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A CHARACTERIZATION OF THE CLASS OF HARADA
RINGS

KazuTosHI KOIKE

ABSTRACT. There are many characterizations of Harada rings. In this
paper, we characterize right co-Harada rings by giving a characterization
of the class of basic right co-Harada rings.

1. INTRODUCTION

As is well-known, there are many characterizations of right co-Harada
rings (equivalently, left Harada rings). The main purpose of this paper is to
give a characterization of the class of basic right co-Harada rings.

Section 2 is the main part of this paper. We shall characterize the class
of basic right co-Harada rings as a class of rings that is closed under certain
operations (Theorem 2.1). Oshiro already determined the structure of right
co-Harada rings as upper staircase factor rings of block extensions of QF
rings (see, e.g. [3, Theorems 4.2.3 and 4.3.5]). Though the operations of
Theorem 2.1 are special cases of the result, the theorem allows us to study
and construct right co-Harada rings step by step and states that the opera-
tions are essential for right co-Harada rings. We also show that certain factor
rings of right co-Harada rings are right co-Harada rings (Theorems 2.13, 2.14
and 2.16).

In Section 3 we show the uniqueness of QF rings associated with right
co-Harada rings (Theorem 3.5). The result provides another description of
the frame QF subrings of right co-Harada rings in the sense of Baba-Oshiro
3].

In Section 4 we illustrate the main result with some examples of right
co-Harada rings represented as factor algebras of path algebras over a field.
For this, we describe the quiver and the relations of the algebra R., a certain
extension of R, for an algebra R over a field and a primitive idempotent e
of R.

Throughout this paper, all rings have identity and all modules are unitary.
Let R be a semiperfect ring. We denote by pi(R) a complete set of orthogonal
primitive idempotents of R. For a right R-module M, the radical, the socle
and the top of M (i.e., the factor module by its radical) are denoted by
J(M), S(M) and T(M), respectively. The symbol S;(M) denotes the i-th
socle of M for+=10,1,2,....
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We first recall that a right artinian ring R is called a right co-Harada
ring in case there exists a complete set of orthogonal primitive idempotents
{eij |i=1,2,...,m,j =1,2,...,n(i)} such that

(i) e;1RpR is injective for each i = 1,2,...,m;

(ii) ejj+1R =2 ej;R or e j1+1R = J(ej;R) for each i = 1,2,...,m, j =

1,2,...,n(i) — 1.

Such a complete set of orthogonal primitive idempotents is called a well-
indexed set of the right co-Harada ring R. As is well-known, serial rings and
QF rings are right co-Harada rings. It should be noted that a ring is a right
co-Harada ring if and only if it is a left Harada ring. Thus the terminology
“left Harada rings” are mainly used recently. However, in this paper we
shall use the terminology “right co-Harada rings” to emphasize properties

of right co-Harada rings. For results about right co-Harada rings, refer to
the book of Baba-Oshiro [3].

2. THE CLASS OF RIGHT CO-HARADA RINGS

We denote by H the class of basic right co-Harada rings. In order to
describe the characterization of H, we need a notation.
For a ring R and an idempotent e of R, we define the ring R, by

Fe = <eJ](%R) g&zi) '

Note that if R is a basic semiperfect ring, then so is R.. The ring R, is a
special case of block extensions of the ring R (see [3, Chapter 4]) and plays
a very important role in the study of Harada rings. Oshiro proved that
every basic right co-Harada ring can be represented as an upper staircase
factor ring of a block extensions of a basic QF ring (cf. [3, Chapter 4]). We
also note that, by taking factor rings of Theorem 2.1(3) and (4) of a block
extension of a basic QF ring repeatedly, it follows that certain case of the
upper staircase factor rings are right co-Harada rings (cf. Theorem 2.16).
The following is the main result of the paper.

Theorem 2.1. The class of basic right co-Harada rings H satisfies the fol-
lowing conditions.

(1) H contains all basic QF rings.
(2) If R € H and e € pi(R), then R, € H.
(3) If Re H and e, f € pi(R) such that
(a) eRpg is injective with S(eRr) = T(fRgr),
(b) fRR is not injective,
then R/S(eRR) € H.
(4) If R € H, R is not a division ring, and e, g € pi(R) such that
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(a) eRp is injective,
(b) eR/S(eRR) = J(gRR),
then R/S(eRR) € H.

Moreover, H is the smallest class of basic one-sided artinian rings satisfying
these four conditions.

To prove the main theorem, first we must verify that the class ‘H satisfies
the four conditions of the theorem. The condition (1) is clear and the con-
dition (2) is verified in [4, Proposition 2.10]. Thus we must investigate the
conditions (3) and (4).

Let R be a basic one-sided artinian ring. We recall that, for e, f € pi(R),
the pair (eR, Rf) is said to be an i-pair in case S(eRr) = T(fRg) and
S(rRf) = T(rRe). For i-pairs, see [1, 31.3. Theorem] and [3, Chapter 2].
The following results, which we shall use freely, are well-known.

Lemma 2.2 (cf. [1, 31.3. Theorem] and [3, Lemma 2.1.1]). Let R be a basic
one-sided artinian ring and let e, f € pi(R).

(1) The following are equivalent:
(i) (eR,Rf) is an i-pair;
(ii) eRp is injective and S(eRr) = T(fRR);
(iii) rRf is injective and S(rRf) = T'(rRe).
(2) If (eR, Rf) is an i-pair, then

S(GRR) = S(RRf)

Thus this is a two-sided ideal of R and is simple on both left and
right side hands.

By Lemma 2.2, if R is a basic one-sided artinian ring and eRp is injective
for e € pi(R), then S(eRpR) is a two-sided ideal of R. Thus we can consider
the factor ring R/S(eRr) of R in (3) and (4) of Theorem 2.1. We shall
frequently denote by R the factor ring R/S(eRpg). For g € pi(R), § denotes
the primitive idempotent of R corresponding to g. We also note that, for an
i-pair (eR, Rf) (e, f € pi(R)), if eRp is simple, then e is a central idempotent
of R and e = f because eRp is projective and injective.

For basic right co-Harada rings, we note the following.

Lemma 2.3. Let R be a basic right co-Harada ring and let f € pi(R). Then
rRf is injective if and only if S(Rg)f # 0.

