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A COMBINATORIAL INTEGRATION ON THE CANTOR

DUST

Takashi MARUYAMA and Tatsuki SETO

Abstract. In this paper, we generalize the Cantor function to 2-dimensional
cubes and construct a cyclic 2-cocycle on the Cantor dust. This co-
cycle is non-trivial on the pullback of the smooth functions on the 2-
dimensional torus with the generalized Cantor function while it vanishes
on the Lipschitz functions on the Cantor dust. The cocycle is calculated
through the integration of 2-forms on the torus by using a combinatorial
Fredholm module.

Introduction

Cyclic cohomology for algebras [2] is a fundamental tool to study non-
commutative geometry. One of its application is the study of fractal sets
to which powerful tools such as de Rham homology (on smooth manifolds)
cannot be applied. K-homology, one of other homotopy invariant theories,
of fractal sets is also studied extensively. For some class of fractal sets such
as the Cantor set and the Cantor dust, the K0 homology groups are isomor-

phic to
∞∏

Z, which is known as the Baer-Specker group [1]. One feature of

the Baer-Specker group is that the group does not admit basis. This feature
makes the study of K0 groups for such fractal sets somewhat intractable be-
cause local topological features of the spaces cannot induce local algebraic
structures. Cyclic cohomology on the one hand is expected to be favor-
able in these cases because it can be characterized as a “linearization” of
K-homology through the Chern character.

There is a study [4] by H. Moriyoshi and T. Natsume which presented
a variant of the Riemann-Stieltjes integration on the middle third Cantor

set. Let CS =
∞⋂
n=0

In be the middle third Cantor set, where I0 = [0, 1],

I1 =

[
0,

1

3

]
, I2 =

[
0,

1

32

]
∪
[
2

32
,
3

32

]
∪
[
6

32
,
7

32

]
∪
[
8

32
, 1

]
, . . . . We also denote

by (Hn, Fn) the Fredholm module on In which is defined by the direct sum of
Connes’ Fredholm module on intervals. In [4], a new class of algebra is intro-
duced: an algebra P = c∗BV (S1) defined by the pull-back of the bounded
variation class on a unit circle BV (S1) with the canonical Cantor function c.
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Then they define a functional ψ(f, g) = lim
n→∞

ψn(f, g) = lim
n→∞

Tr(ϵf [Fn, g]Fn)

on P. The existence of the limit is proved by showing that the cocycle is
reduced to the Riemann-Stieltjes integration. A key ingredient for the proof
is the Cantor function (and its intermediate functions that converge into the
Cantor function); the function is used to map the iterated function system
of the Cantor set onto 2n-fold subdivisions of the unit interval on which
the Riemann-Stieltjes integration is defined. Because the Cantor function
remains surjective onto the unit interval when the function is restricted to
the Cantor set, the iterated function system for the Cantor set may be seen
as a variant of subdivisions on I.

In the present paper, by following the idea mentioned above, we construct
a new cyclic 2-cocycle on the Cantor dust CD and show that the cocycle
is not trivial. In order to construct the cocycle, we define a sequence of
functionals ϕn (see Definition 1), that is a generalization of a functional ψn

on CS, by using a combinatorial Fredholm module on squares defined by the
authors [3] and the product of the Cantor function. The function induces
the map c between the Cantor dust and 2-torus T2:

Theorem (see Theorem 3.3). Let C∞(T2) be the smooth functions on the

torus T2. For f = c∗(f̃), g = c∗(g̃), h = c∗(h̃) ∈ c∗C∞(T2), we have

lim
n→∞

ϕn(f, g, h) = 2

∫
T2

f̃dg̃ ∧ dh̃.

Moreover, the limit only depends on f, g, h ∈ c∗C∞(T2). Therefore, the
functional ϕ defined by the limit is a cyclic 2-cocycle on c∗C∞(T2).

We can take the value ϕn(f, g, h) for Lipschitz functions f, g, h ∈ CLip(CD)
by the definition of ϕn. However, we have lim

n→∞
ϕn(f, g, h) = 0 for any

f, g, h ∈ CLip(CD) (see Proposition 3.2). Thus the algebra c∗C∞(T2) is far
different from CLip(CD).

All the main results to be shown also hold for the Sierpinski carpet. T2

can be also replaced with a 2-dimensional sphere. In order to generalize our
main theorem to general dimension, we need a general method to prove the
existence of a cyclic cocycle. We will leave the study for future work.

