0) − (m + n) .(3.4)

On the other hand,

hm,n = −2 (k0 + l1) + (m + n)(3.5)

if we determine counterclockwise. Since k0 + k1 + l0 + l1 = m + n, from the
lemma 3.1, the difference between the RHS of (3.4) and the RHS of (3.5)
equals 0. Then we showed the values of hm,n which is determined clock-
wise and which is determined counterclockwise are consistent. Moreover,
substitute m + n = k0 + k1 + l0 + l1 for (3.4) yields

hm,n = l0 + k1 − l1 − k0.(3.6)

Next, let us take 1 ≤ i0 ≤m and 1 ≤ j0 ≤ n arbitrarily. We shall show that
the value of hi0,j0 , which is determined from the i0×j0 grid with (1,1) as the
leftmost interior vertex of the top row, and the value of hm,n − hi0,j0 , which
is determined from the (m − i0)× (n − j0) grid with (m,n) as the rightmost
interior vertex of the bottom row, does not contradict each other. Now, we
set ki, li (2 ≤ i ≤ 5) as follows respectively:

k2 =#{i ∈ [i0] ∣ {(i,0), (i,1)} comes in (i,0)} ,(3.7a)

k3 =#{i ∈ [i0] ∣ {(i, j0), (i, j0 + 1)} comes in (i, j0 + 1)} ,(3.7b)

k4 =#{i0 < i ≤m ∣ {(i, j0), (i, j0 + 1)} comes in (i, j0)} ,(3.7c)

k5 =#{i0 < i ≤m ∣ {(i, n), (i, n + 1)} comes in (i, n + 1)} ,(3.7d)

l2 =#{j ∈ [j0] ∣ {(0, j), (1, j)} comes in (0, j)} ,(3.7e)

l3 =#{j ∈ [j0] ∣ {(i0, j), (i0 + 1, j)} comes in (i0 + 1, j)} ,(3.7f)
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l4 =#{j0 < j ≤ n ∣ {(i0, j), (i0 + 1, j)} comes in (i0, j)} ,(3.7g)

l5 =#{j0 < j ≤ n ∣ {(m,j), (m + 1, j)} comes in (m + 1, j)} .(3.7h)

Focusing on the i0 × j0 grid, we have

⋯ ⋯

⋮

⋮

⋯ ⋯

⋮

⋮

⋯ ⋯

⋮

⋮

⋯ ⋯

⋮

⋮

l2

l3

l4

l5

k2 k3

k4 k5

i = i0

j = j0

Figure 11

hi0,j0 = l2 + k3 − l3 − k2.(3.8)

On the other hand, it follows from the (m − i0) × (n − j0) grid that

hm,n − hi0,j0 = l4 + k5 − l5 − k4.(3.9)

Then we just show the sum of the RHS of (3.8) and the RHS of (3.9) equals
the RHS of (3.6). Now, from the lemma 3.1, the boundary condition of the
i0 × (n − j0) grid with (1, n) as the rightmost interior vertex of the top row
implies that

l0 − l2 + k1 − k5 − l4 − k3 = 0.(3.10)

Moreover, the boundary condition of the (m − i0) × j0 grid with (m,1) as
the leftmost interior vertex of the bottom row show that

−l3 − k4 + l1 − l5 + k0 − k2 = 0.(3.11)

We remark that the sum of the RHS of (3.8) and the RHS of (3.9) equals
(RHS of (3.6))− (LHS of (3.10))+ (LHS of (3.11)). It follows that the sum
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of the RHS of (3.8) and the RHS of (3.9) equals the RHS of (3.6). Therefore,
it was shown that the value of hi0,j0 , which is determined from the i0×j0 grid,
and the value of hm,n−hi0,j0 , which is determined from the (m − i0)×(n − j0)
grid, does not contradict each other for any 1 ≤ i0 ≤m, 1 ≤ j0 ≤ n.

3.3. height function. We define height function of degree n.

Definition 4. The (n+ 1)× (n+ 1) matrix H = (hi,j)0≤i,j≤n is called height

function of degree n if it satisfying the following conditions:

∣hi+1,j − hi,j ∣ = 1 (0 ≤ i < n, 0 ≤ j ≤ n),(3.12a)

∣hi,j+1 − hi,j ∣ = 1 (0 ≤ i ≤ n, 0 ≤ j < n),(3.12b)

hi,0 = h0,i = hn−i,n = hn,n−i = i (0 ≤ i ≤ n).(3.12c)

We call (3.12a) and (3.12b) adjacent conditons, and (3.12c) boundary
conditions of height function. We denote the set of all height functions of
degree n asHn. A partial order on Hn is defined as (hi,j)0≤i,j≤n ≤ (gi,j)0≤i,j≤n
if hi,j ≤ gi,j for 1 ≤ i, j < n. Now, we have the following proposition.

Proposition 3.3. Let n be a positive integer. We define a map f ∶SV(n)→
Hn;φ ↦ (hi,j)0≤i,j≤n by setting hi,j − hi,j−1 (0 ≤ i ≤ n, 0 < j ≤ n) and

hi,j − hi−1,j (0 < i ≤ n, 0 ≤ j ≤ n) as follows:

hi,j − hi,j−1 =
⎧⎪⎪⎨⎪⎪⎩

1 if {(i, j), (i + 1, j)} comes in (i, j),
−1 otherwise,

(3.13a)

hi,j − hi−1,j =
⎧⎪⎪⎨⎪⎪⎩

1 if {(i, j), (i, j + 1)} goes out of (i, j),
−1 otherwise.

(3.13b)

Then the map f ∶SV(n)→Hn is bijective.

