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DIRAC PAIRS ON JACOBI ALGEBROIDS

Tomoya NAKAMURA

Abstract. We define Dirac pairs on Jacobi algebroids, which is a gen-
eralization of Dirac pairs on Lie algebroids introduced by Kosmann-
Schwarzbach. We show the relationship between Dirac pairs on Lie and
on Jacobi algebroids, and that Dirac pairs on Jacobi algebroids charac-
terize several compatible structures on Jacobi algebroids.

1. Introduction

Poisson and symplectic structures on smooth manifolds have wide appli-
cation in the theory of integrable systems on smooth manifolds, especially
even dimensional manifolds. These structures are generalized on Lie alge-
broids. One of further generalizations of Poisson structures on Lie alge-
broids is Dirac structures, which are defined on Lie bialgebroids in general
[7]. Dirac structures on a Lie algebroid A are defined by using the Lie
bialgebroid canonically determined for A. In terms of applications in the
theory of integrable systems, compatible two structures, for example, PΩ-
and ΩN -structures [12], are often used. The notion dealing with these com-
patible structures in a unified way is a Dirac pair, which was introduced by
Kosmann-Schwarzbach [4].

On the other hand, contact structures can be defined on odd dimensional
manifolds, and Jacobi structures are generalizations of contact structures.
Moreover Jacobi structures are generalized as structures on Jacobi alge-
broids. As a generalization of both Jacobi structures on Jacobi algebroids
and Dirac structures on Lie bialgebroids, we can define Dirac structures on
Jacobi bialgebroids [14]. As in the case of Lie algebroid, Dirac structures on
Jacobi algebroids can also be defined naturally. In addition, we can define
several compatible structures on Jacobi algebroids, for example, JΩ- and
ΩN -structures. In this paper, we define Dirac pairs on Jacobi bialgebroids
and prove that JΩ- and ΩN -structures can be characterized by Dirac pairs.
Furthermore, we investigate relationships between Dirac pairs on Lie and
Jacobi bialgebroids.

This paper is divided into four sections. In Section 2, we recall several
definitions, properties and examples of Lie and Jacobi algebroids, relations,
Dirac structures on Lie and Jacobi bialgebroids, and Dirac pairs on Lie bial-
gebroids. Here Jacobi algebroids (resp. bialgebroids) are generalizations of
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Lie algebroids (resp. bialgebroids). In Section 3, we define Dirac pairs on
Jacobi bialgebroids. A Dirac pair is a pair (L,L′) of two Dirac structures
such that the induced relation NL,L′ is Nijenhuis. In Theorem 3.2, we show

that (graphπ♯
1, graphπ

♯
2), (graphπ

♯
1, graphω

♭
2) and (graphω♭

1, graphω
♭
2) are

Dirac pairs on a Jacobi bialgebroid ((A,ϕ0), (A
∗, X0)) over M if and only if

(graph π̃♯
1, graph π̃

♯
2), (graph π̃

♯
1, graph ω̃

♭
2) and (graph ω̃♭

1, graph ω̃
♭
2) are Dirac

pairs on the induced Lie bialgebroid (Ãϕ̄0
, Ã∗

X̂0
) over M × R, respectively.

Here πi in Γ(Λ2A) and ωi in Γ(Λ2A∗) (i = 1, 2) are elements satisfying

the Maurer-Cartan type equation, and we set π̃i := e−tπi in Γ(Λ2Ã) and

ω̃i := etωi in Γ(Λ2Ã∗), where t is the standard coordinate in R. Since this
theorem means that the condition to be a Dirac pair is preserved between
((A,ϕ0), (A

∗, X0)) and (Ãϕ̄0
, Ã∗

X̂0
), it is important. This is the main theorem

in this paper. In Section 4, we consider Jacobi pairs and ϕ0-presymplectic
pairs defined by using Dirac pairs on Jacobi algebroids. We show the rela-
tionship between Jacobi (resp. ϕ0-presymplectic) pairs and Poisson (resp.
presymplectic) pairs, and prove that there exists a one-to-one correspon-
dence between the non-degenerate Jacobi pairs and the ϕ0-symplectic pairs
on Jacobi algebroids. Moreover, we introduce JΩ- and ΩN-structures on Ja-
cobi algebroids. These structures are defined as generalizations of PΩ- and
ΩN-structures on Lie algebroids [12]. In addition to these, there are also PN
(or Poisson-Nijenhuis) structures on Lie algebroids [12], [5]. However there
exists already a generalization of PN structures on Jacobi algebroids called
Jacobi-Nijenhuis structures [13], [2]. We show the relationship between JΩ-
(resp. ΩN-)structures on Jacobi algebroids and PΩ-(resp. ΩN-)structures on
Lie algebroids, and prove that JΩ- and ΩN-structures can be characterized
by Dirac pairs on Jacobi algebroids.

2. Preliminaries

2.1. Lie and Jacobi algebroids. A Lie algebroid over a manifold M is
a vector bundle A → M equipped with a Lie bracket [·, ·]A on Γ(A) and
a bundle map ρA : A → TM over M , called the anchor, satisfying the
following condition: for any X,Y in Γ(A) and f in C∞(M),

[X, fY ]A = f [X,Y ]A + (ρA(X)f)Y.

Let A := (A, [·, ·]A, ρA) be a Lie algebroid over M . The Schouten bracket on
Γ(Λ∗A) is defined similarly to the Schouten bracket [·, ·] on X∗(M). That
is, the Schouten bracket [·, ·]A : Γ(ΛkA)× Γ(ΛlA) → Γ(Λk+l−1A) is defined
as the unique extension of the Lie bracket [·, ·]A on Γ(A) such that

[f, g]A = 0;
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[X, f ]A = ρA(X)f ;

[X,Y ]A is the Lie bracket on Γ(A);

[D1, D2 ∧D3]A = [D1, D2]A ∧D3 + (−1)(a1+1)a2D2 ∧ [D1, D3]A;

[D1, D2]A = −(−1)(a1−1)(a2−1)[D2, D1]A

for any f, g in C∞(M), X,Y in Γ(A) and Di in Γ(ΛaiA). The differential of
the Lie algebroid A is an operator dA : Γ(ΛkA∗) → Γ(Λk+1A∗) defined by
for any ω in Γ(ΛkA∗) and X0, . . . , Xk in Γ(A),

(dAω)(X0, . . . , Xk) =
k∑

i=0

(−1)iρA(Xi)(ω(X0, . . . , X̂i, . . . , Xk))

+
∑
i<j

(−1)i+jω([Xi, Xj ]A, X0, . . . , X̂i, . . . , X̂j , . . . , Xk).

