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INSEPARABLE GAUSS MAPS AND DORMANT OPERS

Yasuhiro Wakabayashi

Abstract. The present paper aims to generalize a result by H. Kaji
on Gauss maps in positive characteristic and establish an interaction
with the study of dormant opers and Frobenius-projective structures.
We prove a correspondence between dormant opers on a smooth projec-
tive variety and closed immersions into a projective space with purely
inseparable Gauss map. By using this, we determine the subfields of
the function field of a smooth curve in positive characteristic induced
by Gauss maps. Moreover, this correspondence gives us a Frobenius-
projective structure on a Fermat hypersurface.

Introduction

0.1. Let X be an algebraic variety of dimension l > 0 over an algebraically
closed field k embedded in the projective space PL for some L > 0. Denote
by Grass(l+1, L+1) the Grassmann variety classifying (l+1)-dimensional
quotient spaces of the k-vector space kL+1; it may be identified with the
space of l-planes in PL. The Gauss map is the rational morphism γ : X 99K
Grass(l + 1, L+ 1) that assigns to a smooth point x the embedded tangent
space to X at x in PL.

The notion of Gauss map is generalized (cf. § 1.1) by using linear spaces
tangent to higher order, often called the osculating spaces; see, e.g., [4], [5],
and [30]. Also, a different generalization of Gauss map can be found in,
e.g., [40]. The study of the Gauss map and such generalizations have been
a subject of algebraic geometry for a long time.

It is a well-known fact that the Gauss map of a smooth non-linear sub-
variety of a projective space in characteristic 0 is finite and birational onto
its image (cf. [40, (I, 2.8)]). On the other hand, when the base field has
positive characteristic, the birationality is no longer true in general, and
the Gauss map can be inseparable. Various properties of Gauss maps in
positive characteristic have been investigated by many mathematicians; see,
e.g., [6], [7], [17], [18], [19], [21], [27], and [28].

For example, a result by H. Kaji (cf. [18, Corollary 6.2]) asserts that
giving a closed immersion X ↪→ PL from a given smooth projective curve
X with purely inseparable Gauss map of degree pN (N > 0) is equivalent

to giving a rank 2 vector bundle on the N -th Frobenius twist X(N) of X
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satisfying certain conditions. As mentioned in Remark 2.4 of the present
paper, this data may be interpreted as a dormant GL2-oper of level N , in
the sense of [37, Definition 4.2.1]; that is to say, it gives a certain rank 2

vector bundle on X equipped with both an action of the sheaf D(N−1)
X (:=

the ring of differential operators on X of level N−1, introduced in [2]) and a
Hodge subbundle satisfying a strict form of Griffiths transversality. We refer
the reader to, e.g., [26], [35] for the study of dormant GL2-opers on curves
(which are also known as dormant indigenous bundles), and the higher-rank
cases were investigated in, e.g., [14], [16], and [38].

0.2. The present paper aims to refine and generalize Kaji’s result in order
to build an interaction between the studies of dormant opers and Gauss
maps in positive characteristic. To do this in a unified formulation involving
multi-dimensional varieties, we introduce the notion of a dormant (n,N)-
oper (cf. Definition 2.1), which extends the classical notion of a higher-level
dormant oper. (However, our discussion deals essentially only with the case
where n = 2 or the underlying variety has dimension 1.)

Let X be a smooth projective variety over an algebraically closed field k
of characteristic p > 2 and χ := (n,N, d) a triple of positive integers with
1 < n ≤ p. We shall write

Op
Zzz...

χ,+imm(0.1)

(cf. (2.14)) for the set of isomorphism classes of dormant (n,N)-opers on X
equipped with certain additional data. On the other hand, we write

GauFλ(0.2)

(cf. (1.7)), where λ := (n − 1, N, d), for the set of isomorphism classes of
closed immersions ι : X ↪→ PL (for some L > 0) of degree d whose Gauss
maps of order n− 1 factor through the N -th relative Frobenius morphism.
Then, the main result in the first half of the present paper is the following
assertion.

Theorem A (cf. Theorem 2.9 for the full statement). Suppose that the
quadruple (X,n,N, d) satisfies one of the conditions (a) and (b) described
in § 2.5. Then, there exists a canonical injection of sets

Ξχ : GauFλ ↪→ Op
Zzz...

χ,+imm.(0.3)

Moreover, this map is bijective when n = 2.
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0.3. We here describe two applications of the above theorem proved in
the second half of the present paper. As the first application, we use the
bijection Ξ(2,N,d) to determine the subfields of the function field of a given
curve induced by Gauss maps.

Now, let k be as above and X a smooth projective curve over k of genus
g > 1. Denote by K(X) the function field of X and by K the set of subfields
K of K(X) satisfying the following condition: There exists a closed immer-
sion ι : X ↪→ PL (for some L > 1) such that the extension of function fields
defined by the Gauss map associated to (X, ι) coincides with K(X)/K.

H. Kaji proved (cf. [18, Corollaries 2.3 and 4.4]) that K(X) itself belongs

to K, and that any subfield in K is of the form K(X)p
N
:= {vpN | v ∈ K(X)}

for some integer N ≥ 0, i.e., the inclusion relation K ⊆ {K(X)p
N |N ≥ 0}

holds.
To improve this result, we combine the above theorem with the previous

study of higher-level dormant opers on curves developed in [36], in which we
have shown the existence of a dormant (2, N)-opers for every N > 0. The
resulting assertion is described as follows.

Theorem B (= Theorem 3.3). Let us keep the above notation, and suppose
that 2 < p and p ∤ (g − 1). Then, the following equality of sets holds:

K =
{
K(X)p

N
∣∣∣N ≥ 0

}
.(0.4)

In particular, for every nonnegative integer N , there exists a closed im-
mersion X ↪→ PL (for some positive integer L) such that the extension of

function fields defined by the Gauss map coincides with K(X)/K(X)p
N
.

0.4. The second application concerns higher-dimensional varieties. We
shall recall from [36, Definition 1.2.1] (or [9, Definition 2.1]) the notion of
an FN -projective structure; this is a positive characteristic analogue of the
classical notion of a projective structure on a complex manifold discussed
in, e.g., [8], [22], and [23]. Roughly speaking, an FN -projective structure on
a smooth variety X (for N > 0) is a maximal collection of étale coordinate

charts on X valued in Pdim(X) whose transition functions descend to the
N -th Frobenius twist X(N) of X.

One ultimate goal of the study of FN -projective structures is to give a
complete answer to (the positive characteristic version of) the classification
problem, starting with S. Kobayashi and T. Ochiai (cf. [22], [23]), of varieties
admitting projective structures. In [36], we developed the classification for
some classes of varieties, including curves, surfaces, and Abelian varieties.
The difficulty is that, unlike the 1-dimensional case, there are nontrivial ob-
structions for the existence of an FN -projective structure. Indeed, because
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of our lack of technical knowledge, only a few examples have been previously
found for higher dimensions.

However, the bijection Ξ(2,N,d) asserted in Theorem A enables us to con-

struct an FN -projective structure by using an example of a projective variety
whose Gauss map is in a certain special situation. The assertion obtained
in the present paper is described as follows.

Theorem C (= Theorem 4.1). Let N be a positive integer and L an integer
with L > 1, L ̸= 3. Denote by X the Fermat hypersurface of degree pN + 1
in PL (cf. (4.1)). Then, X admits an FN -projective structure

S♦
Gau(0.5)

arising from the Gauss map associated to the natural closed immersion X ↪→
PL. Moreover, if p ∤ L(L+1), thenX admits no F 2N+1-projective structures.

As mentioned in Remark 4.3, the existence of such an FN -projective
structure may be thought of as an exotic phenomenon of algebraic geom-
etry in positive characteristic. In fact, any unirational projective complex
manifold which is not isomorphic to a projective space, such as a Fermat
hypersurface, admits no projective structure.

Also, note that the only previous examples of FN -projective structures
on higher-dimensional varieties except for those on projective spaces were
derived from FN -affine structures on Abelian varieties or smooth curves
equipped with a Tango structure. By calculating Chern classes on the Fer-
mat hypersurface X, we see that S♦

Gau cannot be constructed in that way

(cf. Remark 4.4). This means that the FN -projective structure asserted in
the above theorem is essentially a new example.

Notation and Conventions. Throughout the present paper, we fix a
prime number p and an algebraically closed field k of characteristic p.

