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DUALITY-REFLECTION FORMULAS

OF MULTIPLE POLYLOGARITHMS

AND THEIR `-ADIC GALOIS ANALOGUES

Densuke Shiraishi

Abstract. In this paper, we derive formulas of complex and ℓ-adic
multiple polylogarithms, which have two aspects: a duality in terms of
indexes and a reflection in terms of variables. We provide an algebraic
proof of these formulas by using algebraic relations between associators
arising from the S3-symmetry of the projective line minus three points.

1. Introduction and main results

The purpose of the present paper is to derive a series of functional equa-
tions that generalizes Oi-Ueno’s reflection formulas between complex multi-
ple polylogarithms at z and 1 − z. This specializes to the duality formula
for multiple zeta values when z → 1. We also show the `-adic Galois analog
of these equations by tracing the same argument in a parallel way to the
complex case.

For a multi-index k = (k1 . . . , kd) ∈ Nd and a topological path γ ∈
πtop
1

(
P1(C)\{0, 1,∞};

−→
01, z

)
from the standard tangential base point

−→
01 to

a C-rational base point z, the complex multiple polylogarithm Lik (z; γ) is
defined as an iterated integral along γ (see §2.1 for details). As is well known,
Lik (z; γ) coincides with a certain signed coefficient of the KZ solution

G0(X,Y )(z; γ) ∈ C⟨⟨X,Y ⟩⟩.
The multiple zeta value ζ(k) appears as its special value at the tangential

base point
−→
10 with the straight path δ ∈ πtop

1

(
P1(C)\{0, 1,∞};

−→
01,

−→
10
)

along

the unit interval (0, 1) ⊂ P1(R)\{0, 1,∞}. Our main result of the complex
case is then as follows.

Theorem 1.1 (The duality-reflection formula of complex multiple polylog-
arithms). Given a (possibly, tangential base) point z of P1(C)\{0, 1,∞} and

a path γ ∈ πtop
1

(
P1(C)\{0, 1,∞};

−→
01, z

)
, define the path γ′ associated to γ

by

γ′ := δ · φ(γ) ∈ πtop
1

(
P1(C)\{0, 1,∞};

−→
01, 1 − z

)
,(1.1)
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160 D. SHIRAISHI

where φ ∈ Aut
(
P1(C)\{0, 1,∞}

)
is given by φ(t) = 1 − t and paths are

composed from left to right. For any n,m ∈ Z≥2, the following holds:

m−1∑
j=0

(− log (z; γ))
j

j!
Li1,...,1︸︷︷︸
n−2 times

,m−j(z; γ) +

n−2∑
j=0

(− log (1 − z; γ′))
j

j!
Li1,...,1︸︷︷︸
m−2 times

,n−j(1 − z; γ′)

(1.2)

= ζ( 1, . . . , 1︸ ︷︷ ︸
n−2 times

,m),

where log(z; γ) :=
∫
δ−1·γ

dt
t is the logarithm function with respect to γ.

This functional equation has two aspects: a duality n ↔ m with respect to
indexes and a reflection z ↔ 1 − z with respect to variables. We derive the
functional equation from an algebraic relation (chain rule)

G0(X,Y )(z; γ) = G0(Y,X)(1 − z; γ′) ·G0(X,Y )(
−→
10; δ),

where G0(X,Y )(
−→
10; δ) is the so-called Drinfeld associator.

We also deal with the `-adic Galois case for any prime number `. Let K
be a subfield of C and GK := Gal(K/K) the absolute Galois group of K
with respect to its algebraic closure K. For a K-rational base point z of

P1\{0, 1,∞}, consider each topological path γ ∈ πtop
1

(
P1(C)\{0, 1,∞};

−→
01, z

)
as a pro-` étale path γ ∈ πℓ-ét

1

(
P1
K
\{0, 1,∞};

−→
01, z

)
by the comparison map.

Then, for σ ∈ GK , the `-adic Galois multiple polylogarithm Liℓk(z; γ, σ) is
defined as a certain signed coefficient of the `-adic Galois associator

fz,γσ (X,Y ) ∈ Qℓ⟨⟨X,Y ⟩⟩
(see §2.2 for details). This `-adic multiple polylogarithm is an `-adic étale
avatar of Lik (z; γ) introduced by Wojtkowiak. The `-adic Galois multiple

zeta value (or called the `-adic multiple Soulé element) ζℓk(σ) is defined as

its special value Liℓk

(−→
10; δ, σ

)
. Our another main result is then as follows.