For any X in Γ(A), the Lie derivative LA
X : Γ(ΛkA∗) → Γ(ΛkA∗) is defined

by the Cartan formula LA
X := dAιX + ιXdA and LA

X is extended on Γ(Λ∗A)
in the same way as the usual Lie derivative LX . Then it follows that LA

XD =
[X,D]A for any D in Γ(Λ∗A).

Example 1. (i) For any manifold M , the tangent bundle (TM, [·, ·], idTM )
is a Lie algebroid over M , where [·, ·] is the usual Lie bracket on the vector
fields X(M).

(ii) For any vector bundle A over M , we set [·, ·]A := 0 and ρA := 0. Then
A0 := (A, [·, ·]A, ρA) is a Lie algebroid. We call ([·, ·]A, ρA) the trivial Lie
algebroid structure on A.

Example 2 ([3]). Let A be a vector bundle over a manifold M and set A⊕
R := A⊕(M×R). Then the sections Γ(Λk(A⊕R)) and Γ(Λk(A⊕R)∗) can be
identified with Γ(ΛkA)⊕Γ(Λk−1A) and Γ(ΛkA∗)⊕Γ(Λk−1A∗), respectively.
Now, assume that A = (A, [·, ·]A, ρA) is a Lie algebroid over M . Then
(A⊕R, [·, ·]A⊕R, ρA ◦ pr1) is also a Lie algebroid over M , where the bracket
[·, ·]A⊕R is defined by

[(X, f), (Y, g)]A⊕R := ([X,Y ]A, ρA(X)g − ρA(Y )f)

and the map pr1 : A⊕R → A is the canonical projection to the first factor.

Next, we define Jabobi algebroids. A pair (A,ϕ0) is a Jacobi algebroid
over M if A = (A, [·, ·]A, ρA) is a Lie algebroid over M and ϕ0 in Γ(A∗) is
dA-closed, that is, dAϕ0 = 0.

Example 3. For a Lie algebroid A ⊕ R in Example 2, we set ϕ0 := (0, 1) in
Γ(A∗ ⊕ R) = Γ(A∗)⊕ C∞(M). Then (A⊕ R, ϕ0) is a Jacobi algebroid.
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Example 4. For any Lie algebroid A over M , we set ϕ0 := 0. Then (A,ϕ0)
is a Jacobi algebroid. We call ϕ0 the trivial Jacobi algebroid structure on A.
Therefore any Lie algebroid is a Jacobi algebroid.

For a Jacobi algebroid (A,ϕ0), there is the ϕ0-Schouten bracket [·, ·]A,ϕ0

on Γ(Λ∗A) given by

[D1, D2]A,ϕ0 := [D1, D2]A + (a1 − 1)D1 ∧ ιϕ0D2

− (−1)a1+1(a2 − 1)ιϕ0D1 ∧D2

for any Di in Γ(ΛaiA), where [·, ·]A is the Schouten bracket of the Lie al-

gebroid A. The ϕ0-differential dA,ϕ0 and the ϕ0-Lie derivative LA,ϕ0

X are
defined by

dA,ϕ0ω := dAω + ϕ0 ∧ ω, LA,ϕ0

X := ιX ◦ dA,ϕ0 + dA,ϕ0 ◦ ιX
for any ω in Γ(Λ∗A∗) and X in Γ(A). For any π in Γ(Λ2A), ξ and η in
Γ(A∗), it follows that
(2.1)

1

2
[π, π]A,ϕ0(ξ, η, ·) = [π♯ξ, π♯η]A − π♯

(
LA,ϕ0

π♯ξ
η − LA,ϕ0

π♯η
ξ − dA,ϕ0⟨π♯ξ, η⟩

)
,

where a bundle map π♯ : A∗ → A over M is defined by ⟨π♯ξ, η⟩ := π(ξ, η).
We call a dA,ϕ0-closed 2-cosection ω, i.e., dA,ϕ0ω = 0, a ϕ0-presymplectic

structure on (A,ϕ0). A ϕ0-presymplectic structure ω is called a ϕ0-symplectic
structure if ω is non-degenerate.

Example 5. We consider A := TM⊕R and ϕ0 := (0, 1) in Ω1(M)⊕C∞(M).
Then any ω in Ω2(M)⊕Ω1(M) can be written as ω = (α, β) (α ∈ Ω2(M), β ∈
Ω1(M)). Then ω = (α, β) is (0, 1)-presymplectic on (TM ⊕ R, (0, 1)) if
and only if α = dβ. Moreover setting dimM = 2n + 1, we see that a
(0, 1)-presymplectic strucutre ω = (dβ, β) is non-degenerate if and only if
β ∧ (dβ)n ̸= 0, that is, β is a contact structure on M . Therefore a (0, 1)-
symplectic structure on (TM ⊕ R, (0, 1)) is just a contact structure on M .

As a generalization of Poisson structures on Lie algebroids, we define
Jacobi structures on Jacobi algebroids. That is, a Jacobi structure on a
Jacobi algebroid (A,ϕ0) is a 2-section π in Γ(Λ2A) satisfying the condition

(2.2) [π, π]A,ϕ0 = 0.

For any Lie algebroid A equipped with the trivial Jacobi algebroid structure
0, it follows that [·, ·]A,0 = [·, ·]A. Hence Jacobi structures on (A, 0) are just
Poisson structures on A.

It is well known that there exists a one-to-one correspondence between
ϕ0-symplectic structures on (A,ϕ0) and non-degenerate Jacobi structures
on (A,ϕ0). In fact, for a non-degenerate Jacobi structure π on (A,ϕ0), a
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2-cosection ωπ characterized by ω♭
π = −(π♯)−1 is ϕ0-symplectic on (A,ϕ0),

where for any 2-cosection ω, a bundle map ω♭ : A → A∗ over M is defined
by ⟨ω♭X,Y ⟩ := ω(X,Y ).