By a variety (over k), we mean a connected integral scheme of finite type
over k. Moreover, by a curve, we mean a variety over k of dimension 1.
Unless stated otherwise, we will always be working over k; for example,
products of varieties will be taken over k, i.e., X1 ×X2 := X1 ×k X2.

Let X be a variety over k. We shall write ΩX (resp., TX) for the sheaf
of 1-forms (resp., the sheaf of vector fields) on X over k. If V is a vector
bundle (i.e., a locally free coherent sheaf) on X, then we denote by P(V)
the projective bundle over X associated to V.

Next, let N be a positive integer. We shall denote by X(N) the N -th
Frobenius twist of X, i.e., the base-change of X by the pN -th power map

k → k. The N -th relative Frobenius morphism is denoted by F
(N)
X/k : X →
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X(N). When N = 1, we write FX/k instead of F
(1)
X/k. Also, we set X

(0) := X

and F
(0)
X/k = idX for simplicity.

Recall from [2, § 2.2] the sheaf of differential operatorsD(N−1)
X := D(N−1)

X/Spec(k)

on X of level N − 1, where Spec(k) is equipped with the trivial (N − 1)-

PD structure. If ∇ is a left D(0)
X -action on an OX -module F extending its

OX -module structure, then we will use the same notation to denote the cor-

responding connection F → ΩX ⊗ F . Also, for a D(N−1)
X -action ∇ on F

extending its OX -module structure, we shall write ∇(0) for the D(0)
X -action

(or equivalently, the connection) on F induced by ∇ via the natural mor-

phism D(0)
X → D(N−1)

X .

For an OX(N)-module G, there exists a canonical left D(N−1)
X -action

∇(N−1)
G,can : D(N−1)

X → Endk(F
(N)∗
X/k (G))(0.6)

on the pull-back F
(N)∗
X/k (G) with vanishing p-(N−1)-curvature (cf. [24, Defini-

tion 3.1.1 and Corollary 3.2.4]). Given an OX -module F and a left D(N−1)
X -

action ∇ on F extending its OX -module structure, we shall write F∇ for

the subsheaf of F on which D(N−1)+
X acts as zero, where D(N−1)+

X denotes

the kernel of the canonical projection D(N−1)
X ↠ OX . Note that F∇ may be

regarded as an OX(N)-module via the underlying homeomorphism of F
(N)
X/k.

The trivial D(N−1)
X -action on OX will be denoted by ∇(N−1)

triv .
Finally, for each positive integer L, we denote the L-dimensional projec-

tive space over k by

PL := Proj(k[t0, · · · , tL])(0.7)

(= {[t0 : t1 : · · · : tL] | (t0, · · · , tL) ̸= (0, · · · , 0)}) .

1. Gauss maps in positive characteristic

In this section, we recall the higher-order Gauss map associated to a
closed subvariety of a projective space. After that, we will observe that,
under a certain assumption, the Gauss map induces an action of the ring of
differential operators on a jet bundle (cf. (1.11)).

1.1. Let X be a smooth projective variety over k of dimension l > 0.
Denote by I the ideal sheaf defining the diagonal in X ×X. Also, for each
i = 1, 2, we denote by pri the i-th projection X ×X → X.

Let us fix a line bundle L on X and a nonnegative integer m. The sheaf

Jm(L) := pr1∗(pr
∗
2(L)⊗OX×X/Im+1)(1.1)
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forms a vector bundle on X of rank
(
l+m
m

)
, and it is called the m-jet bundle

of L. This sheaf is equipped with an (m+ 1)-step decreasing filtration

{Jm(L)j}m+1
j=0(1.2)

given by putting Jm(L)0 := Jm(L) and Jm(L)j := Ker (Jm(L) ↠ Jj−1(L))
(j = 1, · · · ,m + 1). For each j = 0, · · · ,m, we have an isomorphism of
OX -modules

Sj(ΩX)⊗ L ∼→ Jm(L)j/Jm(L)j+1,(1.3)

where Sj(ΩX) denotes the j-th symmetric product of ΩX over OX .
Note that pr1∗(pr

∗
2(L)) is canonically isomorphic to the vector bundle

H0(X,L)⊗kOX . By applying the functor pr1∗(pr
∗
2(L)⊗(−)) to the quotient

OX×X ↠ OX×X/Im+1, we obtain an OX -linear morphism

H0(X,L)⊗k OX ↠ Jm(L).(1.4)

Next, suppose that we are given a closed immersion ι : X ↪→ PL for some
positive integer L. This induces the composite

αm
ι : O⊕(L+1)

X

(
= H0(PL,OPL(1))⊗k OX

)
(1.5)

→ H0(X, ι∗(OPL(1)))⊗k OX

(1.4)−−−→ Jm(ι∗(OPL(1))),

where the first arrow is the morphism induced from the natural morphism
OPL(1) → ι∗(ι

∗(OPL(1))). Let Grass(
(
l+m
m

)
, L + 1) denote the Grassmann

variety classifying
(
l+m
m

)
-dimensional quotient spaces of the k-vector space

kL+1. If Um
ι denotes the open locus of X where αm

ι is surjective, then the
restriction of αm

ι to Um
ι determines a morphism

γmι : Um
ι → Grass(

(
l+m
m

)
, L+ 1).(1.6)

We call it the Gauss map of order m associated to (X, ι). When m = 1,
the morphism γmι coincides with the Gauss map in the classical sense (cf.
Introduction).

Given a triple of positive integers λ := (m,N, d), we shall denote by

GauFλ(1.7)

the set of isomorphism classes of closed immersions ι : X ↪→ PL (for some
L > 0) satisfying the following two conditions:

• The closed subvariety Im(ι) of PL has degree d;

• Um
ι = X and γmι factors through F

(N)
X/k.
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Here, two such closed immersions ιi : X ↪→ PLi (i = 1, 2) are said to

be isomorphic if there exists an isomorphism h : PL1
∼→ PL2 satisfying

ι2 = h ◦ ι1. Thus, it makes sense to speak of the isomorphism class of a
closed immersion ι : X ↪→ PL as above.

By putting λN ′ := (m,N ′, d) for each positive integer N ′, we obtain the
following sequence of inclusions:

GauFλ1
⊇ GauFλ2

⊇ GauFλ3
⊇ · · · ⊇ GauFλN

⊇ · · · .(1.8)

1.2. Let ι : X ↪→ PL (where L > 0) be a closed immersion, m a nonneg-
ative integer, and N a positive integer. Suppose that Um

ι = X and γmι
factors through F

(N)
X/k. Then, we can find a unique morphism γ̆ : X(N) →

Grass(
(
l+m
m

)
, L+1) with γ̆◦F (N)

X/k = γmι . Let us denote the universal quotient

on Grass(
(
l+m
m

)
, L+ 1) by

quniv : O⊕(L+1)
univ ↠ Quniv,(1.9)

where Ouniv denotes the structure sheaf. The pull-back of quniv by γ̆ de-

fines an OX(N)-linear surjection q0 : O⊕(L+1)

X(N) ↠ Q0. It follows from the

definition of γmι that there exists a unique isomorphism τ : F
(N)∗
X/k (Q0)

∼→
Jm(ι∗(OPL(1))) which makes the following diagram commute:

O⊕(L+1)
X

F
(N)∗
X/k

(q0)

yy

αm
ι

&&
F

(N)∗
X/k (Q0) τ

∼ // Jm(ι∗(OPL(1))).

(1.10)

The D(N−1)
X -action ∇(N−1)

Q0,can
(cf. (0.6)) corresponds, via τ , a D(N−1)

X -action

∇(N−1)
ι,Gau : D(N−1)

X → Endk(Jm(ι∗(OPL(1))))(1.11)

on the m-th jet bundle Jm(ι∗(OPL(1))) of ι∗(OPL(1)). By definition, the

D(N−1)
X -action ∇(N−1)

ι,Gau has vanishing p-(N −1)-curvature (cf. § 2.1 discussed

below).

