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HARMONIC PARTITIONS OF POSITIVE INTEGERS AND
BOSONIC EXTENSION OF EULER’S PENTAGONAL
NUMBER THEOREM

MASAO JINZENJI AND YU TAJIMA

ABSTRACT. In this paper, we first propose a cohomological derivation
of the celebrated Fuler’s Pentagonal Number Theorem. Then we prove
an identity that corresponds to a bosonic extension of the theorem. The
proof corresponds to a cohomological re-derivation of Euler’s another
celebrated identity.

1. INTRODUCTION

First part of this paper is a presentation of a naive cohomological approach
that one of the authors (M. J.) obtained in trying to solve a problem in
the book “Combinatorial Problems and Exercises” by L. Lovasz [3], that
requests readers to prove Euler’s Pentagonal Number Theorem [1]:

0 o0
(B81-1) (314+1)
o0 T = e (5 ),
m=1 =1

Let Sj(n) be set of partitions of positive integer n with [ distinct parts.

Si(n) = {(ni,n2,---,ny) |n €N (i=1,2,--- 1), ng>ng>--->mn; >0,
ny+ng + -+ +n; =n}.

Then the Lh.s. of (1.1) is represented as follows:

(1.2) T[a-g=1+ Z(Z(—nl(sl(n))ﬁ)q".
m=1 n=1 =0

M.J. was very interested in elementary cohomology theory in his gradu-
ate student days, and he was tempted to interpret > ;o (—1)!(S;(n))* as
some Euler number of a complex. Then he defined a real vector space
CS)(n) spanned by elements of S;(n) and tried to define coboundary oper-
ator § : C'Sj(n) — CSi41(n). This trial turned out to be successful. More-
over, adjoint 6* : CSj(n) — CS;_1(n) of the coboundary operator § can
be defined, and Laplacian §6* 4+ §*0 on CSj(n) can also be defined. Then
we can define harmonic partition of n with distinct parts. These harmonic
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partitions exist only if n = “312_ U oorn = % and explicitly written as
follows:
(3l —1
n:(2): (20 — 1,2l —2,--- 14+ 1,1),
I(3l+1
n= (3;) Co2L20 =1, 14+ 2,1+1).

(1.1) immediately follows from these constructions. In Section 2, we give
detailed explanation of them. For combinatorial proof of Euler’s pentagonal
number theorem related to our approach, we have to mention Franklin’s
classical work [2].

With these results, we tried to extend the above naive constructions to
the case of ordinary partitions. Let Pj(n) be set of ordinary partitions of
positive integer n with [ parts.

Py(n) = {(Ny,Na, -+ \N) [Ny >Ny > -+- > N; >0, Y Nj=n}.

j=1
We immediately have,
oo 1 oo o0 "
0 T e~ (VR o
m=1 (1 T4 ) n=1 =0

Then we defined a real vector space C'Pj(n) spanned by elements of P;(n)
and tried to extend the above constructions to C' Fj(n). This trial turned out
to be successful. We found that harmonic ordinary partitions are explicitly
given by,

((n2)™*, (n2)®2, -, (ng) )
(1.4) (n1>n2>--->nk>0, >0, tz,-n,thl).

Therefore, we obtain the following identity:
1 q
1.5 =1+ —1)
(15) e SN

7j=1
Section 3 is devoted to cohomological proof of this identity.

We have to point out that it is equivalent to the well-known result by
Euler [1]:

8

(1.6) (1+¢*m 1 i

m=1
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We can derive (1.5) from (1.6) by changing ¢ into —g and using the well-
known identity by Euler [1]:

o0 1 o0 -
(1.7) mnl(l_qm_l) _mH1(1+q ).

Therefore, the discussion in this paper corresponds to cohomological re-
derivation of (1.6).

2. THE CASE OF PARTITIONS WITH DISTINCT PARTS AND EULER’S
PENTAGONAL NUMBER THEOREM

Definition 1. Let us define the partition of positive integer n with distinct
parts:

0 = (’I’Ll,’fLQ,"' 7nl>7
(nieN (i=1,2,---,1), ny>ng>--->n;>0,n +ng+---+n =n).