Proof. (=) This is clear from Lemma 2.2.

(<) Since R is a right co-Harada ring, if S(Rg)f # 0, then there exists
e € pi(R) such that eRp is injective and eS(Rg)f # 0. Thus by Lemma 2.2
rRf is injective. [
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To show (3) and (4) of Theorem 2.1, we need to observe the relationship of
i-pairs between basic right co-Harada rings R and certain factor rings R of
R. The next lemma shows that i-pairs except (eR, Rf) of a basic one-sided
artinian ring R are preserved to the factor ring R = R/S(eR) = R/S(Rf).

Lemma 2.4. Let R be a basic one-sided artinian ring and let e € pi(R) with
eRp injective. Set R = R/S(eR). If (¢R, Rh) is an i-pair, then (gR, Rh) is
an i-pair, for g,h € pi(R) with g # e,

Proof. Let f € pi(R) such that (eR, Rf) is an i-pair. We have h # f by
g # e. Thus we note g ¢ S(eR) = S(Rf) and h & S(Rf) = S(eR). Then
by assumption we have

S(gR) = S(gR) 2 T(hR) = T(hR),
S(Rh) = S(Rh) = T(Rg) = T(Rg)

as R-modules. Thus S(gR) = T'(hR) and S(Rh) = T(Rg) as R-modules,
i.e, (gR, Rh) is an i-pair. O
Lemma 2.5 (cf. [6, Proposition 3.5] and [3, Lemma 3.3.1(1)]). Let R be
a basic right co-Harada ring and let e, f € pi(R) such that (eR,Rf) is
an i-pair. Let ey = e,ea, ... e, € pi(R) such that J(e;R) = e; 1R for
1=1,2,...,n—1. Then, for each i =1,2,... ,n, the following hold.

(1) Si(rRf) = S(e1Rr) + S(e2Rr) +---+ S(e;RR).

(2) Si(rRf)/Si-1(rRf) = T(rRe;).

Proof. (1) This is [6, Proposition 3.5].

(2) Though this is proved in [3, Lemma 3.3.1(1)], we give a proof here.
We observe the left e; Re;-module S(e; Rg). Since R is basic, S(e;Rp) is
simple as a left End(S(e; Rr))-module. Thus, since e; Ry is quasi-injective,
the restriction map e;Re; = End(e;Rr) — End(S(e;RR)) is a surjective
ring homomorphism and hence S(e;Rg) is simple as a left e; Re;-module.
Therefore by (1) we have

Si(rRRf)/Si-1(rRf) = (S(e;RR) + Si-1(rRRf))/Si-1(rRRf) = T(rRei).

O

Lemma 2.6. Let R be a basic right co-Harada ring and let e, f, g € pi(R)
such that (eR, Rf) is an i-pair and gR = J(eR). Set R = R/S(eR) =
R/S(Rf). Then (gR, Rf) is an i-pair.

Proof. By the assumption gR = J(eR), eRp is not simple and hence rRf
is also not simple. Thus f ¢ S(Rf) = S(eR). We also note from g # e that
g & S(eR) = S(Rf). Therefore, by Lemma 2.5(2),

T(Rg) = T(Rg) = Sa(Rf)/S(Rf) = S(Rf)
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as left R-modules. Thus T(Rg) = S(Rf) as left R-modules. On the other
hand, B o

S(GR) = S(gR) = S(cR) = T(fR) = T(fR)
as right R-modules. Thus S(gR) = T(fR) as right R-modules. Therefore
(gR, Rf) is an i-pair. O
Lemma 2.7. Let R be a basic right co-Harada ring. For each e € pi(R),

Re/S(Rg)e = Hompg(J(eR), J(R))

canonically.

Proof. We first claim that the restriction map
Hompg(eR,gR) — Hompg(J(eR), J(gR))

is surjective for any g € pi(R). To verify this, let a : J(eR) — J(gR) be a
homomorphism. There exists an extension 5 : eR — E(gR) of a. It suffices
to show that Im(5) < gR. Assume to the contrary Im(5) £ gR. Then,
since R is a right co-Harada ring, we have gR < Im(8), gR # Im(8) and
hence Im(f3) is projective. Thus 3 : eR — Im(f8) must be an isomorphism.
Therefore we have Im(3)/J(gR) = eR/B~1(J(gR)). On the other hand,
since 3 is an extension of a, we see J(eR) < 371(J(gR)). Thus we have a
surjective homomorphism

T(eR) = eR/J(eR) — eR/B™'(J(gR)) = Im(B)/J(gR).
So Im(53)/J(gR) is simple or 0. This contradicts the fact that J(gR) <
gR < Im(p) are proper inclusions. Thus Im(8) < gR and 8 : eR — gR is
an extension of a. Therefore we have a surjective homomorphism
gRe 2 Hompg(eR, gR) — Homp(J(eR), J(gR)).
The kernel of the homomorphism gRe — Hompg(J(eR), J(gR)) is
gReNlr(J(eR)) = gRe N S(RR) = S(gRR)e,

where [r(J(eR)) denotes the left annihilator of J(eR) in R. Thus we have
shown that

gRe/S(gRr)e = Hompg(J(eR), J(gR))
canonically. That is,

g(Re/S(Rp)e) = gHompg(J(eR), J(R))

canonically for any g € pi(R). Therefore we obtain the isomorphism of the
lemma. [

As the author proved and used in [4, Proposition 2.15], the following is a
key result of the study of right co-Harada rings. Indeed, the result is closely
related to (3) and (4) of Theorem 2.1 about factor rings of right co-Harada
rings (see the proof of [4, Proposition 2.15]).



6 K. KOIKE

Proposition 2.8 ([4, Proposition 2.15]). Let R be a basic right co-Harada
ring and let f € pi(R) with fRgr non-injective. Then (1 — f)R(1 — f) is a
right co-Harada ring.

We cite the following proposition, which we shall frequently use in this
paper.

Proposition 2.9 ([3, Proposition 7.1.11]). Let R be a basic right co-Harada
ring and let e € pi(R). If J(eR) is not projective, then the projective cover
of J(eR) is injective.