Theorem 1.2 (The duality-reflection formula of `-adic Galois multiple
polylogarithms). Given a K-rational (possibly, tangential base) point z of

P1\{0, 1,∞} and γ ∈ πtop
1

(
P1(C)\{0, 1,∞};

−→
01, z

)
, define the path γ′ asso-

ciated to γ as in (1.1). For any σ ∈ GK , the following holds:

m−1∑
j=0

(ρz,γ(σ))
j

j!
Liℓ1,...,1︸︷︷︸
n−2 times

,m−j (z; γ, σ) +

n−2∑
j=0

(ρ1−z,γ′(σ))
j

j!
Liℓ1,...,1︸︷︷︸
m−2 times

,n−j (1 − z; γ′, σ)

(1.3)

= ζℓ
1,...,1︸︷︷︸

n−2 times

,m(σ),
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where ρz,γ : GK → Zℓ is the Kummer 1-cocycle defined by σ(z1/ℓ
k
) =

ζ
ρz,γ(σ)

ℓk
z1/ℓ

k
with respect to the `-th power roots {z1/ℓk}k determined by γ.

By reinterpreting the proof of the complex functional equation (1.2) after
replacing G0(X,Y )(z; γ) by fz,γσ (X,Y ), we derive the `-adic functional equa-
tion (1.3) from the following chain rule between `-adic Galois associators

fz,γσ (X,Y ) = f1−z,γ′
σ (Y,X) · f

−→
10,δ
σ (X,Y )

along the path composition (1.1) (cf. [N21, p.701, the key identity (∗)]).

Remark 1.3. The formula (1.2) is a generalization of the following func-
tional equation (1.4) due to Oi and Ueno in [Oi09],[OU13]. The formula
(1.3) is a generalization of the following functional equation (1.5) due to
Nakamura in [NS22],[N21].

m−1∑
j=0

(− log (z; γ))
j

j!
Lim−j (z; γ) + Li 1,...,1︸︷︷︸

m−2 times

,2 (1 − z; γ′) = ζ(m),

(1.4)

m−1∑
j=0

(ρz,γ(σ))
j

j!
Liℓm−j (z; γ, σ) + Liℓ1,...,1︸︷︷︸

m−2 times

,2 (1 − z; γ′, σ) = ζℓ
m(σ) (σ ∈ GK).

(1.5)

Remark 1.4. By setting z =
−→
10 (i.e. z → 1 along the real interval) in (1.2)

and (1.3), we obtain the well-known duality formula of multiple zeta values
and its `-adic Galois analog.

ζ( 1, . . . , 1︸ ︷︷ ︸
m−2 times

, n) = ζ( 1, . . . , 1︸ ︷︷ ︸
n−2 times

,m),(1.6)

ζℓ
1,...,1︸︷︷︸

m−2 times

,n(σ) = ζℓ
1,...,1︸︷︷︸

n−2 times

,m(σ) (σ ∈ GK).(1.7)

Remark 1.5. In [F04], Furusho constructed the theory of the p-adic KZ
equation and studied the p-adic multiple polylogarithm, which is a p-adic
crystalline avatar of Lik (z; γ). Using the results in [F04], it is possible to
obtain a p-adic analog of (1.2) in the same way as in the proof of (1.2).

Acknowledgement. The author would like to express deep gratitude to Pro-
fessor Hiroaki Nakamura for his helpful advice and warm encouragement.
This work was supported by JSPS KAKENHI Grant Numbers JP20J11018.
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2. Preliminaries

In this section, we review the basic properties of complex multiple polylog-
arithms and `-adic Galois multiple polylogarithms in preparation for proving
the main theorems (1.2) and (1.3).