We call [ length of the partition o. Then, we denote by S;(n) set of partitions
of n with [ distinct parts:

Si(n) = {(n1,ne,---,n) |n; €N (i=1,2,---,1), ng >ng>--->n; >0,
n1+n2+~-+nl:n}

Then we define as C'S;(n) a real vector space generated by elements of S;(n):

CSi(n) :== @ Ro.
oeS(n)
Definition 2. Let ¢ = (n1,---,n;) € CS;(n) be a partition of n with

distinct parts. We define as m(co) the minimum positive integer that satisfies
Nm+1 < N — 1. In other words, m(o) is the maximum positive integer that
satisfies,

nj=nj_1—1, (j =2,3,---,m(0)).
If I =1, we define m(o) = 1. If nj =n;_1 — 1 for j =2,3,--- 1, we define
m(o) = 1.
Definition 3. We define a linear map 6 : CSj(n) — CS;y1(n) that is
determined by action on each generator o = (nq,--- ,n;) € CSi(n):
(i) The case of m(o) <1
m(o) > n; = 6(o) = 0.
m(a) <n = (5(0’) = (nl—l,ng—l, s ,nm(o-)_l,nm(o-)Jrl, s ,nl,m(a)).
(ii) The case of m(o) =1
m(o) >n;—1=6(c) =0.
m(a) <n—1= (5(0) = (n1 —1,ne—1,--- » (o) — l,m(a)).
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Proposition 2.1. §od =0.

Proof) Let 0 € C'Sj(n) be a partition of n with distinct parts. If §(c) = 0,
then 0(d(0)) = 0 obviously holds. Let us assume that 6(¢) # 0 and that d(o)
is written as (Ni,---,Nj41). Since m(§(o)) > m(o) = N1, 6(6(0)) =0
holds by the definition of §.

Definition 4. We define a linear map §* : CS;(n) — CS;_1(n) that is
determined by action on each generator o = (ny,--- ,n;) € CSi(n):
(i) The case of m(o) <1
m(o) < n; = 0"(c) =0.
m(o) >n = 0*(o) =i+ Lng+1,--- 0y + 1, 0m41, - ,1—1).
(ii) The case of m(o) =1
m(o) <n;=0"(c) =0.
m(o) >n = 0*(o) =i+ Lng+1,--- ,ny + 1,041 ,n-1).

Proposition 2.2. §* o §* = 0.

Proof) Let o € C'Sj(n) be a partition of n. If *(c) = 0, then §*(0*(0)) =
0 obviously holds. Let us assume that *(0) # 0 and that §*(o) is written
as (Ny,-++,N;_1). Since m(0*(0)) = n; < ny—1 = Nj_1, §*(6*(0)) = 0 holds
by the definition of 6*. [J

Proposition 2.3.
(i) 0(o)=7#0=0%(1)=0
(i) 0*(1) =0 #0=0(c) =7
Proof)

(i) Let 0 = (n1,n2,---,n;) € CSi(n) be a partition of n with distinct
parts. We assume that §(0) # 0, and §(o) = (N1, Na, -+ , Njp1) = 7.
Then, m(7) > m(c) = Niy1.

(a) The case of m(7) <l+1

(5*(7') = (N1 +1,No+1,--- ’NNH-l + 17NNL+1+17”' 7Nl>

= (Nl + ]-aNZ + ]-a T 7Nm(a') + 17Nm(0')+17' e 7Nl)

= (n17n27 0 Mm(e) Mm(o)+15 " " 7nl) =0.

(b) The case of m(1) =141

Since I +1 > m(o), m(r) > m(o) = Niy1. Therefore, 6*(7) equals
o in the same way as tha case (a).

(ii) Let 7 = (n1,n2,--- ,n;) € CSi(n) be a partition of n with distinct
parts. We assume that 0*(7) # 0, and 0*(7) = (N1, Na,--- ,Nj_1) =
o. Then, m(o) =n; < nj_1.

(a) The case of m(o) <l —1
Since m(o) < n;_1 = Nj_1,
5(0) = (Nl -1, N —1,--- >Nm(a) - 17Nm(a)+1> T alelam(O—))
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- (Nl - 1;N2 - ]-7 7an - ]-7an+1’" : aNl—17n’l)

= (n17n27 e ann”nnﬂrb e 7nl—17nl) =T.

