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A CHARACTERIZATION OF THE CLASS OF HARADA

RINGS

Kazutoshi Koike

Abstract. There are many characterizations of Harada rings. In this
paper, we characterize right co-Harada rings by giving a characterization
of the class of basic right co-Harada rings.

1. Introduction

As is well-known, there are many characterizations of right co-Harada
rings (equivalently, left Harada rings). The main purpose of this paper is to
give a characterization of the class of basic right co-Harada rings.

Section 2 is the main part of this paper. We shall characterize the class
of basic right co-Harada rings as a class of rings that is closed under certain
operations (Theorem 2.1). Oshiro already determined the structure of right
co-Harada rings as upper staircase factor rings of block extensions of QF
rings (see, e.g. [3, Theorems 4.2.3 and 4.3.5]). Though the operations of
Theorem 2.1 are special cases of the result, the theorem allows us to study
and construct right co-Harada rings step by step and states that the opera-
tions are essential for right co-Harada rings. We also show that certain factor
rings of right co-Harada rings are right co-Harada rings (Theorems 2.13, 2.14
and 2.16).

In Section 3 we show the uniqueness of QF rings associated with right
co-Harada rings (Theorem 3.5). The result provides another description of
the frame QF subrings of right co-Harada rings in the sense of Baba-Oshiro
[3].

In Section 4 we illustrate the main result with some examples of right
co-Harada rings represented as factor algebras of path algebras over a field.
For this, we describe the quiver and the relations of the algebra Re, a certain
extension of R, for an algebra R over a field and a primitive idempotent e
of R.

Throughout this paper, all rings have identity and all modules are unitary.
Let R be a semiperfect ring. We denote by pi(R) a complete set of orthogonal
primitive idempotents of R. For a right R-module M , the radical, the socle
and the top of M (i.e., the factor module by its radical) are denoted by
J(M), S(M) and T (M), respectively. The symbol Si(M) denotes the i-th
socle of M for i = 0, 1, 2, . . . .
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We first recall that a right artinian ring R is called a right co-Harada

ring in case there exists a complete set of orthogonal primitive idempotents
{eij | i = 1, 2, . . . ,m, j = 1, 2, . . . , n(i)} such that

(i) ei1RR is injective for each i = 1, 2, . . . ,m;
(ii) ei,j+1R ∼= eijR or ei,j+1R ∼= J(eijR) for each i = 1, 2, . . . ,m, j =

1, 2, . . . , n(i)− 1.

Such a complete set of orthogonal primitive idempotents is called a well-

indexed set of the right co-Harada ring R. As is well-known, serial rings and
QF rings are right co-Harada rings. It should be noted that a ring is a right

co-Harada ring if and only if it is a left Harada ring. Thus the terminology
“left Harada rings” are mainly used recently. However, in this paper we
shall use the terminology “right co-Harada rings” to emphasize properties
of right co-Harada rings. For results about right co-Harada rings, refer to
the book of Baba-Oshiro [3].

2. The class of right co-Harada rings

We denote by H the class of basic right co-Harada rings. In order to
describe the characterization of H, we need a notation.

For a ring R and an idempotent e of R, we define the ring Re by

Re =

(
R Re

eJ(R) eRe

)
.

Note that if R is a basic semiperfect ring, then so is Re. The ring Re is a
special case of block extensions of the ring R (see [3, Chapter 4]) and plays
a very important role in the study of Harada rings. Oshiro proved that
every basic right co-Harada ring can be represented as an upper staircase
factor ring of a block extensions of a basic QF ring (cf. [3, Chapter 4]). We
also note that, by taking factor rings of Theorem 2.1(3) and (4) of a block
extension of a basic QF ring repeatedly, it follows that certain case of the
upper staircase factor rings are right co-Harada rings (cf. Theorem 2.16).

The following is the main result of the paper.

Theorem 2.1. The class of basic right co-Harada rings H satisfies the fol-

lowing conditions.

(1) H contains all basic QF rings.

(2) If R ∈ H and e ∈ pi(R), then Re ∈ H.

(3) If R ∈ H and e, f ∈ pi(R) such that

(a) eRR is injective with S(eRR) ∼= T (fRR),
(b) fRR is not injective,

then R/S(eRR) ∈ H.

(4) If R ∈ H, R is not a division ring, and e, g ∈ pi(R) such that



CHARACTERIZATION OF HARADA RINGS 3

(a) eRR is injective,

(b) eR/S(eRR) ∼= J(gRR),
then R/S(eRR) ∈ H.

Moreover, H is the smallest class of basic one-sided artinian rings satisfying

these four conditions.

To prove the main theorem, first we must verify that the class H satisfies
the four conditions of the theorem. The condition (1) is clear and the con-
dition (2) is verified in [4, Proposition 2.10]. Thus we must investigate the
conditions (3) and (4).

Let R be a basic one-sided artinian ring. We recall that, for e, f ∈ pi(R),
the pair (eR,Rf) is said to be an i-pair in case S(eRR) ∼= T (fRR) and
S(RRf) ∼= T (RRe). For i -pairs, see [1, 31.3. Theorem] and [3, Chapter 2].
The following results, which we shall use freely, are well-known.

Lemma 2.2 (cf. [1, 31.3. Theorem] and [3, Lemma 2.1.1]). Let R be a basic

one-sided artinian ring and let e, f ∈ pi(R).

(1) The following are equivalent:

(i) (eR,Rf) is an i-pair;

(ii) eRR is injective and S(eRR) ∼= T (fRR);
(iii) RRf is injective and S(RRf) ∼= T (RRe).

(2) If (eR,Rf) is an i-pair, then

S(eRR) = S(RRf).

Thus this is a two-sided ideal of R and is simple on both left and

right side hands.

By Lemma 2.2, if R is a basic one-sided artinian ring and eRR is injective
for e ∈ pi(R), then S(eRR) is a two-sided ideal of R. Thus we can consider
the factor ring R/S(eRR) of R in (3) and (4) of Theorem 2.1. We shall
frequently denote by R̄ the factor ring R/S(eRR). For g ∈ pi(R), ḡ denotes
the primitive idempotent of R̄ corresponding to g. We also note that, for an
i -pair (eR,Rf) (e, f ∈ pi(R)), if eRR is simple, then e is a central idempotent
of R and e = f because eRR is projective and injective.

For basic right co-Harada rings, we note the following.