For a (possibly, tangential base) point z on P1\{0, 1,∞}, we shall write

πtop
1

(
P1(C)\{0, 1,∞};

−→
01, z

)
for the set of homotopy classes of piece-wise smooth topological paths on

P1(C)\{0, 1,∞} from the tangential base point
−→
01 to z, and

πtop
1

(
P1(C)\{0, 1,∞},−→01

)
:= πtop

1

(
P1(C)\{0, 1,∞};

−→
01,

−→
01
)

for the topological fundamental group of P1(C)\{0, 1,∞} at the base point
−→
01 with respect to the path composition γ1 · γ2 := γ1γ2, i.e. paths are
composed from left to right. Let

l0, l1 ∈ πtop
1

(
P1(C)\{0, 1,∞},−→01

)
be smooth loops circling counterclockwise around 0, 1 respectively, as FIG-
URE 1 shows. In FIGURE 1, the dashed line represents P1(R)\{0, 1,∞}
and the upper half-plane is located above. Then, {l0, l1} is a free generating

system of πtop
1

(
P1(C)\{0, 1,∞},−→01

)
. Fix a smooth path

γ ∈ πtop
1

(
P1(C)\{0, 1,∞};

−→
01, z

)
.(2.1)

Moreover, we denote by

δ ∈ πtop
1

(
P1(C)\{0, 1,∞};

−→
01,

−→
10
)

the straight path on P1(C)\{0, 1,∞} from
−→
01 to

−→
10 along the real interval

as FIGURE 1 shows. Let φ ∈ Aut
(
P1(C)\{0, 1,∞}

)
be the automorphism

of P1(C)\{0, 1,∞} defined by φ(t) = 1 − t. Then, we shall define

γ′ := δ · φ(γ) ∈ πtop
1

(
P1(C)\{0, 1,∞};

−→
01, 1 − z

)
.(2.2)

2.1. Complex multiple polylogarithms. Let z be a C-rational (possibly,
tangential base) point on P1\{0, 1,∞}. For a pair k = (k1 . . . , kd) ∈ Nd and

a fixed path γ(= γz) ∈ πtop
1

(
P1(C)\{0, 1,∞};

−→
01, z

)
, we shall define the

complex logarithm

log(z; γ) :=

∫
δ−1·γ

dt

t
(2.3)
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Figure 1. Topological paths on P1(C)\{0, 1,∞}

γ

φ(γ)

l0
0

δ

1
l1• •

•
z

•
1−z

and the complex multiple polylogarithm Lik(z; γ) as the iterated integral
along γ below:

Lik (z; γ) :=

{∫
γ

1
tLik1,··· ,kd−1 (t; γt) dt (kd ̸= 1),∫

γ
1

1−tLik1,··· ,kd−1
(t; γt) dt (kd = 1),

(2.4)

Li1 (z; γ) := − log(1 − z; γ′) =

∫
γ

dt

1 − t
,(2.5)

which can be analytically continued to the pointed universal covering space

of
(
P1(C)\{0, 1,∞},−→01

)
. In particular, we define the multiple zeta value

ζ(k) := Lik

(−→
10; δ

)
∈ R.(2.6)

The complex multiple polylogarithm Lik(z; γ) is closely related to the KZ
(Knizhnik-Zamolodchikov) equation. The KZ equation on P1(C)\{0, 1,∞}
is the differential equation

d

dz
G(X,Y )(z) =

(
X

z
+

Y

z − 1

)
G(X,Y )(z)

where G(X,Y )(z) is an analytic (i.e. each of whose coefficient is analytic)
function with values in the non-commutative formal power series algebra
C⟨⟨X,Y ⟩⟩. There exists a unique solution G0(X,Y )(z; γ) ∈ C⟨⟨X,Y ⟩⟩ at-

tached to γ ∈ πtop
1

(
P1(C)\{0, 1,∞};

−→
01, z

)
characterized by the asymptotic

behavior

G0(X,Y )(z; γ) ≈
∞∑

m=0

1

m!
(X · log (z; γ))m (z → 0).(2.7)
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Moreover, we define the Drinfeld associator

Φ(X,Y ) := G0(X,Y )
(−→

10; δ
)
∈ C⟨⟨X,Y ⟩⟩.