(b) The case of m(o) =1—1

Since m(o) < nj—1 = N;_1 — 1, §(0) equals 7 in the same way as the
case (a). O

Proposition 2.4. Let o = (ny,n2,--- ,n;) € CSi(n) be a partition of n with
distinct parts. Then we have,

d(o)=0"(c) =0

< m(o)=1n =m(o), or m(c)=1,n =m(c)+ 1.
Proof)

(«<=) We assume that m(o) = (.
In the case of n; = m(co), §(c) = 6* (o) = 0 holds because m(o) = n; > n;—1.
In the case of n; = m(o)+1, §(c) = 6*(c) = 0 holds because m(c) = n;—1 <
ny.
(=) Let ¢ = (n1,n2,---,n;) € CSi(n) be a partition of n with distinct
parts. We assume that §(c) = §*(0) = 0. From the condition é(¢) = 0, we
are naturally led to consider the following two cases.

(i) In the case of n; < m(o) <[, (o) vanishes. However, we conclude
that 0*(o) # 0 by the definition of §*.

(ii) In the case of n; — 1 < m(o) = [, §(o) vanishes. The condition
0*(o) = 0 tells us that m(o) < ny. Since ny — 1 < m(o) < ny,
m(o) =n; —1 or ny.

Therefore, m(o) = l,n; = m(o), or m(c) =1,ny=m(o)+1. O

Definition 5. From Proposition 2.1, we can define cohomology H'(C'S(n))
as Ker(6|cgl(n))/Im(élcslil(n)). Then,

(S =D (Sin),

l:even l:odd

can be interpreted as Euler number:

XHH(CSM)) == Y dimp(HY(CS(n)) — 3 dimp (B (CS(n))).

l:even l:odd

We define symmetric positive definite inner product of C'Sj(n) by,
(2.1) (0,7) = bgr, (0,7 € S(n)).

Then Propositions 2.2 and 2.3 tell us,

(2.2) (0o, 7) = (0,0%T),
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i.e., § and 6* are adjoint to each other. Then we define a Laplacian §0* +*d
on C'Si(n). Since we have (2.1) and (2.2), we can immediately conclude,

(2.3) (66% + 8*8)0 = 0 <= 6(0) = §*(c) = 0.

We define a linear space of harmonic partitions H!(C'S(n)) by Ker((66* +
0*0)|cs,(n))- Since we have standard decomposition,

(24)  CSi(n) = H'(CS(n)) ® Im(d]cs,_, m) ® Im(5* sy, (),
we obtain,
(2.5) dimg (H/(CS(n))) = dimg (H/(CS(n))).

We call 0 € CS;(n) that satisfies §(c) = 0*(¢) = 0, which is nothing but
a linear base of H/(C'S(n)), a harmonic partition of n with distinct parts.
Proposition 2.4 tells us that harmonic partitions with distinct parts are
explicitly given as follows.

n:l(?’ZQ—U: (20 —1,20—=2,--- 1+ 1,1),
1
:l(?’l;); (21,20 = 1,--- 1+ 2,1+1).

Theorem 2.5. (Euler’s Pentagonal Number Theorem)

e l(3l 1) 1(314+1)
(2.6) [Ha-am —1+§ ( tq o2 )
m=1

Proof)
[Ha-¢ = 1+Z<Z Z(Sz(n))gq”
m=1 l:even l:odd
=1 +Z( > dimg(H(CS(n)) - Y dimr(H'(CS(n )))) "
l:even l:odd
= 12 ( 3t (OS() - 3 dimn 02 (€S}
l:even l:odd

1(31—1) 1(3141)
= 1+Z(—1)l<q > +q2>. O
=1
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3. THE CASE OF ORDINARY PARTITIONS AND BOSONIC EXTENSION OF
EULER’'S PENTAGONAL NUMBER THEOREM

Definition 6. Let us define the ordinary partition of positive integer n as
follows :

UZ(N17N27"' 7Nl)

!
(Ni €N (i=1,2, 1), N\ >Ny > 2Ny >0, Y Nj=n).
j=1
We call [ length of the partition o. Then, we denote by P;(n) set of the
ordinary partitions of n with length [ :

!
Py(n) == {(Ny,Na, -+ \Ni) [Ny >Ny > -+- >N, >0, Y Nj=n}.
j=1
We define as C'Pj(n) a real vector space generated by elements of Pj(n) :
CP(n) = Byep,n) Ro.