Proof. This is proved in [3, Proposition 7.1.11]. However we can show the
result easily by the first claim of the proof of Lemma 2.7. So we give a proof
here. Let a : P — J(eR) be a projective cover of J(eR) and P = @' | P;
an indecomposable decomposition of P. To show that P is injective, assume
to the contrary that P; is not injective for some i¢. Then, since R is a right
co-Harada ring, there exists an indecomposable projective right R-module
Q; such that J(Q;) = P;. By the first claim of the proof of Lemma 2.7, the
canonical homomorphism Homp(Q;,eR) — Homp(J(Q;), J(eR)) is surjec-
tive. Thus the restriction P; — J(eR) of a can be extend to §; : Q; — eR.
If B; is surjective, then f3; is an isomorphism and hence J(eR) = J(Q;) = P,
is projective, a contradiction. Thus §; is not surjective and 3;(Q;) < J(eR).
Therefore we have a(P;) < J(J(eR)). This contradicts the assumption that
a: P — J(eR) is a projective cover of J(eR). O

Lemma 2.10. Let R be a basic right co-Harada ring and let e, f,g € pi(R)
such that (eR, Rf) is an i-pair and fR = J(gR). Then

Sa(eR)/S(eR) = T(gR).

Proof. We first claim that Sa(eR)/S(eR) is isomorphic to a direct sum of
copies of T'(gR). To verify this, let M be a right R-submodule of S2(eR)
such that S(eR) < M and M/S(eR) is simple. Let o : hR — M/S(eR) be a
projective cover for h € pi(R) and let 5 : hR — M be alift of a. Clearly [ is
surjective. Then the restriction J(hR) — S(eR) of [ is also surjective. Let
~v: P — J(hR) be a projective cover. Then there exists a split epimorphism
0 : P — fR that makes the following diagram commutative:

fR T(fR)

.

8l
P2 J(hR) 22 S(eR).

Since fR is not injective, P is also not injective. Thus by Proposition 2.9
J(hR) must be indecomposable projective. Therefore we see from the surjec-

tive homomorphism 3| ;4g) : J(AR) — S(eR) = T(fR) that J(hR) = fR.
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~J

Hence by the assumption J(gR) = fR, we have h = g. Thus M/S(eR) =
T(gR). Therefore we have shown that Ss(eR)/S(eR) is isomorphic to a
direct sum of copies of T'(gR), that is, Sa(eR)/S(eR) = (S2(eR)/S(eR))g.
Set f =1— f. We note from Proposition 2.8 that f'Rf’ becomes a right
co-Harada ring because fR is not injective. Since eR is injective, we see

e # f and e € f'Rf’. Thus S(eRf},Rf,) is simple. On the other hand, by
Sa(eR)/S(eR) = (S2(eR)/S(eR))g we have
Sa(eR) = Sy(eR)g + S(eR) = Sa(eR)g + S(eR)f.
Here we note Sz(eR)g < S(eRf}p ). Indeed, this follows from
Sa2(eR)g - f'T(R)f' = (S2(eR)gJ(R)) f' < S(eR) f' = S(Rf)f" = 0.
So, since S(eRf}gp) is simple and Sy(eR)g # 0, we have Sy(eR)g =
S(eRf},Rf,). This implies that S2(eR)/S(eR) is simple and hence Sz (eR)/S
T(gR).
Lemma 2.11. Let R be a basic right co-Harada ring and let e, f, g € pi(R)
such that (eR,Rf) is an i-pair and fR = J(gR). Set R = R/S(eR)
R/S(RF). o
(1) In case rRg is not injective, (R, Rg) is an i-pair.
(2) In case grRg is injective, let hyi, ha, ..., hy € Pi(R) such that
(a) (h1R,Rg) is an i-pair,
(b) J(h;R) =2 hj1R fori=1,2,...,n—1 and J(h,R) is not pro-
jective. - o
Then eR/S(eR) = J(h,R) as right R-modules and eR = J(h,R) as
right R-modules.

Proof. (1) We first note that e, g € S(eR) = S(Rf). Indeed, since fR is not
injective, we see e # f and hence e € S(Rf) = S(eR). Since gRp is not
simple, g ¢ S(eR) = S(Rf). By Lemma 2.10,

S(eR) = S3(eR)/S(eR) = T(gR) = T(gR)

as right R-modules. Thus S(eR) = T(gR) as right R-modules. Since gpRg
is not injective, by Lemmas 2.3 and 2.7 and by assumption,

Rg = Homp(J(gR), J(R)) = Homp(f R, J(R)) = J(Rf)
as left R-modules. So, since J(Rf) is essential in Rf and g # f,
S(Rg) = S(Rg) = S(J(Rf)) = S(RY) = T(Re) = T(Re)

as left R-modules. Hence S(Rg) = T(Re) as left R-modules. Therefore
(eR, Rg) is an i-pair.
(2) By Lemma 2.10 and assumption, we have

S(eR/S(eR)) = Sa(eR)/S(eR) = T(gR) = S(h1R)

~~

eR) =

0
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as right R-modules. Since hj Rp is injective, there exists an exact sequence
of right R-modules

0 — S(eR) —» eR — h1R.

Thus by assumption there exists an exact sequence of right R-modules

0 —— S(eR) eR —*= J(h,R).

We claim that o is an epimorphism. To prove this, apply the functor
Hompg((1 — f)R, —) to the exact sequence above. Then, since

Homp((1 — f)R, S(eR)) = Homp((1 — f)R, T(fR)) = 0,

we have the following commutative diagram with exact rows

0 — Hompg((1 — f)R,eR) —> Hompz((1 — f)R, J(hnR))

%l gl

eR(1— f) J(hn R)(1 = ),

where o, = Homp((1— f)R, «). Since the homomorphism of the bottom row
is an isomorphism by [4, Lemma 2.13(4)], c is also an isomorphism. On the
other hand, there exists an epimorphism ((1 — f)R)™) — J(h,R) for some
m > 1 because the projective cover of J(h,R) is injective by Proposition 2.9
and fR is not injective. Thus, there exist homomorphisms 31, B2, ..., Bm :
(1 — f)R — J(h,R) such that @, B : (1 — f)R)™ — J(h,R) is an
epimorphism. Since o, = Homp((1— f)R, «) is an isomorphism, there exist
homomorphisms 3! : (1 — f)R — eR such that 8; = af] for i =1,2,... ,m.
Then

0

J(haR) = Bi((1 = f)R) =Y _aBi((1— fIR) = a(d_Bi((1 - f)R)).
=1 =1 =1

Thus a : eR — J(hyR) is an epimorphism. Therefore we have J(h,R) =
eR/S(eR) as right R-modules and hence J(h,R) = eéR as right R-modules.
[

We have prepared results to prove (3) and (4) of Theorem 2.1. We also
cite one more result.