Proof. From the definition, it is clear that f is injective. We just show
surjectivity. First, we remark that any height function (hi,j)0≤i,j≤n gives a

orientation of Ln by setting the direction of {(i, j), (i + 1, j)} from the value
hi,j − hi,j−1 for 0 ≤ i ≤ n, 1 ≤ j ≤ n, and the direction of {(i, j), (i, j + 1)}
from the value hi,j − hi−1,j for 1 ≤ i ≤ n, 0 ≤ j ≤ n. Moreover, it is clear that
the boundary condition of the orientation is the open boundary condition.
Second, the triplet (hi−1,j , hi,j , hi,j−1) can be one of the following six values:

(hi−1,j−1 + 1, hi−1,j−1 + 2, hi−1,j−1 + 1) ,(3.14a)

(hi−1,j−1 + 1, hi−1,j−1, hi−1,j−1 + 1) ,(3.14b)

(hi−1,j−1 + 1, hi−1,j−1, hi−1,j−1 − 1) ,(3.14c)

(hi−1,j−1 − 1, hi−1,j−1, hi−1,j−1 + 1) ,(3.14d)

(hi−1,j−1 − 1, hi−1,j−1, hi−1,j−1 − 1) ,(3.14e)
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(hi−1,j−1 − 1, hi−1,j−1 − 2, hi−1,j−1 − 1) .(3.14f)

Then exactly two of the four edges which are incident to (i, j) goes out of
(i, j) in the orientation which is determined by a height function. In fact,
when (3.14a), a state of (i, j) is NE, when (3.14b), a state of (i, j) is NS,
when (3.14c), a state of (i, j) is NW , when (3.14d), a state of (i, j) is ES,
when (3.14e), a state of (i, j) is EW , and when (3.14f), a state of (i, j) is
SW for any 1 ≤ i, j ≤ n. Therefore, we obtain a state of six vertex model
on Ln which has the open boundary condition from each height function of
degree n. □
3.4. The bijection between ASM and height function. Up to here, we
showed a bijection between An and SV(n), and a bijection between SV(n)
and Hn. Then we hold the following proposition from the two bijections.

Proposition 3.4. Let n be a positive integer. For any ASM (ai,j)1≤i,j≤n ∈
An, we set a matrix (hi,j)0≤i,j≤n as following:

hi,j ∶= i + j − 2 ∑
1≤k≤i

∑
1≤l≤j

ai,j (0 ≤ i, j ≤ n) .(3.15a)

Then a bijection between An and Hn is given in this way. Here, the inverse
map is given as following:

ai,j ∶= −
1

2
(hi−1,j−1 − hi−1,j + hi,j − hi,j−1) (1 ≤ i, j ≤ n) .(3.15b)

Proof. First, we recall that a vertical edge {(i, j), (i + 1, j)} goes out of (i, j)
if and only if ci,j = ∑1≤k≤i ai,j = 1 for 1 ≤ i, j ≤ n. Then we have

hi,j = i + j − 2#{k ∈ [j] ∣ ci,j = 1} (1 ≤ i ≤ n,0 ≤ j ≤ n) .(3.16)

Since # {k ∈ [j] ∣ ci,j = 1} = ∑1≤l≤j ci,l, the equation (3.15a) follows. □
3.5. Properties of height functions. In this section, we shall state more
properties of height functions. Especially, we focus on the possible val-
ues of each entry of a height function. First, we denote I(n) as the set
{(i, j) ∈ Z2 ∣1 ≤ i, j < n}. Now, we define a positive integer-valued function
trc∶I(n)→ Z.

Definition 5. Let n be a positive integer. We define trc∶I(n) → Z as
follows:

trc(i, j) ∶=min{i, n − i, j, n − j} (1 ≤ i, j < n) .(3.17)

Then we call trc(i, j) the track of (i, j) for each (i, j) ∈ I(n).

We remark that I(n) is decomposed into ⌊n/2⌋ disjoint union by the track
(i.e., I(n) ∶= ⊔1≤l≤⌊n

2
⌋ {(i, j) ∈ I(n) ∣ trc(i, j) = l}).

Now, we hold following propisition.
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Proposition 3.5. Let n be a positive integer, and (hi,j)0≤i,j≤n a height func-

tion of degree n. For (i, j) ∈ I(n), there are (l + 1)s possible values for the
(i, j)-entry hi,j if track of (i, j) equals l. The possible values are as follows:

(i) when i = l and l ≤ j ≤ n− l (resp. l ≤ i ≤ n− l and j = l), hi,j = (j− l)+2k
(resp. (i − l) + 2k ) (0 ≤ k ≤ l),

(ii) when l ≤ i ≤ n − l and j = n − l (resp. i = n − l and l ≤ j ≤ n − l),
hi,j = (n − l − i) + 2k (resp. (n − l − j) + 2k ) (0 ≤ k ≤ l).

