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ON G(A)Q OF RINGS OF FINITE REPRESENTATION

TYPE

Tony J. Puthenpurakal

Abstract. Let (A,m) be an excellent Henselian Cohen-Macaulay local
ring of finite representation type. If the AR-quiver of A is known then
by a result of Auslander and Reiten one can explicity compute G(A)
the Grothendieck group of finitely generated A-modules. If the AR-
quiver is not known then in this paper we give estimates of G(A)Q =
G(A) ⊗Z Q when k = A/m is perfect. As an application we prove that
if A is an excellent equi-characteristic Henselian Gornstein local ring of
positive even dimension with charA/m ̸= 2, 3, 5 (and A/m perfect) then
G(A)Q ∼= Q.

1. introduction

Let (A,m) be a Henselian Noetherian local ring. Then it is well-known
that the category of finitely generated A-modules satisfy the Krull-Schmidt
property, i.e., every finitely generated A-module is uniquely a direct sum of
indecomposable A-modules (with local endomorphism rings). Now assume
that A is Cohen-Macaulay. Then we say A is of finite (Cohen-Macaulay)
representation type if A has only finitely many indecomposable maximal
Cohen-Macaulay A-modules upto isomorphism. To study (not necessarily
commutative) Artin algebra’s Auslander and Reiten introduced the the-
ory of almost-split sequences. These are now called AR-sequences. Later
Auslander and Reiten extended the theory of AR-sequences to the case of
commutative Henselian isolated singularities. Good references for this topic
are [10] and [7]. Let CM(A) denote the full subcategory of maximal Cohen-
Macaulay (= MCM) A-modules.

Remark 1.1. Note we can define Grothendieck group of any extension
closed subcategory S of mod(A) the category of all finitely generated A-
modules, we denote it by G(S). By [10, 13.2] the natural map G(CM(A)) →
G(mod(A)) is an isomorphism. Throughout this section we work with G(CM(A))
and by abuse of notation denote it by G(A).
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Let A be a Henselian Cohen-Macaulay local of finite representation type.
Set IA to be the set of all indecomposable MCM A-modules upto isomor-
phism. If W is a subset of IA then let add(W ) be the set consisting of
finite direct sums of elements of W . Also let AR(A) denote the set of all
AR-sequences in A upto isomorphism. Let F (A) be the free abelian group
generated on add(IA). Let AR0(A) be the subgroup of F (A) generated by

{X1 −X2 +X3 | there is a sequence 0 → X1 → X2 → X3 → 0 in AR(A)}.

By a result due to Auslander-Reiten [2, 2.2] (also see [10, 13.7]) we have
G(A) = F (A)/AR0(A).

Computing AR-sequences is usually a tedious task and usually we assume
A is equi-characteristic, complete with algebraically closed residue field. The
main objective of this paper is to give estimates of rank of G(A) when the
residue field is perfect but not necessarily algebraically closed.

In our introduction let us assume (A,m) is an excellent Henselian
Cohen-Macaulay local of finite representation type and containing a field
isomorphic to k = A/m which we also denote by k. (In our proofs we will
deal with a more general case). We assume k is perfect. Let k be the
algebraic closure of k. Let

Ck = {E | E is a finite extension of k, and E ⊆ k}.

For each E in Ck set AE = A⊗k E. We have an obvious directed system of
rings {AE}E∈Ck . Set T = limE∈Ck A

E = A ⊗k k. Then AE , T are excellent

Henselian Cohen-Macaulay local of finite representation type. So T̂ the
completion of T is Cohen-Macaulay of finite representation type. It is not

difficult to show G(T ) ∼= G(T̂ ). For k ⊆ F ⊆ E, where E,F ∈ Ck, we
have an obvious map ηEF : G(AF ) → G(AE) given by M → M ⊗AF AE . It
is clear that we have a direct system of abelian groups {G(AE)}E∈Ck . So
we have an abelian group limE∈Ck G(AE) and natural maps ηE : G(AE) →
limE∈Ck G(AE). Let E ∈ Ck. As T is a flat AE-algebra we have an obvious
map ξE : G(AE) → G(T ) given by M → M ⊗AE T . The maps ξE are
compatible with ηEF whenever k ⊆ F ⊆ E. So we have a natural map

ξ : lim
E∈Ck

G(AE) → G(T ).

Our main result is

Theorem 1.2. ξ is an isomorphism.