1. A combinatorial Fredholm module on squares

In this section, we review a combinatorial Fredholm module on squares
constructed by the authors [3]. Let γ ⊂ R2 be a square of dimension 2 and
V = {v0, v1, v2, v3} the set of vertices of γ; see the following figure for the
numbering of the vertices.

Set V0 = {v0, v2} and V1 = {v1, v3}, so we have V = V0 ∪ V1. Set
H+ = ℓ2(V0) = ℓ2(v0)⊕ ℓ2(v2), H− = ℓ2(V1) = ℓ2(v1)⊕ ℓ2(v3)
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Figure 1. Numbering of the vertices

and H = H+ ⊕H−. The vector space H(∼= C4) is a Hilbert space of dimen-
sion 4 with an inner product

⟨f, g⟩ =
3∑

i=0

f(vi)g(vi).

We assume that H is Z2-graded with the grading ϵ = ±1 on H±, respec-
tively. The C∗-algebra C(V ) of continuous functions on V acts on H by
multiplication:

ρ(f) = (f(v0)⊕ f(v2))⊕ (f(v1)⊕ f(v3)).

Set U =
1√
2

[
1 −1
1 1

]
and F =

[
U∗

U

]
=

1√
2


1 1
−1 1

1 −1
1 1

. Then

F is a bounded operator on H and we have Fϵ+ ϵF = O. So (H, F ) is the
Fredholm module on C(V ).

Set I = [0, 1] × [0, 1] and let fs : I → I (s = 1, . . . , N) be similitudes.
Denote by

rs =
∥fs(x)− fs(y)∥Rn

∥x− y∥Rn
(< 1) (x ̸= y)

the similarity ratio of fs. An iterated function system (IFS) (I, S = {1, . . . , N}, {fs}s∈S)
defines the unique non-empty compact setK = K(γn, S = {1, . . . , N}, {fs}s∈S)
called the self-similar set such that K =

⋃N
s=1 fs(K). Denote by dimS(K)

the similarity dimension of K, that is, the number s that satisfies

N∑
s=1

rss = 1.

If an IFS (I, S, {fs}s∈S) satisfies the open set condition, we have dimH(K) =
dimS(K), where we denote by dimH(K) the Hausdorff dimension of K.

Set fs = fs1 ◦ · · · ◦ fsj for s = (s1, . . . , sj) ∈ S∞ =
⋃∞

j=0 S
×j and f∅ = id.

For the simplicity, we will denote by i the vertex fs(vi) of a square fs(I).
We also denote by Vs the vertices of a square fs(I). Denote by es the

length of edge of fs(I), which equals
∏j

k=1 rsk . As introduced above, we set
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the Hilbert space Hs = ℓ2(Vs) on fs(I) of the length es, which splits the
positive part H+

s and the negative part H−
s . Taking direct sum on squares,

we define

Hn =

n⊕
j=1

⊕
s∈S×j

Hs and Fn =

n⊕
j=1

⊕
s∈S×j

F.

The C∗-algebra C(K) acts on Hn by multiplication:

ρn(f) =

n⊕
j=1

⊕
s∈S×j

ρ(f).

2. Review on the Cantor dust

We introduce an IFS of the Cantor dust and 2-dimensional analogue of
the Cantor function defined on a 1-dimensional interval. The IFS of the
Cantor dust is our main interest in the paper. The analogue of the Cantor
function plays a crucial role in construction of cyclic cocycle in Section 3.
Let I = [0, 1] × [0, 1]. The IFS of the Cantor dust is defined as a set of
functions {fs : I → R2}s=1,2,3,4 described as follows:

f1(x) =
1

3
x, f2(x) =

1

3
x+

1

3

[
0
2

]
, f3(x) =

1

3
x+

1

3

[
2
0

]
, f4(x) =

1

3
x+

1

3

[
2
2

]
.

This IFS induces a unique non-empty compact set CD in I such that CD =
4⋃

i=1

fs(CD) holds; CD is called the Cantor dust.

Let c0 = x : [0, 1] → R. We define in an inductive manner a sequence
of R-valued continuous functions defined on the unit interval {cn}n∈N as
follows:

cn+1(x) =


1
2cn(3x), 0 ≤ x ≤ 1

3 ,
1
2 ,

1
3 ≤ x ≤ 2

3 ,
1
2cn(3x− 2) + 1

2 ,
2
3 ≤ x ≤ 1.

The limit of {cn}n∈N exists and is called the Cantor function. We then
generalize the construction to 2-dimensional case by taking the pair of the
two identical sequences:

cn = (cn, cn) : I → R2.