Lemma 2.12 ([4, Lemma 2.4)). A right artinian ring R is a right co-Harada
ring if and only if, for each e € pi(R), eRp is injective or eR = J(fR) for
some f € pi(R).

We can show Theorem 2.1(4) as the following form.
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Theorem 2.13. Let R be a basic right co-Harada ring and let e € pi(R) with
eRpg injective. Assume that R is not a division ring. If eR/S(eR) = J(gR)
for some g € pi(R), then the factor ring R = R/S(eRR) is a right co-Harada
ring.

Proof. We first consider the case g = e, that is, eR/S(eR) = J(eR). It
follows that eR is a uniserial module whose each composition factor is iso-
morphic to T'(eR). Thus e is a central idempotent of R and eR is a local
uniserial ring, which is a ring direct summand of R. Since R is not a division
ring by assumption, if S(eR) = eR then (1 —e)R # 0. Thus, for the case
g = e, the statement of the theorem is clear. Therefore we may assume that
g # e and eRp is not simple by the observation above.

Let f € pi(R) such that (eR, Rf) is an i-pair. Since eRp is not simple,
we see e, f € S(eR) = S(Rf). By using Lemma 2.12, we shall check that
R = R/S(eR) = R/S(Rf) is a right co-Harada ring. Let h € pi(R). First
we consider the case S(hR) 2 S(eR). If hRp is injective, then so is hRp by
Lemma 2.4. If hRp = J(kRpR) for some k € pi(R), then by h # e and k # e
we have

hR = hR = J(kR) = J(kR)
as right R-modules. Thus hR = J(kR) as right R-modules. Second we
consider the case S(hR) = S(eR). If hRp is injective, i.e., h = e, then by
assumption and g # e we have

hR =éR = J(gR) = J(gR)
as right R-modules. Thus hR = J(gR) as right R-modules. If hR = J(eR),
then hRp is injective by Lemma 2.6. If hR = J(kR) for some k € pi(R)
with k # e, then by h # e and k # e we have

hR=hR = J(kR) = J(kR)
as right R-modules. Thus hR = J(kR) as right R-modules. O

Now we can show Theorem 2.1(3) as the following form.

Theorem 2.14. Let R be a basic right co-Harada ring and let f € pi(R) with
rRf injective. If fRR is not injective, then the factor ring R = R/S(rRf)
18 a right co-Harada ring.

Proof. Let e € pi(R) such that (eR, Rf) is an i-pair. Since fRp is not
injective, fR = J(gR) for some g € pi(R). If rRg is injective, then
eR/S(eR) = J(kR) for some k € pi(R) by Lemma 2.11(2). So by The-
orem 2.13 R = R/S(eR) = R/S(Rf) is a right co-Harada ring. Thus we
may assume that pRg is not injective. We shall also check that, for any
h € pi(R), hRp is injective or hRp = J(kRp) for some k € pi(R). For the
case S(hR) 2 S(eR), it is similar to the case of the proof of Theorem 2.13.
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So we may assume S(hR) = S(eR). Since rpRyg is not injective, if hRp is
injective, i.e, h = e, then hRy = eRp is injective by Lemma 2.11(1). As
is similar to the cases of the proof of Theorem 2.13, if hR = J(eR) then
hRp is injective, and if hR = J(kR) for some k € pi(R) with k # e, then
hR = J(kR) as right R-modules.

[

Remark 2.15. We record here inheritances of well-indexed sets of the factor
rings from the right co-Harada rings in Theorems 2.13 and 2.14. Let R be a
basic right co-Harada ring and £ = {e;; |1 =1,2,...,m,j =1,2,...,n(i)}
a well-indexed set of R. We may assume that the idempotents of R in
Theorems 2.13 and 2.14 are in E. Set

Ei={e1|i=1,2,...,m} ={e € E|eR is injective}.

We define a map u : E1 — E as (eR, Ru(e)) is an i-pair for e € E;. Let R be
the factor ring of R in Theorems 2.13 or 2.14. The symbol F' will denote the
well-indexed set of R induced by E. The symbols F; and v will denote the
subset of F' and the map F| — F which are similar to £ and p, respectively.
We describe the relationship between E and F' and the relationship between
@ and v.

(1) Let R be a basic right co-Harada ring in Theorem 2.13 and let e, g €
pi(R) such that eR is injective and eR/S(eR) = J(gR). R is not a division
ring. Set R = R/S(eR). We divide observations into the two cases g = e
and g # e.

Case g = e: Assume e = eq1. As we noted in the proof of Theorem 2.13,
e is a central idempotent. Thus

P {ei7li=1,2,...,m,5=1,2,...,n(i)} if S(eR) # eR,
e li=2,3,...,mj=1,2,...,n(i)} if S(eR)=eR

become well-indexed sets naturally.

Case g # e: Then m > 2. Assume e = ¢,,1. Since eR/S(eR) = J(gR),
J(gR) is not projective. Thus, by renumbering the indices, we may assume
9= em-1n(m-1)- Then

eR/S(eR) = epu R/S(em1 R) = J(em—1,nm-1)R) = J(gR).
Define idempotents f;; of R by
(flla e 7f1,n(1)) = (m7 s 61,n(1))7

)

(fme,la SO fm—2,n(m—2)) = (em*2,17 S 7em—2,n(m—2))7

(fm—l,lv U fm—l,n(m—l)a fm—l,n(m—l)—i—l) = (em—Lla < Em—1,n(m—1), em,l)a

(fmlv oo 7fm,n(m)—1) = (em27 cee 7€m,n(m))'
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Then by the proof of Theorem 2.13 F = {f;;} is a well-indexed set of R
with the subset
Fy = {le | 7, = 1,2,...,m} = {ﬁ,...,em_l’l,%}

and by Lemmas 2.4 and 2.6 the map v : F} — F'is given by
v(fi1) = v(em) = plen),
V(fm—21) = v(€m—21) = plem—21),
V(fm—11) =v(@m-11) = tt(em—11):
v(fm1) = v(em2) = plemr).