Lemma 2.3. Let R be a basic right co-Harada ring and let f ∈ pi(R). Then

RRf is injective if and only if S(RR)f 6= 0.

Proof. (⇒) This is clear from Lemma 2.2.
(⇐) Since R is a right co-Harada ring, if S(RR)f 6= 0, then there exists

e ∈ pi(R) such that eRR is injective and eS(RR)f 6= 0. Thus by Lemma 2.2

RRf is injective. �
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To show (3) and (4) of Theorem 2.1, we need to observe the relationship of
i -pairs between basic right co-Harada rings R and certain factor rings R̄ of
R. The next lemma shows that i -pairs except (eR,Rf) of a basic one-sided
artinian ring R are preserved to the factor ring R̄ = R/S(eR) = R/S(Rf).

Lemma 2.4. Let R be a basic one-sided artinian ring and let e ∈ pi(R) with
eRR injective. Set R̄ = R/S(eR). If (gR,Rh) is an i-pair, then (ḡR̄, R̄h̄) is
an i-pair, for g, h ∈ pi(R) with g 6= e,

Proof. Let f ∈ pi(R) such that (eR,Rf) is an i -pair. We have h 6= f by
g 6= e. Thus we note g 6∈ S(eR) = S(Rf) and h 6∈ S(Rf) = S(eR). Then
by assumption we have

S(ḡR̄) = S(gR) ∼= T (hR) ∼= T (h̄R̄),

S(R̄h̄) = S(Rh) ∼= T (Rg) ∼= T (R̄ḡ)

as R-modules. Thus S(ḡR̄) ∼= T (h̄R̄) and S(R̄h̄) ∼= T (R̄ḡ) as R̄-modules,
i.e, (ḡR̄, R̄h̄) is an i -pair. �

Lemma 2.5 (cf. [6, Proposition 3.5] and [3, Lemma 3.3.1(1)]). Let R be

a basic right co-Harada ring and let e, f ∈ pi(R) such that (eR,Rf) is

an i-pair. Let e1 = e, e2, . . . , en ∈ pi(R) such that J(eiR) ∼= ei+1R for

i = 1, 2, . . . , n− 1. Then, for each i = 1, 2, . . . , n, the following hold.

(1) Si(RRf) = S(e1RR) + S(e2RR) + · · ·+ S(eiRR).
(2) Si(RRf)/Si−1(RRf) ∼= T (RRei).

Proof. (1) This is [6, Proposition 3.5].
(2) Though this is proved in [3, Lemma 3.3.1(1)], we give a proof here.

We observe the left eiRei-module S(eiRR). Since R is basic, S(eiRR) is
simple as a left End(S(eiRR))-module. Thus, since eiRR is quasi-injective,
the restriction map eiRei ∼= End(eiRR) → End(S(eiRR)) is a surjective
ring homomorphism and hence S(eiRR) is simple as a left eiRei-module.
Therefore by (1) we have

Si(RRf)/Si−1(RRf) = (S(eiRR) + Si−1(RRf))/Si−1(RRf) ∼= T (RRei).

�

Lemma 2.6. Let R be a basic right co-Harada ring and let e, f, g ∈ pi(R)
such that (eR,Rf) is an i-pair and gR ∼= J(eR). Set R̄ = R/S(eR) =
R/S(Rf). Then (ḡR̄, R̄f̄) is an i-pair.

Proof. By the assumption gR ∼= J(eR), eRR is not simple and hence RRf
is also not simple. Thus f 6∈ S(Rf) = S(eR). We also note from g 6= e that
g 6∈ S(eR) = S(Rf). Therefore, by Lemma 2.5(2),

T (R̄ḡ) ∼= T (Rg) ∼= S2(Rf)/S(Rf) ∼= S(R̄f̄)
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as left R-modules. Thus T (R̄ḡ) ∼= S(R̄f̄) as left R̄-modules. On the other
hand,

S(ḡR̄) = S(gR) ∼= S(eR) ∼= T (fR) ∼= T (f̄ R̄)

as right R-modules. Thus S(ḡR̄) ∼= T (f̄ R̄) as right R̄-modules. Therefore
(ḡR̄, R̄f̄) is an i -pair. �

Lemma 2.7. Let R be a basic right co-Harada ring. For each e ∈ pi(R),

Re/S(RR)e ∼= HomR(J(eR), J(R))

canonically.

Proof. We first claim that the restriction map

HomR(eR, gR) → HomR(J(eR), J(gR))

is surjective for any g ∈ pi(R). To verify this, let α : J(eR) → J(gR) be a
homomorphism. There exists an extension β : eR → E(gR) of α. It suffices
to show that Im(β) ≤ gR. Assume to the contrary Im(β) 6≤ gR. Then,
since R is a right co-Harada ring, we have gR ≤ Im(β), gR 6= Im(β) and
hence Im(β) is projective. Thus β : eR → Im(β) must be an isomorphism.
Therefore we have Im(β)/J(gR) ∼= eR/β−1(J(gR)). On the other hand,
since β is an extension of α, we see J(eR) ≤ β−1(J(gR)). Thus we have a
surjective homomorphism

T (eR) = eR/J(eR) → eR/β−1(J(gR)) ∼= Im(β)/J(gR).

So Im(β)/J(gR) is simple or 0. This contradicts the fact that J(gR) <
gR < Im(β) are proper inclusions. Thus Im(β) ≤ gR and β : eR → gR is
an extension of α. Therefore we have a surjective homomorphism

gRe ∼= HomR(eR, gR) → HomR(J(eR), J(gR)).

The kernel of the homomorphism gRe → HomR(J(eR), J(gR)) is

gRe ∩ lR(J(eR)) = gRe ∩ S(RR) = S(gRR)e,

where lR(J(eR)) denotes the left annihilator of J(eR) in R. Thus we have
shown that

gRe/S(gRR)e ∼= HomR(J(eR), J(gR))

canonically. That is,

g(Re/S(RR)e) ∼= gHomR(J(eR), J(R))

canonically for any g ∈ pi(R). Therefore we obtain the isomorphism of the
lemma. �

As the author proved and used in [4, Proposition 2.15], the following is a
key result of the study of right co-Harada rings. Indeed, the result is closely
related to (3) and (4) of Theorem 2.1 about factor rings of right co-Harada
rings (see the proof of [4, Proposition 2.15]).



6 K. KOIKE

Proposition 2.8 ([4, Proposition 2.15]). Let R be a basic right co-Harada

ring and let f ∈ pi(R) with fRR non-injective. Then (1 − f)R(1 − f) is a

right co-Harada ring.