Definition 7. Let us represent a partition o of the positive integer n as
follows:

o= (n{"ny"%, - )
k k
(n1>mng>-->ng >0, n:anmj, l:ij ).
=1 j=1

We call each (ng)™(t = 1,2,--- ,k) a block. Then, we define a map J :
CP(n) — CP1(n) as follows:
First, we devide the block (n1)™! into (n; — 1)™ and (1)™ and transpose
(1)™ into (m1)! (from now on, we simply call this operation dividing (n1)™
into (n; — 1)™ and (m)!).

(i) If my > ny — 1, then é(c) = 0.

(ii) If there exists j (2 < j < k) such that m; = n; and if mj, mjqq1,--- ,my
are all even, then we put the block (m;)! on the right side of ((n;)™) :
(o) = ((nl —1)™, (n2)™2, -+, (nj)ijrl? (nj+1)mj+17 B (nk)mk)
If there exists some odd number in m;, mji1,- -, my, then §(o) = 0.

(iii) In the case except for the cases of (i), (ii),
there exists unique integer ¢ (1 < i < k) that satisfies n; > m; >
Ti+1-
If mjt1, miqa, - ,my are all even, or i = k (ng > mq), then we put
the block (m1)! on the right side of (n;)™ :

5(0) = ((nl - 1)m1’ (n2)m27 T (ni)mi7 (m1)17 (ni-i-l)m”l? ) (nk)mk)
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If there exists some odd number in m;41, mjt2,- -, mk, then (o) =
0.
Let us remark a subtle point.
If there appear in 0(0) = (NlMl,N2MQ, e ,N%K) blocks (N7)M7  (Np 1 )Mr+1
(T'=1,2,--- , K — 1) that satisfy Np = Np,1, we automatically rewrite
Do) = (™ NPT NG N o (N N N,

Proposition 3.1. §o0d = 0.

Proof) Let o € CP(n) be a partition of n. If §(¢) = 0, then §(5(c)) =0
obviously holds. Let us assume that §(c) # 0 and that §(o) is written as

(NlMl, e ,Ny", Nﬁ‘ll“, e 7]\7%"‘). Then, we have the following two cases.
(i) There exists odd number M; with My, -+, Mg all even, and
M, > Nj.

(ii) My, -, M are all even and M; > N; — 1.
In both cases, §(6(c)) = 0 holds by definition of §. O

Definition 8. Let 0 = (n{™,n3"2,--- ,n™*) (n1 >ng>--->np >0, n=
nimi +naomse + - - - +ngmy) be a partition in CPj(n). Then we define a map
0* : CP(n) — CP_1(n) in the following way.
First, if there exist some odd numbers among m;’s (1 < j < k), we denote
by ¢ the maximum index j of odd m;’s.
(i) If t =1 or mq, ma,--- ,my are all even, then we divide the block (n;)™
into (n1)™~! and (n1)! and transpose (n1)! into (1)™ (from now on, we
simply call this operation dividing (n1)™! into (n1)™ ! and (1)™).
(a) In the case of ny > mj or mqy =n3+2i (i >0), we define §*(o) = 0.
(b) In the case of m; = n; +2i+1 (i > 0), we put the block of (1)™

mi1—1

left-aligned on (np) ,
5*(0) = ((nl +1)™, (nl)%? (n2)m27 B (nk)mk)
(ii) If ¢t > 2, then we divide the block (n;)™ into (n;)"™ ! and (1)™.

(a) In the case of n; > my, we define §*(o) = 0.
(b) In the case of n; < mjp, we put the block (1)™ left-aligned on (n1)™",

6"(0) = ((m+1)", (n)™™", (n2)"™, -
S ()™ ()™ T () () ™).
Let us remark that if there appear a block (n;)?, then we automatically omit
it.
Proposition 3.2. §* o 6* = 0.