The limit of the sequence {cn} also exists and equals the product of the Can-
tor functions. We call the limit lim

n→∞
cn 2-dimensional Cantor dust function.

We note that the construction of the 2-dimensional Cantor dust function
can be generalized to higher dimensional case.
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3. A combinatorial integration

3.1. Approximating combinatorial integration. We apply the construc-
tion of the combinatorial Fredholm module to the IFS of the Cantor dust
(I, S = {1, 2, 3, 4}, {fs}s∈S) defined in Section 2. In order to construct our
cyclic cocycle, we need the multiplication operator ρ(f) and the commu-
tator [F, f ] on Hs for f ∈ C(CD). Since ρ(f) is even, we can express

ρ(f) =

[
f+

f−

]
. We can write down the commutator [F, f ] as follows:

[F, f ] =
1√
2


− (f(0)− f(1)) − (f(0)− f(3))
f(2)− f(1) − (f(2)− f(3))

f(0)− f(1) − (f(2)− f(1))
f(0)− f(3) f(2)− f(3)

 .
Here, for the simplicity, we denote i = vi the vertices on the squares Vs.
We denote the upper right 2× 2 block of [F, f ] by d−f and the lower left by
d+f .

We now construct a sequence of operators on
⊕

s∈S×n

Hs that will give rise

to a cyclic cocycle. For f, g, h ∈ C(K), we have

f [F, g][F, h] =

[
f+

f−

] [
d−g

d+g

] [
d−h

d+h

]
=

[
f+d−g

f−d+g

] [
d−h

d+h

]
=

[
f+d−gd+h

f−d+gd−h

]
.

By setting fi,j = f(j) − f(i), the two diagonal 2 × 2 blocks of f [F, g][F, h]
can be expressed as

f+d−gd+h =
1

2

[
f(0)

f(2)

] [
g0,1 g0,3
−g2,1 g2,3

] [
−h0,1 h2,1
−h0,3 −h2,3

]
=

1

2

[
f(0)g0,1 f(0)g0,3
−f(2)g2,1 f(2)g2,3

] [
−h0,1 h2,1
−h0,3 −h2,3

]
=

1

2

[
−f(0)(g0,1h0,1 + g0,3h0,3) f(0)(g0,1h2,1 − g0,3h2,3)
f(2)(g2,1h0,1 − g2,3h0,3) −f(2)(g2,1h2,1 + g2,3h2,3)

]
=

1

2

[
f(0)(g0,1h1,0 + g0,3h3,0) −f(0)(g0,1h1,2 − g0,3h3,2)
f(2)(g2,3h3,0 − g2,1h1,0) f(2)(g2,1h1,2 + g2,3h3,2)

]
and

f−d+gd−h =
1

2

[
f(1)

f(3)

] [
−g0,1 g2,1
−g0,3 −g2,3

] [
h0,1 h0,3
−h2,1 h2,3

]
=

1

2

[
−f(1)g0,1 f(1)g2,1
−f(3)g0,3 −f(3)g2,3

] [
h0,1 h0,3
−h2,1 h2,3

]
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=
1

2

[
f(1)(−g0,1h0,1 − g2,1h2,1) f(1)(−g0,1h0,3 + g2,1h2,3)
f(3)(−g0,3h0,1 + g2,3h2,1) f(3)(−g0,3h0,3 − g2,3h2,3)

]
=

1

2

[
f(1)(g1,0h0,1 + g1,2h2,1) f(1)(g1,0h0,3 − g1,2h2,3)
−f(3)(g3,2h2,1 − g3,0h0,1) f(3)(g3,0h0,3 + g3,2h2,3)

]
.

Here, we define

M = − 2

(es)2
[F, x][F, y] =


1

−1
1

−1

 .
M can be expressed as N ⊕ N by denoting the off-diagonal 2 × 2 matri-
ces by N . The following lemma indicates that the trace of an operator
f [F, g][F, h]M gives rise to a discretized version of integration on a square.

Lemma 3.1. For any n ∈ N and s ∈ S×n, we have

2 · Tr(f [F, g][F, h]M) =f(0)(g0,1h1,2 − g0,3h3,2) + f(2)(g2,3h3,0 − g2,1h1,0)

− f(1)(g1,0h0,3 − g1,2h2,3)− f(3)(g3,2h2,1 − g3,0h0,1).

Proof. The proof follows straightforward calculation. By multiplying M
with f [F, g][F, h], we have

f [F, g][F, h]M =

[
f+d−gd+h

−f−d+gd−h

] [
N

N

]
=

[
f+d−gd+hN

f−d+gd−h N

]
.