Let pA : A → M be a vector bundle over M . We set Ã := A × R.
Then pÃ : Ã → M × R, pÃ(X, t) := (pA(X), t), is a vector bundle over

M ×R. The sections Γ(Ã) can be identified with the set of time-dependent
sections of A. We assume that (A,ϕ0) is a Jacobi algebroid. Under the

above identification, we can define two Lie algebroid structures ([·, ·̂]
ϕ0

A , ρ̂ϕ0

A )

and ([·, ·̄]ϕ0

A , ρ̄ϕ0

A ) on Ã, where for any X̃ and Ỹ in Γ(Ã),

[X̃, Ỹ ]̂
ϕ0

A := e−t

(
[X̃, Ỹ ]A + ⟨ϕ0, X̃⟩

(
∂Ỹ

∂t
− Ỹ

)
− ⟨ϕ0, Ỹ ⟩

(
∂X̃

∂t
− X̃

))
,

(2.3)

ρ̂ϕ0

A (X̃) := e−t

(
ρA(X̃) + ⟨ϕ0, X̃⟩ ∂

∂t

)
,(2.4)

[X̃, Ỹ ]̄
ϕ0

A := [X̃, Ỹ ]A + ⟨ϕ0, X̃⟩∂Ỹ
∂t

− ⟨ϕ0, Ỹ ⟩∂X̃
∂t

,(2.5)

ρ̄ϕ0

A (X̃) := ρA(X̃) + ⟨ϕ0, X̃⟩ ∂
∂t

.(2.6)

The definition and properties of Jacobi bialgebroids are the followings. Ja-
cobi bialgebroids are important to define Dirac structures in Subsection 2.2.

Definition 1 ([3]). Let A = (A, [·, ·]A, ρA) be a Lie algebroid over M , A∗

the dual vector bundle of A with a Lie algebroid structure ([·, ·]A∗ , ρA∗), ϕ0

and X0 a Jacobi algebroid structures on A and on A∗ = (A∗, [·, ·]A∗ , ρA∗),
respectively. Then a pair ((A,ϕ0), (A

∗, X0)) is a Jacobi bialgebroid over M
if for any X,Y in Γ(A) and P in Γ(ΛkA),

dA∗,X0 [X,Y ]A = [dA∗,X0X,Y ]A,ϕ0 + [X, dA∗,X0Y ]A,ϕ0 ,

LA,ϕ0

X0
P + LA∗,X0

ϕ0
P = 0,

where dA∗,X0 is the X0-differential and LA∗,X0

ϕ0
is the X0-Lie derivative of

(A∗, X0) with respect to ϕ0.

Example 6 (Lie bialgebroids [10]). Let A and A∗ be vector bundles in dual-
ity equipped with Lie algebroid structures and the trivial Jacobi algebroid
structures 0. Then a pair ((A, 0), (A∗, 0)) is a Jacobi bialgebroid if and only
if a pair (A,A∗) is a Lie bialgebroid.

Example 7 ([3]). For any Jacobi algebroid (A,ϕ0) and its dual bundle (A∗
0, 0)

equipped with the trivial Lie and Jacobi algebroid structure, a pair ((A,ϕ0), (A
∗
0, 0))

is a Jacobi bialgebroid.
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Proposition 2.1 is the relation between a Jacobi and Lie bialgebroid.

Proposition 2.1 ([3]). A pair ((A,ϕ0), (A
∗, X0)) is a Jacobi bialgebroid over

M if and only if a pair
(
Ã−

ϕ0
, Ã∗∧

X0

)
= ((Ã, [·, ·̄]ϕ0

A , ρ̄ϕ0

A ), (Ã∗, [·, ·̂]
X0

A , ρ̂X0
A )) is a

Lie bialgebroid over M × R.
Proposition 2.2 follows immediately from Proposition 2.1.

Proposition 2.2 ([3]). If ((A,ϕ0), (A
∗, X0)) is a Jacobi bialgebroid, then so

is ((A∗, X0), (A,ϕ0)).

2.2. Dirac structures on Jacobi algebroids. To define Dirac structures
on a Jacobi bialgebroid ((A,ϕ0), (A

∗, X0)), we introduce the following pair-
ings (·, ·)± and bracket [[·, ·]] on the Whitney sum A⊕A∗:

(X + ξ, Y + η)± :=
1

2
(⟨ξ, Y ⟩ ± ⟨η,X⟩) ;

[[X + ξ, Y + η]] := ([X,Y ]A,ϕ0 + LA∗,X0

ξ Y − LA∗,X0
η X − dA∗,X0(X + ξ, Y + η)−)

+ ([ξ, η]A∗,X0 + LA,ϕ0

X η − LA,ϕ0

Y ξ + dA,ϕ0(X + ξ, Y + η)−);

We notice that the pairings (·, ·)′± and the bracket [[·, ·]]′ defined as above
on A∗ ⊕A for a Jacobi bialgebroid ((A∗, X0), (A,ϕ0)) satisfy

(·, ·)′± = ±(·, ·)±, [[·, ·]]′ = [[·, ·]].(2.7)

Definition 2 ([14]). Let ((A,ϕ0), (A
∗, X0)) be a Jacobi bialgebroid over M .

A subbundle L of A ⊕ A∗ is a Dirac structure on ((A,ϕ0), (A
∗, X0)) if it is

maximally isotropic under the pairing (·, ·)+ and Γ(L) is closed under the
bracket [[·, ·]]. By (2.7), the Dirac structures on ((A,ϕ0), (A

∗, X0)) and on
((A∗, X0), (A,ϕ0)) coincide. For a Jacobi algebroid (A,ϕ0), we call a Dirac
structure on a Jacobi bialgebroid ((A,ϕ0), (A

∗
0, 0)) in Example 7 a Dirac

structure on (A,ϕ0).

Let ((A,ϕ0), (A
∗, X0)) be a Jacobi bialgebroid over M , π and ω elements

in Γ(Λ2A) and in Γ(Λ2A∗), respectively. We set

graphπ♯ := {π♯ξ + ξ | ξ ∈ A∗} ⊂ A⊕A∗,

graphω♭ := {X + ωX | X ∈ A} ⊂ A⊕A∗.