Theorem 1.2 does not give us any estimates on G(A). If H is an abelian
group then we set HQ = H ⊗Z Q and if f : H → L is a homomorphism of
abelian groups then we set fQ to be map HQ → LQ induced by f .
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It is well-known that direct limits commutes with tensor products, see [8,
Theorem A1, p. 270]. So we have an isomorphism

ξQ : lim
E∈Ck

G(AE)Q → G(T )Q.

Our next result is essentially an observation.

Proposition 1.3. Let F ∈ Ck be any. Then the map

(ηF )Q : G(AF )Q → lim
E∈Ck

G(AE)Q

is an injection. In particular we have an injection from G(A)Q to G(T )Q.

Complete equi-characteristic Gorenstein local rings of finite representa-
tion type (with charA/m ̸= 2, 3, 5 and A/m algebraically closed) are pre-
cisely the ADE-singularities, see [7, 9.8]. Furthermore in this case their
AR-quiver is known and so their Grothendieck groups have been computed,
see [10, 13.10]. As an easy consequence to our results we show that

Corollary 1.4. Let (A,m) be an excellent equi-characteristic Henselian
Gorenstein local ring of finite representation type. Assume k = A/m is
perfect char k ̸= 2, 3, 5. Then

(1) If dimA is positive and even then G(A)Q ∼= Q.
(2) If dimA is odd then dimQG(A)Q ≤ 3.

In fact in (1) we have G(A)Q ∼= G(T̂ )Q. In section five we give an example

which shows that in (2); G(A)Q can be a proper subspace of G(T̂ )Q. The
same example shows that we cannot in general compare torsion of G(A)

with torsion of G(T̂ ).

Remark 1.5. Let (R, n) be an equicharacteristic excellent Cohen-Macaulay
local ring, not necessarily Henselian. Suppose R has finite representation
type (i.e., R has only finitely many indecomposable MCM modules upto iso-
morphism). Then R is an isolated singularity, [4, Corollary 2]. If R is also
a homomorphic image of an excellent regular local ring then by [5, Theorem

1.5] the natural map G(R) → G(R̂) is injective. By [7, Corollary 10.11] we

get that R̂ has finite representation type and obviously it is Henselian. So
our results are applicable.

For example if R is Gorenstein and dimR is positive and even then by

Corollary 1.4 it follows that G(R̂)Q ∼= Q. Also as R is a domain we have an
obvious map G(R) → Z which is surjective. It follows that G(R)Q ∼= Q

We now describe in brief the contents of this paper. In section two we
discuss some preliminaries on AR-sequences that we need. In section three
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we describe our construction. In section four we prove Theorem 1.2, Propo-
sition 1.3 and Corollary 1.4. Finally in section five we discuss an example
which shows that torsion does not behave well with our construction.

Convention: Throughout this paper all rings are commutative Noetherian
and all modules (unless stated otherwise) are finitely generated.

2. Some preliminaries on Auslander-Reiten sequences

In this section we discuss some preliminaries on Auslander-Reiten (AR)
sequences that we need. The reference for this section is [10, Chapter 2].
Let (A,m) be a Henselian Cohen-Macaulay local ring.

2.1. Let M ∈ CM(A) be indecomposable. We define a set of short exact
sequences in CM(A) as follows:

S(M) = {s : 0 → Ns → Es → M → 0 | Ns is indecomposable and s is non-split}.

If M is non-free then S(M) is non-empty, [10, 2.2]. Define a partial order
> on S(M) as follows. Let s, t ∈ S(M). Then we say s > t if there is
f ∈ HomA(Ns, Nt) such that Ext1A(M,f)(s) = t. This is equivalent to the
existence of a commutative diagram:

0 // Ns
//

f
��

Es
//

��

M

j
��

/ / 0

0 // Nt
// Et

// M // 0

where j is the identity map. We write s ∼ t if f is an isomorphism.

2.2. we have the following properties of > on S(M)

(1) If s > t and t > l then s > l; (obvious).
(2) If s > t and t > s then s ∼ t; see [10, 2.4].
(3) If s, t ∈ S(M) then there exists u ∈ S(M) such that s > u and t > u;

see [10, 2.6].

By 2.2 it follows that if there is a minimal element in S(M) then it is a
minimal element in S(M) (upto isomorphism).

Definition 2.3. An AR-sequence ending at M is the unique minimal ele-
ment of S(M) (if it exists).

For a more concrete description of AR-sequences see [10, 2.9].

