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LOCALLY SERIALLY COALESCENT CLASSES OF LIE

ALGEBRAS

Masanobu HONDA and Takanori SAKAMOTO

Abstract. We assume that a basic field k has zero characteristic. We
show that any Fitting class is serially coalescent for locally finite Lie

algebras. We also show that any class X satisfying N ≤ X ≤ Ĝr (e.g.

Ft, B, Z, Gr, lN, rN, è(◁)Â, ê(◁)Â, G̀r) is locally serially coalescent
for locally finite Lie algebras, and, for any locally finite Lie algebra L,
the X-ser radical of L is locally nilpotent.

1. Introduction

Let X be a class of Lie algebras. It is said that X is ascendantly coalescent
if in any Lie algebra L the join of two ascendant X-subalgebras of L is always
an ascendant X-subalgebra of L. It is also said that X is locally ascendantly
coalescent if for any two ascendant X-subalgebras H,K of a Lie algebra L
and for any finitely generated subalgebra Y of J = ⟨H,K⟩ there exists an
ascendant X-subalgebra X of L such that Y ≤ X ≤ J . In [4] we introduced
the concept of serially coalescent (resp. locally serially coalescent) classes of
Lie algebras corresponding to that of ascendantly coalescent (resp. locally
ascendantly coalescent) classes and proved that the classes

F ∩N, F, F ∩ eA, Min, Min-◁σ (σ ≥ 2),

Min-si, Min-asc, Min-ser, Min-◁ ∩ Max-◁

are serially coalescent for locally finite Lie algebras over any field of char-
acteristic zero. These classes are also locally serially coalescent for locally
finite Lie algebras.

The purpose of this paper is to find some more serially coalescent classes
and locally serially coalescent classes for locally finite Lie algebras, and to
consider some properties of the X-ser radical RX-ser(L) of a locally finite Lie
algebra L.

In Section 3 we shall prove that any Fitting class X is serially coalescent
for locally finite Lie algebras over any field of characteristic zero (Theorem

1). In Section 4 we shall show that any class X satisfying N ≤ X ≤ Ĝr
is locally serially coalescent for locally finite Lie algebras over any field of
characteristic zero (Theorem 5). In Section 5 we shall show that if L is
locally finite over any field of characteristic zero and X is any class such that
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N ≤ X ≤ Ĝr, then RX-ser(L) = RF∩N-ser(L) and RX-ser(L) ∈ lN (Theorem
7 and Corollary 8).

2. Notation and terminology

Throughout the paper Lie algebras are not necessarily finite-dimensional
over a field k of arbitrary characteristic unless otherwise specified. We mostly
follow [2] for the use of notation and terminology.

Let L be a Lie algebra over k and let H be a subalgebra of L. For a totally
ordered set Σ, a series fromH to L of type Σ is a collection {Λσ, Vσ : σ ∈ Σ}
of subalgebras of L such that

(1) H ⊆ Vσ ⊆ Λσ for all σ ∈ Σ,
(2) Λτ ⊆ Vσ if τ < σ,
(3) L\H = ∪σ∈Σ(Λσ\Vσ),
(4) Vσ ◁ Λσ for all σ ∈ Σ.

H is a serial subalgebra of L, which we denote by H ser L, if there exists a
series from H to L.

For an ordinal σ, H is a σ-step ascendant subalgebra of L, denoted by
H ◁σ L, if there exists an ascending chain (Hα)α≤σ of subalgebras of L such
that

(1) H0 = H and Hσ = L,
(2) Hα ◁ Hα+1 for any ordinal α < σ,
(3) Hλ = ∪α<λHα for any limit ordinal λ ≤ σ.

H is an ascendant subalgebra of L, denoted by H asc L if H ◁σ L for some
ordinal σ. When σ is finite, H is a subideal of L and denoted by H si L. For
an ordinal α, we denote by Lα the α-th term of the transfinite lower central
series of L and by L(α) the α-th term of the transfinite derived series of L.