Theorem 2.3 ([14]). With the above notations, graphπ♯ (resp. graphω♭),

the graph of a bundle map π♯ (resp. ω♭), is a Dirac structure on ((A,ϕ0),
(A∗, X0)) if and only if π (resp. ω) satisfies the Maurer-Cartan type equa-
tion:

dA∗,X0π +
1

2
[π, π]A,ϕ0 = 0

(
resp. dA,ϕ0ω +

1

2
[ω, ω]A∗,X0 = 0

)
.(2.8)
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Remark. A Dirac structure on a Jacobi bialgebroid ((A, 0), (A∗, 0)) in Ex-
ample 6 is called a Dirac structure on a Lie bialgebroid (A,A∗) and a Dirac
structure on a Lie bialgebroid (A,A∗

0) is called a Dirac structure on a Lie
algebroid A. Then (2.8) coincides with the Maurer-Cartan type equation for
a Lie bialgebroid (A,A∗) introduced in [7].

Example 8. For any Jacobi algebroid (A,ϕ0), the Maurer-Cartan type equa-
tions for (A,ϕ0) are

[π, π]A,ϕ0 = 0, dA,ϕ0ω = 0.

The former means that π in Γ(Λ2A) is a Jacobi structure on (A,ϕ0) and the
latter means that ω in Γ(Λ2A∗) is a ϕ0-presymplectic structure on (A,ϕ0).

2.3. Relations. For any vector bundles U and V over a manifold M , we
call a subset of a direct product of the sections Γ(U) and Γ(V ) a relation.
Let R be a subset of U × V . Then the relation R induced by R is defined
by

R := {(X,Y ) ∈ Γ(U)× Γ(V ) | ∀p ∈ M, (Xp, Yp) ∈ R}.
We also call R a relation. We notice that R = Γ(R) if R ⊂ U ×V is a vector
bundle over M . For any bundle map ϕ : U → V , we get graphϕ = graphϕ.
Here ϕ : Γ(U) → Γ(V ) is the map induced by ϕ. In the rest of this paper,
we shall omit underline and denote the induced relation and map by the
same symbols.

Let U, V and W be vector bundles over a manifold M . The composition
R′ ∗R of relations R ⊂ Γ(U)× Γ(V ) and R′ ⊂ Γ(V )× Γ(W ), the inverse R
and the dual R∗ of a relation R ⊂ Γ(U)× Γ(V ) are defined by

R′ ∗R := {(u,w) ∈ Γ(U)× Γ(W ) | ∃v ∈ Γ(V ), (u, v) ∈ R and (v, w) ∈ R′},
R := {(v, u) ∈ Γ(V )× Γ(U) | (u, v) ∈ R},
R∗ := {(β, α) ∈ Γ(V ∗)× Γ(U∗) | ∀(u, v) ∈ R, ⟨α, u⟩ = ⟨β, v⟩}.

Moreover for relations R ⊂ Γ(U)× Γ(V ) and R′ ⊂ Γ(V )× Γ(W ), we set

R′3R := {(u, v, w) ∈ Γ(U)× Γ(V )× Γ(W ) | (u, v) ∈ R, (v, w) ∈ R′}.

We notice that R′ ∗R = R ∗ R′ and that R∗ = R
∗
. Let ϕ : U → V and ϕ′ :

V → W be bundle maps. Then we obtain graphϕ′ ∗graphϕ = graph(ϕ′ ◦ϕ).
It is clear that graphϕ = graph(ϕ−1) if ϕ is invertible.

We define the Nijenhuis torsion of relations in Lie algebroids.

Definition 3 ([4]). Let (A, [·, ·]A, ρA) be a Lie algebroid over M . Then
the Nijenhuis torsion of a relation R ⊂ Γ(A) × Γ(A) (or A × A) is a map
TR : R×R× (R∗3R∗) → C∞(M) defined by

TR((X1, Y1), (X2, Y2), (α, β, γ))
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:= ⟨α, [Y1, Y2]A⟩ − ⟨β, [Y1, X2]A + [X1, Y2]A⟩+ ⟨γ, [X1, X2]A⟩

for all (X1, Y1), (X2, Y2) in R and (α, β, γ) in R∗3R∗. A relation R is Ni-
jenhuis if TR vanishes.

It follows easily that TR = TR. A section N in Γ(A∗ ⊗ A) is a Nijenhuis
structure on A, that is, N satisfies that

TN (X,Y ) := [NX,NY ]A −N [NX,Y ]A −N [X,NY ]A +N2[X,Y ]A

vanishes for any X and Y in Γ(A), if and only if graphN is a Nijenhuis
relation on A.

2.4. Dirac pairs on Lie bialgebroids. For any relations L and L′ ⊂
A × A∗, where A and A∗ are vector bundles in duality over M , we set
NL,L′ := L ∗ L′. Then we get NL,L′ = NL′,L.

Definition 4 ([4]). Let (A,A∗) be a Lie bialgebroid over M , L and L′

Dirac structures on (A,A∗) (see Remark 2.2). Then (L,L′) is a Dirac pair
on (A,A∗) if NL,L′ is a Nijenhuis relation. A Dirac pair (L,L′) on (A,A∗

0)
is called a Dirac pair on A.

Since TNL,L′ = TNL′,L
= TNL′,L , if (L,L

′) is a Dirac pair, then so is (L′, L).

Let A be a Lie algebroid over M . Then a 2-section on A is Poisson if and
only if its graph is a Dirac structure on A, i.e., [π, π]A = 0. A pair (π1, π2) of

two Poisson structures on A is a Poisson pair if a pair (graphπ♯
1, graphπ

♯
2)

is a Dirac pair on A. A Poisson pair (π1, π2) is non-degenerate if both π1
and π2 are non-degenerate. If two Poisson structures π1 and π2 on A are
compatible, i.e., π1 + π2 is also Poisson, then (π1, π2) is a Poisson pair by
Theorem 2.3 in [4]. Conversely, if a Poisson pair (π1, π2) satisfies

A∗ = (π♯
1)

−1(Imπ♯
2) ∩ (π♯

2)
−1(Imπ♯

1),(2.9)

then two Poisson structures π1 and π2 on A are compatible. In particular,
since a non-degenerate Poisson pair (π1, π2) satisfies (2.9), the two Poisson
structures π1 and π2 on A are compatible.

A 2-cosection on A is presymplectic, i.e., it is dA-closed, if and only if
its graph is a Dirac structure on A. A pair (ω, ω′) of two presymplectic

structures on A is a presymplectic pair if a pair (graphω♭, graphω′♭) is a
Dirac pair. A presymplectic pair (ω, ω′) is symplectic pair if both ω and
ω′ are symplectic. The following proposition for Poisson and presymplectic
pairs holds.