(2) Let R be a basic right co-Harada ring in Theorem 2.14 and let e, f €
pi(R) such that (eR, Rf) is an i-pair. Assume that fR is not injective. Set
R=R/S(eR) = R/S(Rf). Let g € pi(R) such that fR= J(gR).

Case Rg is injective: Let h € pi(R) such that (hR, Rg) is an i-pair. Then
e # h by f # g. Thus we may assume e = e, and h = e;,_11. By
Lemma 2.11(2)

eR/S(eR) = e R/S(em1 R) = J(€m—1,nm—-1)R)-

Therefore the well-indexed set F' of R with the subset F; and the map
v: Fy — F are the same as in the case g # e of (1).
Case Rg is not injective: We may assume e = e,,1. Define idempotents

fij offiby
(flla .- -afl,n(l)) = (ma <. 761,n(1))7

Y

(fm—l,la cee 7fm—1,n(m—1)) = (em_l,h s aem—l,n(m—l))a
(fml) - (eml);
(fm-l—l,la SR 7fm+1,n(m)—1> = (6m27 s 76m,n(m))'

Then by the proof of Theorem 2.14 F = {f;;} is a well-indexed set of R
with the subset

Fr={fali=12,....m+1} ={em1,..-,&n_1,1,Cml, Cm2}
and by Lemmas 2.4, 2.6 and 2.11(1) the map v : F; — F is given by

v(fur) = v(em) = plen),
V(fm-11) =v(@m-11) = tt{€m-11)s
v(fm1) = v(Eem1) =7,
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V(fm1,1) = v(emz) = [ = v(em)-
Combining Theorems 2.13 and 2.14, we also obtain the following theorem.

Theorem 2.16. Let R be a basic right co-Harada ring, let e, f € pi(R)
such that (eR,Rf) is an i-pair and let e; = e,ea,...,e, € pi(R) such
that J(e;R) = e;y1R fori = 1,2,....,n— 1. If fRp is not injective, then
R/Si(rRf) are right co-Harada rings for all i =1,2,...,n.

Proof. Note by Lemma 2.5(1)

Si(rRf) = S(e1RRr) + S(e2Rg) +--- + S(e;RRg)

for e = 1,2,...,n. We show the statement by induction. First, the factor
ring R/S(rRf) is a right co-Harada ring by Theorem 2.14. Assume that
R = R/S; 1(rRf) is a right co-Harada ring for 2 < ¢ < n. Then by
Lemmas 2.5(1) and 2.6 & Ry, is injective and €; R/S(e; R) = J(&;_1R). Thus
by Theorem 2.13 R/S(e;R) = R/S;(rRf) is also a right co-Harada ring.
Therefore we have shown the statement of the theorem by induction. [J

Combining Proposition 2.8 with Theorem 2.13, we have the following.

Proposition 2.17. Let R be a basic non-local right co-Harada ring and let
e € pi(R) with eRp injective. If eR/S(eR) = J(gR) for some g € pi(R),
then (1 —e)R(1 — e) is a right co-Harada ring.

Proof. As is similar to the proof of Theorem 2.13, we may assume that
g # e. By Theorem 2.13 the factor ring R = R/S(eR) is a right co-Harada
ring and eéRp, which is isomorphic to J(gRp), is not injective. Then by

Proposition 2.8 (1 —é)R(1 — €) is a right co-Harada ring. Thus, so is (1 —

e)R(1—e)=(1—-¢e)R(1—e). O

To complete the proof of Theorem 2.1, we need two more lemmas. Let R
be a basic right co-Harada ring and let e, f € pi(R) such that fR = J(eR).
Set f/=1—f, R =f'Rf'=(1—- f)R(1—f) and R = R,. Then

-, ( R Re\ [ f'Rf fRe
=R = (eJ(R’) eR’e) - (eJ(R)f’ eRe) '

We should note that R is a right co-Harada ring. Indeed R’ = (1— f)R(1— f)
is a right co-Harada ring by Proposition 2.8. Thus, as we stated in Theo-
rem 2.1 (2), R = R, is also a right co-Harada ring by [4, Proposition 2.10].

Lemma 2.18 (cf. [4, Lemmas 2.6 and 2.7]). With the setting above, there
exists a surjective ring homomorphism ¢. : R — R such that

Ker(¢e) = (8 %((éé%;)): )

Then ¢, is an isomorphism if and only if rRe is not injective.
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Proof. [4, Lemma 2.6] states the existence of the ring homomorphism ..
Since R is a basic right co-Harada ring, we can apply [4, Lemma 2.7] to R.
Thus ¢, is surjective. Hence by [4, Lemma 2.6(3)] ¢, is an isomorphism if and
only if Homp(T'(eR),(1— f)R) = 0. Since fR = J(eR) < eR < (1—f)R, we
note that Hompg(T'(eR), (1 — f)R) = 0 if and only if Homg(T'(eR), R) = 0.
On the other hand, we have canonical isomorphisms

Homp(T'(eR), R) = Hompg(T'(eR),S(Rr)) = Homp(eR, S(Rr)) = S(RR)e.

Therefore ¢, is an isomorphism if and only if S(Rr)e = 0, which is equivalent
to pRe being non-injective by Lemma 2.3. OJ

To give the proof of Theorem 2.1, we provide the following lemma, which
describes Ker(¢,) in Lemma 2.18 in terms of a well-indexed set of the right

co-Harada ring R. For g € pi(R’) = pi(f'Rf’) and e € pi(eR'e) = pi(eRe),

we put
- (g 0 . (00
g= (0 0) and é = (O e)'

pi(RR) = {g | g € pi(R),g # f}U{é}.
We also note the fact that, for a basic right co-Harada ring R, if g1, 92,...,9n €
pi(R) satisfy the conditions (a) and (b) of Lemma 2.19, then S(kR) = T'(eR)
iff S(kR)e = S(kR) iff k € {g1,92,...,9n} for any k € pi(R). Thus we may
assume e = g;_1 and f = g; in (ii) of the lemma below.