Let X be a class of Lie algebras and let ∆ be any of the relations ≤,◁, si,
asc, ser. A Lie algebra L is said to lie in l(∆)X if for any finite subset X of L
there exists an X-subalgebra H of L such that X ⊆ H ∆ L. In particular we
write lX for l(≤)X. When L ∈ lX, L is called a locally X-algebra. We write
Max-∆ (resp. Min-∆) for the classes of Lie algebras satisfying the maximal
(resp. minimal) condition for ∆-subalgebras. F,G,A,N,Z,eA and O are
the classes of Lie algebras which are finite-dimensional, finitely generated,
abelian, nilpotent, hypercentral, soluble and all Lie algebras respectively.
The X-residual λX(L) of L is the intersection of the ideals I of L such that
L/I ∈ X. Let a be a closure operation. We say that X is a-closed if X = aX.
The class sX (resp. qX) consists of all subalgebras (resp. quotients) of X-
algebras.

We say that X is serially coalescent if in any Lie algebra L,
(SC) for any two serial X-subalgebras H,K of L, J = ⟨H,K⟩ is

always a serial X-subalgebra of L.
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We also say that X is locally serially coalescent if in any Lie algebra L,
(LSC) for any two serial X-subalgebras H,K of L and for any

finitely generated subalgebra Y of J = ⟨H,K⟩, there exists
a serial X-subalgebra X of L such that Y ≤ X ≤ J .

3. Serial coalescence and local serial coalescence

Let X be a class of Lie algebras. In order to study serially (resp. locally
serially) coalescent classes of Lie algebras we need to restrict ourselves to
locally finite Lie algebras. We say that X is serially coalescent for locally
finite Lie algebras (or for lF-algebras) if in any locally finite Lie algebra L,
the condition (SC) holds. We also say that X is locally serially coalescent
for locally finite Lie algebras (or for lF-algebras) if in any locally finite Lie
algebra L, the condition (LSC) holds.

It is said that X is a Fitting class (cf. [2, p. 259]) if X ≤ F and {n0, i}X =
X. For any Fitting class X and any F-algebra L, the X-radical of L, denoted
by ρX(L), is the unique maximal X-ideal of L. Obviously the classes F∩N, F
and F ∩ eA are Fitting classes. Therefore the following first main theorem
generalises [4, Theorems 4, 5 and 6].

Theorem 1. Over any field of characteristic zero, any Fitting class X is
serially coalescent for lF-algebras.

Proof. Let L ∈ lF and suppose that H,K ser L and H,K ∈ X. Since
X ≤ F, it follows from [4, Theorem 5] that ⟨H,K⟩ ser L and ⟨H,K⟩ ∈ F. As
H,K ser ⟨H,K⟩, we have H,K si ⟨H,K⟩. Hence using [2, Lemma 13.3.3],
we get H,K ≤ ρX(⟨H,K⟩), that is, ⟨H,K⟩ = ρX(⟨H,K⟩). Therefore we
obtain ⟨H,K⟩ ∈ X. Thus X is serially coalescent for lF-algebras. □

The following proposition is analogous to [7, Proposition 2.1] which shows
some relations between serial coalescence and local serial coalescence over
any field.

Proposition 2. (1) If X is locally serially coalescent, then X∩G is serially
coalescent.

(2) If X and Y are s-closed and locally serially coalescent, then X∩Y is
also locally serially coalescent.

(3) If X is l(ser)-closed and locally serially coalescent and Y is serially
coalescent, then X ∩Y is serially coalescent.

Proof. We set J = ⟨H,K⟩ for subalgebras H and K of a Lie algebra L.
(1) Let X be locally serially coalescent. Suppose that H,K ser L and

H,K ∈ X ∩ G. As J ∈ G, there is a serial subalgebra X of L such that
X ∈ X and J ≤ X ≤ J . Hence we get J = X ∈ X ∩G and J ser L.
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(2) Suppose that H,K ser L and H,K ∈ X ∩ Y. Let F be a finitely
generated subalgebra of J . Since X and Y are locally serially coalescent,
there are serial subalgebras X and Y of L such that

F ≤ X ≤ J, F ≤ Y ≤ J, X ∈ X and Y ∈ Y.

Therefore, we have F ≤ X∩Y ∈ X∩Y since X and Y are s-closed. Moreover
we obtain X ∩ Y ser Y ser L, so X ∩ Y ser L. Thus X∩Y is locally serially
coalescent.

(3) Suppose that H,K ser L and H,K ∈ X ∩Y. Because Y is serially
coalescent, we get J ser L and J ∈ Y. For any finite subset F of J , there
is a serial subalgebra X of L such that F ⊆ X ≤ J and X ∈ X, since X is
locally serially coalescent. From X ser J , we also obtain J ∈ l(ser)X = X.
Thus it follows that J ser L and J ∈ X ∩Y. □

Let X be a class of Lie algebras. In [6] the following two classes X(ω) and
Xω are defined as follows: X(ω)(resp. Xω) is the class of Lie algebras L such

that L/L(ω) ∈ X (resp. L/Lω ∈ X).
The following proposition is analogous to [7, Theorem 2.2].