Proof. Now, we denote ∑1≤i≤i,1≤l≤j ai,j as si,j (0 ≤ i, j ≤ n) for (ai,j)1≤i,j≤n ∈
An. Here, we remark that si,0 = s0,i = 0 for 0 ≤ i ≤ n. Since the total sum of
a row of ASM equals 1, for 1 ≤ i ≤ n, we have the following equations:

0 ≤ si,1 ≤ si,2 ≤ ⋯ ≤ si,n = i,(3.18a)

si,j − si,j−1 = 0 or 1 (1 ≤ j ≤ n) .(3.18b)

Then it follows that

max{0, i + j − n} ≤ si,j ≤min{i, j} (1 ≤ i, j ≤ n) .(3.19)

In the same way for a column, exactly the same equation (3.19) holds.
Moreover, the equation (3.15a) show that

(i) when i + j ≤ n and i ≤ j, j − i ≤ hi,j ≤ i + j,
(ii) when i + j ≥ n and i ≤ j, j − i ≤ hi,j ≤ 2n − (i + j),
(iii) when i + j ≥ n and i ≥ j, i − j ≤ hi,j ≤ 2n − (i + j),
(iv) when i + j ≤ n and i ≥ j, i − j ≤ hi,j ≤ i + j.
We remark that the track of (i, j) equals i when (i), (n−j) when (ii), (n− i)
when (iii), j when (iv). It follows that the difference between the RHS and
the LHS is equal to twice the track of (i, j) for each case. Since hi,j decrease
2 every time si,j increase 1, proposition 3.5 follows. □

Now, we define Pn as the set {(i, j, k) ∈ Z3 ∣1 ≤ i, j < n and 1 ≤ k ≤ i, j, n − i, n − j}.
Let us set ι∶Hn → 2Pn as a map such that (i, j, k) ∈ ι ((hi,j)0≤i,j≤n) if and

only if hi,j ≥ ∣i − j∣ + 2k. Then, we have ι ((hi,j)0≤i,j≤n) ⊂ ι ((gi,j)0≤i,j≤n) if

(hi,j)0≤i,j≤n ≤ (gi,j)0≤i,j≤n. Here, we define a partially order on Pn by a cover

relation. The element (i, j, k) covers (i′, j′, k′) if it satisfies the following
conditions:

∣i − j∣ + 2k = ∣i′ − j′∣ + 2k′ + 1,(3.20a)

∣i − i′∣ + ∣j − j′∣ = 1.(3.20b)

As a observation, ι∶Hn → 2Pn gives a order ideal of Pn. Moreover, the poset
Pn is graded, the rank of (i, j, k) ∈ Pn is expressed as ∣i − j∣+ 2k − 2, and the
generating funcition is ∑0≤r≤n−2(n − r − 1)(r + 1)qr.
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(1,1,1)

(1,2,1)

(1,3,1)

(2,3,1)

(3,3,1)

(3,2,1)

(3,1,1)

(2,1,1)

(2,2,1)

(2,2,2)

Figure 12. The Hasse diagram of P3.

4. Perfect matching and link pattern

Let n be a positive integer, and Ln the graph which is introduced in section
2.2. When a FPL on Ln is given, we can obtain a pairing of boundary vertices
if we focus only on edges with either black or white color. In this sectetion,
we define monochromatic path and perfect matching as a preparation for
describing the behavior of FPLs using that pairing. Let p = (v0, v1, . . . , vm)
be a path in Ln where v0, v1, . . . , vm are all distinct, and ψ a FPL. . We
call p a monochromatic path of ψ if all edges have the same color (i.e.,
ψ({vi−1, vi}) = ψ({v0, v1}) for 1 ≤ i ≤ m). Further, we call p a black path
(resp. white path) or we say p has color b (resp. w) if all edges have color
b (resp. w). In graph theory, a path p is called cycle if the two end vertices
v0 and vm coincide. When a monochromatic path p is a cycle, we call p a
monochromatic cycle. Next, we define matching on [n]. Here, we remark
that [n] is the set {1,2, . . . , n}.

Definition 6. Let n, p be positive integers which satisfy 0 ≤ 2p ≤ n, and
µ = ([n],E(µ)) be a graph. We say µ is a p-matching on [n] if it satisfies
the following conditions:

(i) u1, u2, . . . , up, v1, v2, . . . , vp are elements of [n] which are all distinct,
(ii) E(µ) = .{{ui, vi} ∣1 ≤ i ≤ p} .

We say a vertex j ∈ V (µ) is single if j ∉ {u1, u2, . . . , up, v1, v2, . . . , vp}. Espe-
cially, µ is called perfect if n = 2p.

Note that for each boundary vertex v ∈ V1(n), there uniquely exists a
distinct boundary vertex w ∈ V1(n) such that there is a monochromatic
path p which has v and w as its end vertices. Then, ψ determines 2 kind of
perfect matchings on [2n] by focusing only on the black pathes or focusing
only on the white pathes. In addition, any two monochromatic paths of ψ
which have the same color and start from and end at boundary vertices does
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not have a common vertex. We are ready to explain perfect matchings of
boundary vertices determined by a FPL, we define non-crossing matching.

Definition 7. Let n, p be positive integers, and µ be p-matching on [n].
We say µ is non-crossing if neitheir of the followings happens:

µ contains a pair {u1, v1},{u2, v2} of edges such that u1 < u2 < v1 < v2,
(4.1a)

µ contains an edge {u1, v1} and a single vertex j such that u1 < j < v1.
(4.1b)

u1 u2 v1 v2

(a) The case (4.1a)

u1 v1j

(b) The case (4.1b)

Figure 13. The cases which never happen in a non-crossing
matching

4.1. Link patterns. Now, we shall introduce a link pattern. Let us write
non-crossing perfect matching on [2n] with 2n vertices on the circumference
and n edges drawn by arcs inside the circle, and call this diagram a link
pattern of size n. we denote F(2n) as the set of all link patterns of size n.

7
8

1

2

3
4

5

6

1 2 3 4 5 6 7 8

Figure 14. An example of link pattern of size 4

Then, we have #F(2n) = 1
n+1(

2n
n
), we denote Cn = 1

n+1(
2n
n
) which is called

the nth Catalan number.
Here, we explain the 4 maps from the set of FPLs to the set of link

patterns. We define the following 4 maps: πb,τ− , πw,τ− ∶ fpl(n, τ−) → F(2n)
and πb,τ+ , πw,τ+ ∶ fpl(n, τ+)→ F(2n).