Then

Lemma 2.19. With the same setting as in Lemma 2.18, assume that rRe
is injective. Let g1, 9o, ...,gn € Pi(R) such that

(a) (g1R, Re) is an i-pair;

(b) J(¢;:R) = g;x1R fori=1,2,....,n—1 and J(g,R) is not projective.
Define hy, ha, ..., hy, € pi(R) as the following manner:

(i) In case S(eR) 2 T(eR), set hy = g; fori=1,2,...,n;

(ii) In case S(eR) =T(eR), let e = g;—1 and f = g; and set h; = g; for

1=1,2,...,5—-175+1,...,n and h; = é.

Then

(1) (hlfilfié) = (g~1~f{, Ré) is an i-pair.

(2) J(th) = hi—l—lR fO?”i = 1,2,... ,n— 1.

(8) Ker(ge) = Xoiy S(hiRR) = Sn(Re).

Proof. (1) By the assumption (a), S(g1R) = T'(eR) and g; Rpg is injective.
Thus the left annihilator i, r(R(1 — f)) of R(1 — f) in g1 R must be 0 and
hence by [1, 31.2. Lemma] g1R(1 — f)a—fra—y) = 91Rp is injective. It
also follows from S(g1R) = T'(eR) that S(g1 Ry )e # 0. Thus we see from
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Lemma 2.2 that (g1 R’, R'e) is an i-pair. Therefore, by using Lemma 2.2, [4,
Lemma 2.9] and its proof, we can verify that (¢, R, Ré) is an i-pair.

(2) For the case (i), it is clear from the assumption (b) that J(g;R’) =
gis1R for i =1,2,...,n — 1. Thus by e # g; and by the form of J(R) =
J(R;), which is described in Lemma 4.1, we have J(GiR) = ;71 R, that is,
J(hiR) = hijp1Rfori=1,2,....,n—1.

For the case (ii), since R is basic, J(eR) =2 fR and J(fR) = J(g;R) =
gj+11R, we have isomorphisms

eJ(R)f' = fRf' = fI(R)f' = gj1 RS’
as right R'-modules. In particular, eJ(R)e = g;+1 Re as right eRe-modules.
Thus it follows from the form of J(R) that J(éR) = g;11 R. Tt also holds that
J(€R) = éR. Therefore, similar to the case of (i), we have J(h;R) = h;11R
fori=1,2,...,n—1.

(3) As we noted above the lemma, for £ € pi(R), S(kR) = T'(eR) iff
S(kR)e = S(kR) iff k € {g1, g2, ..., 9n}. Therefore, in case S(eR) % T(eR),
by Lemma 2.18 and the definition of h; we have

S(giRr) | _~~(0 S(giRg)
Ker(¢.) = Z = z_: (0 0

0 0 =1

because each R ) is a simple submodule of §; R 7 and R is a right

0 0
co-Harada ring. In case S(eR) = T'(eR), we recall e = g;_; and f = g; as
in (ii). Thus, as is similar to the case above, we have

0 >  S(siRr)

Ker(¢e) = 1<i<n.itj
0 S(BRR>
_ Z <0 S(giRR)) n (O 0 >
Vi 0 0 0 S(eRg)
= Y S(@Rp) +S(eRp) ZS
1<i<n,i#j
Furthermore, by (1), (2) and Lemma 2.5 (1), we have 37 | S(h;R) = S,.(Ré).

L]

Now we can complete a proof of Theorem 2.1.
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Proof of Theorem 2.1. We have already shown that the class H satisfies the
conditions (1)—(4) of Theorem 2.1. Indeed, as we noted before, the condition
(1) is clear and the condition (2) is verified in [4, Proposition 2.10]. The
conditions (3) and (4) are proved as Theorems 2.14 and 2.13, respectively.
In order to prove the smallestness of H, let H' be a class of rings satisfying
the conditions (1)-(4). Let R € H. We shall prove R € H' by induction on
the composition length of R. If the composition length of R is one, that is,
R is a division ring, then R is a QF ring. Thus by the condition (1) R € H'.
We assume that R is not a division ring. In case R is a QF ring, R € H' by
(1). In case R is not a QF ring, since R is a right co-Harada ring, there exist
e, f € pi(R) such that fR = J(eR). Set f'=1— f and R = f'Rf’. By
Proposition 2.8 R' € H. Then by induction hypothesis, we have R’ € H'.
Thus by the condition (2), we have R, € H'. Set R = R.. In case pRe
is not injective, R = R € H' by Lemma 2.18. In case pRe is injective, by
Lemmas 2.18 and 2.19 there exist hi, ha, . .., hy, € pi(R) such that (hi R, Ré)
is an i-pair, J(h;R) = hiy1R (i =1,2,...,n—1) and R = R/S,(Ré). Since
éR = J(ER), éR is not injective. Therefore by Theorem 2.16, which is
proved by the conditions (3) and (4), we have R = R/S, (Ré) € H. O

Concluding this section, we provide the almost self-duality of right co-
Harada rings as an example of Theorem 2.1.

Example 2.20. Recall that a right artinian ring R is (right) Morita dual
to a left artinian ring S in case there exists a duality between the category
of finitely generated right R-modules and the category of finitely generated
left S-modules. An artinian ring R is said to have a self-duality if R is
Morita dual to R itself and R is said to have an almost self-duality if there
exist artinian rings Ry = R, Ri,...,R,_1,R, = R such that each R; is
right Morita dual to R;1;. Clearly, the concept of almost self-duality is a
generalization of that of self-duality. (For almost self-duality in detail, see
[4].)

Let A be the class of basic artinian rings with almost self-duality. Clearly
A contains all basic QF rings. That is, A satisfies the condition (1) of
Theorem 2.1. By [4, Proposition 1.14(2)] A satisfies the condition (2) of
Theorem 2.1. It follows from [4, Lemma 1.9(2)] and the proof of [4, Theo-
rem 3.2] that A satisfies the conditions (3) and (4) of Theorem 2.1. Therefore
‘H C A by Theorem 2.1. In other words, every basic right co-Harada ring
has an almost self-duality ([4, Theorem 3.2]).
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3. UNIQUENESS OF THE QF RINGS REDUCED FROM RIGHT CO-HARADA
RINGS

Oshiro proved that every basic right co-Harada ring R can be constructed
from a QF ring. The QF ring has the form eRe for some idempotent e of
R. He called the QF ring eRe the frame QF subring of R. However the
definition of eRe is somewhat complicated. (See [3, Chapter 4].) In this
section, we provide another description of the frame QF subring of a right
co-Harada ring.