2. Dormant (n,N)-opers on a variety

In this section, the classical definition of a (higher-level) dormant oper is
generalized to multi-dimensional varieties. The main result of this section
describes a relationship between higher-order Gauss maps and generalized
dormant opers (cf. Theorem 2.9).
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2.1. Let X be a smooth projective variety over k of dimension l > 0, and
let N , n be two integers with N > 0, p ≥ n > 1. For a rank n vector
bundle V on X and an integer a with 1 ≤ a < p, we shall write T a(V)
(cf. [34, Definition 3.4]) for the subbundle of V⊗a generated locally by various
sections

∑
σ∈Sa

ĕσ(1) ⊗ · · · ⊗ ĕσ(a), where Sa denotes the symmetric group
of a letters and each ĕi (i = 1, · · · , a) is an element in a fixed local basis
{e1, · · · , en} of V. Also, we set T 0(V) := OX . Note that the subbundle
T a(V) does not depend on the choice of the local basis {e1, · · · , en}, and
that since a < p it is isomorphic to the a-th symmetric product Sa(V) of V
over OX via the composite of natural morphisms T a(V) ↪→ V⊗a ↠ Sa(V).

Next, we shall recall from [24] the higher-level generalization of p-curvature.

Denote by K(N−1)
X the kernel of the morphism D(N−1)

X → Endk(OX) defining

the trivial D(N−1)
X -action on OX . If V is as above and ∇ is a D(N−1)

X -action
on V extending itsOX -module structure, then we shall refer to the composite

pψ∇ : K(N−1)
X ↪→ D(N−1)

X
∇−→ Endk(V)(2.1)

as the p-(N − 1)-curvature of ∇ (cf. [24, Definition 3.1.1]).
Now, let us consider a collection of data

F♡ := (F ,∇, {F j}nj=0)(2.2)

consisting of a vector bundle F on X, a D(N−1)
X -action ∇ on F extending

its OX -module structure, and an n-step decreasing filtration {F j}nj=0 on F
such that F0 = F , Fn = 0, and F/F1 is a line bundle.

Definition 2.1. (i) We say that F♡ is an (n,N)-oper on X if it sat-
isfies the following conditions:

– For each j = 1, · · · , n − 1, the inclusion relation ∇(0)(F j) ⊆
ΩX ⊗F j−1 holds and the OX-linear morphism

KSj
F♡ : F j/F j+1 → ΩX ⊗ (F j−1/F j)(2.3)

induced naturally by ∇(0) is injective. We call KSj
F♡ the j-th

Kodaira-Spencer map associated to F♡.
– For each j = 0, · · · , n−1, the image of the OX -linear morphism

F j/F j+1 → Ω⊗j
X ⊗ (F/F1)(2.4)

obtained by composing various KSj
′

F♡ ’s coincides with T
j(ΩX)⊗

(F/F1) ⊆ Ω⊗j
X ⊗ (F/F1). (If either l = 1 or n = 2 is satisfied,

then this condition is equivalent to the condition that (2.4) is
an isomorphism for every j.)
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Moreover, the notion of an isomorphism between two (n,N)-opers
can be defined in a natural manner, so we will omit the details of
that definition.

(ii) An (n,N)-oper F♡ := (F ,∇, {F j}nj=0) is called dormant if ∇ has

vanishing p-(N − 1)-curvature, i.e., the equality pψ∇ = 0 holds.

Remark 2.2. If the underlying variety X has dimension 1, then the defi-
nition of an oper using the ring of higher-level differential operators can be
found in [37, Definition 4.2.1]. In the cace of n = 2 (but X is arbitrary), an
equivalent definition was discussed in [36, Definition 2.3.1] under the name

of (dormant) indigenous D(N−1)
X -module. Also, it follows from [36, Theorem

A] that, when p ∤ (dim(X)+1), equivalence classes (with respect to a certain
equivalence relation) of dormant (2, N)-opers are in bijection with what we
call FN -projective structures. (In § 4.1, we will mention briefly the definition
of an FN -projective structure.)

Remark 2.3. Here, let us recall a typical example of a dormant (p, 1)-oper
on a multi-dimensional variety provided by X. Sun (cf. [34, Theorem 3.7]);
this is a generalization of the dormant (p, 1)-oper on a curve discussed in [16,
§ 5].

Given a line bundle L on X, we shall set V := F ∗
X/k(FX/k∗(L)). The

OX -module V forms a vector bundle on X and admits a connection ∇ :=

∇(0)
FX/k∗(L),can

with vanishing p-curvature. This sheaf is equipped with a p-

step decreasing filtration {Vj}pj=0 given by the following construction:

• V0 := V and V1 is the kernel of the morphism V ↠ L correspond-
ing to the identity morphism idFX/k∗(L) via the adjunction relation

“F ∗
X/k(−) ⊣ FX/k∗(−)”.

• For each j = 2, · · · , p, we define Vj inductively as follows:

Vj := Ker
(
Vj−1 ∇−→ ΩX ⊗ Vj−2 quotient−−−−−→ ΩX ⊗ (Vj−2/Vj−1)

)
.(2.5)

Then, the resulting collection (V,∇, {Vj}pj=0) forms a dormant (p, 1)-oper
on X.

Remark 2.4. Suppose that X is a smooth projective curve of genus g > 1
and N is a positive integer. According to [18, Corollary 6.2], the existence of
a closed immersionX ↪→ PL with purely inseparable Gauss map of degree pN

is equivalent to the existence of a rank 2 vector bundle G on X(N) satisfying
the following condition:

(∗)G : F
(N−1)∗
X(1)/k

(G) is stable and F
(N)∗
X/k (G) ∼= J1(L) for some line bundle L

on X.
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In this Remark, we shall examine the relationship between such vector
bundles G and dormant (2, N)-opers. Let us take a dormant (2, N)-oper
F♡ := (F ,∇, {F j}2j=0) on X.

First, we shall prove the claim that, for every positive integer N ′ with

N ′ ≤ N , the rank 2 vector bundle F
(N−N ′)∗
X(N′)/k

(F∇) on X(N ′) is stable. (The

following discussion is available for a general n, but we focus on the rank 2

case for simplicity.) Suppose, on the contrary, that F
(N−N ′)∗
X(N′)/k

(F∇) is unsta-

ble, i.e., there exists a line subbundle L of F
(N−N ′)∗
X(N′)/k

(F∇) of degree ≥ 1
2 · a,

where a := deg(F
(N−N ′)∗
X(N′)/k

(F∇)). Then, deg(F
(N ′)∗
X/k (L)) = pN

′ · deg(L) ≥
pN

′

2 · a. Since KS1F♡ is an isomorphism, we have

deg(F1)− deg(F/F1) = deg(ΩX ⊗ (F/F1))− deg(F/F1)(2.6)

= 2g − 2.

On the other hand, the following equalities hold:

deg(F1) + deg(F/F1) = deg(F)(2.7)

= deg(F
(N ′)∗
X/k (F

(N−N ′)∗
X(N′)/k

(F∇)))

= pN
′ · a,

where the second equality follows from the isomorphism(
F

(N ′)∗
X/k (F

(N−N ′)∗
X(N′)/k

(F∇)) =
)
F

(N)∗
X/k (F∇)

∼→ F(2.8)

resulting from [24, Corollary 3.2.4]. It follows from (2.6) and (2.7) that

deg(F1) = pN
′

2 · a+ g − 1 and deg(F/F1) = pN
′

2 · a− g + 1. By comparing

the respective degrees of F
(N ′)∗
X/k (L) and F/F1, we see that the composite of

natural morphisms

F
(N ′)∗
X/k (L) ↪→ F

(N ′)∗
X/k (F

(N−N ′)∗
X(N′)/k

(F∇))
(2.8)−−−→ F ↠ F/F1(2.9)

coincides with the zero map. Hence, the composite of the first two mor-
phisms in (2.9), which we shall denote by h, factors through the inclusion

F1 ↪→ F . The resulting morphism F
(N ′)∗
X/k (L) → F1 is injective and an iso-

morphism at the generic point η of X. Let us identify each local section

of F
(N ′)∗
X/k (L) with its image via this injection. Then, the stalk of F1 at η

is closed under the connection ∇(0)
L,can. Since ∇(0)

L,can is compatible with ∇
via h, the stalk of F1 at η is also closed under ∇. But, it contradicts the

assumption that KS1F♡ is an isomorphism. Consequently, F
(N−N ′)∗
X(N′)/k

(F∇)
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turns out to be stable, and the proof of the claim is completed. In particu-

lar, F
(N−1)∗
X(1)/k

(F∇) is stable.