Then the following chain rule holds (cf. [D90],[F04],[F14]):

G0(X,Y )(z; γ) = G0(Y,X)(1 − z; γ′) · Φ(X,Y ).(2.8)

This algebraic relation reflects the path composition (2.2). Let M be the non-
commutative free monoid generated by the non-commuting indeterminates
X, Y . Since G0(X,Y )(z; γ) is group-like in C⟨⟨X,Y ⟩⟩, the expansion of
G0(X,Y )(z; γ) looks like

(2.9) G0(X,Y )(z; γ) = 1 +
∑

w∈M\{1}

Coeffw(G0(X,Y )(z; γ)) · w

where {Coeffw(G0(X,Y )(z; γ))}w∈M is a family of complex numbers. For
w(k) := Xkd−1Y · · ·Xk1−1Y ∈ M and j ∈ N, the following equalities hold
(cf. [F04],[F14],[LM96]):

Coeffw(k)(G0(X,Y )(z; γ)) = (−1)d · Lik(z; γ),(2.10)

CoeffXj (G0(X,Y )(z; γ)) =
logj(z; γ)

j!
,(2.11)

CoeffXj (G0(X,Y )(1 − z; γ′)) =
logj(1 − z; γ′)

j!
.(2.12)

2.2. `-adic Galois multiple polylogarithms. Let ` be a prime number
and K a subfield of C with the algebraic closure K ⊂ C. Suppose that z
is a K-rational (possibly, tangential base) point on P1\{0, 1,∞}. Then the
`-adic Galois (multiple) polylogarithm introdecud by Zdzis law Wojtkowiak
in his series of papers [W0]-[W3] is defined as follows.

We shall write

πℓ-ét
1

(
P1
K
\{0, 1,∞};

−→
01, z

)
for the pro-`-finite set of pro-` étale paths on P1

K
\{0, 1,∞} from the K-

rational tangential base point
−→
01 to z, and

πℓ-ét
1

(
P1
K
\{0, 1,∞},−→01

)
:= πℓ-ét

1

(
P1
K
\{0, 1,∞};

−→
01,

−→
01
)

for the pro-` étale fundamental group of P1
K
\{0, 1,∞} with the base point

−→
01. By the canonical comparison map

πtop
1

(
P1(C)\{0, 1,∞};

−→
01, ∗

)
→ πℓ-ét

1

(
P1
K
\{0, 1,∞};

−→
01, ∗

)
(2.13)
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for ∗ ∈
{−→

01, z, 1 − z
}

, regard topological paths l0, l1, γ, γ
′ on P1(C)\{0, 1,∞}

as pro-` étale paths on P1
K
\{0, 1,∞}. Then πℓ-ét

1

(
P1
K
\{0, 1,∞},−→01

)
is the

free pro-` group of rank 2 with topologically generating system {l0, l1}.
We focus on the natural action of the absolute Galois group

GK := Gal(K/K)

on πℓ-ét
1

(
P1
K
\{0, 1,∞};

−→
01, z

)
(cf. [NW99, (1.1)]). Since z is K-rational, this

Galois action is well-defined. For each σ ∈ GK , we define a pro-` étale loop

fz,γσ := γ · σ(γ)−1 ∈ πℓ-ét
1

(
P1
K
\{0, 1,∞},−→01

)
.(2.14)

Consider the multiplicative Magnus embedding into the algebra of non-
commutative formal power series

E : πℓ-ét
1

(
P1
K
\{0, 1,∞},−→01

)
↪→ Qℓ⟨⟨X,Y ⟩⟩

defined by E(l0) = exp(X) :=
∑∞

n=0
1
n!X

n, E(l1) = exp(Y ). We get a
formal power series

fz,γσ (X,Y ) := E(fz,γσ ) ∈ Qℓ⟨⟨X,Y ⟩⟩(2.15)

called the `-adic Galois associator associated to γ. If z =
−→
10 and γ = δ, it

is called the `-adic Ihara associator in [F07, Definition 2.32]. By (2.2) and
(2.14), the following algebraic relation (chain rule) holds:

fz,γσ (X,Y ) = f1−z,γ′
σ (Y,X) · f

−→
10,δ
σ (X,Y ).(2.16)

The power series fz,γσ (X,Y ) is an `-adic Galois analog of the KZ fundamental
solution G0(X,Y )(z; γ) in (2.7), and the relation (2.16) is an `-adic Galois
analog of the chain rule (2.8) of KZ fundamental solutions. Since fz,γσ (X,Y )
is group-like in Qℓ⟨⟨X,Y ⟩⟩, the expansion of fz,γσ (X,Y ) looks like