● The map πb,τ− (resp. πw,τ−)∶ fpl(n, τ−)→ F(2n) associates a link pat-
tern with a given FPL as follows: if there is a black (resp. white)
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path which connects e2i with e2j (resp. e2i−1 with e2j−1), then we
draw an edge between i and j.

The map πb,τ+ (resp. πw,τ+) ∶ fpl(n, τ+) → F(2n) is obtained in the same
way, by replacing e2i (resp. e2i−1) with e2i−1 (resp. e2i) and e2j (resp. e2j−1)
with e2j−1 (resp. e2j). In Figure 15, the black (resp. white) path of the
FPL ψ in (a) gives the link pattern (b) (resp. (c)). Let µ ∈ F(2n). Let

i

j

e6 e8e7 e9

e10

e12

e11

e13

e14e16 e15e1

e2

e4

e4

e5

(a) ψ ∈ fpl(4, τ−)

6

7

8

1

2

3

4

5

(b) πb,τ−(ψ)

6

7

8

1

2

3

4

5

(c) πw,τ−(ψ)

Figure 15. An example of πb,τ− and πw,τ−

Ψn,−(µ) (resp. Ψn,+(µ)) denote the cardinality of the set of FPLs with the
boundary condition τ− (resp. τ+) and whose link pattern is µ (i.e., Ψn,−(µ) =
#{ψ ∈ fpl(n, τ−) ∣ πb,−(ψ) = µ}, Ψn,+(µ) =#{ψ ∈ fpl(n, τ+) ∣ πb,+(ψ) = µ}).

4.2. Operators on link patterns. Here, we define operators on link pat-
terns which are useful to examine the behavior of the Ψn,−.

Definition 8. For a positive integer n and a positive integer j which sat-
isfies 1 ≤ j ≤ 2n, we define an operator ej ∶F(2n) → F(2n) which is called
matchmaker ([3]). For µ ∈ F(2n), we define ejµ ∈ F(2n) as follows:

(i) If {j, j + 1} ∈ E(µ), ejµ ∶= µ.
(ii) If {j, j+1} ∉ E(µ), the edge set of ejµ is defined as {η1, η2,⋯, η2n−2,{j, j + 1},{u, v}}

when the edge set of µ equals {η1, η2,⋯, η2n−2,{j, u},{j + 1, v}}.

Figure 16 illustlates the operator e2.
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7
8

1

2

3
4

5

6
z→
e2

7
8

1

2

3
4

5

6

Figure 16. Example in the case when {j, j + 1} ∉ E(µ)

Next, we define the rotation operator R∶F(2n)→ F(2n).

Definition 9. For µ ∈ F(2n), we define Rµ ∈ F(2n) as follows: The edge
set of Rµ is defined as {{u1 − 1, v1 − 1},{u2 − 1, v2 − 1},⋯,{un − 1, vn − 1}}
when the edge set of µ equals {{u1, v1},{u2, v2},⋯,{un, vn}}.

Figure 17 illustrates the rotation operator R.

7
8

1

2

3
4

5

6
z→
R

7
8

1

2

3
4

5

6

Figure 17. The example of R

5. Dihedral symmetry and Gylation

Let n, l be positive integers. For µb, µw ∈ F(2n), we define a Ψn,− (µb, µw; l)
(resp. Ψn,+ (µb, µw; l)) to refine Ψn,−(µb) (resp. Ψn,+(µb)) as follows. Let
Ψn,− (µb, µw; l) (resp. Ψn,+ (µb, µw; l)) denote the cardinality of the FPLs in
fpl(n, τ−) (resp. fpl(n, τ+)) whose link patterns determined by black (resp.
white) paths equals µb (resp. µw), and have l monochromatic cycles.

5.1. Wieland’s dihedral symmetry theorem. Now, the following propo-
sition which is called Wieland’s dihedral symmetry theorem, stated in [12],
we have as a characterization of Ψn,−.

Proposition 5.1. Let n, l be positive integers. For µb, µw ∈ F(2n), we hold

Ψn,− (µb, µw; l) = Ψn,− (R−1 µb,Rµw; l) .(5.1)

The proposition 5.1 is proven by constructing the bijection which is called
gyration. Next we explain the gyration.
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5.2. Gyration. We construct the gyration G∶ fpl(n, τ−) → fpl(n, τ−) in two
ways. First, we define two maps G0∶ fpl(n, τ−)→ fpl(n, τ−) and G1∶ fpl(n, τ−)→
fpl(n, τ−), then we construct G as G0G1. Second, we define two maps
H0∶ fpl(n, τ+) → fpl(n, τ−) and H1∶ fpl(n, τ−) → fpl(n, τ+), then we construct
G as H0H1.

Let α be a plaquette. We define a map Gα∶ fpl(n, τ−) → fpl(n, τ−) which
affects only the colors of edges in α and leaves the colors of other edges
invariant.

Let α be an interior plaquette. First of all, we define a map Nα∶ fpl(n, τ−)→
{0,1,−1} to represent the state of α as follows.

Definition 10. Let n be a positive integer, and αi,j an interior plaquette.
Here, we label four edges of α as η1 = {{i, j},{i + 1, j}}, η2 = {{i + 1, j},{i + 1, j + 1}},
η3 = {{i, j + 1},{i + 1, j + 1}} and η4 = {{i, j},{i, j + 1}}. For ψ ∈ fpl(n, τ−),
we define Nαi,j(ψ) ∈ {0,1,−1} as follows:

(5.2) Nαi,j(ψ) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if ψ (η1) = ψ (η3) = w and ψ (η2) = ψ (η4) = b,
−1 if ψ (η1) = ψ (η3) = b and ψ (η2) = ψ (η4) = w,
0 otherwise.