Next, observe that, since KS1F♡ is an isomorphism, the following compos-
ite is an isomorphism:

D(N−1)
X,≤1 ⊗ (F/F1)∨

inclusion−−−−−→ D(N−1)
X ⊗F∨ → F∨,(2.10)

where D(N−1)
X,≤1 denotes the subsheaf of D(N−1)

X consisting of differential op-
erators of order ≤ 1 and the second arrow denotes the morphism induced
naturally by the dual of ∇. If we write L := F/F1, then the dual of this

composite determines an isomorphism F ∼→ J1(L). (This isomorphism pre-

serves the filtration, i.e., restricts to an isomorphism F1 ∼→ J1(L)1.) Thus,

we conclude that the rank 2 vector bundle F∇ onX(N) satisfies the condition
(∗)F∇ described above.

One may verify that the resulting assignment F♡ 7→ F∇ gives a bijec-
tive correspondence between dormant (2, N)-opers on X and rank 2 vector

bundles G on X(N) satisfying (∗)G.

2.2. We shall prove the following assertion concerning dormant (n,N)-
opers.

Proposition 2.5. Let F♡ := (F ,∇, {F j}j) be a dormant (n,N)-oper on
X. Denote by σ the morphism X → P(F) induced, via projectivization,
from the natural quotient F → F/F1. Also, denote by σ the composite

σ : X
σ−→ P(F)

(
= X ×X(N) P(F∇)

) projection−−−−−−→ P(F∇).(2.11)

Then, the following assertions hold:

(i) Suppose that dim(X) = 1. Then, σ is birational onto its image.
(ii) Suppose that n = 2 (but dim(X) is arbitrary). Then, σ is a closed

immersion.

Proof. First, we shall consider assertion (i). Denote by Y the nomalization
of the image Im(σ) of σ. Suppose that the field extension K(X)/K(Y ) is

nontrivial. Since F
(N)
X/k : X → X(N) factors through a morphism h : X → Y ,

there exists an integer M with 1 ≤ M ≤ N such that Y = X(M) and h =

F
(M)
X/k . Denote by G the pull-back of F∇ to X(M). In particular, its pull-back

F
(M)∗
X/k (G) may be canonically identified with F . The section (Y =)X(M) →

P(G) induced by the composite of the normalization Y → Im(σ) and the
inclusion Im(σ) ↪→ P(F∇) determines a surjection G ↠ Q for some line

bundle Q on X(M). Under the identification F
(M)∗
X/k (G) = F , the pull-back
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of this surjection G ↠ Q by F
(M)
X/k coincides with the natural projection F ↠

F/F1, and the equality ∇(0) = (∇(M−1)
G,can )(0) holds. Hence, the subbundle F1

of F (which may be identified with the pull-back of Ker (G ↠ Q)) is closed

under ∇(0). But, this contradicts the fact that KS1F♡ is nonzero. Thus,
we have K(X) = K(Y ), meaning that σ is birational onto its image. This
completes the proof of assertion (i).

Next, we shall prove assertion (ii). For each point x of X, we can find
an open neighborhood U of x in X such that there exists an OU(N)-linear

isomorphism F∇|U(N)
∼→ O⊕l+1

U(N) . Let us consider the isomorphism of Pl-
bundles

P(F∇|U(N))
∼→ U (N) × Pl(2.12)

induced by this isomorphism. Since KS1F♡ is an isomorphism, the composite

U
σ|U−−→ P(F∇|U(N))

(2.12)−−−→ U (N) × Pl projection−−−−−−→ Pl(2.13)

is étale (cf. [36, Corollary 1.6.2]). This implies that the restriction σ|U of σ
is unramified. By applying this argument to various points x of X, we see

that σ is unramified. Moreover, since F
(N)
X/k factors through σ, the morphism

σ is universally injective. Thus, σ turns out to be a closed immersion. This
completes the proof of assertion (ii). □

Given a triple of positive integers χ := (n,N, d) with 1 < n ≤ p, we shall
write

Op
Zzz...

χ,+bir

(
resp., Op

Zzz...

χ,+imm

)
(2.14)

for the set of isomorphism classes of pairs f := (F♡, q) consisting of a

dormant (n,N)-oper F♡ := (F ,∇, {F j}j) on X and a surjective morphism

of D(N−1)
X -modules q : (OX ,∇(N−1)

triv )⊕(Lf +1) ↠ (F ,∇) for some Lf > 0 that
satisfies the following two conditions:

• The morphism

ιf : X → PLf(2.15)

determined, via projectivization, by the composite of q and the sur-
jection F ↠ F/F1 is birational onto its image (resp., a closed im-
mersion);

• The degree of the closed subvariety Im(ιf ) of PLf is equal to d. (This

is equivalent to the condition that F/F1 has degree d with respect
to the ample line bundle ι∗f (OPLf (1)), in the sense of [11, Definition

1.2.11].)
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Here, two such pairs fi := (F♡
i , qi) (i = 1, 2) are said to be isomorphic if

there exists a pair (hF , hO) consisting of an isomorphism of (n,N)-opers

hF : F♡
1

∼→ F♡
2 and an isomorphism of D(N−1)

X -modules

hO : (OX ,∇(N−1)
triv )⊕(Lf1+1) ∼→ (OX ,∇(N−1)

triv )⊕(Lf2+1)(2.16)

satisfying q2 ◦ hO = hF ◦ q1. Thus, we can define the isomorphism class of

a pair f := (F♡, q) as above. It is clear that Op
Zzz...

χ,+imm ⊆ Op
Zzz...

χ,+bir.

2.3. Hereinafter, we shall use the notation 2 to denote either “bir” or
“imm”. Let f := (F♡, q) (where F♡ := (F ,∇, {F j}j)) be a pair clas-

sified by Op
Zzz...

χ,+2. For a positive integer N ′ with N ′ < N , denote by

∇(N ′−1) the D(N ′−1)
X -action on F induced from ∇ via the natural morphism

D(N ′−1)
X → D(N−1)

X . Then, the collection F♡(N ′) := (F ,∇(N ′−1), {F j}j)
forms a dormant (n,N ′)-oper and the morphism q determines a surjective

morphism of D(N ′−1)
X -modules (OX ,∇(N ′−1)

triv )⊕(Lf +1) ↠ (F ,∇(N ′−1)). In

particular, the pair f (N ′) := (F♡(N ′), q) is an element of Op
Zzz...

χ,+2, where

χ′ := (n,N ′, d). The map of sets Op
Zzz...

χ,+2 → Op
Zzz...

χ′,+2 given by f 7→ f (N ′)

is verified to be injective. This injection allows us to regard Op
Zzz...

χ,+2 as a

subset of Op
Zzz...

χ′,+2.

Thus, by putting χN ′ := (n,N ′, d) for each positive integer N ′, we obtain
the following diagram of inclusions:

Op
Zzz...

χ1,+bir ⊇ Op
Zzz...

χ2,+bir ⊇ Op
Zzz...

χ3,+bir ⊇ · · · ⊇ Op
Zzz...

χN ,+bir ⊇ · · ·(2.17)

⊆ ⊆ ⊆ · · · ⊆ · · ·

Op
Zzz...

χ1,+imm ⊇ Op
Zzz...

χ2,+imm ⊇ Op
Zzz...

χ3,+imm ⊇ · · · ⊇ Op
Zzz...

χN ,+imm ⊇ · · · .

The following assertion gives a necessary condition for the set Op
Zzz...

χ,+bir

being nonempty.

Proposition 2.6. Suppose that there exists a pair f := (F♡, q) classified

by Op
Zzz...

χ,+bir. Denote by deg(ΩX) the degree of ΩX with respect to the ample

divisor H determined by ι∗f (OPLf (1)), i.e., deg(ΩX) := c1(ΩX) ·H l−1. Then,

we have

1

pN
·
(
deg(ΩX) +

d(l + 1)

n− 1

)
·
(
l + n− 1

n− 2

)
∈ Z.(2.18)

In particular, if X is a smooth projective curve of genus g, then Op
Zzz...

χ,+bir =

Op
Zzz...