Proof) Let o € CP;(n) be a partition of n. If *(c) = 0, then §*(0*(0)) =
0 obviously holds. Let us assume that §*(o) # 0. Then, if §*(o) is written
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as (N1 ,N%T,N%_Tfl, - ,N%K), we can easily see that there exists
odd number My with M7y, -+, Mg all even number and Ny > M, or
that My, --- , Mg are all even and N1 > M. Therefore, by definition of 6%,
0*(0*(0)) = 0 also holds. [

Proposition 3.3.

O

(i)
(i)

(i)

do)=7#0=06(1)=0
(r)=0#0=0(0) =71

Proof)

Let 0 = (n{",ny?,--- ,n*) € CP(n) be a partition of n. We
assume that (o) = 7 # 0 and d(c) = (NM NM2 ... ,N%K) =
7. We denote by (Nyy1)™7+1 the block on the right side of the
block where (m;)! is added by §. Then N; = mj, M, is an odd
number and M1, , M are all even. Let us apply 6* to 7. Then
we divide the block of (N;)M7 into (N;)™7~! and (1) = (1)™,
and put the block (1) left-aligned on (N;)Mi. This operation
corresponds to putting the block (m1)!, that was moved by &, back
to its original position. Therefore, 6*(7) = 0.

Let 7 = (n",n5?,--- ,n,*) € CP(n) be a partition of n. We
assume that 0*(7) = o # 0 and 6*(7) = (NM N2 ... ,N%K) =o0.
By the map §*, we put the block of (1)™ left-aligned on (n)™!.
(Note that my; =m;—1ift =1, and my; = my if t # 1.) Then, M; =
ny. The blocks (ngy1)™ 1, -+ (ng)™ remain the same, and we
represent them as (N q)M7+1 ... (Ng)ME. Then My, q,---, Mg
are all even. Next, by the map &, we divide the block (N7)M! into
(N7 — )Mt and (M;)' = (n¢)' and put the block of (ns)' on the
left side of (N;41)M7+1. This operation corresponds to putting the
block of (1), which was moved by 0*, back to its original position.
Therefore, 6(c) = 7.

Proposition 3.4. Let 0 = (n{"*,n3"?, - ,n"*) € CP/(n) be a partition of
n. Then we have,

d(o)=06"(0)=0

= o= ((m)" T, (n2)*, - () ™)
(3.1) (np>ng>--->n, >0, 1 >0, to, - ,tx > 1).
Proof)
(<) Let 0 = ((nl)”1+2l,(n2)2t2,--- ,(nk)%k) (np >ng > - >mng, 1>

0, to, - ,tp > 1) = (NlMl,--- ,N%K) be a partition of n. Since nq +
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2l = My > Ny — 1 = n3 — 1, §(0) vanishes. On the other hand, since
My =n1+2l=N;+20 (I >0)and Ms,---, Mg are all even, 6*(0) also
vanishes.

(=) Let o = (n7"",n3?,--- ,n;") € CP(n) be a partition of n. We assume
that 6(c) = 0*(0) = 0. From the condition d(¢) = 0, we are naturally led
to consider the following three cases.

(i) In the case of m; > n; —1, §(o) vanishes. Since n; < my, the condi-
tion 0*(¢) = 0 tells us that ma,--- ,my are all even and that m; =
n14+20 (1 > 0). Therefore, o is represented as ((ny)™ 72, (ng)%2, - - -, (ng)?*).

(ii) If there exist j (2 < j < k) that satisfy m; = n; and some odd
numbers among m;, - - - ,my, then §(o) vanishes. Let m; be the odd
number that have maximum index ¢. Since 2 < j < t < k and
ny < my = nj, we conclude that §*(o) # 0.

(iii) If there exist unique integer i (1 < i < k) that satisfies n; >
mq > n;+1 and some odd numbers among m;y1,- - ,my, then §(o)
vanishes. Let m; be the odd number that have maximum index ¢.
Since 2 <i+ 1<t <k and n; > my > n;y1 > ng, we conclude that
d* (o) # 0.