(a) Nαi,j = 1. (b) Nαi,j = −1.

Figure 18. The states of αi,j which satisfies Nαi,j ≠ 0.

Then we define an operator Gα∶ fpl(n, τ−) → fpl(n, τ−) as follows. We
remark that Gα is defined for not only interior plaquettes but also boundary
plaquettes.

Definition 11. Let n be a positive integer, and α a plaquette. For ψ ∈
fpl(n, τ−), we define Gαψ ∈ fpl(n, τ−) as follows:
(i) Gα does not affect the colors of edges not in α (i.e., Gαψ(e) = ψ(e) for

e ∈ E(Ln) ∖E(α)).
(ii) If α is an interior plaquette and Nα(ψ) ≠ 0 (resp. Nα(ψ) = 0), Gα

reverses (resp. keeps) the colors of all edges in α .
(iii) If α is a boundary plaquette, Gα keeps the colors of all edges in α.

For two distinct plaquettes α and β which have the same parity, the
composition of Gα and Gβ commutes with each other because α and β
don’t have a common edge (i.e., GαGβ = GβGα). Then we can define
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(a) ψ ∈ fpl (n, τ−)
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(b) G− ψ
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(c) G+G− ψ

Figure 19. The process of the gyration

G0 (resp. G1)∶ fpl(n, τ−) → fpl(n, τ−) as ∏α∶evenGα (resp. ∏α∶oddGα) with-
out ambiguity. Up to here, we have constructed G0 and G1 by repeating
the operations to FPL. But in the following, we construct H0 and H1 which
repeat the operations to a coloring which is not a FPL. First we denote the
set of all maps from E(Ln) to {b,w} by Map(E(Ln),{b,w}). For any map
f ∶E(Ln)→ {b,w}, we also call f a coloring of E(Ln).

Now we define Cα∶Map(E(Ln),{b,w})→Map(E(Ln),{b,w}) as the map
which reverse the colors of all edges in α and leaves the colors of other edges
invariant.

Note that Nα can be extended to a map from Map(E(Ln),{b,w}) to
{0,1,−1} when α is an interior plaquette, and Gα to a map fromMap(E(Ln),{b,w})
to Map(E(Ln),{b,w}). Then we define an operator Hα∶Map(E(Ln),{b,w})→
Map(E(Ln),{b,w}) as GαCα.

Let α and β be plaquettes which have the same parity. Here α and β
do not have to be distinct. Notice that the composition of Gα and Cβ is
commutative (i.e., GαCβ = CβGα). Hence, the composition of Hα and Hβ is
commutative when α and β is distinct. Therefore we can define ∏α∶evenHα
and ∏α∶oddHα without ambiguity. Moreover, ∏α∶evenHα (resp. ∏α∶oddHα)
equals ∏α∶evenGα∏α∶evenCα (resp. ∏α∶oddGα∏α∶oddCα).

Note that Gα, Cα and Hα are involutions. Since G0, G1, ∏α∶evenHα
and ∏α∶oddHα are compositions of these commutative involutions, they are
involutions.

We remark that E(Ln) can be expressed ⊔α∶evenE(α) or ⊔α∶oddE(α).
Therefore ⊔α∶evenCα (resp. ⊔α∶oddCα) reverse the colors of all edges in Ln.
Hence we can define a bijection H0∶ fpl(n, τ+)→ fpl(n, τ−) (resp. H1∶ fpl(n, τ−)→
fpl(n, τ+)) by restricting ∏α∶evenHα (resp. ∏α∶oddHα) to fpl(n, τ+) (resp.
fpl(n, τ−)). We use H0 and H1 to prove the following lemma.
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Lemma 5.2. Let n be a positive integer. For µb, µw ∈ F(2n), we have
following two equations:

Ψn,− (µb, µw; l) = Ψn,+ (R−1 µb,Rµw; l) ,(5.3a)

Ψn,+ (µb, µw; l) = Ψn,− (µb, µw; l) .(5.3b)

We take several steps to prove lemma 5.2. First, we define vertices which
are called fixed vertice of H1 (resp. H0) to prove (5.3a) (resp. (5.3b)).
Second, we divide a monochromatic path at each fixed vertex into short
pathes. Then we show how the short pathes are affected by H1 (resp. H0).

Let ψ be a FPL in fpl(n, τ−) and v an interior vertex. We label the two
edges which are adjacent to v and have color b in ψ as e and e′. Now, we
remark that there are two plaquettes which contain v and whose parity is
odd (resp. even). Then we call v a fixed vertex of H1 (resp. H0) in ψ if e
and e′ are the edges of distinct plaquettes whose parity is odd (resp. even)
and which contain v. For any ψ′ ∈ fpl(n, τ+), we also define a fixed vertex of
H1 (resp. H0) in ψ

′ in the same way.
Let v = (i, j) be an interior veretex, and k ∈ {0,1}. Figure 20 (resp. Figure

21) shows whether v is fixed vertex or not if i+j and k have the same parity
(resp. don’t have the same parity). We illustrate v as ● and we color the
plaquette which has the same parity of k in Figure 20 (resp. Figure 21).