χ,+imm = ∅ unless pN | n((n− 1)(g − 1) + d).
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Proof. Let (F ,∇, {F j}j) be the collection of data defining F♡. It follows
from [34, Lemma 4.3] that for each integer j with 0 ≤ j ≤ n − 1 (< p), the
following equalities hold:

deg(T j(ΩX)⊗ (F/F1))(2.19)

= deg(T j(ΩX)) + deg(F/F1) · rk(T j(ΩX))

= deg(ΩX) ·
(
l + j − 1

j − 1

)
+ d ·

(
l + j − 1

j

)
,

where deg(−) = c1(−) ·H l−1. Hence, we have

deg(F) =
n−1∑
j=0

deg(F j/F j+1)(2.20)

=

n−1∑
j=0

deg(T j(ΩX)⊗ (F/F1))

(2.19)
=

n−1∑
j=0

(
deg(ΩX) ·

(
l + j − 1

j − 1

)
+ d ·

(
l + j − 1

j

))

= deg(ΩX) ·
(
l + n− 1

n− 2

)
+ d ·

(
l + n− 1

n− 1

)
=

(
deg(ΩX) +

d(l + 1)

n− 1

)(
l + n− 1

n− 2

)
.

On the other hand, according to [24, Corollary 3.2.4], the natural morphism

F
(N)∗
X/k (F∇) → F extending the inclusion F∇ ↪→ F is an isomorphism. This

implies that deg(F) is equal to pN · deg(F∇) and hence divisible by pN . By
this fact together with (2.20), the proof of the assertion is completed. □

2.4. Denote by Pic(X(N)) the group of line bundles on X(N). If Op
Zzz...

n,N

denotes the set of isomorphism classes of dormant (n,N)-opers on X, then

we can define an action of Pic(X(N)) on Op
Zzz...

n,N as follows: Let N be a

line bundle on X(N) and F♡ := (F ,∇, {F j}j) a dormant (n,N)-oper on X.

Denote by∇(N−1)
N ,can⊗∇ theD(N−1)

X -action on the tensor product F
(N)∗
X/k (N )⊗F

induced by ∇(N−1)
N ,can and ∇ in a natural manner. Then, one may verify that

the collection of data

F♡
⊗N := (F

(N)∗
X/k (N )⊗F ,∇(N−1)

N ,can ⊗∇, {F (N)∗
X/k (N )⊗F j}nj=0)(2.21)

forms a dormant (n,N)-oper on X. The resulting assignment (N ,F♡) 7→
F♡

⊗N defines a desired action of Pic(X(N)) on Op
Zzz...

n,N . In particular, we
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obtain the quotient set

Op
Zzz...

n,N := Op
Zzz...

n,N /Pic(X(N)).(2.22)

We write [F♡] for the element of Op
Zzz...

n,N represented by F♡. In the case of

dim(X) = 1, this set may be identified with the set of dormant PGLn-opers
of level N on X, in the sense of [37, Definition 4.2.5].

Proposition 2.7. Suppose that dim(X) = 1 (resp., n = 2). Then, the map
of sets ∐

d∈Z>0

Op
Zzz...

(n,N,d),+bir → Op
Zzz...

n,N(2.23)

resp.,
∐

d∈Z>0

Op
Zzz...

(2,N,d),+imm → Op
Zzz...

2,N


given by assigning (F♡, q) 7→ [F♡] is surjective.

Proof. We only consider the resp’d assertion since the non-resp’d assertion
can be proved by an entirely similar argument (by applying assertion (i) of
Proposition 2.5 instead of (ii)).

Let F♡ := (F ,∇, {F j}j) be a dormant (2, N)-oper on X. Denote by

π : P(F∇) → X(N) the natural projection. Then, we can find a very ample

line bundle N on X(N) such that the line bundle OP(F∇)(1) ⊗ π∗(N ) on

P(F∇) is very ample. Write σP for the closed immersion P(F∇) ↪→ PL

(where L > 0) defined by the complete linear system associated to π∗(N )⊗
OP(F∇)(1). Since π∗(π

∗(N ) ⊗ OP(F∇)(1)) may be identified with N ⊗ F∇

by the projection formula, σP coincides with the morphism induced, via
projectivization, from the natural morphism

H0(X(N),N ⊗F∇)⊗k OX(N) → N ⊗F∇.(2.24)

Hence, the pull-back of (2.24) by F
(N)
X/k gives, after choosing an identification

H0(X(N),N ⊗F∇) = kL+1, a surjective morphism of D(N−1)
X -modules

q : (OX ,∇(N−1)
triv )⊕(L+1) ↠ (F

(N)∗
X/k (N )⊗F ,∇(N−1)

N ,can ⊗∇).(2.25)

Since the composite σ : X
σ−→ P(F∇)

σP−→ PL is a closed immersion by Propo-

sition 2.5, (ii), the pair (F♡
⊗N , q) specifies an element of

∐
d∈Z>0

Op
Zzz...

(2,N,d),+imm

mapped to [F♡] ∈ Op
Zzz...

2,N via (2.23). This implies the surjectivity of (2.23),
so the proof of this proposition is completed. □
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2.5. Let us construct, under a certain condition, a dormant (n,N)-oper by
using the Gauss map of order n− 1 on X associated to a closed immersion
into a projective space. To this end, we shall consider the following two
conditions on a quadruple (X,n,N, d):

(a) X is a smooth projective curve over k of genus g > 1 and n, N , d
are positive integers with 1 < n < p and p ∤ (g − 1);

(b) X is a smooth projective variety over k whose tangent bundle TX
is stable with respect to some ample line bundle and n, N , d are
positive integers with n = 2 < p, p ∤ d.

Then, the following assertion holds.

Proposition 2.8. Let (X,n,N, d) be a quadruple satisfying one of the con-
ditions (a), (b) described above. Let L be a line bundle on X of degree d
with respect to some closed immersion from X to a projective space. Also,

let ∇ be a left D(N−1)
X -action on Jn−1(L) extending its OX -module structure

whose p-(N − 1)-curvature vanishes identically. Then, the collection

(Jn−1(L),∇, {Jn−1(L)j}nj=0)(2.26)

(cf. (1.2) for the definition of the filtration {Jn−1(L)j}j) forms a dormant
(n,N)-oper on X.

Proof. First, we shall consider the case where the condition (a) is satisfied.
Let B be the subset of {1, · · · , n − 1} consisting of integers j satisfying

∇(0)(Jn−1(L)j) ⊆ ΩX ⊗ Jn−1(L)j−1. Suppose that B ̸= {1, · · · , n − 1}.
Then, there exists the minimum number j0 in {1, · · · , n − 1} \ B. Since
1 ∈ B, we have j0 ≥ 2. The integer j0 − 1 belongs to B, so the following
OX -linear composite can be defined:

Jn−1(L)j0−1(2.27)

∇(0)

−−−→ ΩX ⊗ Jn−1(L)j0−2

↠ ΩX ⊗ (Jn−1(L)j0−2/Jn−1(L)j0−1)

(
(1.3)∼= Ω

⊗(j0−1)
X ⊗ L

)
.

It follows from deg(ΩX) > 0 and (1.3) that this composite becomes the zero

map when restricted to Jn−1(L)j0
(
⊆ Jn−1(L)j0−1

)
. This implies∇(0)(Jn−1(L)j0) ⊆

ΩX⊗Jn−1(L)j0−1, which contradicts the fact that j0 /∈ B. Hence, the equal-
ity B = {1, · · · , n− 1} holds.

Now, let us fix j ∈ {1, · · · , n− 1}, and denote by KSj the j-th Kodaira-
Spencer map (cf. (2.3)) associated to the collection (2.26). We shall prove
the claim that KSj is nonzero. Suppose, on the contrary, that KSj =
0. Then, Jn−1(L)j is closed under ∇(0), and we can define a connection
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∇(0)
j on Jn−1(L)/Jn−1(L)j induced from ∇(0) via the quotient Jn−1(L) ↠

Jn−1(L)/Jn−1(L)j . Since ∇(0)
j has vanishing p-curvature, the OX -linear

morphism

F ∗
X/k(Ker(∇(0)

j )) → Jn−1(L)/Jn−1(L)j(2.28)

extending the inclusion Ker(∇(0)
j ) ↪→ Jn−1(L)/Jn−1(L)j (regarded as an

OX(1)-linear morphism via the underlying homeomorphism of FX/k) is an

isomorphism (cf. [20, Theorem (5.1)]). By putting ∇(0)
n := ∇(0), we obtain

the following sequence of equalities for each j′ ∈ {j, n}:

p · deg(Ker(∇(0)
j′ )) = deg(F ∗

X/k(Ker(∇(0)
j′ )))(2.29)

= det(Jn−1(L)/Jn−1(L)j
′
)

=

j′−1∑
i=0

deg(Jn−1(L)i/Jn−1(L)i+1)

=

j′−1∑
i=0

deg(Ω⊗i
X ⊗ L)

=

j′−1∑
i=0

(i · (2g − 2) + d)

= j′ · ((j′ − 1) · (g − 1) + d).

