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TRAVELING FRONT SOLUTIONS FOR PERTURBED
REACTION-DIFFUSION EQUATIONS

WAH WAH AND MASAHARU TANIGUCHI

ABSTRACT. Traveling front solutions have been studied for reaction-
diffusion equations with various kinds of nonlinear terms. One of the
interesting subjects is the existence and non-existence of them. In this
paper, we prove that, if a traveling front solution exists for a reaction-
diffusion equation with a nonlinear term, it also exists for a reaction-
diffusion equation with a perturbed nonlinear term. In other words, a
traveling front is robust under perturbation on a nonlinear term.

1. INTRODUCTION

In this paper we study a reaction-diffusion equation

ou 0>

(1) E=@+f(u), reR,t>0,
(2) u(z,0) = uo(z), z€R,

where ug is a given bounded and uniformly continuous function from R to
R. Now f is of class C! in an open interval including [0,1] and satisfies

f(0) =0, f(1) =0 and
(3) F(1) <o.

Equation (1) with such a nonlinear term f appears in many models, and
it has often a traveling front solution. See [1, 2, 7, 8, 21, 16, 20] for a
general theory of traveling front solutions. Equation (1) is called bistable or
multistable if we assume f’(0) < 0 in addition. If f(u) = —u(u—a)(u—1) for
a € (0,1), (1) is called the Nagumo equation or the Allen-Cahn equation.
See [15, 1, 2, 5, 7, 19, 6, 18, 20] for traveling fronts of (1) for bistable or
multistable nonlinear terms. Traveling fronts of (1) for the Fisher-KPP
equations have been studied. A typical nonlinear term is f(u) = u(1l — u).
See [9, 12, 14, 4, 21] for traveling fronts of (1) for the Fisher—-KPP equations.
For traveling fronts of (1) for combustion models, see [10, 11, 3, 17] for
instance. For traveling fronts of (1) for degenerate monostable nonlinear
terms, see [13, 22, 23].
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If U € C?(R) and c € R satisfy

(4) { U'(y)+cU'(y)+ f(U@y) =0, yeR,
U(-o0) =1, U(oo) =0,

u(zx,t) = U(x — ct) becomes a traveling front solution to (1). We call (4) the
profile equation of (¢, U), if it exists. In this case we necessarily have

Uy) <0, yeR

by using [7, Lemma 2.1]. Assume that fg is of class C! in an open interval
including [0, 1] with fo(0) =0, fo(1) = 0 and

(5) fo(1) <0,

and assume that there exist Uy € C%(R) and ¢y € R that satisfy

(6) Ug (y) + coUp(y) + fo(Uo(y)) =0, y €R,
Uo(—OO) = 1, Uo(OO) = 0.

Then we necessarily have
(7) Up(y) <0, yeR
.

Assume that f — fo € C}(0,1]. Here C3(0,1] is the set of functions in
C1(0,1] whose supports lie in (0,1] . The following is the main assertion in
this paper.

Theorem 1. Assume that there exists (co,Up) that satisfies (6). Assume
that f — fo € C5(0,1] and let ||f — follcijo) be small enough. Then there
exists (c,U) that satisfies (4). If ||f — follcrjo,1) goes to zero, ¢ converges to
co and ||[U — Up|lc2(r) goes to zero.

We write the proof of Theorem 1 in Section 2. See Figure 1 in Section 2 for
an idea of the proof. Theorem 1 asserts that a traveling front is robust under
perturbation on a nonlinear term by assuming (5). If we assume f;(0) <0
in addition, Theorem 1 shows that traveling fronts for bistable or multi-
stable nonlinear terms are robust under perturbations. See Corollary 10 in
Section 3 for this argument.

For the robustness of traveling fronts, one can see [7, 8, 1, 2, 19] for in-
stance. However, the existence of (¢,U) to (4) is an open problem as far as
the authors know if one assumes the existence of (cg, Up) to (6) without as-
suming (5) and just assumes that || f — fol[c1(0,1] is small enough. Theorem 1
might be a new step to attack this general robustness problem of traveling
fronts.