Proposition 2.4 ([4]). Symplectic pairs are in one-to-one correspondence with
non-degenerate Poisson pairs.
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At the end of this subsection, we describe PΩ- and ΩN-structures on a
Lie algebroid.

Definition 5 ([4]). Let A be a Lie algebroid over M , π a 2-section on A
and ω a 2-cosection on A. Then a pair (π, ω) is a PΩ-structure on A if
π is Poisson and both ω and ω′ are dA-closed, where ω′ is a 2-cosection
characterized by ω′♭ = ω♭ ◦ π♯ ◦ ω♭.

Definition 6 ([4]). Let A be a Lie algebroid over M , ω a 2-cosection on A
and N a (1, 1)-tensor field on A. Then a pair (ω,N) is an ΩN-structure on

A if ω♭ ◦ N = N∗ ◦ ω♭, N is Nijenhuis and both ω and ωN are dA-closed,
where ωN is a 2-cosection characterized by ω♭

N = ω♭ ◦N . We can also define

a weak ΩN-structure on A by replacing TN = 0 with ω♭(TN (X,Y )) = 0 for
any X and Y in Γ(A).

These structures are characterized in terms of Dirac pairs on Lie alge-
broids.

Proposition 2.5 ([4]). Let A be a Lie algebroid over M , π a Poisson structure
on A, ω a presymplectic structure on A and N a (1, 1)-tensor field on A.

(i) If a pair (π, ω) is a PΩ-structure onA, then a pair (graphπ♯, graphω♭)

is a Dirac pair on A. Conversely, if (graphπ♯, graphω♭) is a Dirac
pair on A, and if π is nondegenerate, then a pair (π, ω) is a PΩ-
structure on A;

(ii) If a pair (ω,N) is an ΩN-structure on A, and if N∗
L,L′ = N+

(ω,N), where

L := graphω♭, L′ := graphω♭
N and N+

(ω,N) := {(ω♭X,ω♭
NX) |X ∈

A} ⊂ N∗
L,L′ , then a pair (L,L′) is a Dirac pair on A. Conversely,

if (graphω♭, graphω♭
N ) is a Dirac pair on A, then a pair (ω,N) is a

weak ΩN-structure on A.

3. Dirac pairs on Jacobi bialgebroids

In this section, we generalize Dirac pairs on a Lie bialgebroid and intro-
duce Dirac pairs on a Jacobi bialgebroid. We prove that similar properties
for Dirac pairs on a Lie bialgebroid also hold for them on a Jacobi bialge-
broid.

We start with the definition of Dirac pairs on Jacobi bialgebroids. This
is defined as is the case on Lie bialgebroids.

Definition 7. Let ((A,ϕ0), (A
∗, X0)) be a Jacobi bialgebroid over M , L and

L′ Dirac structures on ((A,ϕ0), (A
∗, X0)) (see Definition 2). Then (L,L′) is

a Dirac pair on ((A,ϕ0), (A
∗, X0)) if NL,L′ is a Nijenhuis relation. If (L,L′)

are a Dirac pair on ((A,ϕ0), (A
∗
0, 0)), then (L,L′) is called Dirac pair on

(A,ϕ0).
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Since TNL,L′ = TNL′,L
= TNL′,L , if (L,L

′) is a Dirac pair, then so is (L′, L).

We obtain the following property of Nijenhuis relations on Jacobi bialge-
broids. This is a generalization of Theorem 2.3 in [4].

Lemma 3.1. Let (A,ϕ0) be a Jacobi algebroid. For any π, π′ in Γ(Λ2A),

the Nijenhuis torsion of NL,L′, where L := graphπ♯ and L := graphπ′♯,
satisfies the following:

TNL,L′ ((π
′♯ξ1, π

♯ξ1), (π
′♯ξ2, π

♯ξ2), (ξ, ξ
′, ξ′′))

= [π, π]A,ϕ0(ξ1, ξ2, ξ) + [π′, π′]A,ϕ0(ξ1, ξ2, ξ
′′)− 2[π, π′]A,ϕ0(ξ1, ξ2, ξ

′).

By using (2.1), Lemma 3.1 can be shown exactly as Theorem 2.3 in [4].
The following theorem extends the correspondence between Jacobi and

Lie bialgebroids in Proposition 2.1 to that between Dirac pairs on Jacobi
and Lie bialgebroids. By this theorem, we see that it will be possible to use
the theory of Dirac pairs on Lie bialgebroids in the study of Dirac pairs on
Jacobi bialgebroids. This is one of the main theorems in this paper.

Theorem 3.2. Let ((A,ϕ0), (A
∗, X0)) be a Jacobi bialgebroid over M , πi

a 2-section on A satisfying the Maurer-Cartan type equation and ωi a 2-
cosection on A satisfying the Maurer-Cartan type equation (i = 1, 2). Let(
Ã−

ϕ0
, Ã∗∧

X0

)
be the induced Lie bialgebroid over M×R (see Proposition 2.1).

We set π̃i := e−tπi in Γ(Λ2Ã) and ω̃i := etωi in Γ(Λ2Ã∗), where t is the
standard coordinate in R. Then:

(i) (graph π̃♯
1, graph π̃

♯
2) is a Dirac pair on

(
Ã−

ϕ0
, Ã∗∧

X0

)
if and only if

(graphπ♯
1, graphπ

♯
2) is a Dirac pair on ((A,ϕ0), (A

∗, X0));

(ii) (graph π̃♯
1, graph ω̃

♭
2) is a Dirac pair on

(
Ã−

ϕ0
, Ã∗∧

X0

)
if and only if

(graphπ♯
1, graphω

♭
2) is a Dirac pair on ((A,ϕ0), (A

∗, X0));

(iii) (graph ω̃♭
1, graph ω̃

♭
2) is a Dirac pair on

(
Ã−

ϕ0
, Ã∗∧

X0

)
if and only if

(graphω♭
1, graphω

♭
2) is a Dirac pair on ((A,ϕ0), (A

∗, X0)).

In order to prove Theorem 3.2, we need the following lemmas.

Lemma 3.3. Let ((A,ϕ0), (A
∗, X0)) be a Jacobi bialgebroid over M , π a

2-section on A and ω a 2-cosection on A. Then graph π̃♯ (resp. graph ω̃♭)

is a Dirac structure on
(
Ã−

ϕ0
, Ã∗∧

X0

)
if and only if graphπ♯ (resp. graphω♭)

is a Dirac structure on ((A,ϕ0), (A
∗, X0)).