Let R be a right co-Harada ring. If R is not a QF ring, there exists
e1 € pi(R) such that e; Ry is not injective. Then by Proposition 2.8 the ring
Ry = (1 —e1)R(1 — €1) is a right co-Harada ring again. Similarly, if R; is
not a QF ring, there exists ex € pi(R1) = pi(1 —e1)R(1 — e1) such that the
ring

R2 = (1 — 62)R1(1 — 62) = (1 — €1 — 62)R(1 — €1 — 62)

is a right co-Harada ring. Iterating such processes, we shall reach a QF
ring for any right co-Harada ring. For these processes, we notice the fol-
lowing lemma, which follows from the proofs of [4, Proposition 2.10 and
Lemmas 2.12 and 2.14].

Lemma 3.1. Let R be a basic right co-Harada ring and let f € pi(R) with
fRg non-injective. Set R' = (1 — f)R(1 — f). If eRR is non-injective, then
eRY, is non-injective, for e € pi(R) with e # f.

For the lemma above, we should note that eR/,, might not be injective
even if eRp is injective. Thus there are many processes of removing idempo-
tents f with fR non-injective. So it is not trivial that all processes provide
the same QF ring. The main purpose of this section is to show the unique-
ness of the QF ring and that the QF ring is just the frame QF subring.

Let R be a basic one-sided artinian ring with £ = pi(R). For a non-empty
subset F' of E, set ep = ) .pe and R(F) = epRep.

Definition 3.2. Let R be a basic right co-Harada ring with £ = pi(R) and
F' a non-empty subset of E. For distinct elements eq,eo,...,e, of E, we
say that the sequence (e1,es,...,¢e,) is a route from E to F if the following
conditions hold:

(i) E—{e1,ea,...,en} = F}
(ii) For each ¢ = 1,2,...,n, the right R;_j-module e;R;_1 is not injec-
tive, where Ry = R and
i

Ri = R(E — {61,62, RPN ,ei}) = (1 — Zej)R(l — Zej).
j=1

J=1
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In this case, we call n the length of the route (e1,es,...,e,). When E = F,
we consider that there is the trivial route from F to F itself and that the
length of the trivial route is 0.

Remark 3.3. (1) In the setting of Definition 3.2, if there is a route from E
to F', then R(F') = epRer is a right co-Harada ring by Proposition 2.8.

(2) For a non-empty subset G of F', if there exist a route from E to F
and a route from F' to GG, then by definition there exists a route from E to

G.

The following is a key lemma.

Lemma 3.4. Let R be a basic right co-Harada ring with E = pi(R) and
F' a non-empty subset of E. Assume that there exists a route from E to F
such that R(F) is a QF ring. For any e € E with eRr non-injective, the
following hold.

(1) FC E—{e}.

(2) There exists a route from E — {e} to F.

Proof. Let (e1,...,e,) be a route from E to F' and set Ry = R and
i i
R;=R(E —{e1,e2,...,¢}) = (1= Y ¢;)R(1 = ¢;)
j=1 j=1
fori=1,2,...,n.

(1) To show F' C E — {e}, assume to the contrary e € F. Then e # ¢;
for any ¢ = 1,2,...,n. Thus by Lemma 3.1 eRip,,eRapR,,...,eR,p, are
non-injective. However this contradicts the fact that R, = R(F') is a QF
ring.

(2) We prove the statement by induction on the length n of the route
(e1,...,e,) from E to F. In case n = 0, the statement is trivial. We assume
that the statement holds in case that the length of the route is less than n.
That is, we assume that if R’ is a basic right co-Harada ring with a complete
set of orthogonal primitive idempotents E' = pi(R’) containing F and if
there exists a route of length < n from E’ to F', then there exists a route from
E'—{€'} to F for any €’ € E’ with €' R’ non-injective. Since (eq,es,. .., €p)
is a route from F to F, (ea,...,e,) is a route from E — {e1} to F. In case
e = ey, there is a route from E — {e} to F. In case e # e1, since eRp is
non-injective, eR; g, is non-injective by Lemma 3.1. Then by the induction
hypothesis on the basic right co-Harada ring R; = (1 — e1)R(1 — e1) with
a complete set of orthogonal primitive idempotents E — {e1} and the route
(e2,...,€n) from E — {e1} to F, there exists a route from (E — {e1}) — {e}
to F. Since (E —{e1}) — {e} = (F — {e}) — {e1}, we have a route from
(E—{e})—{e1} to F. On the other hand, since e; R(E —{e}) is non-injective
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by Lemma 3.1, we have the route (e1) from F — {e} to (E — {e}) — {e1}.
Therefore, composing the route from E — {e} to (F — {e}) — {e1} and the
route from (FE —{e}) —{e1} to F, we obtain a route from E — {e} to F' (see
Remark 3.3(2)). O

We can now prove the main result of this section easily.

Theorem 3.5. Let R be a basic right co-Harada ring with E' = pi(R) and
let F' and G be non-empty subsets of E such that R(F) and R(G) are QF
rings. If there exist a route from E to F and a route from E to G, then

F=G.

Proof. Let (e1,e2,...,6e,) be a route from E to F. Since there is a route
from FE to G, we have G C E — {e1} and a route from F — {e;} to G by
Lemma 3.4. Again by Lemma 3.4, we have G C E — {e1,e2} and a route
from E—{e1,es} to G. By iteration, we obtain G C E—{ej,es,...,e,} = F.
Similarly, we obtain F' C GG. Thus F' = G as required. [

Remark 3.6. Let R be a basic right co-Harada ring with £ = pi(R). As
we stated before, in case R is not a QF ring, there exist ej,es,...,e, € F
such that each e;R;_1p,_, is non-injective for : = 1,2,...,n and R, is a QF

ring, where Ry = R and R; = (1 — Z;:l ej)R(1 — Z;Zl e;j). Theorem 3.5
shows the uniqueness of the set £ —{ey,...,e,} and the QF ring R,,. Thus,
such a QF ring R,, does not depend on choices of removing idempotents of
E. This shows that the ring R, is just the frame QF subring of the right

co-Harada ring R. (See [3, Theorem 4.3.11(2)].)