TRAVELING FRONT SOLUTIONS 127

2. PROOF OF THEOREM 1

In view of (4), we search (c,U) that satisfies

(8) f_y (g’> :/ (—CU/(i/f(U)> ,  yeER,
U'(y) <0, yeR,

U(—o0) =1, U(o0)=0.

Equations (4) and (8) are equivalent. Using (6), we have (co,Up) that sat-
isfies

d (U U;
BT = ) S R?
(9) dy (U(/)) (_COU(/) - fO(UO)) Y
Up(y) <0,  yeR,

Up(—o0) =1, Up(oo) =0.
We study the following ordinary differential equation

o O
P(z) = o) 0<z<1,

p(z) <0, 0<z<1,
p(0) =0, p(1)=0.

We write the solution of (10) as p(z;e¢, f) if it exists. There exists a solution
(c,U) to (8) if and only if p(z;¢, f) exists. Indeed, if (¢, U) satisfies (8), we
define p by p(U(y)) = U'(y) for y € R, and have (10). If p(z; ¢, f) satisfies
(10), we define

(10)

U
dz

11 = [ == 0<z<l,

(11) Y /ap(Z)

and have (8). Here a is an arbitrarily given number. Similarly, there exists
a solution (cg,Up) to (9) if and only if p(z;co, fo) exists. By the standing
assumption, we have p(z; o, fo) that satisfies

_ _ fol®)
pZ(Z7CO7f0) = —Cp p(Z;Co,fo)7

p(z;c0, fo) <0, 0<z<1,
p(0;co, fo) =0, p(1;co, fo) = 0.

Now we choose ag € (0,1) such that we have

fo(u) >0 if u € [ap,1).

0<z<1,
(12)

Also we choose a € (0,1) such that we have

f(u) >0 if wela,l).
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Now we can have |a — ap| — 0 as |[f — follc1j0,1) — 0. We set

1
(13) a, = —|—2a0‘

It suffices to assume that || f — fol/c1[p,1] is small enough and we always have
a < Q.

Now we use the following assertion.

Lemma 2 ([20]). For every s € R there exists py(z;s, f) defined for z €
[, 1], such that one has

f(z)
14 py), (238, f) = —s — ————, z € (a, 1),
(14 (o). (i) = —s = L (o 1)
(15) p+(2’;8,f) <07 zZ € [Oé,l),
(16) p+(1,8,f) :Oa

—s+ /82 —4f'(1
(1) (1), (15, f) = L
If s1 < s9, one has
p—l—(Z;Sl;f) <p+(23527f)7 z € [Oé, 1)

Proof. This assertion follows from [20, Theorem 1.1] and its proof. ]

Since f — fo € C§(0,1], we can choose z, € (0,1) with
(18) f(z) = fo(2) it 0<z2<z,.

Let s € R be arbitrarily given and let p,(z;s, f) be given by Lemma 2.
We choose M > 1 large enough such that we have

£l o)
M

(19) Is| + < M.

In Lemma 2, p,(z;s, f) is defined only on [a,1]. We extend p,(z;s, f)
for all possible z, say z € ((o(s, f),1). Then we have

Co(s, f) < a < as.
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Since f is defined in an open interval including [0, 1], (o(s, f) can be a
negative value. Now we have
f(z)

(20) (p+)z (258, f) = —s— m>

p-l—(z;saf) < 07 z € (C0(87f))1)7
p+(1;37f) :Ov

(p+)z (13 S, f) =

Now we assert the following lemma.

zZ € (CO(S) f)v 1)7

—s+ /82 —4f'(1)

0.
5 >

Lemma 3. Let s € R be arbitrarily given and let M > 1 satisfy (19). Let
pi(z;s, f) be given by Lemma 2 and one extends py(z;s, f) for all possible
z, say z € (Co(s, f),1). Then one has

(21) 0< _p+(Z;87f) <2M7 CO(‘S?f) <z<l
One has
p+(07 Saf) < 07 CO(S)f) < 0)
or one has
(22) CO(‘S’f) S [0,0é), p—l—(CO(Saf);Saf) = 0.