Proof. Let d̂X0
A∗ be the differential of Ã∗∧

ϕ0
. By long calculations, we see that

[π̃, π̃]̄
ϕ0

A = e−2t[π, π]A,ϕ0 ,(3.1)
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d̂X0
A∗ π̃ = e−2tdA∗,X0π(3.2)

hold on Γ(Ã∗). Therefore we obtain

d̂X0
A∗ π̃ +

1

2
[π̃, π̃]̄

ϕ0

A = e−2t

(
dA∗,X0π +

1

2
[π, π]A,ϕ0

)
(3.3)

on Γ(Ã∗). Since Γ(Ã∗) can be regarded as the set of curves in Γ(A∗), π̃

satisfies the Maurer-Cartan type equation for
(
Ã−

ϕ0
, Ã∗∧

X0

)
if and only if π

satisfies the Maurer-Cartan type equation for ((A,ϕ0), (A
∗, X0)). We can

show the same for ω. □
Lemma 3.4. In the notation of Theorem 3.2, any (1, 1)-tensor field N on

Ã−
ϕ0

independent of t can be regarded as a (1, 1)-tensor field on A in general.

Then N is Nijenhuis on Ã−
ϕ0

if and only if N is Nijenhuis on A.

Proof. We set the Nijenhuis torsion of N on Ã−
ϕ0

and on A by T
Ã−

ϕ0
N and T A

N

respectively. By a straightforward calculation, we have for any X̃ and Ỹ in
Γ(Ã),

T
Ã−

ϕ0
N (X̃, Ỹ ) = T A

N (X̃, Ỹ ).(3.4)

Since X̃ and Ỹ in Γ(Ã) can be regarded as curves in Γ(A), T
Ã−

ϕ0
N = 0 is

equivalent with T A
N = 0. □

Proof of Theorem 3.2. We prove (i). We set Li := graphπ♯
i and L̃i :=

graph π̃♯
i , i = 1, 2. By Lemma 3.1 and the equation (3.1), we compute that

TNL̃1,L̃2
= e−2tTNL1,L2

on NL̃1,L̃2
× NL̃1,L̃2

×
(
N∗

L̃1,L̃2
3 N∗

L̃1,L̃2

)
. Since any

element in L̃i can be regarded as a curve in Li, it is clear that any element
in NL̃1,L̃2

and in N∗
L̃1,L̃2

3N∗
L̃1,L̃2

can also be regarded as a curve in NL1,L2

and in N∗
L1,L2

3N∗
L1,L2

, respectively. Therefore the condition TNL̃1,L̃2
= 0 is

equivalent to the condition TNL1,L2
= 0. This means (i).

Next, we have π̃♯
1 ◦ ω̃♭

2 = π♯
1 ◦ ω♭

2, so that the (1, 1)-tensor field π̃♯
1 ◦ ω̃♭

2

is independent of t. By the definition, (graph π̃♯
1, graph ω̃

♭
2) is a Dirac pair

on
(
Ã−

ϕ0
, Ã∗∧

X0

)
if and only if NL̃1,L̃′

2
is a Nijenhuis relation on Ã−

ϕ0
, where

we set L̃1 := graph π̃♯
1 and L̃′

2 := graph ω̃♭
2. This condition is equivalent

with the condition π♯
1 ◦ ω♭

2 is a Nijenhuis structure on Ã−
ϕ0

since NL̃1,L̃′
2
=

graph(π♯
1 ◦ ω♭

2). Then by Lemma 3.4, this is equivalent with that π♯
1 ◦ ω♭

2 is

a Nijenhuis structure on A. Similarly, (graphπ♯
1, graphω

♭
2) is a Dirac pair
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on ((A,ϕ0), (A
∗, X0)) if and only if π♯

1 ◦ ω♭
2 is a Nijenhuis structure on A.

Therefore we obtain (ii).

Finally we prove (iii). We set L′
i := graphω♭

i and L̃′
i := graph ω̃♭

i . A

pair (X̃, Ỹ ) belongs to NL̃′
1,L̃

′
2
if and only if ω̃♭

1X̃ = ω̃♭
2Ỹ holds by the

definition. By differentiating both sides of ω̃♭
1X̃ = ω̃♭

2Ỹ with respect to

t, we obtain ω̃♭
1

∂X̃

∂t
= ω̃♭

2

∂Ỹ

∂t
since ω̃i = etωi and ω̃♭

1X̃ = ω̃♭
2Ỹ . This

means that a pair

(
∂X̃

∂t
,
∂Ỹ

∂t

)
belongs to NL̃′

1,L̃
′
2
. Therefore by using this

fact and the definition (2.5) of [·, ·̄]ϕ0

A , it follows that TNL̃′
1,L̃

′
2
= TNL′

1,L
′
2
on

NL̃′
1,L̃

′
2
×NL̃′

1,L̃
′
2
×
(
N∗

L̃′
1,L̃

′
2

3 N∗
L̃′
1,L̃

′
2

)
. Similarly to (i), we see that TNL̃′

1,L̃
′
2
= 0

and TNL′
1,L

′
2
= 0 are equivalent. □

Remark. It follows immediately that (graph ω̃♭
1, graph π̃

♯
2) is a Dirac pair on(

Ã−
ϕ0
, Ã∗∧

X0

)
if and only if (graphω♭

1, graphπ
♯
2) is a Dirac pair on ((A,ϕ0),

(A∗, X0)) by (iii) in Theorem 3.2 and the fact that if a pair (L,L′) is a Dirac

pair on
(
Ã−

ϕ0
, Ã∗∧

X0

)
or ((A,ϕ0), (A

∗, X0)), so is (L′, L).

4. Dirac pairs on Jacobi algebroids

In this section, we consider a Dirac pair (L,L′) on a Jacobi algebroid
(A,ϕ0), i.e., a pair consisting of two Dirac structures L and L′ on (A,ϕ0)
such that NL,L′ is a Nijenhuis relation on (A,ϕ0).

4.1. Jacobi and ϕ0-presymplectic pairs on Jacobi algebroids. In this
subsection, we investigate Jacobi and ϕ0-presymplectic pairs, which are de-
fined by using Dirac pairs on (A,ϕ0). We show that these pairs have prop-
erties similar to Poisson and presymplectic pairs on a Lie algebroid. In
addition, we show the relationship between Jacobi and Poisson pairs.