(2.17) fz,γσ (X,Y ) = 1 +
∑

w∈M\{1}

Coeffw (fz,γσ (X,Y )) · w,

where {Coeffw(fz,γσ (X,Y ))}w∈M is a family of `-adic numbers. For k =
(k1 . . . , kd) ∈ Nd and w(k) := Xkd−1Y · · ·Xk1−1Y , we shall define the `-adic
Galois multiple polylogarithm and the `-adic Galois multiple zeta value

Liℓk(z; γ, σ) := (−1)d · Coeffw(k)(f
z,γ
σ (X,Y )),(2.18)

ζℓk(σ) := Liℓk

(−→
10; δ, σ

)
.(2.19)

As ζℓk(σ) is called the `-adic multiple Soulé element in [F07, Definition 2.32],

ζℓk(σ) is closely related to the Soulé character (cf. [F07, Examples 2.33],
[NW99, REMARK 2]).
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Let ρz,γ (resp. ρ1−z,γ′) : GK → Zℓ be the Kummer 1-cocycle of {z1/ℓk}k
(resp. {(1 − z)1/ℓ

k}k) determined by γ (resp. γ′). For j ∈ N, the following
holds (cf. [NW99],[NW20],[NS22]):

CoeffXj (fz,γσ (X,Y )) =
(−ρz,γ(σ))j

j!
,(2.20)

CoeffXj (f1−z,γ′
σ (X,Y )) =

(−ρ1−z,γ′(σ))j

j!
.(2.21)

The `-adic Galois multiple polylogarithm is similar to the complex mul-
tiple polylogarithm as the TABLE 1 shows.

Table 1. Analogy between `-adic Galois side and complex side

ℓ-adic Galois side complex side

z : K-ratinal base point on P1\{0, 1,∞} z : C-rational base point on P1\{0, 1,∞}

fz,γσ (X,Y ) ∈ Qℓ⟨⟨X,Y ⟩⟩ (σ ∈ GK) G0(X,Y )(z; γ) ∈ C⟨⟨X,Y ⟩⟩

f
−→
10,δ
σ (X,Y ) ∈ Qℓ⟨⟨X,Y ⟩⟩ Φ(X,Y ) = G0(X,Y )

(−→
10; δ

)
∈ C⟨⟨X,Y ⟩⟩

fz,γσ (X,Y ) = f1−z,γ′
σ (Y,X) · f

−→
10,δ
σ (X,Y ) G0(X,Y )(z; γ) = G0(Y,X)(1− z; γ′) · Φ(X,Y )

Liℓk(z; γ, σ) ∈ Qℓ Lik(z; γ) ∈ C

ζ ℓ
k : GK → Qℓ ζ(k) ∈ R

Liℓ1(z; γ, σ) = ρ1−z,γ′ (σ) Li1(z; γ) = − log(1− z, γ′)

3. Proof of main results

In this section, we prove Theorem 1.1 and Theorem 1.2. We fix a topolog-

ical path γ ∈ πtop
1

(
P1(C)\{0, 1,∞};

−→
01, z

)
. All other symbols are the same

as in the previous sections.

Proof of Theorem 1.1, Theorem 1.2. Let n,m ∈ Z≥2. The following compu-
tations are inspired by a remark given in the Appendix of Furusho’s lecture
note [F14, A.24] and an insight about the `-adic Oi-Ueno’s equation in Naka-
mura’s Oberwolfach Report [N21].

First, we show Theorem 1.1. Since G0(X,Y )(z; γ) is a group-like element
in C⟨⟨X,Y ⟩⟩, the shuffle relation holds for {Coeffw(G0(X,Y )(z; γ))}w∈M
(cf. [Ree58]), i.e. for w,w′ ∈ M,

Coeffw�w′ = Coeffw · Coeffw′ .(3.1)



DUALITY-REFLECTION FORMULA 167

By the definition of the shuffle product,

Xj
�Xm−j−1Y n−1 = X(Xj−1

�Xm−j−1Y n−1) + X(Xj
�Xm−j−2Y n−1).

(3.2)

For w,w′ ∈ M, we set

Coeffw+w′ := Coeffw + Coeffw′ .