Proof. Assume that there exists 79 € (0,1) with

—p+(no; s, f) = 2M.
Then we can define n; € (19, 1] by

m =sup{n € (no,1)| —pi(2;s,f) > M for all z € [n,n]}.

Using py(1;s, f) = 0, we have 0 < 19 < 11 < 1. Using (19) and (20), we
obtain

- p+(771; S, f)

1
— —p+(770§ S, f) - /0 (p+)z (0771 + (1 - 9)770’ Sy f) de (771 - 770)

>9M — M (g — 10) > M.

This contradicts the definition of 7;. Now we obtain (21).

If Co(s,f) < 0, we have p,(0;s,f) < 0. It suffices to prove (22) by
assuming (o(s, f) > 0. Then necessarily we have (y(s, f) € [0,a). Assume
that (22) does not hold true. Then we have

B = limsup (—p+(2;s, f)) € (0,2M].
Z—>C0(Svf)
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Using (20), we obtain

(p+), (Cos, fis, f) = —s+ %

Since the right-hand side is bounded, it is bounded on a neighborhood of

(CO(‘S? f)a _6) and we can extend p+(Z; S, f) for z € (CO(‘S? f) - 57 CO(Sa f))
with some 6 > 0 that is small enough. This contradicts the definition of

Co(s, f). Thus we obtain (22) and complete the proof. O

Now we have

Co(cos fo) = 0,
(23) p+(Z;Co,f0) :p(Z;CO7f0)7 0<z<1.

Now we assert the following proposition.

Proposition 4. Let s € R be arbitrarily given. Then one has

p+(z58, f) — p+(2; co, fo)

I R (O ey (IO DN B f(¢) y
[ (o i) p( | st d<>d

for Co(s, f) < z < 1.

Proof. We put
’(U(Z) :er(Z, Saf) —er(Z;C(),f())

£(2) fo(2)
pr 5. f) | pr(zco, fo)

and have

w'(z) = —s+co —

for (o(s, f) < z < 1. Now we have
f(z) n fo(z) = f(2)p+(z;co, fo) + fo(2)p+ (28, f)

p+(Z,S,f) p-f—(Z;COafO) p-l—(’z;S:f)p-f—(Z;COafO)

and

— f(2)p+(z; o, fo) + fo(2)p+ (28, f)
=— [(2) (p+(z5c0, fo) =P+ (235, f)) — f(2)p+ (258, f) + fo(2)p+ (258, f)
=f(z)w(z) = (f(2) = fo(2)) P+ (255, f).
Then we obtain
w'(z) — f(z)
p+ (258, f)p+(z; co, fo)

f(z) = fo(2)

w(z) = =steo - p+(2; co, fo)
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for (o(s, f) < z < 1. Then we have

B <“’(Z) X (/1 p+(C;s,f];z(9?(<;CO,fo) dc))

- (w/(z) pi(zs, fj;z(ﬂi)(Z; co, fo)w(z)>

P </1 (G5, f];z(??(C; cor o) dc)

- (‘3 e %) P (/1 P+ (Gis, fJ)Cz(a?(c; 0 fo) dg) |

Let ¢ € (z,1) be arbitrarily given. Integrating the both sides of the equality
stated above over (z,0'), we have

~wiz) e </z1129+(§; s, fjgzgi)(C; o, Jo) dg)
oo ([, e e )

" /:l (S mer Zﬁl_cf“ﬁif) o (/1 P (G, f];;i)(C; 0, o) dc) “

for (o(s, f) < z < 0. Now we find

o (7 £(Q)
24wl = w@)ew ( / P-(C: 5, Np+ (G o, fo) dC)
o £(2) = fo(2))
+/z (S_CO+ P+ (25 co, fo) >

(7 f(©) ,
" p( / P-(G: 5, N)p+ (G o, fo) dC) o

for (o(s, f) < z < @'. Using

f(¢)>0 if ¢ € (a1,
p+(C;S,f) < 07 p+(C;COafO) < 07 CO(Saf) < C < 17

we have

. , B o f(¢) _
g’lgllw(e)e}(p( /z p+(¢s s, f)p+(Cs co, fo) o) =0
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and