We cite the following proposition, which we shall frequently use in this
paper.

Proposition 2.9 ([3, Proposition 7.1.11]). Let R be a basic right co-Harada

ring and let e ∈ pi(R). If J(eR) is not projective, then the projective cover

of J(eR) is injective.

Proof. This is proved in [3, Proposition 7.1.11]. However we can show the
result easily by the first claim of the proof of Lemma 2.7. So we give a proof
here. Let α : P → J(eR) be a projective cover of J(eR) and P =

⊕n
i=1 Pi

an indecomposable decomposition of P . To show that P is injective, assume
to the contrary that Pi is not injective for some i. Then, since R is a right
co-Harada ring, there exists an indecomposable projective right R-module
Qi such that J(Qi) = Pi. By the first claim of the proof of Lemma 2.7, the
canonical homomorphism HomR(Qi, eR) → HomR(J(Qi), J(eR)) is surjec-
tive. Thus the restriction Pi → J(eR) of α can be extend to βi : Qi → eR.
If βi is surjective, then βi is an isomorphism and hence J(eR) ∼= J(Qi) = Pi

is projective, a contradiction. Thus βi is not surjective and βi(Qi) ≤ J(eR).
Therefore we have α(Pi) ≤ J(J(eR)). This contradicts the assumption that
α : P → J(eR) is a projective cover of J(eR). �

Lemma 2.10. Let R be a basic right co-Harada ring and let e, f, g ∈ pi(R)
such that (eR,Rf) is an i-pair and fR ∼= J(gR). Then

S2(eR)/S(eR) ∼= T (gR).

Proof. We first claim that S2(eR)/S(eR) is isomorphic to a direct sum of
copies of T (gR). To verify this, let M be a right R-submodule of S2(eR)
such that S(eR) ≤ M and M/S(eR) is simple. Let α : hR → M/S(eR) be a
projective cover for h ∈ pi(R) and let β : hR → M be a lift of α. Clearly β is
surjective. Then the restriction J(hR) → S(eR) of β is also surjective. Let
γ : P → J(hR) be a projective cover. Then there exists a split epimorphism
δ : P → fR that makes the following diagram commutative:

fR // T (fR)

∼=
��

P

δ

<<③③③③③③③③③ γ // J(hR)
β|J(hR)// S(eR).

Since fR is not injective, P is also not injective. Thus by Proposition 2.9
J(hR) must be indecomposable projective. Therefore we see from the surjec-
tive homomorphism β|J(hR) : J(hR) → S(eR) ∼= T (fR) that J(hR) ∼= fR.
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Hence by the assumption J(gR) ∼= fR, we have h = g. Thus M/S(eR) ∼=
T (gR). Therefore we have shown that S2(eR)/S(eR) is isomorphic to a
direct sum of copies of T (gR), that is, S2(eR)/S(eR) = (S2(eR)/S(eR))g.

Set f ′ = 1− f . We note from Proposition 2.8 that f ′Rf ′ becomes a right
co-Harada ring because fR is not injective. Since eR is injective, we see
e 6= f and e ∈ f ′Rf ′. Thus S(eRf ′

f ′Rf ′) is simple. On the other hand, by

S2(eR)/S(eR) = (S2(eR)/S(eR))g we have

S2(eR) = S2(eR)g + S(eR) = S2(eR)g + S(eR)f.

Here we note S2(eR)g ≤ S(eRf ′
f ′Rf ′). Indeed, this follows from

S2(eR)g · f ′J(R)f ′ = (S2(eR)gJ(R))f ′ ≤ S(eR)f ′ = S(Rf)f ′ = 0.

So, since S(eRf ′
f ′Rf ′) is simple and S2(eR)g 6= 0, we have S2(eR)g =

S(eRf ′
f ′Rf ′). This implies that S2(eR)/S(eR) is simple and hence S2(eR)/S(eR) ∼=

T (gR). �

Lemma 2.11. Let R be a basic right co-Harada ring and let e, f, g ∈ pi(R)
such that (eR,Rf) is an i-pair and fR ∼= J(gR). Set R̄ = R/S(eR) =
R/S(Rf).

(1) In case RRg is not injective, (ēR̄, R̄ḡ) is an i-pair.

(2) In case RRg is injective, let h1, h2, . . . , hn ∈ pi(R) such that

(a) (h1R,Rg) is an i-pair,

(b) J(hiR) ∼= hi+1R for i = 1, 2, . . . , n − 1 and J(hnR) is not pro-

jective.

Then eR/S(eR) ∼= J(hnR) as right R-modules and ēR̄ ∼= J(hnR̄) as
right R̄-modules.

Proof. (1) We first note that e, g 6∈ S(eR) = S(Rf). Indeed, since fR is not
injective, we see e 6= f and hence e 6∈ S(Rf) = S(eR). Since gRR is not
simple, g 6∈ S(eR) = S(Rf). By Lemma 2.10,

S(ēR̄) = S2(eR)/S(eR) ∼= T (gR) ∼= T (ḡR̄)

as right R-modules. Thus S(ēR̄) ∼= T (ḡR̄) as right R̄-modules. Since RRg
is not injective, by Lemmas 2.3 and 2.7 and by assumption,

Rg ∼= HomR(J(gR), J(R)) ∼= HomR(fR, J(R)) ∼= J(Rf)

as left R-modules. So, since J(Rf) is essential in Rf and g 6= f ,

S(R̄ḡ) = S(Rg) ∼= S(J(Rf)) = S(Rf) ∼= T (Re) ∼= T (R̄ē)

as left R-modules. Hence S(R̄ḡ) ∼= T (R̄ē) as left R̄-modules. Therefore
(ēR̄, R̄ḡ) is an i -pair.

(2) By Lemma 2.10 and assumption, we have

S(eR/S(eR)) = S2(eR)/S(eR) ∼= T (gR) ∼= S(h1R)
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as right R-modules. Since h1RR is injective, there exists an exact sequence
of right R-modules

0 → S(eR) → eR → h1R.

Thus by assumption there exists an exact sequence of right R-modules

0 // S(eR) // eR
α // J(hnR).