(a) fixed vertex of Hk (b) fixed vertex of Hk
(c) not fixed vertex of
Hk

(d) not fixed vertex of
Hk

(e) fixed vertex of Hk (f) fixed vertex of Hk

Figure 20. If i + j and k have the same parity

In a FPL, the state of the interior plaquette αi,j can be in 16 different
situations. Figure 22 and 23 illustrates the 16 different situations and their
fixed vertex of Hk when i + j and k have the same parity as ○.
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(a) not fixed vertex of
Hk

(b) fixed vertex of Hk (c) fixed vertex of Hk

(d) fixed vertex of Hk (e) fixed vertex of Hk
(f) not fixed vertex of
Hk

Figure 21. If i + j and k do not have the same parity

Figure 22. Nα ≠ 0

Figure 23. Nα = 0

Let αi,j be an odd interior plaquette, and ψ ∈ fpl(n, τ−). If αi,j has a fixed
vertex v of H1 in ψ, there uniquely exists a vertex w ∈ V (α) such that w is
a fixed vertex of H1 in ψ, and it is connected to v by black (resp. white)
path which does not pass through other fixed veretices of H1 in ψ. Even
after we operate H1, v and w are fixed vertices of H1 in H1ψ, and they are
connected by black (resp. white) path which does not pass through other
fixed veretices of H1 in H1ψ.

Now, let p = (v0, v1, . . . , vm) be a black (resp. white) path in ψ, and v0,
vm fixed vertices of H1 in ψ. We divide p at each fixed vertices of H1 in ψ
into short black (resp. white) pathes. When p is divided into k pathes, we
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set v0 as w0, vm as wk, and the k short pathes as (w0, . . . ,w1), (w1, . . . ,w2),
. . ., (wk−1, . . . ,wk). Since wi and wi+1 are connected by balck (resp. white)
path in H1ψ for 0 ≤ i < k, there is a black (resp. white) path which start
from v0 to vm and pass through w1,w2, . . . ,wk−1 in H1ψ. Moreover such a
black (resp. white) path does not pass through any other fixed vertices of
H1.

Next we focus on boundary plaquette. Let αi,j be an odd boundary
plaquette, and ψ ∈ fpl(n, τ−). In the plaquette αi,j , there is exactly one fixed
vertex of H1 in ψ. Now we label the fixed vertex as w, and the two boundary
edges in αi,j as e2k and e2k+1. Here, e4n+1 means e1. There is a black (resp.
white) path which connects w and the boundary vertex that is adjacent to
e2k (resp. e2k+1), and this path does not pass through a fixed vertex of H1

in ψ other than w. Even after we operate H1, w is a fixed vertex of H1 in
H1ψ, and the other vertices in αi,j are not fixed vertices. Moreover there is
a black (resp. white) path which connects w and the boundary vertex that
is adjacent to e2k+1 (resp. e2k), and this path does not pass through a fixed
vertex of H1 in H1ψ other than w. Figure 24 illustrates the state of αi,j in
ψ ∈ fpl(n, τ−) before and after we operate H1.

Let vi be the boundary vertex which is adjacent to boundary edge ei for
1 ≤ i ≤ 2n, and ψ ∈ fpl(n, τ−). We set p as a black (resp. white) path in
ψ which start from v2k (resp. v2k+1) and end at v2l (resp. v2l+1). We also
set w and w′ as the vertices in p which satisfy following condition: when
we divide p at each fixed vertices of H1 in ψ into short black (resp. white)
pathes, the short path which strat from v2k (resp. v2k+1) is ended at w, and
the short path which end at v2l (resp. v2l+1) is started from w′. From the
above, we have a black (resp. white) path q in H1ψ which start from w and
end at w′. Now, we glue the following three black (resp. white) pathes in
H1ψ: the path which strat from v2k+1 (resp. v2k) and end at w, q, and the
path which strat from w′ and end at v2l+1 (resp. v2l). Then we get the black
(resp. white) path in H1ψ which start from v2k+1 (resp. v2k), pass through
w and w′, and end at v2l+1 (resp. v2l). Therefore, {k + 1, l + 1} ∈ πb,+(H1ψ)
(resp. {k, l} ∈ πw,+(H1ψ)) if {k, l} ∈ πb,−(ψ) (resp. {k + 1, l + 1} ∈ πw,−(ψ)).
Then we have two following equations:

πb,+(H1ψ) = R−1 πb,−(ψ),(5.4a)

πw,+(H1ψ) = Rπw,−(ψ).(5.4b)

Next, we focus on monochromatic cycles. Let ψ be a FPL in fpl(n, τ−),
and c a black (resp. white) cycle in ψ. Note that c has length at least
4. First we consider the case when the length of c is 4. Now there is an
interior plaquette αi,j such that c is consist of 4 edges in αi,j (i.e., c =
((i, j), (i + 1, j), (i + 1, j + 1), (i, j + 1), (i, j))). If the plaquette αi,j is even,
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e2k

e2k+1 w

⇒
e2k

e2k+1 w

(a) When 1 ≤ i < n and j = 0

e2k

e2k+1

w

⇒
e2k

e2k+1

w

(b) When 1 ≤ i < n and j = 0

e2k e2k+1

w

⇒

e2k

w

e2k+1

(c) When i = n and 1 ≤ j < n.

e2k e2k+1

w

⇒

e2k e2k+1

w

(d) When i = n and 1 ≤ j < n.

e2k

e2k+1w

⇒
e2k

e2k+1w

(e) When 1 ≤ i < n and j = n.

w e2k

e2k+1
⇒

w e2k

e2k+1

(f) When 1 ≤ i < n and j = n.
e2ke2k+1

w

⇒

e2ke2k+1

w

(g) When i = 0 and 1 ≤ j < n.

e2ke2k+1

w

⇒

e2ke2k+1

w

(h) When i = 0 and 1 ≤ j < n.

en+1
w

en+2

⇒
en+1

w

en+2

(i) When i = n, j = 0 and n is odd.

e3n+1w

e3n+2

⇒
e3n+1

e3n+2

w

(j) When i = 0, j = n and n is odd.