- ”G_%+ﬂw—hwv

=1/, p+(2'5 co, fo)

/

NG /(9 y
e ( fi p+(C;S,f)p+(Cﬂm,fb)d<> ‘
M FE =R
_/z ( o p+ (2’5 co, fo) )

: f(©) /
X exp —/ d¢ | dz
< z p+(C§5;f)p+(C;CO7fO)
for (o(s, f) < z < 1. Passing to the limit of 8/ — 1 in (24), we obtain

w(z) =

! f(Z") = fo(2') ‘ f(C) /
/Z (S St p+(2'; co, fo) ) P (/z P+ (¢ 8, )4 (¢ co, fo) dC) 4

for (o(s, f) < z < 1. This completes the proof. (]

Now we take €9 € (0,1 — a) small enough such that we have

(25)  (pa). (o, fo) > 5 (04). (Lo, fo) >0 if 2 € (1—2,1)

We show that |pi(au;s, f) — py(as;co, fo)| converges to 0 as |s — cg| +
|f = follc1jo,1) goes to 0 in the following lemma.

Lemma 5. Let . € (0,1) be as in (138) and let g9 € (0,1 — ) satisfy (25).
Then one has

sup [py(z;s, f) — p+(z;co, fo)]

2€[aux,1]
(1 —e0— a)llf — follcpo
minz’e[a*,l—so] (—p+(2';¢o, fo))
eollf = follerpo
minC'G[l—So,l] !(p+)z(C’; €0, fO)‘ .

<(1— ay)|s — co| +

Proof. We have
f(z) >0 if 2z € [ay,1),
pi(z;s,f) <0 if 2z € [au, 1),
py(2z;¢c0, fo) <O if z€(0,1).
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Then, using Proposition 4, we have

f(@) = fo?)
p—!—(zl; Co, fO)

1
max Ip (215 )~ (o fo) < [ (}s——co++
Ol

z€[ax,1]
) dz/

f(2') — fo(2)
p+(2'; co, fo)

Now we find

(26) Z:OS_%%%f@ﬂ—h@@

D+ (Z/; o, fO)

1

S(l—a*)|s—co|—|—/

Qlx

‘ dz.

If 2/ € (a, 1 — g, we have

f(2') — fo(2')
p+(2'; co, fo)

1f = follepo,

N minz’e[a*,l—eo} (_p-i-(zl; €0, fO))

and thus
/1—50 f(Z/) _ fO(Z/)
ar | P+(#5 0, fo)
If 2/ € (1 —ep,1), we have

f(Z) = folz)) _ (&) = fo(¢)

(1 —e0—ax)llf = follep,

d < — )
MmN ela,,1—¢0] (—p+(z’; o, fO))

p+(2'5c0, fo)  (p4)=(C'5 co, fo)
for some ¢’ € (2/,1). Thus, if 2’ € (1 — &g, 1), we find
f(Z') = fol) 1f = follerpo 1]
p+('zl; Co, fO) n min(’é[l—so,l] |(p+)Z(C/7 €o, f0)|

and
/1 f() = fol&)| s eollf — follerjon
; J < — Tyl
1—¢g p+(Z ; €O, fO) MIN ¢ e[1—gg,1] ’(p+)z(<- ; €O, fO)‘
Then we obtain
[ L0 o
s p-i-(z;COafO)
1—e0— au — —
. (A—eo—a)llf = follepy N eollf — follero

N minz’e[a*,l—so] (_p+(zl; €o, fO)) ming/e[l—so,l] ’(p—k)z(g/; Co, f0)| .

Combining this inequality and (26), we complete the proof.

133

) dz’.

0

Lemma 5 asserts that |p,(z;s,f) — pi(z;co, fo)| converges to 0 on an
interval [au., 1] as |s — co| + [[f — follc1jo,1) goes to 0. Does this convergence
hold true for every compact interval in (0, 1]? To answer this question, we

assert the following lemma.
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Lemma 6. Let s € R. Let z, € (0,1) satisfy (18) and let z; € (0, z4) be
arbitrarily given. As|s—co|+||f — follc1jo,1] goes to zero, Co(s, f) converges
to zero and

sup |p+(z; s, f) — p+(2; co, fo)
z€Jz1,1]

Converges to zero.