We claim that α is an epimorphism. To prove this, apply the functor
HomR((1 − f)R,−) to the exact sequence above. Then, since

HomR((1− f)R,S(eR)) ∼= HomR((1− f)R,T (fR)) = 0,

we have the following commutative diagram with exact rows

0 // HomR((1 − f)R, eR)
α∗ //

∼=
��

HomR((1 − f)R, J(hnR))

∼=
��

0 // eR(1− f) // J(hnR)(1− f),

where α∗ = HomR((1−f)R,α). Since the homomorphism of the bottom row
is an isomorphism by [4, Lemma 2.13(4)], α∗ is also an isomorphism. On the

other hand, there exists an epimorphism ((1− f)R)(m) → J(hnR) for some
m ≥ 1 because the projective cover of J(hnR) is injective by Proposition 2.9
and fR is not injective. Thus, there exist homomorphisms β1, β2, . . . , βm :
(1 − f)R → J(hnR) such that

⊕m
i=1 βi : ((1 − f)R)(m) → J(hnR) is an

epimorphism. Since α∗ = HomR((1− f)R,α) is an isomorphism, there exist
homomorphisms β′

i : (1− f)R → eR such that βi = αβ′
i for i = 1, 2, . . . ,m.

Then

J(hnR) =

m∑

i=1

βi((1− f)R) =

m∑

i=1

αβ′
i((1− f)R) = α(

m∑

i=1

β′
i((1− f)R)).

Thus α : eR → J(hnR) is an epimorphism. Therefore we have J(hnR) ∼=
eR/S(eR) as right R-modules and hence J(hnR̄) ∼= ēR̄ as right R̄-modules.

�

We have prepared results to prove (3) and (4) of Theorem 2.1. We also
cite one more result.

Lemma 2.12 ([4, Lemma 2.4]). A right artinian ring R is a right co-Harada

ring if and only if, for each e ∈ pi(R), eRR is injective or eR ∼= J(fR) for

some f ∈ pi(R).

We can show Theorem 2.1(4) as the following form.
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Theorem 2.13. Let R be a basic right co-Harada ring and let e ∈ pi(R) with
eRR injective. Assume that R is not a division ring. If eR/S(eR) ∼= J(gR)
for some g ∈ pi(R), then the factor ring R̄ = R/S(eRR) is a right co-Harada

ring.

Proof. We first consider the case g = e, that is, eR/S(eR) ∼= J(eR). It
follows that eR is a uniserial module whose each composition factor is iso-
morphic to T (eR). Thus e is a central idempotent of R and eR is a local
uniserial ring, which is a ring direct summand of R. Since R is not a division
ring by assumption, if S(eR) = eR then (1 − e)R 6= 0. Thus, for the case
g = e, the statement of the theorem is clear. Therefore we may assume that
g 6= e and eRR is not simple by the observation above.

Let f ∈ pi(R) such that (eR,Rf) is an i -pair. Since eRR is not simple,
we see e, f 6∈ S(eR) = S(Rf). By using Lemma 2.12, we shall check that
R̄ = R/S(eR) = R/S(Rf) is a right co-Harada ring. Let h ∈ pi(R). First
we consider the case S(hR) 6∼= S(eR). If hRR is injective, then so is h̄R̄R̄ by
Lemma 2.4. If hRR

∼= J(kRR) for some k ∈ pi(R), then by h 6= e and k 6= e
we have

h̄R̄ = hR ∼= J(kR) = J(k̄R̄)

as right R-modules. Thus h̄R̄ ∼= J(k̄R̄) as right R̄-modules. Second we
consider the case S(hR) ∼= S(eR). If hRR is injective, i.e., h = e, then by
assumption and g 6= e we have

h̄R̄ = ēR̄ ∼= J(gR) = J(ḡR̄)

as right R-modules. Thus h̄R̄ ∼= J(ḡR̄) as right R̄-modules. If hR ∼= J(eR),
then h̄R̄R̄ is injective by Lemma 2.6. If hR ∼= J(kR) for some k ∈ pi(R)
with k 6= e, then by h 6= e and k 6= e we have

h̄R̄ = hR ∼= J(kR) = J(k̄R̄)

as right R-modules. Thus h̄R̄ ∼= J(k̄R̄) as right R̄-modules. �

Now we can show Theorem 2.1(3) as the following form.

Theorem 2.14. Let R be a basic right co-Harada ring and let f ∈ pi(R) with

RRf injective. If fRR is not injective, then the factor ring R̄ = R/S(RRf)
is a right co-Harada ring.

Proof. Let e ∈ pi(R) such that (eR,Rf) is an i -pair. Since fRR is not
injective, fR ∼= J(gR) for some g ∈ pi(R). If RRg is injective, then
eR/S(eR) ∼= J(kR) for some k ∈ pi(R) by Lemma 2.11(2). So by The-
orem 2.13 R̄ = R/S(eR) = R/S(Rf) is a right co-Harada ring. Thus we
may assume that RRg is not injective. We shall also check that, for any
h ∈ pi(R), h̄R̄R̄ is injective or h̄R̄R̄

∼= J(k̄R̄R̄) for some k ∈ pi(R). For the
case S(hR) 6∼= S(eR), it is similar to the case of the proof of Theorem 2.13.



10 K. KOIKE

So we may assume S(hR) ∼= S(eR). Since RRg is not injective, if hRR is
injective, i.e, h = e, then h̄R̄R̄ = ēR̄R̄ is injective by Lemma 2.11(1). As
is similar to the cases of the proof of Theorem 2.13, if hR ∼= J(eR) then
h̄R̄R̄ is injective, and if hR ∼= J(kR) for some k ∈ pi(R) with k 6= e, then
h̄R̄ ∼= J(k̄R̄) as right R̄-modules.

�

Remark 2.15. We record here inheritances of well-indexed sets of the factor
rings from the right co-Harada rings in Theorems 2.13 and 2.14. Let R be a
basic right co-Harada ring and E = {eij | i = 1, 2, . . . ,m, j = 1, 2, . . . , n(i)}
a well-indexed set of R. We may assume that the idempotents of R in
Theorems 2.13 and 2.14 are in E. Set

E1 = {ei1 | i = 1, 2, . . . ,m} = {e ∈ E | eR is injective}.

We define a map µ : E1 → E as (eR,Rµ(e)) is an i -pair for e ∈ E1. Let R̄ be
the factor ring of R in Theorems 2.13 or 2.14. The symbol F will denote the
well-indexed set of R̄ induced by E. The symbols F1 and ν will denote the
subset of F and the map F1 → F which are similar to E and µ, respectively.
We describe the relationship between E and F and the relationship between
µ and ν.