Proposition 3. Let k be any field of characteristic zero. If X is q-closed
and locally serially coalescent for lF-algebras, then X(ω) ∩ F and Xω ∩ F are
serially coalescent for lF-algebras.

Proof. Let L ∈ lF and suppose that H,K ser L and H,K ∈ X(ω) ∩ F (resp.
Xω ∩ F). Owing to [4, Lemma 1 and Lemma 2(1)] we get

H(ω) = λleA(H) ◁ L and K(ω) = λleA(K) ◁ L

(resp. Hω = λlN(H) ◁ L and Kω = λlN(K) ◁ L).

Put I = H(ω) + K(ω) (resp. I = Hω + Kω). Then I ◁ L. Set J =
⟨H,K⟩. Then it is clear that J ∈ F. We also have (H + I)/I ser L/I and

(K + I)/I ser L/I by virtue of [4, Lemma 3]. Since H(ω) ≤ H ∩ I and

K(ω) ≤ K ∩ I (resp. Hω ≤ H ∩ I and Kω ≤ K ∩ I), we obtain

(H + I)/I ∼= H/H ∩ I ∼= (H/H(ω))/(H ∩ I/H(ω)) ∈ qX = X,

(K + I)/I ∼= K/K ∩ I ∼= (K/K(ω))/(K ∩ I/K(ω)) ∈ qX = X

(resp.

(H + I)/I ∼= H/H ∩ I ∼= (H/Hω)/(H ∩ I/Hω) ∈ qX = X,

(K + I)/I ∼= K/K ∩ I ∼= (K/Kω)/(K ∩ I/Kω) ∈ qX = X).

Because H,K ∈ F, we conclude that

(H + I)/I, (K + I)/I ∈ X ∩ F and (H + I)/I, (K + I)/I ser L/I ∈ lF.
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Here, since F is serially coalescent for lF-algebras ([4, Theorem 5]), it follows
that

J/I = ⟨(H + I)/I, (K + I)/I⟩ ∈ F and

J/I = ⟨(H + I)/I, (K + I)/I⟩ ser L/I.
Moreover the assumption that X is locally serially coalescent for lF-algebras
leads that there exists a subalgebra X of L containing I such that

X/I ser L/I, X/I ∈ X and ⟨(H + I)/I, (K + I)/I⟩ ≤ X/I ≤ J/I.

Hence J/I = X/I ∈ X and so J/I ∈ X ∩ F. Since I = H(ω) +K(ω) ≤ J (ω)

(resp. I = Hω +Kω ≤ Jω), we have

J/J (ω) ∼= (J/I)/(J (ω)/I) ∈ qX = X

(resp. J/Jω ∼= (J/I)/(Jω/I) ∈ qX = X),

that is to say, J ∈ X(ω)∩F (resp. J ∈ Xω∩F). Because J ser L, we conclude
that X(ω) ∩ F (resp. Xω ∩ F) is serially coalescent for lF-algebras. □

4. Several locally serially coalescent classes

In this section, we find several locally serially coalescent classes for lF-
algebras. First we begin with the class of nilpotent Lie algebras.

Lemma 4. Over any field of characteristic zero, the class N is locally seri-
ally coalescent for lF-algebras.

Proof. Let L ∈ lF and suppose that H,K ser L and H,K ∈ N. We set
J = ⟨H,K⟩. Let Y be any finitely generated subalgebra of J . Then there are
finitely generated subalgebras A of H and B of K such that Y ≤ ⟨A,B⟩ ≤ J.
Since H ∈ N, we get A si H and A ∈ G ∩N = F ∩N. Therefore we obtain
A ser L. Similarly we have B ser L and B ∈ F ∩ N. It follows from [4,
Theorem 4] that ⟨A,B⟩ ser L and ⟨A,B⟩ ∈ F ∩N. That is to say, we get

Y ≤ ⟨A,B⟩ ≤ J, ⟨A,B⟩ ser L and ⟨A,B⟩ ∈ N.