Proof. We will prove (o(s, f) < 21 if [s —co|+ |.f — follc1[0,1] is small enough.
Let (co, Up) satisfy (9). There exists —oo < yp < y1 < oo such that we have

z
Uo(yo) =, Uo(y1) = 21
For s € R, let V = V(y) satisfy
d [V v’

with
V(o) = ey V'(yo) = pi(ous s, f).
Now we define

o= (i) - () -ei) veR
Then we have

d w1\ w2
dy (wz) - (—sV’ + Uy — f(V) + fo(Uo)) A

Now we have
FV) = F(U) = [f (OV + (1 — O)Up)[=) = / OV +(1—0)Us) d6 (V — )

for y € R. Now we define

/fev LA 0Ub(y) s, yeR

A(y) = (h(y) 31) ) y € R,
()——( 0 ) cR
W=7\ (s — c)U(y) + F(Uo()) — folUo(y))) > Y&

Now we have

sup[A(y)| < /1452 + /20,
yeR
Here

T2

|Al = sup

2, ,.2__
zit+r5=1
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for a 2 x 2 real matrix A. Then, we obtain

w'(y) + Aly)w(y) =g(y), yeR

and

w(y) = w(yo) exp (— /y: A(y’)dy’> + /y: exp (— /yy A(y") dy”) 9(y') dy’

for y € R. Now we have

sup |g(y)| < |s — co| max |Ug(n)| + | f = follcjo,y-
yER neR

Thus, as |s — co| + [[f — follcjo,1] goes to zero,

max |w(y)|
Y€ [yo,y1]

converges to zero. Taking |s — co| + || f — follc[o,1] small enough, we have
<1

wig)| <2

1 . ,
max |w < — min — .
Y€ [yo,y1] | (y)| 2 y€[yo,y1] ( O(y)>

We define p(-;s, f) by
p(V()is, f)=V'(y), w<y<u.

Then we have

Viy) < —+ 1 —z1
and
f(2) 3
3 S, = TS T T\ n < S 9
Peleis ) = =8 = e ) S E =
3
p(Z;S,f)<0, —21 < 2 < O,

4
plow; s, ) = pi(an; s, f) <0,
This p(z;s, f) is an extension of p,(z;s, f) given by Lemma 2. Thus we
obtain (y(s, f) < z1. Combining Lemma 5 and the argument stated above,
we have

S[upl] P+ (258, f) — p4(25c0, fo)| = O
z€|z1,

as |s — col + ||f — follc1po,1) goes to zero. This completes the proof. O

Lemma 2 asserts that p,(z;s, f) is strictly monotone increasing in s on
[, 1). In the following lemma, we assert that p, (z; s, f) is strictly monotone
increasing in s on the whole interval (0, 1).



136 WAH WAH AND M. TANIGUCHI

Lemma 7. Let —oo < 81 < 89 < 00 be arbitrarily given. Let zypy € (0,1)
be arbitrarily given. Assume that py (Zinit; S1, f) and py (Zmit; S2, f) exist and
satisfy

P+ (Zinit; 515 f) < P+ (Ziits 52, f) < 0.
Then one has
Co(s1, f) < Co(s2, f) < Zinit

and

(2151, f) < py(zis2,f) <0 for all 2z € (Co(s2, f); Zinit)-

Proof. We put
q(2) = pi (2382, f) = p(z381, ), max{Co(s2, ), Co(s1, [)} < 2 < Zinit-

Then we have
&), fE)
pi(z382, ) pi(z3s1,f)
maX{C0(327f)7<0(517 f)} < 2 < Zinit,

¢ (2) = —(s2 = 51) —

q(#init) > 0.