By Example 8, for any Jacobi algebroid (A,ϕ0), a 2-section π in Γ(Λ2A)
is a Jacobi structure on (A,ϕ0) if and only if graphπ♯ is a Dirac structure on
(A,ϕ0). Similarly, a 2-cosection ω in Γ(Λ2A∗) is a ϕ0-presymplectic structure

on (A,ϕ0) if and only if graphω♭ is a Dirac structure on (A,ϕ0). We define
Jacobi and ϕ0-presymplectic pairs as analogy of Poisson and presymplectic
pairs on a Lie algebroid.

Definition 8. Let (A,ϕ0) be a Jacobi algebroid, πi a Jacobi structure on
(A,ϕ0) and ωi a ϕ0-presymplectic structure on (A,ϕ0) (i = 1, 2).
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(i) A pair (π1, π2) is a Jacobi pair if a pair (graphπ♯
1, graphπ

♯
2) is a Dirac

pair on (A,ϕ0). A Jacobi pair (π1, π2) is non-degenerate if both π1
and π2 are non-degenerate;

(ii) A pair (ω1, ω2) is a ϕ0-presymplectic pair if a pair (graphω♭
1, graphω

♭
2)

is a Dirac pair on (A,ϕ0). A ϕ0-presymplectic pair consisting of two
ϕ0-symplectic structures is called a ϕ0-symplectic pair.

It follows immediately from Lemma 3.1 and Definition 8 that a pair
(π1, π2) consisting of compatible Jacobi structures is a Jacobi pair. Con-
versely, if a Jacobi pair (π1, π2) satisfies (2.9), then π1 and π2 are compatible.
In particular, since a non-degenerate Jacobi pair (π1, π2) satisfies (2.9), the
two Jacobi structures π1 and π2 are compatible. It is well known that com-
patible two Jacobi structures themselves are induced by Jacobi-Nijenhuis
structures [13], [2] and so on.

The following proposition is a relationship between ϕ0-symplectic pairs
and non-degenerate Jacobi pairs. The proof is similar to Proposition 2.4
(See [4]).

Proposition 4.1. There exists a one-to-one correspondence between ϕ0-symplectic
pairs and non-degenerate Jacobi pairs.

The following example is analogy of Example 3.5 in [4].

Example 9. Let M := T ∗R2 × R and β be the canonical contact form on
M . In canonical coordinates (x1, x2, y1, y2, z) on M , we can write β =
−
∑

i yidxi + dz. We define Ω, ωH , ωE and ωP by

Ω := (dβ, β);

ωH := (dβH, βH), βH := −y1dx1 + y2dx2 + dz;

ωE := (dβE, βE), βE := −y2dx1 + y1dx2 + dz;

ωP := (dβP, βP), βP := −y2dx1 + dz.

Then (Ω, ωH) and (Ω, ωE) are a (0, 1)-symplectic pairs on (TM ⊕ R, (0, 1))
and (Ω, ωP ) is a (0, 1)-presymplectic pair on (TM ⊕ R, (0, 1)). 2-forms
dβ, dβH, dβE and dβP on T ∗R2 coincide with presymplectic structures in
Example 3.5 in [4].

Now, we show two relationships between Jacobi and Poisson pairs.
If π is Poisson on a Lie algebroid A over M , then (π, 0) is Jacobi on a

Jacobi algebroid (A ⊕ R, (0, 1)) over M . It is well-known that compatible
Poisson structures π1 and π2 on a Lie algebroid A induce compatible Jacobi
structures (π1, 0) and (π2, 0) on a Jacobi algebroid (A ⊕ R, (0, 1)). The
following theorem is a generalization of this relation.
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Theorem 4.2. Let (π1, π2) be a pair of 2-sections on a Lie algebroid A over
M . Then (π1, π2) is a Poisson pair on A if and only if ((π1, 0), (π2, 0)) is a
Jacobi pair on a Jacobi algebroid (A⊕ R, (0, 1)) over M .

Proof. It follows immediately that (ξ, f) belongs to ((π1, 0)
♯)−1(Im (π2, 0)

♯)∩
((π2, 0)

♯)−1(Im (π1, 0)
♯) if and only if ξ belongs to (π♯

1)
−1(Imπ♯

2)∩(π
♯
2)

−1(Imπ♯
1).

For any (ξi, fi) in Γ(A∗) ⊕ C∞(M) and (ξ, f) in ((π1, 0)
♯)−1(Im (π2, 0)

♯) ∩
((π2, 0)

♯)−1(Im (π1, 0)
♯), it follows that

[(π1, 0), (π2, 0)]A⊕R,(0,1)((ξ1, f1), (ξ2, f2), (ξ, f)) = [π1, π2]A(ξ1, ξ2, ξ),

so that the consequence holds by Lemma 3.1. □

The other relation between Jacobi and Poisson pairs is the following the-
orem.

Theorem 4.3. Let (π1, π2) be a pair of 2-sections on a Jacobi algebroid
(A,ϕ0) over M . Then (π1, π2) is a Jacobi pair on (A,ϕ0) if and only if

(π̃1, π̃2) is a Poisson pair on a Lie algebroid Ã−
ϕ0

over M × R, where π̃i :=

e−tπi in Γ(Ã).

Proof. By Lemma 3.3, a 2-section π on A is a Jacobi structure on (A,ϕ0)

if and only if a 2-section π̃ on Ã is a Poisson structure on Ã−
ϕ0
. By the

definitions of Jacobi and Poisson pairs and Theorem 3.2, a pair (π1, π2) is
a Jacobi pair on (A,ϕ0) if and only if a pair (π̃1, π̃2) is a Poisson pair on

Ãϕ̄0
. □

4.2. JΩ- and ΩN-structures. In this subsection, we define JΩ- and ΩN-
structures on Jacobi algebroids, and show a relationship between JΩ- (resp.
ΩN-) structures on Jacobi algebroids and PΩ- (resp. ΩN-) structures on Lie
algebroids. By using the relationship, we show that JΩ- and ΩN-structures
on Jacobi algebroids can be characterized in terms of Dirac pairs.

We start with the definitions of JΩ- and ΩN-structures on a Jacobi alge-
broid.