Thus N is locally serially coalescent for lF-algebras. □

We recall that Gr is the class of Gruenberg algebras L, that is to say, in
which every 1-dimensional subalgebra of L is ascendant in L (cf. [1]). In [3]

we analogously defined the classes G̀r and Ĝr of Lie algebras as follows:

L ∈ G̀r iff every 1-dimensional subalgebra of L is descendant in L,

L ∈ Ĝr iff every 1-dimensional subalgebra of L is serial in L.

By [3, Lemma 2.4] we also have

ê(◁)Â = {L ∈ O : L has a central series },
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é(◁)Â = {L ∈ O : L has an ascending central series } = Z,

è(◁)Â = {L ∈ O : L has a descending central series }.
We now assume that the basic field k has zero characteristic. Ft and B

are the classes of Fitting algebras and Baer algebras respectively (cf. [2,
p.114]). By using [2, Theorem 6.2.1] we obtain that if X is any of the classes

Ft, B, é(◁)Â = Z, Gr,

then N ≤ X ≤ lN. Furthermore it follows from [3, Corollary 2.7 and
Theorem 2.9] that if X is any of the classes

lN, rN, lrN, è(◁)Â, lè(◁)Â, ê(◁)Â, G̀r,

then N ≤ X ≤ Ĝr. Thus we can summarize the results above as follows: If
X is any of the classes

Ft, B, é(◁)Â = Z, Gr, lN, rN, lrN, è(◁)Â, lè(◁)Â, ê(◁)Â, G̀r,

then N ≤ X ≤ Ĝr.

The following is the second main theorem in this paper.

Theorem 5. Over any field of characteristic zero, any class X satisfying
N ≤ X ≤ Ĝr is locally serially coalescent for lF-algebras.

Proof. In Lemma 4 we have proved that the class N is locally serially coa-
lescent for lF-algebras. By virtue of [4, Theorem 13], if a class Y satisfies

lF ∩N ≤ lF ∩Y ≤ lF ∩ l(ser)N,

then Y is locally serially coalescent for lF-algebras. Now, let X be a class
such that N ≤ X ≤ Ĝr. Then we get

lF ∩N ≤ lF ∩ X ≤ lF ∩ Ĝr.

Here, [3, Proposition 2.10] and [5, Theorem 4] lead to

lF ∩ Ĝr = lN = l(ser)(F ∩N) ≤ lF ∩ l(ser)N.

Therefore we conclude

lF ∩N ≤ lF ∩ X ≤ lF ∩ l(ser)N.

This proves the theorem. □

By using Theorem 5, we present several specific classes.

Corollary 6. Over any field of characteristic zero, if X is any of the classes

N, Ft, B, é(◁)Â = Z, Gr, lN, rN,

lrN, è(◁)Â, lè(◁)Â, ê(◁)Â, G̀r, Ĝr,
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then X is locally serially coalescent for lF-algebras.

5. Radicals

In [4], for a class X of Lie algebras and a Lie algebra L we defined the
X-ser radical of L, denoted by RX-ser(L), by the subalgebra generated by all
the serial X-subalgebras of L. Then we have the third main theorem in this
paper.

Theorem 7. Let X be any class of Lie algebras over any field of character-
istic zero such that N ≤ X ≤ Ĝr. If L ∈ lF, then RX-ser(L) = RF∩N-ser(L).

Proof. Let L ∈ lF. Since F ∩N ≤ N ≤ X, it is trivial that RF∩N-ser(L) ≤
RX-ser(L).

Conversely, let H be any serial X-subalgebra of L. Since L ∈ lF, we have

H ∈ lF ∩ X ≤ lF ∩ Ĝr.

Because lF ∩ Ĝr = lN by [3, Proposition 2.10], we get H ∈ lN. Thus H ≤
RF∩N-ser(L) by [4, Corollary 15]. This shows that RX-ser(L) ≤ RF∩N-ser(L).

□

As a corollary of Theorem 7, we obtain the following result which corre-
sponds to [2, Theorem 6.2.1].

Corollary 8. Let X be any class of Lie algebras over any field of charac-
teristic zero such that N ≤ X ≤ Ĝr. If L ∈ lF, then RX-ser(L) ∈ lN.

Proof. Let L ∈ lF. Owing to Theorem 7 we have RX-ser(L) = RF∩N-ser(L).
On the other hand, it follows from [4, Proposition 14 (1)] that RF∩N-ser(L) ∈
lN. This proves the corollary. □
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