(1) Let R be a basic right co-Harada ring in Theorem 2.13 and let e, g ∈
pi(R) such that eR is injective and eR/S(eR) ∼= J(gR). R is not a division
ring. Set R̄ = R/S(eR). We divide observations into the two cases g = e
and g 6= e.

Case g = e: Assume e = e11. As we noted in the proof of Theorem 2.13,
e is a central idempotent. Thus

F =

{
{eij | i = 1, 2, . . . ,m, j = 1, 2, . . . , n(i)} if S(eR) 6= eR,

{eij | i = 2, 3, . . . ,m, j = 1, 2, . . . , n(i)} if S(eR) = eR

become well-indexed sets naturally.
Case g 6= e: Then m ≥ 2. Assume e = em1. Since eR/S(eR) ∼= J(gR),

J(gR) is not projective. Thus, by renumbering the indices, we may assume
g = em−1,n(m−1). Then

eR/S(eR) = em1R/S(em1R) ∼= J(em−1,n(m−1)R) = J(gR).

Define idempotents fij of R̄ by

(f11, . . . , f1,n(1)) = (e11, . . . , e1,n(1)),

· · · ,

(fm−2,1, . . . , fm−2,n(m−2)) = (em−2,1, . . . , em−2,n(m−2)),

(fm−1,1, . . . , fm−1,n(m−1), fm−1,n(m−1)+1) = (em−1,1, . . . , em−1,n(m−1), em,1),

(fm1, . . . , fm,n(m)−1) = (em2, . . . , em,n(m)).
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Then by the proof of Theorem 2.13 F = {fij} is a well-indexed set of R̄
with the subset

F1 = {fi1 | i = 1, 2, . . . ,m} = {e11, . . . , em−1,1, em2}

and by Lemmas 2.4 and 2.6 the map ν : F1 → F is given by

ν(f11) = ν(e11) = µ(e11),

· · · ,

ν(fm−2,1) = ν(em−2,1) = µ(em−2,1),

ν(fm−1,1) = ν(em−1,1) = µ(em−1,1),

ν(fm1) = ν(em2) = µ(em1).

(2) Let R be a basic right co-Harada ring in Theorem 2.14 and let e, f ∈
pi(R) such that (eR,Rf) is an i -pair. Assume that fR is not injective. Set
R̄ = R/S(eR) = R/S(Rf). Let g ∈ pi(R) such that fR ∼= J(gR).

Case Rg is injective: Let h ∈ pi(R) such that (hR,Rg) is an i -pair. Then
e 6= h by f 6= g. Thus we may assume e = em1 and h = em−1,1. By
Lemma 2.11(2)

eR/S(eR) = em1R/S(em1R) ∼= J(em−1,n(m−1)R).

Therefore the well-indexed set F of R̄ with the subset F1 and the map
ν : F1 → F are the same as in the case g 6= e of (1).

Case Rg is not injective: We may assume e = em1. Define idempotents
fij of R̄ by

(f11, . . . , f1,n(1)) = (e11, . . . , e1,n(1)),

· · · ,

(fm−1,1, . . . , fm−1,n(m−1)) = (em−1,1, . . . , em−1,n(m−1)),

(fm1) = (em1),

(fm+1,1, . . . , fm+1,n(m)−1) = (em2, . . . , em,n(m)).

Then by the proof of Theorem 2.14 F = {fij} is a well-indexed set of R̄
with the subset

F1 = {fi1 | i = 1, 2, . . . ,m+ 1} = {e11, . . . , em−1,1, em1, em2}

and by Lemmas 2.4, 2.6 and 2.11(1) the map ν : F1 → F is given by

ν(f11) = ν(e11) = µ(e11),

· · · ,

ν(fm−1,1) = ν(em−1,1) = µ(em−1,1),

ν(fm1) = ν(em1) = g,
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ν(fm+1,1) = ν(em2) = f = ν(em1).

Combining Theorems 2.13 and 2.14, we also obtain the following theorem.

Theorem 2.16. Let R be a basic right co-Harada ring, let e, f ∈ pi(R)
such that (eR,Rf) is an i-pair and let e1 = e, e2, . . . , en ∈ pi(R) such

that J(eiR) ∼= ei+1R for i = 1, 2, . . . , n − 1. If fRR is not injective, then

R/Si(RRf) are right co-Harada rings for all i = 1, 2, . . . , n.

Proof. Note by Lemma 2.5(1)

Si(RRf) = S(e1RR) + S(e2RR) + · · ·+ S(eiRR)

for i = 1, 2, . . . , n. We show the statement by induction. First, the factor
ring R/S(RRf) is a right co-Harada ring by Theorem 2.14. Assume that
R̄ = R/Si−1(RRf) is a right co-Harada ring for 2 ≤ i < n. Then by
Lemmas 2.5(1) and 2.6 eiR̄R̄ is injective and eiR̄/S(eiR̄) ∼= J(ei−1R̄). Thus
by Theorem 2.13 R̄/S(eiR̄) ∼= R/Si(RRf) is also a right co-Harada ring.
Therefore we have shown the statement of the theorem by induction. �

Combining Proposition 2.8 with Theorem 2.13, we have the following.

Proposition 2.17. Let R be a basic non-local right co-Harada ring and let

e ∈ pi(R) with eRR injective. If eR/S(eR) ∼= J(gR) for some g ∈ pi(R),
then (1− e)R(1 − e) is a right co-Harada ring.

Proof. As is similar to the proof of Theorem 2.13, we may assume that
g 6= e. By Theorem 2.13 the factor ring R̄ = R/S(eR) is a right co-Harada
ring and ēR̄R̄, which is isomorphic to J(ḡR̄R̄), is not injective. Then by
Proposition 2.8 (1 − ē)R̄(1 − ē) is a right co-Harada ring. Thus, so is (1 −
e)R(1 − e) ∼= (1− ē)R̄(1− ē). �

To complete the proof of Theorem 2.1, we need two more lemmas. Let R
be a basic right co-Harada ring and let e, f ∈ pi(R) such that fR ∼= J(eR).

Set f ′ = 1− f , R′ = f ′Rf ′ = (1− f)R(1− f) and R̃ = R′
e. Then

R̃ = R′
e =

(
R′ R′e

eJ(R′) eR′e

)
=

(
f ′Rf ′ f ′Re

eJ(R)f ′ eRe

)
.