This implies (from the assumption n < p) that both (j− 1) · (g− 1)+ d and
(n− 1) · (g − 1) + d are divisible by p. In particular, the integer

(g − 1)(n− j) (= ((n− 1) · (g − 1) + d)− ((j − 1) · (g − 1) + d))(2.30)

is divisible by p. This contradicts the assumption that p ∤ (g − 1). Hence,
KSj turns out to be nonzero, and this completes the proof of the claim.

Moreover, by comparing the degrees of the line bundles Jn−1(L)j/Jn−1(L)j+1

and ΩX⊗(Jn−1(L)j−1)/Jn−1(L)j), we see that KSj is an isomorphism. Con-
sequently, the collection (2.26) forms a dormant (n,N)-oper on X.

Next, let us consider the case where the condition (b) is satisfied. Suppose
that the 1-st Kodaira-Spencer map KS1 : J1(L)1 → ΩX ⊗ (J1(L)/J1(L)1)
associated to (2.26) coincides with the zero map. This implies that J1(L)1 is
closed under∇(0), so we can define a connection∇(0)

1 on L
(
= J1(L)/J1(L)1

)
induced naturally from ∇(0). By an argument similar to the above argu-

ment, we have d (= deg(L)) = p · deg(Ker(∇(0)
1 )), which contradicts the

assumption that p ∤ d. Hence, KS1 specifies a nonzero endomorphism of
ΩX ⊗L

(
= J1(L)1 = ΩX ⊗ (J1(L)/J1(L)1)

)
. Since TX (hence also ΩX ⊗L)
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is stable, KS1 must be an isomorphism. That is to say, the collection (2.26)
defines a dormant (2, N)-oper. This completes the proof of the proposi-
tion. □

By applying the above proposition, we obtain the following assertion,
which is the main result of this section.

Theorem 2.9. Let (X,n,N, d) be a quadruple satisfying one of the condi-
tions (a), (b). We shall set χ := (n,N, d) and λ := (n− 1, N, d). Then, the
following assertions hold:

(i) Let ι : X ↪→ PL (where L > 0) be a closed immersion classified by
GauFλ . Write L := ι∗(OPL(1)), and we shall set

F♡
ι := (Jn−1(L),∇(N−1)

ι,Gau , {Jn−1(L)j}nj=0).(2.31)

Then, the pair fι := (F♡
ι , α

n−1
ι ) (cf. (1.5) for the definition of αn−1

ι )

specifies an element of Op
Zzz...

χ,+imm. Moreover, the map of sets

Ξχ : GauFλ → Op
Zzz...

χ,+imm.(2.32)

given by ι 7→ fι is injective.
(ii) Let N ′ be a positive integer with N ′ < N . We shall set χ′ :=

(n,N ′, d) and λ′ := (n−1, N ′, d). Then, the following square diagram
is commutative:

GauFλ
Ξχ //

inclusion

��

Op
Zzz...

χ,+imm

inclusion

��

GauFλ′
Ξχ′

// Op
Zzz...

χ′,+imm.

(2.33)

(iii) Suppose further that n = 2. Then, the map Ξχ is bijective.

Proof. First, we shall consider assertion (i). It follows from Proposition 2.8
that F♡

ι forms a dormant (n,N)-oper on X. Since γn−1
ι factors through

F
(N)
X/k, there exists a morphism h : X(N) → Grass(

(
l+n−1
n−1

)
, L + 1) with

h ◦ F (N)
X/k = γn−1

ι . If q0 : O⊕(L+1)

X(N) ↠ Q denotes the pull-back of quniv

(cf. (1.9)) by h, then F
(N)∗
X/k (q0) may be identified with αn−1

ι . This implies

that αn−1
ι defines a surjection of D(N−1)

X -modules (OX ,∇(N−1)
triv )⊕(L+1) ↠

(Jn−1(L),∇(N−1)
ι,Gau ). Thus, the pair (F♡

ι , α
n−1
ι ) turns out to be an element

of Op
Zzz...

χ,+imm. Moreover, the injectivity of Ξχ follows immediately from the
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observation that each closed immersion ι : X ↪→ PL in GauFλ may be re-
constructed as the projectvization of the composite of αn−1

ι and the natural
quotient Jn−1(ι

∗(OPL(1))) ↠ ι∗(OPL(1)). This completes the proof of asser-
tion (i).

Also, assertion (ii) follows from the definition of Ξχ.
Finally, we shall prove assertion (iii), i.e., the surjectivity of Ξχ under the

assumption that n = 2. Let f := (F♡, q) (where F♡ := (F ,∇, {F j}2j=0))

be a pair classified by Op
Zzz...

χ,+imm. It follows from Proposition 2.5, (ii),

that the morphism ι := ιf : X → PLf (cf. (2.15)) is a closed immer-
sion. Let us write L := ι∗(OPLf (1)). Also, write σ : X → P(F) (resp.,

σ : X → P(F∇)) for the morphism induced from the surjection F ↠
F/F1 (resp., the composite F∇ ↪→ F ↠ F/F1) as defined in Proposi-
tion 2.5. Then, the surjection ι∗(ΩPL) ↠ ΩX induced by ι can be de-
composed as ι∗(ΩPL) ↠ σ∗(ΩP(F∇)) ↠ ΩX . Since the differential of the

composite X
σ−→ P(F∇)

projection−−−−−−→ X(N) (which coincides with F
(N)
X/k) is

the zero map, the surjection σ∗(ΩP(F∇)) ↠ ΩX factors through the quo-

tient σ∗(ΩP(F∇)) ↠ σ∗(ΩP(F∇)/X(N)). The resulting morphism between line

bundles
(
σ∗(ΩP(F)/X) =

)
σ∗(ΩP(F∇)/X(N)) → ΩX is surjective, hence it is

also bijective. This implies that the families of linear subvarieties in PLf

(parametrized by X) given by q and αn−1
ι , respectively, are identical, i.e.,

P(J1(L)) = P(F). It follows from the various definitions involved that the

associated isomorphism Jn−1(L)
∼→ F between quotient bundles of O⊕(Lf +1)

X

defines an isomorphism f ∼= (F♡
ι , α

n−1
ι ). This shows the surjectivity of Ξχ,

so the proof of assertion (iii) is completed. □

3. Purely inseparable Gauss maps on a curve

In this section, we consider a sufficient condition for the nonemptiness of

the set Op
Zzz...

χ,+2 (where 2 ∈ {bir, imm}) in the case of dim(X) = 1. As an
application of this result, we show (cf. Theorem 3.3) that, for any N > 0,
there always exists a closed immersion X ↪→ PL with purely inseparable
Gauss map of degree pN .

3.1. Let χ := (n,N, d) be a triple of positive integers with n > 1, and let
X be a smooth projective curve over k of genus g > 1.

Proposition 3.1. Let L be a positive integer. Suppose that there exists an
integer a satisfying

L+ 1

n
+ g − 1 ≥ d+ (g − 1)(n− 1)

pN
= a ≥ (g − 1)(n− 1)

pN
+ 2g + 1.(3.1)
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Also, suppose that n < p (resp., n = 2 < p). Then, there exists an ele-

ment f := (F♡, q) of Op
Zzz...

χ,+bir (resp., Op
Zzz...

χ,+imm) such that Lf = L and the

underlying vector bundle of F♡ has degree pN · n · a. In particular, if d is
sufficiently large relative to g, n, N and satisfies d ≡ −(g − 1)(n − 1) mod

pN , then the set Op
Zzz...

χ,+bir (resp., Op
Zzz...

χ,+imm) is nonempty.

Proof. We only consider the non-resp’d assertion since the resp’d assertion
can be proved by an entirely similar argument (by applying assertion (ii) of
Proposition 2.5 instead of (i).)