Then we have

f+d−gd+hN =
1

2

[
f(0)(g0,1h1,0 + g0,3h3,0) −f(0)(g0,1h1,2 − g0,3h3,2)
f(2)(g2,3h3,0 − g2,1h1,0) f(2)(g2,1h1,2 + g2,3h3,2)

] [
1

−1

]
=

1

2

[
f(0)(g0,1h1,2 − g0,3h3,2) f(0)(g0,1h1,0 + g0,3h3,0)
−f(2)(g2,1h1,2 + g2,3h3,2) f(2)(g2,3h3,0 − g2,1h1,0)

]
and

f−d+gd−h N =
1

2

[
f(1)(g1,0h0,1 + g1,2h2,1) f(1)(g1,0h0,3 − g1,2h2,3)
−f(3)(g3,2h2,1 − g3,0h0,1) f(3)(g3,0h0,3 + g3,2h2,3)

] [
1

−1

]
=

1

2

[
−f(1)(g1,0h0,3 − g1,2h2,3) f(1)(g1,0h0,1 + g1,2h2,1)
−f(3)(g3,0h0,3 + g3,2h2,3) −f(3)(g3,2h2,1 − g3,0h0,1)

]
.

Therefore, the trace of f [F, g][F, h]M is given by the lemma. □
When g = x and h = y are the coordinate functions of R2, respectively,

each term of the right hand side of Lemma 3.1 is nothing but the summand
of the Riemannian sum of f . So the sum of the trace in the left hand side
can be regard as an analogue of the Riemannian sum on the Cantor dust.
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Definition 1. For any n ∈ N and f ⊗ g ⊗ h ∈ C(CD)⊗ C(CD)⊗ C(CD),
define a map

ϕn(f, g, h) =
∑

s∈S×n

Tr(f [F, g][F, h]M).

We call the sequence of the maps {ϕn} the approximating combinatorial
integration.

Proposition 3.2. For any functions f ∈ C(CD) and g, h ∈ CLip(CD), the
sequence {ϕn(f, g, h)} converges to 0.

Proof. By Lemma 3.1, we have

∣∣ϕn(f, g, h)∣∣ ≤ ∑
s∈S×n

(∣∣f(0)(g0,1h1,2 − g0,3h3,2)
∣∣+ ∣∣f(2)(g2,3h3,0 − g2,1h1,0)

∣∣
+
∣∣f(1)(g1,0h0,3 − g1,2h2,3)

∣∣+ ∣∣f(3)(g3,2h2,1 − g3,0h0,1)
∣∣)

≤ 2Lip(g)Lip(h)
1

9n

∑
s∈S×n

(|f(0)|+ |f(1)|+ |f(2)|+ |f(3)|)

≤ 8∥f∥Lip(g)Lip(h)4
n

9n

for any n ∈ N, f ∈ C(CD), and g, h ∈ CLip(CD). Here, ∥f∥ means the
supnorm of f and Lip(g) means the Lipschitz constant of g ∈ CLip(CD).
Therefore, we have ϕn(f, g, h) → 0 (n→ ∞). □

By Proposition 3.2, our approximating combinatorial integration does not
restore rich structure on the Lipschitz functions. So we need anothor class
of functions on the Cantor dust.

3.2. Non-triviality of a combinatorial integration. Let CDn =
⋃
s∈S×n fs(I)

be a space obtained by applying the n-times composition of
4⋃

s=1

fs to I. CDn

has 4n distinct squares {γni }1≤i≤4n with length of edge
1

3n
. For every n ∈ N,

the restriction of cn to CDn is still surjective. The image of {γni }1≤i≤4n by

cn is then a subdivision of I each of whose cell is a square with length
1

2n
.

Therefore, the maximum length across all the cells tends to 0 as n→ ∞.
We introduce an equivalence relation ∼ on ∂I: (a, 0) ∼ (a, 1) and (0, b) ∼

(1, b). The quotient space turns out to be the torus T2 = I/ ∼. The map cn
induces a surjective map CDn → T2. We denote the map by the same letter
cn. Similarly, we can also construct a continuous function c : CD → T2 by
the restriction of the 2-dimensional Cantor dust function to CD.
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The following theorem shows that the limit of approximating combina-
torial integration with nontrivial value exists for some class of function on
CD.

Theorem 3.3. Let C∞(T2) be the smooth functions on the torus T2. For

f = c∗(f̃), g = c∗(g̃), h = c∗(h̃) ∈ c∗C∞(T2), we have

lim
n→∞

ϕn(f, g, h) = 2

∫
T2

f̃dg̃ ∧ dh̃.