Consequently we get

% (CI(Z) P (_ /:ini;f:r(@ 81,;)(]2(0 s2, ) d{))
=~ (2= s)exp <_/z p+(C;81,;)(22(C;82,f) d<> <!

max{(o(s2, f), Co(s1, )} < 2 < Zinit-

for

Then we find

o Finit f(<) )
we)e p( L sencan ) >0
max{(o(s2, f), Co(s1, )} < 2 < Zinit-

Thus we obtain
q(z) >0, max{(o(s2, f), Co(s1, f)} < 2 < Zinit.
Then, using q(zinit) > 0, we obtain

q(z) = py (2582, f) — py(z5 81, f) > 0, max{(o(s2; f),Co(s1, f)} < 2 < Zinit-
Now we obtain (y(s1, f) < (o(s2, f). This completes the proof. H
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Let 69 € (0,1) be arbitrarily given. We have (y(co + do, fo) € [0,1) with
p+(Co(co + do, fo); co + o, fo) = 0,
p+(2;co — do, fo) < p4(2;5c0, fo) < p4(25¢0 + o, fo) <O,
z € (Co(co + o, fo), 1),
p+(2;00_507f0) <07 S (071)
Taking dp € (0,1) small enough and applying Lemma 6, we have
0 < Co(co + do, fo) < 2«

Taking dp € (0,1) smaller if necessary and taking |[f — follc1[o,1] small
enough, we also have

(28) 0 < Coleo + do, f) < 2
by Lemma 6.

Now we have

P4 (255¢0 = b0, fo) < Py (245 €0, fo) < py(245 co + do, fo) < 0.

Taking || f — follc1[o,1) small enough and applying Lemma 6, we have
p+('z*7 co — 607 f) < p_|_(Z*, Co, fO) < p+(2’*, co + 507 f) < 0.

Recalling (18) and applying Lemma 7, we obtain
(29) p+(Z;CO_50,f) <p+(Z;C0,f0), z € (O,Z*],

p-i-(za Co — 507 f) < p+(Z7 Co, fO) < p-f—(z; co + 507 f) < 07

z € (Colco + Do, f), 24]
and
p+(Co(co + o, f); co — do, ) < p+(Co(co + do, f); cos fo)
< p+(Colco + do, f); co + do, f) = 0.
Using (29) and p, (0; co, fo) = 0, we have
Co(co —60) <0

f(2)

(30)  (p4), (z5c0 — b0, f) = —(co — do) — o0 =0 f)

(31) p+(2;00—50,f)<0, O<Z<17
(32) ps(Lico —do, f) =0.

0<z<1,

To prove Theorem 1 we have ( = p,(z;co + do, f) in the (z,() plane
in Figure 1. We study ¢ = p,(2z;¢co0 — do, f) in the following lemma and
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will show the existence of ( = p,(z;¢, f) with p,(0;¢, f) = 0 for some
cE [CO — o, co + 50]

Lemma 8. Assume |s — co| <1 and
(33) If = follerpy < 1.
Take M > 1 large enough such that one has (19) for all s € [co — 1,¢o + 1]

and for all f with (33). Assume that |s—co|+ || f — follc1(o,1] 45 small enough
such that one has (28). Then there exists vy € [0,2M] such that one has

v = lim (—p4(2;5¢c0 — do, f)) -
z—0

Proof. We define W = W (y) by

i (vvvv> - <—<co s f<W>) el

W(0) = ax, W' (0)=rp,(as;co— o, [f)<O.
Now we have
W'(y) = p(W(y);co— o, f),  0<y< oo
Using (29), p4(0;co, fo) = 0 and Lemma 3, we have one of the following
(i) or (ii).
(i) One has
W'(y) <0,  yel0,00)

: W(y)\ _ (0
P (W'(y)> = <0) '
(ii) There exists yp € (0, 00) such that one has
W(yo) =0, W(yo) < 0.
In Case (i), we can extend p, (z;co — dg, f) by

p+(W(y);co —do, f) = W'(y),  y€[0,00)

and

and obtain
v = lim (—p4(z;¢0 — 6o, f)) = 0.

z—0
In Case (ii), we can extend p, (z;co — do, f) by

p+(W(y);co —do, f) =W'(y),  y€[0,)

and obtain
v = lim (—py(25¢0 — do, f)) = =W'(yo) € (0,2M].

z—0

This completes the proof. O
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0
A
\ =pZ,6+, , f)

(=p(z,G-9,, f)

speed: i ncreases

FIGURE 1. Search ¢ € [cyg — b0, co + 60| with p+(0;¢, f) = 0.