4. EXAMPLES — QUIVER OF R, —

In the final section, we provide several examples of right co-Harada rings
represented by factor algebras of path algebras over a field. For this, we
begin with the following.

Lemma 4.1. Let R be a basic artinian ring with J = J(R). For e € pi(R),

set
~ R Re
k=R = (eJ eRe)

J Re
J = (eJ eJe)'

3,57 2 (& € (&
= (120 7).

In particular, for f,g € pi(R), the following hold.

and J = J(R). Then

t

Thus
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(G om e )= g (o) 4y
o ({; ) . (8 2><\0<8 eReéeJe) Zi#:
(3 Do (l )= (aofy 8)

(0 ) (8 %) -0

Proof. Since J = J(R) is nilpotent, it is easy to check that
J Re
e elde
is also a nilpotent ideal of R. On the other hand, it is clear that the factor

ring of R by the ideal above is semisimple. Therefore we have the form of J =
J(R) as in the lemma. It is routine to check the rest of the statements. [

From this lemma, we have the following. (For the definition of quivers
and relations of algebras, see e.g. [2, Chapter III].)

Proposition 4.2. Let K be a field, I' = (I'g,T'1,s,t) a finite quiver, I an
admissible ideal of the path algebra KT, and p a set of relations of KT' that
generates I. Set R = KU'/I = KT'/(p). For a fized vertex i € Ty, let e; be
the primitive idempotent of R corresponding to i. Set R = R.,. Then the
quiver T = (fo,f’l) of R and the admissible ideal I of KT are given by the
following manner:

Vertices: The vertices of I is obtained by adding a “copy” i of i to

the vertices of I'. That is,

fg =IyU {%}

Arrows: The arrows in T’ are defined as the following:
(i) Any arrow av: j — k in T with k # i is also an arrow j — k in

IT;

(ii) for any arrow B : j — i in T, there exists a corresponding arrow
B 1] = i in f’;

(iil) there exists a unique arrow w: i — 4 in T.

That is,

I ={a|ael,tla)#i}U{B|Bel,tB) =i} U{w}.
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Relations: For an arrow 8 : j — @ in I, the path wB ] —1in T
18 denoted by the same B. For a path q : k — i in I' with ¢ = PBp,
where B : 7 — 1 18 an arrow and p : k — j is a path in I", the path
Bp :k — 1 in T is denoted by q. Then

p=Aulucpi(u)#iU{t|vept(v) =i}

is a set of relations of KT that generates I, where & = > aqr for
v=>,aq € p with ay € K and paths q;: k =i in T

Proof. Tt follows from Lemma 4.1 that the quiver I' = (g, I';) of the algebra
R = R, has the vertices and the arrows in the ‘proposition. To observe the
relatlons let e; be the idempotent of R or K T Correspondlng to a vertex
jeTly C [ and let 6; = e; be the idempotent of K r correspondmg to the
vertex 1 € ['y. We define a K algebra homomorphism ¢ : K I >R by

e; 0 ) . 0 0 0 e
ej+—><07 O) (j €To), ei+—>(0 ej),wr—><0 OZ>’

o (8‘ 8) (a € Ty, t(a) £1i), B (g 8) (B €T, U(B) =1).

Then it is routine to check that & is surjective and Ker(®), which is just
the admissible ideal I, is generated by p in the proposition. [

For a concrete quiver with relations of R.,, see Example 4.3 below. We
should also note that the quiver with relations of a right co-Harada algebra
is described in Yamaura [7].

Concluding the paper, we illustrate Theorem 2.1 with the following ex-
amples.

Example 4.3. (1) Let K be a field and let A be the factor algebra of the
path algebra over K defined by the quiver and the relations

B
(0%
P Y Y S
La:17 227 23 and pa = {da, 783, ay — Bd}.

8l é
Then A is a QF algebra and hence A is a right co-Harada ring (by Theo-
rem 2.1(1)). Let e; be the primitive idempotent of A corresponding to the
vertex i for i = 1,2,3. We denote by “i” the simple right A-module T'(¢; R).
Then the Loewy series of the indecomposable projective right A-modules

are the following:
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(2) We consider the algebra B = A.,. Theorem 2.1(2) claims that B is a
right co-Harada ring. By Proposition 4.2 the quiver and the relations of B
are the following:

FB : 1m2r\3 and PB = ,Oj4 = {80{, 767 oy — 65 (: ay — ng)}7

where 0 denotes the path wd. Then the Loewy series of the indecomposable
projective right B-modules are the following:

Bg=1® 2 & 3@ 3.
2 /3 3 2
1 1 9 3
N 3 3 3
27 3

Let €3 = e3 be the primitive idempotent of B corresponding to the vertex
3. Then ¢;Bp (i = 1,2,3) are injective and J(e3B) = e B. Therefore B
satisfies the definition of right co-Harada rings. The frame QF subring of B
is just the QF algebra A.

(3) For the right co-Harada ring B, e3B is injective, S(e3B) = T'(e3B)
and e3B is not injective. Thus by Theorem 2.1(3) the factor ring C' =
B/S(e3B) = B/S(Bey) is also a right co-Harada ring. Actually, this is a
QF ring. So the frame QF subring of C' is just C' itself but not A. The
quiver of C' is the same as B, and the relations of C' are that of B adding
by wdBw. That is, ¢ = 'z and po = ppU{wdBw}. Then the Loewy series
of the indecomposable projective right C-modules are the following:

Co=16 2 <®§EB§.
2 / 3 3 2

1 1 | 92 3
\2/3 3 3

(4) For the right co-Harada ring C, e3C' is injective and e;C/S(e;C) =
J(e3C). By Theorem 2.1(4) (or by Theorem 2.16) the factor ring

D= C/S(egc) = B/SQ(B@%) = B/(S(egB) S5 S(egB))

is a right co-Harada ring. The frame QF subring of D is the QF algebra
A. The quiver of D is the same as B, and the relations of D are that of B
adding by wdfw and 6fw. That is, I'p =I'p and pp = pp U {wdpw, ifw}.
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Then the Loewy series of the indecomposable projective right D-modules
are the following:

Dp=1¢ D

AN

e
LN LW
W N LW»

LW — W

2
/
1
\ i
We note that the ring D is just the case of n = 3 of [5, Example 2.2].
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