We should note that R̃ is a right co-Harada ring. Indeed R′ = (1−f)R(1−f)
is a right co-Harada ring by Proposition 2.8. Thus, as we stated in Theo-
rem 2.1 (2), R̃ = R′

e is also a right co-Harada ring by [4, Proposition 2.10].

Lemma 2.18 (cf. [4, Lemmas 2.6 and 2.7]). With the setting above, there

exists a surjective ring homomorphism φe : R̃ → R such that

Ker(φe) =

(
0 S(f ′RR)e
0 S(eRR)e

)
.

Then φe is an isomorphism if and only if RRe is not injective.
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Proof. [4, Lemma 2.6] states the existence of the ring homomorphism φe.
Since R is a basic right co-Harada ring, we can apply [4, Lemma 2.7] to R.
Thus φe is surjective. Hence by [4, Lemma 2.6(3)] φe is an isomorphism if and
only if HomR(T (eR), (1−f)R) = 0. Since fR ∼= J(eR) < eR ≤ (1−f)R, we
note that HomR(T (eR), (1 − f)R) = 0 if and only if HomR(T (eR), R) = 0.
On the other hand, we have canonical isomorphisms

HomR(T (eR), R) ∼= HomR(T (eR), S(RR)) ∼= HomR(eR, S(RR)) ∼= S(RR)e.

Therefore φe is an isomorphism if and only if S(RR)e = 0, which is equivalent
to RRe being non-injective by Lemma 2.3. �

To give the proof of Theorem 2.1, we provide the following lemma, which
describes Ker(φe) in Lemma 2.18 in terms of a well-indexed set of the right

co-Harada ring R̃. For g ∈ pi(R′) = pi(f ′Rf ′) and e ∈ pi(eR′e) = pi(eRe),
we put

g̃ =

(
g 0
0 0

)
and ê =

(
0 0
0 e

)
.

Then

pi(R̃) = {g̃ | g ∈ pi(R), g 6= f} ∪ {ê}.

We also note the fact that, for a basic right co-Harada ringR, if g1, g2, . . . , gn ∈
pi(R) satisfy the conditions (a) and (b) of Lemma 2.19, then S(kR) ∼= T (eR)
iff S(kR)e = S(kR) iff k ∈ {g1, g2, . . . , gn} for any k ∈ pi(R). Thus we may
assume e = gj−1 and f = gj in (ii) of the lemma below.

Lemma 2.19. With the same setting as in Lemma 2.18, assume that RRe
is injective. Let g1, g2, . . . , gn ∈ pi(R) such that

(a) (g1R,Re) is an i-pair;

(b) J(giR) ∼= gi+1R for i = 1, 2, . . . , n− 1 and J(gnR) is not projective.

Define h1, h2, . . . , hn ∈ pi(R̃) as the following manner:

(i) In case S(eR) 6∼= T (eR), set hi = g̃i for i = 1, 2, . . . , n;
(ii) In case S(eR) ∼= T (eR), let e = gj−1 and f = gj and set hi = g̃i for

i = 1, 2, . . . , j − 1, j + 1, . . . , n and hj = ê.

Then

(1) (h1R̃, R̃ê) = (g̃1R̃, R̃ê) is an i-pair.

(2) J(hiR̃) ∼= hi+1R̃ for i = 1, 2, . . . , n− 1.

(3) Ker(φe) =
∑n

i=1 S(hiR̃) = Sn(R̃ê).

Proof. (1) By the assumption (a), S(g1R) ∼= T (eR) and g1RR is injective.
Thus the left annihilator lg1R(R(1 − f)) of R(1 − f) in g1R must be 0 and
hence by [1, 31.2. Lemma] g1R(1 − f)(1−f)R(1−f) = g1R

′
R′ is injective. It

also follows from S(g1R) ∼= T (eR) that S(g1R
′
R′)e 6= 0. Thus we see from
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Lemma 2.2 that (g1R
′, R′e) is an i -pair. Therefore, by using Lemma 2.2, [4,

Lemma 2.9] and its proof, we can verify that (g̃1R̃, R̃ê) is an i -pair.
(2) For the case (i), it is clear from the assumption (b) that J(giR

′) ∼=
gi+1R

′ for i = 1, 2, . . . , n − 1. Thus by e 6= gi and by the form of J(R̃) =

J(R′
e), which is described in Lemma 4.1, we have J(g̃iR̃) ∼= g̃i+1R̃, that is,

J(hiR̃) ∼= hi+1R̃ for i = 1, 2, . . . , n− 1.
For the case (ii), since R is basic, J(eR) ∼= fR and J(fR) = J(gjR) ∼=

gj+1R, we have isomorphisms

eJ(R)f ′ ∼= fRf ′ = fJ(R)f ′ ∼= gj+1Rf ′

as right R′-modules. In particular, eJ(R)e ∼= gj+1Re as right eRe-modules.

Thus it follows from the form of J(R̃) that J(êR̃) ∼= g̃j+1R̃. It also holds that

J(ẽR̃) ∼= êR̃. Therefore, similar to the case of (i), we have J(hiR̃) ∼= hi+1R̃
for i = 1, 2, . . . , n− 1.

(3) As we noted above the lemma, for k ∈ pi(R), S(kR) ∼= T (eR) iff
S(kR)e = S(kR) iff k ∈ {g1, g2, . . . , gn}. Therefore, in case S(eR) 6∼= T (eR),
by Lemma 2.18 and the definition of hi we have

Ker(φe) =



0

n∑

i=1

S(giRR)

0 0


 =

n∑

i=1

(
0 S(giRR)
0 0

)

=
n∑

i=1

S(g̃iR̃R̃) =
n∑

i=1

S(hiR̃R̃),

because each

(
0 S(giRR)
0 0

)
is a simple submodule of g̃iR̃R̃ and R̃ is a right

co-Harada ring. In case S(eR) ∼= T (eR), we recall e = gj−1 and f = gj as
in (ii). Thus, as is similar to the case above, we have

Ker(φe) =



0

∑

1≤i≤n,i 6=j

S(giRR)

0 S(eRR)




=
∑

1≤i≤n,i 6=j

(
0 S(giRR)
0 0

)
+

(
0 0
0 S(eRR)

)

=
∑

1≤i≤n,i 6=j

S(g̃iR̃R̃) + S(êR̃R̃) =
n∑

i=1

S(hiR̃R̃).