Then, we obtain
m−1∑
j=0

(− log(z; γ))
j

j!
Li1,...,1︸︷︷︸
n−2 times

,m−j(z; γ)

=

m−1∑
j=0

(−1)n+j−1 · CoeffXj

(
G0(Y,X)(z; γ)

)
· CoeffXm−j−1Y n−1

(
G0(X,Y )(z; γ)

)
(by (2.10), (2.11))

=

m−1∑
j=0

(−1)n+j−1 · CoeffXj
�Xm−j−1Y n−1

(
G0(X,Y )(z; γ)

)
(by (3.1))

=(−1)n+m−2 · CoeffY (Xm−1
�Y n−2)

(
G0(X,Y )(z; γ)

)
(by (3.2)).

Using (2.6), (2.10), (2.12), log
(−→

10; δ
)

= 0, (3.1) and (3.2), we have the

following equalities by making the same computations as above:
n−2∑
j=0

(− log(1 − z; γ′))j

j!
Li 1,...,1︸︷︷︸
m−2 times

,n−j(1 − z; γ′)

= (−1)n+m−3 · CoeffX(Y m−1
�Xn−2)

(
G0(X,Y )(1 − z; γ′)

)
,

and

ζ( 1, . . . , 1︸ ︷︷ ︸
n−2 times

,m) =

Li1,...,1︸︷︷︸
n−2 times

,m

(−→
10; δ

)
+

m−1∑
j=1

(
− log

(−→
10; δ

))j

j!
Li1,...,1︸︷︷︸
n−2 times

,m−j

(−→
10; δ

)
=(−1)n+m−2 · CoeffY (Xm−1

�Y n−2)

(
G0(Y,X)

(−→
10; δ

))
.

Combining these equalities and the following equality

CoeffY (Xm−1
�Y n−2)

(
G0(X,Y )(z; γ)

)
= CoeffY (Xm−1

�Y n−2)

(
G0(Y,X)(1 − z; γ′)

)
+ CoeffY (Xm−1

�Y n−2)

(
G0(X,Y )

(−→
10; δ

))
(by (2.8))

= CoeffX(Y m−1
�Xn−2)

(
G0(X,Y )(1 − z; γ′)

)
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+ CoeffY (Xm−1
�Y n−2)

(
G0(X,Y )

(−→
10; δ

))
,

we get the desired equation (1.2). This completes the proof of Theorem 1.1.
Next, we show Theorem 1.2. Let σ ∈ GK . Since fz,γσ (X,Y ) is group-

like in Qℓ⟨⟨X,Y ⟩⟩, the shuffle relation holds for {Coeffw(fz,γσ (X,Y ))}w∈M.
Using (2.18), (2.19), (2.20), (2.21), (3.1) and (3.2), we obtain the following
equalities by making the same computations as above:

m−1∑
j=0

(ρz,γ(σ))j

j!
Liℓ1,...,1︸︷︷︸
n−2 times

,m−j(z; γ, σ)

= (−1)n+m−2 · CoeffY (Xm−1
�Y n−2)

(
fz,γσ (X,Y )

)
,

n−2∑
j=0

(ρ1−z,γ′(σ))j

j!
Liℓ1,...,1︸︷︷︸
m−2 times

,n−j(1 − z; γ′, σ)

= (−1)n+m−3 · CoeffX(Y m−1
�Xn−2)

(
f1−z,γ′

σ (X,Y )
)
,

ζℓ
1,...,1︸︷︷︸

n−2 times

,m(σ) = (−1)n+m−2 · CoeffY (Xm−1
�Y n−2)

(
f
−→
10,δ
σ (X,Y ))

)
.

Combining these equalities and the following equality

CoeffY (Xm−1
�Y n−2)

(
fz,γσ (X,Y )

)
= CoeffY (Xm−1

�Y n−2)

(
f1−z,γ′

σ (Y,X)
)

+ CoeffY (Xm−1
�Y n−2)

(
f
−→
10,δ
σ (X,Y )

)
(by (2.16))

= CoeffX(Y m−1
�Xn−2)

(
f1−z,γ′

σ (X,Y )
)

+ CoeffY (Xm−1
�Y n−2)

(
f
−→
10,δ
σ (X,Y )

)
,

we get the equation (1.3). This completes the proof of Theorem 1.2. □
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