Therefore, o takes the form presented in the last line of (3.1). O

Definition 9. From Proposition 3.1, we can define cohomology H'(C'P(n))
as Ker(é!cpl(n))/Im(é\cplil(n)). Then,

S (B - 3 (B,

l:even l:odd

can be interpreted as Euler number:

XH(CP(M) == Y dimp(H'(CP(n))) = 3 dimp(H'(CP(n))).

l:even l:odd

We define symmetric positive definite inner product of C'F;(n) by,

(3.2) (0,7) = 0or, (0,7 € Pi(n)).
Then Propositions 3.2 and 3.3 tell us,
(3.3) (00,7) = (0,6"7),

i.e., 0 and ¢* are adjoint to each other. Then we define a Laplacian 66* +90*d
on CPy(n). Since we have (3.2) and (3.3), we can immediately conclude,

(3.4) (56 + 6*8)0 = 0 <= d(0) = 6*(c) = 0.

We define a linear space of harmonic partitions H'(CP(n)) by Ker((60* +
0*0)|cp,(ny)- Since we have standard decomposition,

(3.5)  CP(n) =H'(CP(n)) & Im(d|cp,_,m) (5 |op,,m):
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we obtain,
(3.6) dimg (H/(CP(n))) = dimg (H'(CP(n))).

We call 0 € CP(n) that satisfies (o) = 0*(c) = 0, which is nothing but
a linear base of H'(C'P(n)), a harmonic ordinary partition of n. According
to Proposition 3.4, harmonic ordinary partitions up to n = 26 are given as
follows.

n=1: (1),

n=2: none,

n=3: 3,

n==4: 22)

n=>5: 1%),

n=6: 2214,
n="7: 17),

n=_8§: 2h), (22,1%),
n=9: 33), (1%)
n=10: 2412, (22,19)
n=11: 33,1%), (1),

(1
(
(
(
(
(
(
(
(3%
n=12: (25),(2%1%),(22,1%),
n=13: (3%2%),(3% 1%, 113)
n=14: (2512, (24 19),(22,1%0),
n=15: (3%),(3%22,1%), (3%, 19),(1%),
(4%)
(
(
(
(
(
(
(
(
(
(
(

(
(
(
n=16: 4%, (28 ( (1), (24,18), (2%, 112),
? (
(
(
(

);
n=17: 3°,1?), (3° 4), 33,22,14),(33,1%), (1'7),
n=18: (41,1?),(2%1?),(2%,1°), (2%, 1'0), (22,111,
n=19: 3°,22),(3%,1%), (3%, 2%,1%), (3%, 22,1%), (33,119, (119),
n=20: 4422 (4,1, (219, (28 1), (2%,18), (2%, 11%), (22, 119),
n=21: 37), (35, 22 12),(35,19),(33%,25), (33,24, 1%), (33, 22,18), (33, 11%), (121,
n=22: 443%),(44,22,12), (4%,19), (219,12), (2%,1°), (25,110), (24, 114), (22,118),

32

n=23: 37,12),(3%,2%), (3%,22,1%), (35,1%), (3%,25,12), (33,24, 19), (33,22, 119),
33’1 ) (123)

46)’ (44 32 ) (447 24)’ (447 22’ 14)7 (44’ 18)’ (212)7 (210’ 14)’ (28’ 18)’

26,112) (24 116) (22’120)’

55)’ (37 22) ( 4), (35, 24, 12)7 (357 22’ 16)7 (35’ 110)’ (33‘28)’ (33’ 267 14)’



82 M. JINZENJI AND Y. TAJIMA
(3%,24,1%),(3%,2%,1"), (3%,1'%), (17),

n=26: (45 1?),(4%,3% 2?), (4%, 3%,1%), (4%, 24,1?), (4%, 2%,19), (4%, 1%0),
(2%,12), (219,1%), (2°,119), (2°, 119), (21,17%), (22,1%2).

Theorem 3.5.
1 > ! qu
3.7 — =1+ 1)
(3.7) T L T —
B (1-q7)

1

J

Ly Z( - Z(am»ﬁ)qn
l:even l:odd
- 1+ Z
= 12 ( X dim(CP) - 3 dimn(CPO) )"
l:even l:odd

= 1+Z ——. 0
=1 Hl_q
J=1

8
—
_|_
QQ
[

Y dimg(H'(CP(n))) — > dimg (H'(CP(n )))) "

l:even l:odd

/\/—\
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