Furthermore, by (1), (2) and Lemma 2.5 (1), we have
∑n

i=1 S(hiR̃) = Sn(R̃ê).
�

Now we can complete a proof of Theorem 2.1.
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Proof of Theorem 2.1. We have already shown that the class H satisfies the
conditions (1)–(4) of Theorem 2.1. Indeed, as we noted before, the condition
(1) is clear and the condition (2) is verified in [4, Proposition 2.10]. The
conditions (3) and (4) are proved as Theorems 2.14 and 2.13, respectively.
In order to prove the smallestness of H, let H′ be a class of rings satisfying
the conditions (1)–(4). Let R ∈ H. We shall prove R ∈ H′ by induction on
the composition length of R. If the composition length of R is one, that is,
R is a division ring, then R is a QF ring. Thus by the condition (1) R ∈ H′.
We assume that R is not a division ring. In case R is a QF ring, R ∈ H′ by
(1). In case R is not a QF ring, since R is a right co-Harada ring, there exist
e, f ∈ pi(R) such that fR ∼= J(eR). Set f ′ = 1 − f and R′ = f ′Rf ′. By
Proposition 2.8 R′ ∈ H. Then by induction hypothesis, we have R′ ∈ H′.
Thus by the condition (2), we have R′

e ∈ H′. Set R̃ = R′
e. In case RRe

is not injective, R ∼= R̃ ∈ H′ by Lemma 2.18. In case RRe is injective, by
Lemmas 2.18 and 2.19 there exist h1, h2, . . . , hn ∈ pi(R̃) such that (h1R̃, R̃ê)

is an i -pair, J(hiR̃) ∼= hi+1R̃ (i = 1, 2, . . . , n− 1) and R ∼= R̃/Sn(R̃ê). Since

êR̃ ∼= J(ẽR̃), êR̃ is not injective. Therefore by Theorem 2.16, which is

proved by the conditions (3) and (4), we have R ∼= R̃/Sn(R̃ê) ∈ H. �

Concluding this section, we provide the almost self-duality of right co-
Harada rings as an example of Theorem 2.1.

Example 2.20. Recall that a right artinian ring R is (right) Morita dual

to a left artinian ring S in case there exists a duality between the category
of finitely generated right R-modules and the category of finitely generated
left S-modules. An artinian ring R is said to have a self-duality if R is
Morita dual to R itself and R is said to have an almost self-duality if there
exist artinian rings R0 = R,R1, . . . , Rn−1, Rn = R such that each Ri is
right Morita dual to Ri+1. Clearly, the concept of almost self-duality is a
generalization of that of self-duality. (For almost self-duality in detail, see
[4].)

Let A be the class of basic artinian rings with almost self-duality. Clearly
A contains all basic QF rings. That is, A satisfies the condition (1) of
Theorem 2.1. By [4, Proposition 1.14(2)] A satisfies the condition (2) of
Theorem 2.1. It follows from [4, Lemma 1.9(2)] and the proof of [4, Theo-
rem 3.2] thatA satisfies the conditions (3) and (4) of Theorem 2.1. Therefore
H ⊂ A by Theorem 2.1. In other words, every basic right co-Harada ring
has an almost self-duality ([4, Theorem 3.2]).
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3. Uniqueness of the QF rings reduced from right co-Harada

rings

Oshiro proved that every basic right co-Harada ring R can be constructed
from a QF ring. The QF ring has the form eRe for some idempotent e of
R. He called the QF ring eRe the frame QF subring of R. However the
definition of eRe is somewhat complicated. (See [3, Chapter 4].) In this
section, we provide another description of the frame QF subring of a right
co-Harada ring.

Let R be a right co-Harada ring. If R is not a QF ring, there exists
e1 ∈ pi(R) such that e1RR is not injective. Then by Proposition 2.8 the ring
R1 = (1 − e1)R(1 − e1) is a right co-Harada ring again. Similarly, if R1 is
not a QF ring, there exists e2 ∈ pi(R1) = pi(1 − e1)R(1 − e1) such that the
ring

R2 = (1− e2)R1(1− e2) = (1− e1 − e2)R(1− e1 − e2)

is a right co-Harada ring. Iterating such processes, we shall reach a QF
ring for any right co-Harada ring. For these processes, we notice the fol-
lowing lemma, which follows from the proofs of [4, Proposition 2.10 and
Lemmas 2.12 and 2.14].

Lemma 3.1. Let R be a basic right co-Harada ring and let f ∈ pi(R) with

fRR non-injective. Set R′ = (1− f)R(1− f). If eRR is non-injective, then

eR′
R′ is non-injective, for e ∈ pi(R) with e 6= f .

For the lemma above, we should note that eR′
R′ might not be injective

even if eRR is injective. Thus there are many processes of removing idempo-
tents f with fR non-injective. So it is not trivial that all processes provide
the same QF ring. The main purpose of this section is to show the unique-
ness of the QF ring and that the QF ring is just the frame QF subring.

Let R be a basic one-sided artinian ring with E = pi(R). For a non-empty
subset F of E, set eF =

∑
e∈F e and R(F ) = eFReF .

Definition 3.2. Let R be a basic right co-Harada ring with E = pi(R) and
F a non-empty subset of E. For distinct elements e1, e2, . . . , en of E, we
say that the sequence (e1, e2, . . . , en) is a route from E to F if the following
conditions hold:

(i) E − {e1, e2, . . . , en} = F ;
(ii) For each i = 1, 2, . . . , n, the right Ri−1-module eiRi−1 is not injec-

tive, where R0 = R and

Ri = R(E − {e1, e2, . . . , ei}) = (1−
i∑

j=1

ej)R(1−
i∑

j=1

ej).
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In this case, we call n the length of the route (e1, e2, . . . , en). When E = F ,
we consider that there is the trivial route from E to E itself and that the
length of the trivial route is 0.

Remark 3.3. (1) In the setting of Definition 3.2, if there is a route from E
to F , then R(F ) = eFReF is a right co-Harada ring by Proposition 2.8.

(2) For a non-empty subset G of F , if there exist a route from E to F
and a route from F to G, then by definition there exists a route from E to
G.

The following is a key lemma.

Lemma 3.4. Let R be a basic right co-Harada ring with E = pi(R) and

F a non-empty subset of E. Assume that there exists a route from E to F
such that R(F ) is a QF ring. For any e ∈ E with eRR non-injective, the

following hold.

(1) F ⊂ E − {e}.
(2) There exists a route from E − {e} to F .