Let us take a theta characteristic of X, i.e., a line bundle Θ on X to-
gether with an isomorphism Θ⊗2 ∼→ ΩX . According to [36, Theorem 7.5.2],

there exists a dormant (2, N)-oper F♡ := (F0,∇0, {F j
0}2j=0) on X with

F1
0 = Θ and F0

0/F1
0 = Θ∨. Denote by Sn−1(F0) the (n − 1)-st sym-

metric product of F0 over OX . Note that Sn−1(F0) forms a rank n vec-

tor bundle on X of degree 0 and admits a D(N−1)
X -action Sn−1(∇0) in-

duced naturally by ∇0. Moreover, Sn−1(F0) is equipped with an n-step

decreasing filtration {Sn−1(F0)
j}nj=0 induced from {F j

0}j ; to be precise,

we set Sn−1(F0)
0 := Sn−1(F0), S

n−1(F0)
n := 0, and Sn−1(F0)

j (for each

j = 1, · · · , n − 1) is defined as the image of (F1
0 )

⊗j ⊗ F⊗(n−j−1)
0 via the

natural quotient F⊗(n−1)
0 ↠ Sn−1(F0). This filtration satisfies that

Sn−1(F0)
j/Sn−1(F0)

j+1 ∼= Θ⊗(1−n) ⊗ Ω⊗j
X(3.2)

for every j = 0, · · · , n− 1. Since KS1
F♡

0

is an isomorphism, the assumption

n < p implies that the Kodaira-Spencer maps associated to the collection

(Sn−1(F0), S
n−1(∇0), {Sn−1(F0)

j}nj=0)(3.3)

are verified to be isomorphisms. That is to say, this collection forms a
dormant (n,N)-oper on X.

Since ∇0 (hence also Sn−1(∇0)) has vanishing p-(N − 1)-curvature, the

inclusion Sn−1(F0)
∇ ↪→ Sn−1(F0) extends to an isomorphism of D(N−1)

X -
modules

(F
(N)∗
X/k (Sn−1(F0)

∇),∇(N−1)

Sn−1(F0)∇,can
)

∼→ (Sn−1(F0), S
n−1(∇0))(3.4)

(cf. [24, Corollary 3.2.4]). Hence, the faithful flatness of F
(N)
X/k implies that

Sn−1(F0)
∇ forms a rank n vector bundle of degree 0

(
= 1

pN
· deg(Sn−1(F0))

)
on X(N).
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Now, let us choose a line bundle N on X(N) of degree a and a quotient
line bundle M of N ⊗ Sn−1(F0)

∇ having minimal degree. Write

F := F
(N)∗
X/k (N )⊗ Sn−1(F0) and F j := F

(N)∗
X/k (N )⊗ Sn−1(F0)

j(3.5)

(j = 0, · · · , n). The degree of F is given by

deg(F) = n · deg(F (N)∗
X/k (N )) + deg(Sn−1(F0))(3.6)

= n · pN · deg(N ) + 0

= pN · n · a.
Also, we have

deg(F/F1) = deg(F
(N)∗
X/k (N )⊗Θ⊗(1−n))(3.7)

= pN · a+ (g − 1)(1− n)

= d.

By (3.2) and (3.4), F
(N)∗
X/k ((N ⊗ Sn−1(F0)

∇)∨) may be identified with F∨

and has a filtration whose graded pieces are isomorphic to the line bundles

F
(N)∗
X/k (N∨)⊗Θ⊗(n−1) ⊗ Ω

⊗(−j)
X(3.8)

(j = 0, · · · , n − 1). Hence, since F
(N)∗
X/k (M∨) specifies a line subbundle of

F
(N)∗
X/k ((N ⊗ Sn−1(F0)

∇)∨), we have

deg(M)

(3.9)

= − 1

pN
· deg(F (N)∗

X/k (M∨))

≥ − 1

pN
·max

{
deg(F

(N)∗
X/k (N∨)⊗Θ⊗(n−1) ⊗ Ω

⊗(−j)
X )

∣∣∣ 0 ≤ j ≤ n− 1
}

= − 1

pN
· deg(F (N)∗

X/k (N∨)⊗Θ⊗(n−1))

= a− 1

pN
· (n− 1)(g − 1)

≥ 2g + 1,

where the last inequality follows from the assumption (3.1). This implies
that N ⊗Sn−1(F0)

∇ is globally generated and very ample (cf. [13, Proposi-
tion 2, (iii) and (iv)]), and moreover, the following equalities hold:

h1(N ⊗ Sn−1(F0)
∇) = h0((N ⊗ Sn−1(F0)

∇)∨ ⊗ ΩX) = 0.(3.10)
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By the Riemann-Roch theorem, we have

h0(N ⊗ Sn−1(F0)
∇)(3.11)

= h0(N ⊗ Sn−1(F0)
∇)− h1(N ⊗ Sn−1(F0)

∇)

= na+ n(1− g)

≤ L+ 1,

where the last inequality follows from the assumption (3.1). Hence, there
exists an OX(N)-linear surjection

q0 : O⊕(L+1)

X(N) ↠ N ⊗ Sn−1(F0)
∇(3.12)

such that the associated morphism

P(N ⊗ Sn−1(F0)
∇) → PL(3.13)

is a closed immersion. It follows from Proposition 2.5, (i), that the following
composite is birational onto its image:

ι : X → P(F)
(
= X ×X(N) P(N ⊗ Sn−1(F0)

∇)
)

(3.14)

projection−−−−−−→ P(N ⊗ Sn−1(F0)
∇)

(3.13)−−−→ PL,

where the first arrow denotes the morphism arising from the quotient F ↠
F/F1. If∇ denotes theD(N−1)

X -action on F induced by∇(N−1)
N ,can and Sn−1(∇0),

then the collection of data

F♡ := (F ,∇, {F j}nj=0),(3.15)

forms a dormant (n,N)-oper on X (cf. [37, § 4.2]). Moreover, the pull-back

of q0 by F
(N)
X/k defines, via (3.4), a surjective morphism of D(N−1)

X -modules

q : (OX ,∇(N−1)
triv )⊕(L+1) ↠ (F ,∇).(3.16)

It follows that the pair (F♡, q) specifies an element of Op
Zzz...

χ,+bir. This com-
pletes the proof of the assertion. □

Corollary 3.2. Suppose that 2 < p and p ∤ (g−1). Also, let d be an integer
satisfying pN (2g+1) ≤ d and pN | (d+g−1). Then, GauF(1,N,d) is nonempty.

If, moreover, the integer d satisfies pN
′ ∤ (d + g − 1) for a positive integer

N ′ (> N), then GauF(1,N ′,d) is empty.

Proof. The assertion follows immediately from the resp’d portion of Propo-
sition 3.1 and Theorem 2.9, (iii), in the case where (X,n,N, d) satisfies the
condition (a). □
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3.2. Let us describe an assertion improving a result by H. Kaji (cf. Intro-
duction). We shall denote by K(X) the function field of X and by K the
set of subfields K of K(X) satisfying the following condition: There exists a
closed immersion ι from X to some projective space such that the extension
of function fields K(X)/K(Im(γ1ι )) defined by the 1-st order (i.e., classical)
Gauss map γ1ι associated to (X, ι) coincides with K(X)/K.

Theorem 3.3 (= Theorem B). Let X be a smooth projective curve over k
of genus g > 1. Suppose that 2 < p, p ∤ (g−1). Then, the following equality
of sets holds:

K =
{
K(X)p

N
∣∣∣N ≥ 0

}
,(3.17)

where K(X)p
N
:= {vpN | v ∈ K(X)}.

Proof. By [18, Corollaries 2.3 and 4.4] (cf. the discussion preceding Theorem
B) together with the fact mentioned in Remark 2.4, the problem is reduced to
proving that, for every positive integer N , there exists d > 0 with GauF1,N,d \
GauF1,N+1,d ̸= ∅. (In fact, the extension of function fields associated to a

closed immersion in GauF1,N,d\GauF1,N+1,d must be equal toK(X)/K(X)p
N
.)

However, we can always find an integer d with pN (2g+1) ≤ d, pN | (d+g−1),
and pN+1 ∤ (d + g − 1), and Corollary 3.2 implies that such an integer d
satisfies the required condition. □

4. A Frobenius-projective structure on a Fermat hypersurface

In this final section, we construct a Frobenius-projective structure on a
Fermat hypersurface by applying Theorem 2.9 and the previous study of
Gauss maps in positive characteristic. We also show that this Frobenius-
projective structure cannot lift to sufficiently high levels.

4.1. Let N be a positive integer and X a smooth projective variety over k
of dimension l > 0. Denote by PGLl+1 the projective linear group over k
of rank l + 1, which can be identified with the automorphism group of Pl.