Figure 24. left: the state of an odd boundary plaquette αi,j
in ψ ∈ fpl (n, τ−), right: the state of αi,j in H1ψ ∈ fpl (n, τ+).

the 4 vertices are fixed vertices of H1 in ψ, and thus there is a black (resp.
white) cycle c′ in H1ψ such that c′ pass through the 4 verices of αi,j . If the
plaquette αi,j is odd, since the color of the all edges in αi,j is reversed, there
is a white (resp. black) cycle c′in H1ψ such that c′ is consist of 4 edges in
αi,j .

Second we consider the case when the length of c is greater than 4. Then
the cycle c run across multiple plaquettes, and pass through some fixed
vertices of H1 in ψ. Therefore there is a black (resp. white) cycle c′ in H1ψ
such that c and c′ pass through the same fixed vertices of H1.
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w0

w1

w2w3w4

v15

v5

w0

w1

w2w3w4

v14

v4

Figure 25. left:the black path in ψ ∈ fpl(4, τ−), right:the
black path in H1ψ ∈ fpl(4, τ+).

From the above, we can construct the bijection between the set of monochro-
matic cycles in ψ and the set of monochromatic cycles in H1ψ. Together
with (5.4a) and (5.4b), we showed (5.3a).

In the same way, each black (resp. white) path which pass through some
fixed vertices of H0 in H1ψ also pass through same fixed vertices of H0 after
we operate H0. Moreover, each even boundary plaquette has exactly one
fixed vertex of H0. If we label the two boundary edge in the plaquette as e2k
and e2k−1, then the fixed vertex of H0 is connected to the boundary vertex
v2k−1 (resp. v2k) by black (resp. white) path in H1ψ. After we operate
H0, the fixed vertex of H0 is connected to the boundary vertex v2k (resp.
v2k−1) by black (resp. white) path in H0H1ψ. Hence we have two following
equations:

πb,− (H0H1ψ) = πb,+ (H1ψ)(5.5a)

πw,− (H0H1ψ) = πw,+ (H1ψ)(5.5b)

On the other hand, H0H1ψ have the same number of monochromatic cy-
cles as H1ψ. Therefore we hold (5.3b), and lemma 5.2 is prooved. Then
proposition 5.1 follows from lemma 5.2. □

5.3. Periodicity of the gyration. We remark that the operation of re-
peating the gyration is periodic. Let ψ be a FPL in fpl(n, τ−). If we re-
peat the gyration to ψ n times, we will get ψ at least once. Now we set
fpl (n, τ−;O(ψ)) ∶= {Gk ψ ∣0 ≤ k < n}. Then we hold the following proposi-
tion(stated in [3]).
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Proposition 5.3. Let ψ be a FPL in fpl(n, τ−) and α an interior plaquette.
Then we have a following equation:

(5.6) ∑
φ∈fpl(n,τ−;O(ψ))

Nα(φ) = 0.

We also take several steps to prove proposition 5.3. First, we focus on
the case when α has an edge in common with a boundary plaquette. Let
α be an odd plaquette, and β the boundary plaquette which has an edge e
in common with α. For each k ≥ 0, Gk ψ(e) ≠ Gk+1ψ(e) if and only if G1

reverse the color of e in Gk ψ because G0 does not reverse the color of e in
G1G

k ψ. We remark that if ψ satisfies the following conditions: Gk ψ(e) ≠
Gk+1ψ(e), Gk+1ψ(e) = Gk+2ψ(e) = ⋯ = Gl ψ(e), and Gl ψ(e) ≠ Gl+1ψ(e),
then Nα (Gk ψ) ≠ 0, Nα (Gk+1ψ) = Nα (Gk+2ψ) = ⋯ = Nα (Gl−1ψ) = 0,

and Nα (Gl ψ) = −Nα (Gk ψ). In other word, the sequence {Nα (Gk ψ)}
k≥0

alternates between 1 and −1 except for 0. Moreover, when we denote
#fpl (n, τ−;O(ψ)) as m, 1 and −1 appear the same number of times be-

tween the 0th term and the mth term in {Nα (Gk ψ)}
k≥0 because the color

of e is reversed an even number times while the gyration is repaeted m times.
Since the left hand side of (5.6) is equal to the sum of the 0th through mth

terms of {Nα (Gk ψ)}
k≥0, then (5.6) follows. When α is even, we can show

the same by replacing G1 with G0 and G with G−1.
Next, we consider two distinct interior plaquette they have a common

edge e. Let α (resp. β) be an odd (resp. even) interior plaquette which has
the edge e. We set two sequences {µn}n≥0 and {νn}n≥0 as following:

µn ∶=
⎧⎪⎪⎨⎪⎪⎩

Nα (Gk ψ) (n = 2k)
Nβ (G1G

k ψ) (n = 2k + 1)
,(5.7)

νn ∶=
⎧⎪⎪⎨⎪⎪⎩

Gk ψ(e) (n = 2k)
G1G

k ψ(e) (n = 2k + 1)
.(5.8)

Note that νn ≠ νn+1 if and only if µn ≠ 0. Similar to previous discussion,
{µn}n≥0 alternates between 1 and −1 except for 0, and the sum of the 0th

through (2m − 1)th terms of {µn}n≥0 is equal to 0. Since G1G
k ψ is equal

to G−kG1ψ, we hold the following equation:

(5.9) ∑
0≤k≤m−1

Nα (Gk ψ) + ∑
0≤k≤m−1

Nβ (G−kG1ψ) = 0.