2.4. The following two results are basic. The first is [10, 3.4].

Theorem 2.5. Let (A,m) be a Henselian Cohen-Macaulay local ring. Let
M ∈ CM(A) be non-free and indecomposable. The following two conditions
are equivalent:
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(i) M is locally free on the punctured spectrum of A.
(ii) There exists an AR-sequence ending at M .

The second result is [1] (when A is complete), [10, 4.22] (when A has a
canonical module) and [4, Corollary 2] (in general).

Theorem 2.6. Let (A,m) be a Cohen-Macaulay local ring. If A is of finite
representation type then A is an isolated singularity.

3. A construction

In this section we describe a construction that is essential to us. This was
constructed in [9].

3.1. Let (A,m) be a Henselian local ring with perfect residue field k. Let k
be the algebraic closure of k. Let

Ck = {E | E is a finite extension of k, and E ⊆ k}.

Order Ck with the inclusion as partial order. Note that Ck is a directed set,
for if E,F ∈ Ck then the composite field EF ∈ Ck and clearly EF ⊇ E and
EF ⊇ F . We prove

Theorem 3.2. [ [9, 4.2]](with hypotheses as in 3.1) There exists a direct
system of local rings {(AE ,mE) | E ∈ Ck} such that

(1) AE is a finite flat extension with mAE = mE. Furthermore AE/mE ∼= E
over k.

(2) AE is Henselian.
(3) For any F,E ∈ Ck with F ⊆ E the maps in the direct system θEF : AF →

AE is flat and local with mFAE = mE.

The ring T = limE∈Ck A
E will have nice properties.

3.3. Construction-C.1: For every E ∈ Ck we construct a ring AE as
follows. As k is perfect, E is a separable extension of k. So by primitive
element theorem E = k(αE) for some αE ∈ E. Let

pE(X) = pE,αE
(X) = Irr(αE , k),

be the unique monic minimal polynomial of αE over k. Let fE(X) =

fE,αE
(X) be a monic polynomial in A[X] such that fE(X) = pE(X). Set

AE =
A[X]

(fE(X))
.

Our construction of course depends on choice of αE and the choice of fE(X).
We will simply fix one choice of αE and fE(X).
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Remark 3.4. If A contains a field isomorphic to k then we can choose
AE = A ⊗k E. However note that in general, even if A contains a field, it
need not contain a field isomorphic to k.

3.5. Construction-C.2: Let k ⊆ F ⊆ E be a tower of fields. In [9, 4.5] we
constructed a ring homomorphism θEF : AF → AE such that the following
holds:

Proposition 3.6. [9, 4.6] (with hypotheses as in 3.5)

(i) θEF is a homomorphism of A-algebra’s.
(ii) θEF is a local map and mFAE = mE.
(iii) AE is a flat AF -module (via θEF ).
(iv) If k ⊆ F ⊆ E ⊆ L is a tower of fields then we have a commutative

diagram

AF

θEF ��

θLF

!!C
CC

CC
CC

C

AE

θLE

// AL

3.7. Construction-C.3: By 3.6 we have a directed system of rings
{AE}E∈Ck . Set

T = lim
E∈Ck

AE ,

and let θE : E → T be the maps such that for any F ⊆ E in Ck we have
θE ◦ θEF = θF . For F ∈ Ck set

CF = {E | E is a finite extension of F}.
Then clearly CF is cofinal in Ck. Thus we have

T = lim
E∈CF

AE .

We have the following properties of T .

Theorem 3.8. [See [9, 4.8]] (with hypotheses as in 3.7)

(i) T is a Noetherian ring.
(ii) T is a flat A-module.
(iii) T is a flat AF -module for any F ∈ Ck.
(iv) The map θE is injective for any E ∈ Ck.
(v) By (iv) we may write T =

⋃
E∈Ck A

E. Set mT =
⋃

E∈Ck m
E. Then mT

is the unique maximal ideal of T .
(vi) mT = mT .
(vii) T/mT ∼= k.
(viii) T is a Henselian ring.



ON G(A)Q OF RINGS OF FINITE REPRESENTATION TYPE 109

The following result is definitely known to experts. We give a proof for
the convenience of the reader. For the definition of etale map see [7, 10.2].

Lemma 3.9. If A is excellent then

(1) AE is excellent for all E ∈ Ck.
(2) In the directed system {AE}E∈Ck each map AF → AE (when F ⊆ E) is

etale.
(3) T = limE∈Ck A

E is excellent.