Let us denote by (PGLl+1)
(N)
X the Zariski sheaf of groups on X given by

U 7→ PGLl+1(U
(N)) for each open subscheme U of X. Also, denote by P ét

X
the Zariski sheaf of sets on X that assigns, to each open subscheme U of X,
the set of étale morphisms U → Pl. Note that the sheaf P ét

X has a natural

(PGLl+1)
(N)
X -action (cf. [36, § 1.2]).

Recall that a subsheaf S♦ of P ét
X is said to be a Frobenius-projective

structure of level N (or, FN -projective structure, for short) onX if it is

closed under the (PGLl+1)
(N)
X -action on P ét

X and forms a (PGLl+1)
(N)
X -torsor
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with respect to the resulting (PGLl+1)
(N)
X -action on S♦ (cf. [9, Definition

2.1], [36, Definition 1.2.1]).
According to [36, Theorem A], there exists an assignment from a dormant

(2, N)-oper on X (i.e., a dormant indigenous D(N−1)
X -modules, in the sense

of [36, Definitions 2.3.1 and 3.2.1]) to an FN -projective structure (cf. Re-
mark 2.2); moreover, if p ∤ (l + 1), then this assignment defines a bijective
correspondence between the set of FN -projective structures onX and the set
of equivalence classes of dormant (2, N)-opers. (We here omit the details of
the equivalence relation on dormant (2, N)-opers. When dim(X) = 1, each
such equivalence class was referred, in [37, Definition 4.2.5], to as a dormant
PGL2-opers of level N .)

4.2. As an application of Theorem 2.9, we can construct an FN -projective
structure by using the Gauss map of a certain Fermat hypersurface (cf. [39,
§ 7]).

Hereinafter, let us fix an integer L > 1, and suppose that X is the Fermat
hypersurface of degree pN + 1 in the projective space PL, i.e., the smooth
hypersurface defined by the homogenous polynomial

fN := tp
N+1

0 + · · ·+ tp
N+1

L .(4.1)

Write ι : X ↪→ PL for the natural closed immersion. Let us identify
Grass(L,L+1) with PL in such a way that if an L-plane in PL (i.e., a point

of Grass(L,L+ 1)) is given by an equation
∑L

i=0 vi · ti = 0 (v0, · · · , vL ∈ k,
(v0, · · · , vL) ̸= (0, · · · , 0)), then it corresponds to the point [v0 : · · · : vL]
of PL. Under this identification, the 1-st order Gauss map γ1ι : X → PL

associated to (X, ι) can be described as the assignment

a := [a0 : · · · : aL] 7→
([

∂fN
∂t0

(a) : · · · : ∂fN
∂tL

(a)

]
=

)
[ap

N

0 : · · · : ap
N

L ].(4.2)

That is to say, the morphism X → Im(γ1ι ) induced by γ1ι coincides with

the N -th relative Frobenius morphism F
(N)
X/k of X. It follows that the closed

immersion ι defines an element of GauF(1,N,pN+1).

Theorem 4.1. Suppose that L ̸= 3 and p > 2. Then, the Fermat hyper-
surface X of degree pN + 1 in PL admits an FN -projective structure

S♦
Gau,(4.3)

which corresponds to the dormant (2, N)-oper F♡
ι (cf. (2.31)). Moreover,

if p ∤ L(L+ 1), then X admits no F 2N+1-projective structures.

Proof. By the assumption L ̸= 3, the tangent bundle TX is stable (cf. [25, Re-
mark 3.2] or [29, Corollary 0.3]). In particular, the quadruple (X, 2, N, pN +
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1) satisfies the condition (b) described in § 2.5. It follows that we can define
the map Ξ(2,N,pN+1) asserted in Theorem 2.9, (i), and the image via this

map of the element ι ∈ GauF(1,N,pN+1) determines a dormant (2, N)-oper, or

equivalently, an FN -projective structure, on X. This completes the proof of
the former assertion.

Next, let us consider the latter assertion. For each vector bundle V and
an integer m > 0, we shall use the notation “ccrysm (V)” to denote the m-th
crystalline Chern class of V, which is an element of the 2m-th crystalline
cohomology group H2m

crys(X/W ) (W denotes the ring of Witt vectors over

k). Denote by H the restriction to X of ccrys1 (OPL(1)). Then, the Chern
polynomial ccryst (TX) of TX is given by

ccryst (TX)

(4.4)

= (1 +Ht)L+1(1 + (pN + 1)Ht)−1

= (1 +Ht)L+1(1− (pN + 1)Ht+ ((pN + 1)Ht)2 − ((pN + 1)Ht)3 + · · · ),
where the first equality follows from the natural short exact sequence

0 −→ TX −→ ι∗(TPL) −→ OX(pN + 1) −→ 0(4.5)

and the Euler sequence on PL. Since H4
crys(X/W ) = {aH2 | a ∈ W} (cf. [3,

Exp.XI, Theorem 1.5], [1, Chap.VII, Remark 1.1.11], [12, Chap. II, Corol-
lary 3.5]), the equality (4.4) implies

ccrys2 (TX)− 1

L2
·
(
L

2

)
· ccrys1 (TX)2(4.6)

=

(
p2N − pNL+ pN +

L2 − L

2

)
H2 −

(
(L− p)2 · L− 1

2L

)
H2

=
p2N · (L+ 1)

2L
H2

̸≡ 0 (mod p2N+1),

where the last “ ̸≡” follows from the assumption p ∤ L(L + 1). Thus, the
assertion follows from [36, Theorem 3.7.1]. □

Remark 4.2. In the case of L = 2, the variety X defined by (4.1) is known

as a Hermitian curve; this is a smooth projective curve of genus pN (pN−1)
2

having large automorphism groups so that it violates the classical Hurwitz
bound (i.e., ♯(Aut(X)) ≤ 84(g − 1)). In fact, let us define U3(p

2N ) as the
subgroup of GL3(Fp2N ) (⊆ GL3(k)) leaving (4.1) invariant, and PGU3(p

2N )

as the factor of U3(p
2N ) modulo its center. Then, PGU3(p

2N ) coincides



26 YASUHIRO WAKABAYASHI

with the full automorphism group of X, and its order is given by p3N (p3N +

1)(p2N − 1)
(
> 84(p

N (pN−1)
2 − 1)

)
.

Since the closed immersion ι : X ↪→ P2 is compatible with the respective
PGU3(p

2N )-actions on X and P2, the Gauss map γ1ι : X → Grass(2, 3)
is compatible with the respective PGU3(p

2N )-actions. By the definition of
Ξ(2,N,pN+1), the dormant (2, N)-oper obtained from ι, hence also the FN -

projective structure S♦
Gau, turns out to be invariant under the PGU3(p

2N )-

action on X. So S♦
Gau has large symmetry in this sense and descends to any

étale quotient of X.

Remark 4.3. According to [31, Corollary] (or, [32, Proposition 1], [33, The-
orem III]), the Fermat hypersurface X

(
⊆ PL

)
is unirational when L > 3.

Recall that any unirational projective variety over the field of complex num-
bers C admits no projective structure unless it is isomorphic to a projective
space; this is because such a variety contains a rational curve (cf. [15, Theo-
rem 4.1]). In this sense, the example of an FN -projective structure resulting
from the above theorem embodies an exotic phenomenon of algebraic geom-
etry in positive characteristic.

Remark 4.4. Recall that there is an “affine” version of an FN -projective
structure, which is called an FN -affine structure (cf. [10, Definition 2.1], [36,
Definition 1.2.1]). By a change of structure group from the group of affine
transformations to that of projective transformations, each FN -affine struc-
ture yields an FN -projective structure. The only previous examples of
FN -projective structures on higher-dimensional varieties except for those
on projective spaces were obtained, in that manner, from FN -affine pro-
jective structures on Abelian varieties or smooth curves equipped with a
Tango structure via, e.g., taking products, étale coverings, or quotients by
a finite group action (cf. [36, § 6.1, § 6.5, § 8.1]). On the other hand, the
degree pN + 1 Fermat hypersurface X embedded in PL with p ∤ L satisfies
ccrys1 (TX)

(
= (L− pN )H

)
̸≡ 0 (mod pN ) in H2

crys(X/W ) (= {aH | a ∈W}).
Hence, it follows from [36, Theorem 3.7.1] that X admits no FN -affine struc-

tures. In particular, the FN -projective structure S♦
Gau resulting from the

above theorem does not come from any FN -affine structure via changing
the structure group. This means that S♦

Gau is essentially a new example
constructed in a way that has never been done before.
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