Since the cardinarity of fpl (n, τ−;O (G1ψ)) is equal to m, the equation (5.9)
is equivalent to the following equation:

(5.10) ∑
φ∈fpl(n,τ−;O(ψ))

Nα (φ) + ∑
φ′∈fpl(n,τ−;O(G1 ψ))

Nβ (φ′) = 0.
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Combined with the previous discussion, proposition 5.3 follows. □

6. The vector space which has link patterns as basis

We consider the C-vector space which has link pattern as basis to refine
a enumeration of FPLs. Let n be a positive integer. We denote CF(2n)
as the C-vector space which is spaned by F(2n), and we will write each

element x ∈ CF(2n) as ∣x⟩ for emphasis. We also denote Cfpl(n,τ) as the
C-vector space which is spaned by fpl(n, τ) when a boundary condition

τ ∈ {b,w}4n is given, and we will write each element y ∈ Cfpl(n,τ) as ∥y⟫ for

emphasis. In particular, we denote ∑ψ∈fpl(n,τ−) ∣πb,−(ψ)⟩ ∈ C
F(2n) as ∣sn⟩,

and ∑ψ∈fpl(n,τ−) ∥ψ⟫ ∈ C
fpl(n,τ−) as ∥sn,τ−⟫ .

6.1. Operators on the vector space. We define some operators on the
vector space which are introduced above. First, we define Π−∶Cfpl(n,τ−) →
CF(2n) (Resp. Π+∶Cfpl(n,τ+) → CF(2n)) as follows:

Π−
⎛
⎝ ∑
ψ∈fpl(n,τ−)

cψ ∥ψ⟫
⎞
⎠
∶= ∑
ψ∈fpl(n,τ−)

cψ ∣πb,−(ψ)⟩ ,(6.1a)

Π+
⎛
⎝ ∑
ψ∈fpl(n,τ+)

cψ ∥ψ⟫
⎞
⎠
∶= ∑
ψ∈fpl(n,τ+)

cψ ∣πb,+(ψ)⟩ .(6.1b)

Especially, we hold Π−(∥sn,τ−⟫) = ∣sn⟩. Second, we define Ñα∶Cfpl(n,τ) →
Cfpl(n,τ) for each interior plaquette α as following:

(6.2) Ñα
⎛
⎝ ∑
ψ∈fpl(n,τ)

bψ ∥ψ⟫
⎞
⎠
∶= ∑
ψ∈fpl(n,τ)

Nαbψ ∥ψ⟫ .

Next, we make operators on F(2n) extend linearly. When the operator

X ∶F(2n)→ F(2n) is given, we define X̂ ∶CF(2n) → CF(2n) as follows:

(6.3) X̂
⎛
⎝ ∑
µ∈F(2n)

aµ ∣µ⟩
⎞
⎠
∶= ∑
µ∈F(2n)

aµ ∣X(µ)⟩ .

Similarly, we make operators on fpl(n, τ) extend linearly. When a boundary

condition τ ∈ {b,w}4n and the operator Y ∶ fpl(n, τ) → fpl(n, τ) is given, we

define Ŷ ∶Cfpl(n,τ) → Cfpl(n,τ) as follows:

(6.4) Ŷ
⎛
⎝ ∑
ψ∈fpl(n,τ)

bψ ∥ψ⟫
⎞
⎠
∶= ∑
ψ∈fpl(n,τ)

bψ ∥Y (ψ)⟫ .

We define operators Sym∶CF(2n) → CF(2n) and Hn∶CF(2n) → CF(2n) respec-
tively as Sym ∶= ∑2n−1

k=0 (R̂)
k
, Hn ∶= ∑2n

k=1 êk . Then we call Sym symmetrise
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operator, and we call Hn Hamiltonian. Now, the following claim, stated in
[3], hold as a corollary of proposition 5.3.

Proposition 6.1. Let α be an interior plaquette. We have the following
equation:

(6.5) SymΠ−N̂α ∥sn,τ−⟫ = 0.

Proof. First, we define a equivalence on F(2n). Let µ and ν be link patterns
of size n. We define µ and ν are equivalent if there exists a non-negative
integer k such that ν = Rk µ, and we write µ ∼ ν. Then we denote F(2n)/ ∼
as F∗(2n) , and we denote the complete set of F∗(2n) as {µ1, µ2, . . . , µm}.

Next, we shall transforme the left hand side of (6.5).

SymΠ−N̂α ∥sn,τ−⟫

=
2n−1
∑
k=0

∑
ψ∈fpl(n,τ−)

Nα (ψ) ∣Rk π(ψ)⟩

=
m

∑
i=1

∑
ψ∈fpl(n,τ−)
π(ψ)∼µi

Nα(ψ)
2n−1
∑
k=0
∣Rk µi⟩(6.6)

We remark that the set of FPLs the link pattern of which equivalent to
µi is represented as disjonit union of some orbits of FPL for each 1 ≤ i ≤
m. Therefore ∑

ψ∈fpl(n,τ−)
π(ψ)∼µi

Nα(ψ) = 0 follows to proposition 5.3, thus (6.5)

follows. □

7. Futurework

Althought we deal with the ordinary type of ASM in this paper, we are
interested in half-turn ASM. We will define a poset similar to Pn for half-
turn ASM. Further more, we aim to make half-turn ASM correspond to a
root systems.
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