Proof. (1) We have AE = A[X]/(fE(X)). So AE is excellent.
(2) This follows from 3.2.
(3) This follows from [3, 5.3]. □

The significance of T is that certain crucial properties descend to a finite
extension E of k, see [9, 4.9].

Lemma 3.10. (with hypotheses as above)

(1) Let M be a T -module. Then there exists E ∈ Ck and an AE-module N
such that M = N ⊗AE T .

(2) Let N1, N2 be AE-modules for some E ∈ Ck. Suppose there is a T -linear
map f : N1 ⊗AE T → N2 ⊗AE T . Then there exists K ∈ Ck with K ⊇ E
and an AK-linear map g : N1⊗AEAK → N2⊗AEAK such that f = g⊗T .
Furthermore if f is an isomorphism then so is g.

We now relate finite representation property of our construction.

Lemma 3.11. Assume A is Cohen-Macaulay, excellent and of finite repre-
sentation type. Then

(1) AE is Cohen-Macaulay of finite representation type for each E ∈ Ck.
(2) T = limE∈Ck A

E is Cohen-Macaulay of finite representation type.

(3) T̂ , the mT completion of T , is Cohen-Macaulay of finite representation
type.

(4) If A is Gorenstein then AE is Gorenstein for each E ∈ Ck. Furthermore

T , T̂ are Gorenstein.

Proof. We first note that as mAE = mE . So AE is Cohen-Macaulay, see
[8, Corollary, p. 181]. Furthermore if A is Gorenstein then so is AE , see [8,
23.4]. Similarly as mT = mT we get T is Cohen-Macaulay (and is Gorenstein

if A is). So T̂ is also Cohen-Macaulay (and is Gorenstein if T is).
For (1), (2) recall that in the directed system {AE}E∈Ck each map AF →

AE (when F ⊆ E) is etale (3.9(2). The result follows from [7, 10.8].
For (3) use 3.9 and [7, 10.10]. □

The following results on comparing AR-sequences is crucial for us.
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Lemma 3.12. Let the setup be as in Lemma 3.11. Let MT be a non-free
indecomposable MCM T -module and let sT : 0 → NT → LT → MT → 0
be an AR-sequence ending at MT . By 3.10 there exists E ∈ Ck and MCM
AE-modules ME , NE , LE such that

(1) ME ⊗AE T = MT , NE ⊗AE T = NT and LE ⊗AE T = LT .
(2) A short exact sequence, sE : 0 → NE → LE → ME → 0, of AE-modules

such that sE ⊗AE T = sT .

Then

(a) sE is the AR-sequence in AE ending at ME.
(b) If E ⊆ F then sF = sE ⊗AE AF is the AR-sequence in AF ending at

MF = ME ⊗AE AF .

Proof. (a) As NT ,MT are indecomposable we get NE ,ME are indecom-
posable. Let β be an AR-sequence in AE ending at ME . Then sE > β.
So sT = sE ⊗ T > β ⊗ T . But sT is the AR-sequence ending at MT . So
β⊗ T > sT . Therefore sE ⊗ T ∼ β⊗ T (see 2.2(2)). As T is a faithfully flat
AE-algebra we get that sE ∼ β. The result follows.

(b) Note

sF ⊗AF T = (sE ⊗AE AF )⊗AF T ∼= sT .

The result follows from (a). □

4. Proof of our main result 1.2

In this section we prove our main result. We require several preparatory
results to prove it. Throughout this section (A,m) is an excellent Cohen-
Macaulay local ring of finite representation type with k = A/m perfect. Fix
an algebraic closure k of k. Let

Ck = {E | E is a finite extension of k, and E ⊆ k}.
For E ∈ Ck let AE be as in 3.5. If k ⊆ F ⊆ E let θEF : AF → AE be as in 3.5.
As discussed above {AE | E ∈ Ck} forms a direct system of rings. As before
set T = limE∈Ck A

E . By 3.11 we get that AE has finite representation type

for each E ∈ Ck. Furthermore T and T̂ also have finite representation type.

4.1. Construction-K.1: Let k ⊆ F ⊆ E. As AE is a flat AF -algebra
we have an obvious map ηEF : G(AF ) → G(AE) given by M → M ⊗AF AE .
After tensoring with Q denote this map by (ηEF )Q. It is clear that we have a
direct system of abelian groups {G(AE)}E∈Ck . So we have an abelian group
limE∈Ck G(AE) and natural maps ηE : G(AE) → limE∈Ck G(AE).