Definition 9. Let (A,ϕ0) be a Jacobi algebroid over M , π a 2-section on A,
ω a 2-cosection on A and N a (1, 1)-tensor field on A. In the definitions of
PΩ- and ΩN-structures on a Lie algebroid (Definition 5 and 6), by replacing
the conditions “Poisson” and “dA-closed” with “Jacobi” and “dA,ϕ0-closed”,
respectively, we obtain the definitions of a JΩ-structure (π, ω) and an (weak)
ΩN-structure (ω,N) on a Jacobi algebroid.

It is clear that the definitions of JΩ- and (weak) ΩN-structures on a
Jacobi algebroid (A,ϕ0) coincide with the definitions of PΩ- and (weak)
ΩN-structures on a Lie algebroid A when ϕ0 = 0.
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First, the following proposition means that there is a one-to-one corre-
spondence between JΩ-structures on a Jacobi algebroid (A,ϕ0) and PΩ-

structures on a Lie algebroid Ã−
ϕ0
.

Proposition 4.4. Let (A,ϕ0) be a Jacobi algebroid overM . Then a pair (π, ω)
is a JΩ-structure on (A,ϕ0) if and only if a pair (π̃, ω̃) is a PΩ-structure on

Ã−
ϕ0
, where π̃ = e−tπ, ω̃ = etω.

Proof. By Lemma 3.3, a 2-section π on A is a Jacobi structure on (A,ϕ0)

if and only if a 2-section π̃ on Ã is a Poisson structure on Ã−
ϕ0
, and a 2-

cosection ω on A is a ϕ0-presymplectic structure on (A,ϕ0) if and only if a

2-cosection ω̃ on Ã is a presymplectic structure on Ã−
ϕ0
. Setting (̃ω′) := etω′

and (ω̃)′ := ω̃♭ ◦ π̃♯ ◦ ω̃♭, we obtain (̃ω′) = (ω̃)′ since π̃♯ ◦ ω̃♭ = π♯ ◦ ω♭.

Therefore, since d̄ϕ0

A (ω̃)′ = d̄ϕ0

A (̃ω′) = etdA,ϕ0ω
′ by Lemma 3.3, it follows

that ω′ is dA,ϕ0-closed if and only if (ω̃)′ is d̄ϕ0

A -closed. □

Proposition 4.5. Let (A,ϕ0) be a Jacobi algebroid over M . Then a pair
(ω,N) is an ΩN- (resp. a weak ΩN-)structure on (A,ϕ0) if and only if a pair

(ω̃, N) is an ΩN- (resp. a weak ΩN-)structure on Ã−
ϕ0
, where ω̃ = etω and a

(1, 1)-tensor field N on A is regarded as a (1, 1)-tensor field independent of

t on Ã−
ϕ0
.

Proof. By Lemma 3.3, a 2-cosection ω on A is a ϕ0-presymplectic structure
on (A,ϕ0) if and only if a 2-cosection ω̃ on Ã is a presymplectic structure

on Ã−
ϕ0
. We have ω̃♭ ◦ N = etω♭ ◦ N and N∗ ◦ ω̃♭ = etN∗ ◦ ω♭, so that

the commutativity of ω̃ and N is equivalent with that of ω and N . Since

(̃ωN ) = (ω̃)N holds, where (̃ωN ) := etωN , ωN is dA,ϕ0-closed if and only if

(ω̃)N is d̄ϕ0

A -closed by Lemma 3.3. Finally, by Lemma 3.4 (resp. the equation
(3.4)), the consequence holds. □

The following theorem is characterizations of JΩ- and (weak) ΩN-structures
on a Jacobi algebroid (A,ϕ0) by Dirac pairs, and a generalization of Propo-
sition 2.5.

Theorem 4.6. Let (A,ϕ0) be a Jacobi algebroid over M , π a Jacobi struc-
ture on (A,ϕ0), ω a ϕ0-presymplectic structure on (A,ϕ0) and N a (1, 1)-
tensor field on A. Then

(i) If a pair (π, ω) is a JΩ-structure on (A,ϕ0), then a pair (graphπ♯,

graphω♭) is a Dirac pair on (A,ϕ0). Conversely, if (graphπ♯, graphω♭)
is a Dirac pair on (A,ϕ0), and if π is non-degenerate, then a pair
(π, ω) is a JΩ-structure on (A,ϕ0).
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(ii) If a pair (ω,N) is an ΩN-structure on (A,ϕ0), and if N∗
L,L′ = N+

(ω,N),

where L := graphω♭, L′ := graphω♭
N and N+

(ω,N) := {(ω♭X,ω♭
NX) |X ∈

A} ⊂ N∗
L,L′, then a pair (L,L′) is a Dirac pair on (A,ϕ0). Con-

versely, if (graphω♭, graphω♭
N ) is a Dirac pair on (A,ϕ0), then a

pair (ω,N) is a weak ΩN-structure on (A,ϕ0).

Proof. (i) holds by Proposition 4.4, (i) in Proposition 2.5 and (ii) in Theorem

3.2. Next, prove (ii). We set L̃ := graph ω̃♭, L̃′ := graph ω̃♭
N . We notice that

relations N+
(ω̃,N),NL̃,L̃′ and N∗

L̃,L̃′ can be regarded as the sets of all curves

in N+
(ω,N),NL,L′ and N∗

L,L′ , respectively. Then we obtain (ii) by Proposition

4.5, (ii) in Proposition 2.5 and (iii) in Theorem 3.2. □

Remark. Theorem 4.6 can also be proved directly by long calculations. How-
ever, as above, we can prove it more easily by using Theorem 3.2, Proposition
4.4, Proposition 4.5 and the theory of Dirac pairs on Lie algebroids.

Example 10. In Example 9, we denote the opposite of the non-degenerate Ja-
cobi structure corresponding with a (0, 1)-symplectic structure Ω on (TM ⊕
R, (0, 1)) by Π, i.e., Π is a 2-vector field characterized by Π♯ = (Ω♭)−1. Then
it follows from Theorem 4.6 that three pairs (Π, ωH), (Π, ωE) and (Π, ωP)
are JΩ-structures on (TM ⊕R, (0, 1)) and that three pairs (Ω, NH), (Ω, NE)

and (Ω, NP) are ΩN-structures on (TM ⊕ R, (0, 1)), where NX := Π♯ ◦ ω♭
X

for X = H,E,P.
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