Moreover, the limit only depends on f, g, h ∈ c∗C∞(T2). Therefore, the
functional ϕ(f, g, h) = lim

n→∞
ϕn(f, g, h) is a cyclic 2-cocycle on c∗C∞(T2).

Proof. Let⊞n be the set of equilateral cells that consist of 2n-fold subdivision
of I. By the first-order approximation, for g̃, h̃ ∈ C∞(T2) we have

g̃0,1 = g̃(1)− g̃(0) = 2−ng̃x(0) + o(2−n) (n→ ∞),

h̃1,2 = h̃(2)− h̃(1) = 2−nh̃y(0) + o(2−n) (n→ ∞),

g̃0,3 = g̃(3)− g̃(0) = 2−ng̃y(0) + o(2−n) (n→ ∞),

h̃3,2 = h̃(2)− h̃(3) = 2−nh̃x(0) + o(2−n) (n→ ∞).

Apply the above equations to f̃(0)(g̃0,1h̃1,2− g̃0,3h̃3,2) in Lemma 3.1, and we
get

f̃(0)(g̃0,1h̃1,2−g̃0,3h̃3,2) = 4−nf̃(0)(g̃x(0)h̃y(0)−g̃y(0)h̃x(0))+o(4−n) (n→ ∞).

Therefore, we have

lim
n→∞

∑
□∈⊞n

f̃(0)(g̃0,1h̃1,2 − g̃0,3h̃3,2)

= lim
n→∞

4−n
∑
□∈⊞n

f̃(0)(g̃x(0)h̃y(0)− g̃y(0)h̃x(0)) + 4no(4−n)

=

∫
T2

f̃(g̃xh̃y − g̃yh̃x)dx ∧ dy

=

∫
T2

f̃dg̃ ∧ dh̃.

Similary, we obtain

lim
n→∞

∑
□∈⊞n

f̃(2)(g̃2,3h̃3,0 − g̃2,1h̃1,0) = − lim
n→∞

∑
□∈⊞n

f̃(1)(g̃1,0h̃0,3 − g̃1,2h̃2,3)

= − lim
n→∞

∑
□∈⊞n

f̃(3)(g̃3,2h̃2,1 − g̃3,0h̃0,1) =

∫
T2

f̃dg̃ ∧ dh̃.
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Hence, by Lemma 3.1, we get

lim
n→∞

ϕn(f, g, h) =
1

2
lim
n→∞

∑
s∈S×n

Tr
(
f̃ ◦ c

[
F, g̃ ◦ c

] [
F, h̃ ◦ c

]
M

)
=

1

2
lim
n→∞

∑
□∈⊞n

Tr
(
f̃ [F, g̃][F, h̃]M

)
=

1

2
lim
n→∞

∑
□∈⊞n

(
f̃(0)(g̃0,1h̃1,2 − g̃0,3h̃3,2)

+ f̃(2)(g̃2,3h̃3,0 − g̃2,1h̃1,0)

− f̃(1)(g̃1,0h̃0,3 − g̃1,2h̃2,3)

−f̃(3)(g̃3,2h̃2,1 − g̃3,0h̃0,1)
)

= 2

∫
T2

f̃dg̃ ∧ dh̃.

Assume that f = c∗(f̃) = c∗(f̃ ′), g = c∗(g̃) = c∗(g̃′) and h = c∗(h̃) =

c∗(h̃′). In general, if c∗(p̃) = c∗(q̃) for p̃, q̃ ∈ C(T2), then c∗n(p̃) = c∗n(q̃) on
the boundary of CDn for any n ∈ N. Therefore, for every n ∈ N, we have∑
s∈S×n

Tr
(
f̃ ◦ c

[
F, g̃ ◦ c

] [
F, h̃ ◦ c

]
M

)
=

∑
s∈S×n

Tr
(
f̃ ′ ◦ c

[
F, g̃′ ◦ c

] [
F, h̃′ ◦ c

]
M

)
Thus as n→ ∞, the value ϕ(f, g, h) depends only on f, g, h ∈ c∗C∞(T2). □

Corollary 3.4. Given [p] ∈ K0(c
∗(C∞(T2))) written as p = e ◦ c : CD →

MN (C), the Connes’ pairing of the cyclic 2-cocycle [ϕ] with [p] is expressed
as follows:

⟨[ϕ], [p]⟩ = 1

πi

∫
T2

Tr(e(de)2).
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