Next we show

Lemma 4.2. Let k ⊆ F ⊆ E. Then the map (ηEF )Q : G(AF )Q → G(AE)Q
is an inclusion of Q-vector spaces.
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Proof. We note that via θEF : AF → AE we get that AE is a finite free AF -
module, say of rank r. It follows that any MCM AE-module is also an MCM
AF -module. So we have the obvious map ϕ : G(AE) → G(AF ).

Set δ = (ϕ ⊗ Q) ◦ (ηEF )Q. Let M be a MCM AF -module. Then note
that δ([M ]) = r[M ]. So δ is an isomorphism. In particular (ηEF )Q is an
inclusion. □

As an immediate consequence we get Proposition 1.3, which we restate
for the convenience of the reader.

Corollary 4.3. Let F ∈ Ck be any. The map

(ηF )Q : G(AF )Q → lim
E∈Ck

G(AE)Q

is injective.

Proof. See Chapter III, Exercise 19 in [6]. □
4.4. Construction-K.2: Let E ∈ Ck. As T is a flat AF -algebra we have
an obvious map ξE : G(AE) → G(T ) given by M → M ⊗AE T . The maps
ξE are compatiable with ηEF whenever k ⊆ F ⊆ E. So we have a natural
map

ξ : lim
E∈Ck

G(AE) → G(T ).

We restate Theorem 1.2 for the convenience of the reader.

Theorem 4.5. ξ is an isomorphism.

The proof of Theorem 4.5 requires a few preliminaries.

4.6. Construction-K.3: We know that T is of finite representation type.
Let IT = {M1, . . . ,Ms}. By 3.10 we can choose F ∈ Ck and indecomposable
MCM AF -modules MF

1 , . . . ,MF
s with Mi = MF

i ⊗AF T for i = 1, . . . , s. Set

I ′
AF = {MF

1 , . . . ,MF
s }.

Let IAF be the set of all indecomposable MCM AF -modules.

Remark 4.7. I ′
AF = IAF

To see this first set V = MF
1 ⊕ · · · ⊕ MF

s . Note that if U ∈ IAF then
U ⊗AF T ∈ addT (V ⊗AF T ). The extension AF → T is flat. By [7, 2.18] we
get U ∈ addAF V . By Krull-Schmidt theorem it follows that U = MF

i for
some i. The result follows.

By 3.12 we may further assume (after possibly taking a finite extension
of F ) that AR(AF )⊗AF T = AR(T ).

Consider the set

CF = {E | E is a finite extension of F, and E ⊆ k}.
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Then CF is co-final in Ck. Also for E ∈ CF we may choose IAE with IAE =
IAF ⊗AF AE , the set of isomorphism classes of indecompsable MCM AE-
modules. Also note ARAE

= ARAF
⊗AF AE , by 3.12 .

We now give

Proof of Theorem 4.5. By a result of Auslander Reiten [2, 2.2] it follows
that the natural maps G(AE) → G(AL) and the map G(AE) → G(T ) are
isomorphisms. So the map

ξ′ : lim
E∈CF

G(AE) → G(T ), is an isomorphism.

As CF is co-final in Ck we get

lim
E∈CF

G(AE) = lim
E∈Ck

G(AE) and ξ′ = ξ.

So ξ is an isomorphism. □
We now give

Proof of 1.4. By 4.2 and 4.5 we have an injection G(A)Q → G(T )Q. Also

G(T ) ∼= G(T̂ ). By [7, 10.17] T̂ is an ADE-singularity. The Grothendieck
groups of ADE-singularities have been computed, see [10, 13.10].

(2) We have

dimQG(A)Q ≤ dimQG(T̂ )Q ≤ 3.

The result follows.
(1) We have

dimQG(A)Q ≤ dimQG(T̂ )Q = 1.

Also as A is an isolated singularity of dimension ≥ 2 we get that A is a
domain. So we have an obvious surjective map rank: G(Q) → Z which maps
M to rank(M). It follows that dimQG(A)Q ≥ 1. The result follows. □

5. An example

We now give an example which proves two things:

(1) If dimA is odd then G(A)Q can be proper subspace of G(T̂ )Q.

(2) In general we cannot compare torsion subgroups of G(A) and G(T̂ )

The example is A = R[[x, y]]/(x2 + y2). Note T̂ = C[[x, y]]/(x2 + y2) is
the A1-singularity. By [10, p. 134] we get that G(A) = Z ⊕ Z/2Z. While

G(T̂ ) = Z2, see [10, 13.10]. This proves both our assertions.
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