Now we are ready to prove the main theorem.

Proof of Theorem 1. By the assumption we have (28). By the definition of
Co(co + do, f) € [0, z+), we have

p-i—(CO(CO + 607 f)7 co + 607 f) = 0.
p+(z;5¢0 + o, f) <0, Colco+ 60, f) < 2z < 1.

By Lemma 8, we have
ll_I)I(l)p+<Z;CQ — 0, f) = —7 € (—00,0].
Recalling (18) and applying Lemma 7, we obtain ¢ € [cg — dp, co + dp] with
hmp+(z, ¢, f) = 07
z—0
pi(z;e, f) <O, 0<z<l1.

See Figure 1. Thus p,(z;¢, f) satisfies (10). Defining U by (11), we find
that (c,U) satisfies the profile equation (4). As [[f — follc1jo,1) goes to zero,
we can take §g € (0,1) arbitrarily small. Then ¢ converges to ¢g. From (11)
and Lemma 6, ||U —Up | c(w) converges to zero as || f — follc1(0,1] goes to zero.
By

U'ly) =p+(U(y)ss, f), yeR
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and Lemma 6, [|[U — Up||c1(r) converges to zero. Then ||[U — Up|c2(r) con-
verges to zero as ||f — follc1jo,1) goes to zero. This completes the proof. [

3. AUXILIARY RESULTS
In this section, we assume

(34) fo(0) <0

instead of (5). We assume that fj is of class C'! in an open interval including
[0,1] with fp(0) = 0, fo(1) = 0 and (34), and assume that there exist
Up € C%(R) and co € R that satisfy (6). We define

go(u) = —fo(1 —u)
in an open interval including [0, 1]. Then we have

90(0) =0, go(1) =0, gp(1)<O0.
Defining

we have

Vo' (y) + soVy(y) + 90(Vo(y)) =0,  y€R,
Vo(y) <0,  yeR,
W)(—OO) =1, Vo(oo) = 0.

Let C}[0,1) be the set of functions in C'[0, 1) whose supports lie in [0,1).

Corollary 9. Let fy be of class C' in an open interval including [0, 1] with

Assume that there exists (co,Up) that satisfies (6). Assume that f — fo €
C5l0,1) and let ||f — follcrpa) be small enough. Then there exists (c,U)
that satisfies (4). If ||f — follc1p,1) goes to zero, ¢ converges to co and
|U — Uollc2r) goes to zero.

Proof. Combining Theorem 1 and the argument stated above, we have this
corollary. 0

Now we consider the existence of a traveling front to (1) for a perturbed
bistable or multistable nonlinear term f.
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Corollary 10. Let fq be of class C in an open interval including [0, 1] with
fo(0) =0, fo(1) =0, fi(0) < 0 and fj(1) < 0. Assume that there exists
(co, Up) that satisfies (6). Assume that f— fo € C1[0,1] and let 1.f = follerjo,
be small enough. Then there exists (c,U) that satisfies (4). If || f — follc1jo
goes to zero, ¢ converges to co and ||U — Upl|c2w) goes to zero.

Proof. We have
f(u) = fo(u) = h_(u) + hy(u),

in an open interval including [0, 1] with h, € C}(0,1] and h_ € C}[0,1). As
If = follorpp] goes to zero, we can take hy € Cj(0,1] and h_ € Cj[0,1)
such that [|hy ||c1jo1] and [[h—||c1jo,1] o to zero. First we apply Theorem 1
to fo(u) + hy(u) and we obtain a solution to (4) for fo(u) 4+ hy(u). Then,
we apply Corollary 9 to fo(u) + hy(u) + h_(u) and we obtain a solution to
(4) for f(u) = fo(u) + hy(u) + h_(u). This completes the proof. O

Corollary 10 asserts that a traveling front to (1) for a perturbed bistable
or multistable nonlinear term is robust under perturbation in C1[0, 1].
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