Proof. Let (e1, . . . , en) be a route from E to F and set R0 = R and

Ri = R(E − {e1, e2, . . . , ei}) = (1−

i∑

j=1

ej)R(1−

i∑

j=1

ej)

for i = 1, 2, . . . , n.
(1) To show F ⊂ E − {e}, assume to the contrary e ∈ F . Then e 6= ei

for any i = 1, 2, . . . , n. Thus by Lemma 3.1 eR1R1
, eR2R2

, . . . , eRnRn
are

non-injective. However this contradicts the fact that Rn = R(F ) is a QF
ring.

(2) We prove the statement by induction on the length n of the route
(e1, . . . , en) from E to F . In case n = 0, the statement is trivial. We assume
that the statement holds in case that the length of the route is less than n.
That is, we assume that if R′ is a basic right co-Harada ring with a complete
set of orthogonal primitive idempotents E′ = pi(R′) containing F and if
there exists a route of length < n from E′ to F , then there exists a route from
E′−{e′} to F for any e′ ∈ E′ with e′R′

R′ non-injective. Since (e1, e2, . . . , en)
is a route from E to F , (e2, . . . , en) is a route from E − {e1} to F . In case
e = e1, there is a route from E − {e} to F . In case e 6= e1, since eRR is
non-injective, eR1R1

is non-injective by Lemma 3.1. Then by the induction
hypothesis on the basic right co-Harada ring R1 = (1 − e1)R(1 − e1) with
a complete set of orthogonal primitive idempotents E − {e1} and the route
(e2, . . . , en) from E − {e1} to F , there exists a route from (E − {e1})− {e}
to F . Since (E − {e1}) − {e} = (E − {e}) − {e1}, we have a route from
(E−{e})−{e1} to F . On the other hand, since e1R(E−{e}) is non-injective
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by Lemma 3.1, we have the route (e1) from E − {e} to (E − {e}) − {e1}.
Therefore, composing the route from E − {e} to (E − {e}) − {e1} and the
route from (E−{e})−{e1} to F , we obtain a route from E−{e} to F (see
Remark 3.3(2)). �

We can now prove the main result of this section easily.

Theorem 3.5. Let R be a basic right co-Harada ring with E = pi(R) and

let F and G be non-empty subsets of E such that R(F ) and R(G) are QF

rings. If there exist a route from E to F and a route from E to G, then

F = G.

Proof. Let (e1, e2, . . . , en) be a route from E to F . Since there is a route
from E to G, we have G ⊂ E − {e1} and a route from E − {e1} to G by
Lemma 3.4. Again by Lemma 3.4, we have G ⊂ E − {e1, e2} and a route
from E−{e1, e2} to G. By iteration, we obtain G ⊂ E−{e1, e2, . . . , en} = F .
Similarly, we obtain F ⊂ G. Thus F = G as required. �

Remark 3.6. Let R be a basic right co-Harada ring with E = pi(R). As
we stated before, in case R is not a QF ring, there exist e1, e2, . . . , en ∈ E
such that each eiRi−1Ri−1

is non-injective for i = 1, 2, . . . , n and Rn is a QF

ring, where R0 = R and Ri = (1 −
∑i

j=1 ej)R(1 −
∑i

j=1 ej). Theorem 3.5

shows the uniqueness of the set E−{e1, . . . , en} and the QF ring Rn. Thus,
such a QF ring Rn does not depend on choices of removing idempotents of
E. This shows that the ring Rn is just the frame QF subring of the right
co-Harada ring R. (See [3, Theorem 4.3.11(2)].)

4. Examples – Quiver of Re –

In the final section, we provide several examples of right co-Harada rings
represented by factor algebras of path algebras over a field. For this, we
begin with the following.

Lemma 4.1. Let R be a basic artinian ring with J = J(R). For e ∈ pi(R),
set

R̃ = Re =

(
R Re
eJ eRe

)

and J̃ = J(R̃). Then

J̃ =

(
J Re
eJ eJe

)
.

Thus

J̃/J̃2 =

(
J/(J2 +ReJ) Re/Je

eJ/eJ2 0

)
.

In particular, for f, g ∈ pi(R), the following hold.
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(1)

(
f 0
0 0

)
(J̃/J̃2)

(
g 0
0 0

)
=





0 if f = e(
f(J/J2)g 0

0 0

)
if f 6= e

.

(2)

(
f 0
0 0

)
(J̃/J̃2)

(
0 0
0 e

)
=





(
0 eRe/eJe

0 0

)
if f = e

0 if f 6= e

.

(3)

(
0 0
0 e

)
(J̃/J̃2)

(
f 0
0 0

)
=

(
0 0

e(J/J2)f 0

)
.

(4)

(
0 0
0 e

)
(J̃/J̃2)

(
0 0
0 e

)
= 0.

Proof. Since J = J(R) is nilpotent, it is easy to check that
(
J Re
eJ eJe

)

is also a nilpotent ideal of R̃. On the other hand, it is clear that the factor
ring of R̃ by the ideal above is semisimple. Therefore we have the form of J̃ =
J(R̃) as in the lemma. It is routine to check the rest of the statements. �

From this lemma, we have the following. (For the definition of quivers
and relations of algebras, see e.g. [2, Chapter III].)

Proposition 4.2. Let K be a field, Γ = (Γ0,Γ1, s, t) a finite quiver, I an

admissible ideal of the path algebra KΓ, and ρ a set of relations of KΓ that

generates I. Set R = KΓ/I = KΓ/〈ρ〉. For a fixed vertex i ∈ Γ0, let ei be

the primitive idempotent of R corresponding to i. Set R̃ = Rei. Then the

quiver Γ̃ = (Γ̃0, Γ̃1) of R̃ and the admissible ideal Ĩ of KΓ̃ are given by the

following manner:

Vertices: The vertices of Γ̃ is obtained by adding a “copy” î of i to

the vertices of Γ. That is,

Γ̃0 = Γ0 ∪ {̂i}.

Arrows: The arrows in Γ̃ are defined as the following:

(i) Any arrow α : j → k in Γ with k 6= i is also an arrow j → k in

Γ̃;
(ii) for any arrow β : j → i in Γ, there exists a corresponding arrow

β̂ : j → î in Γ̃;
(iii) there exists a unique arrow ω : î → i in Γ̃.
That is,

Γ̃1 = {α | α ∈ Γ1, t(α) 6= i} ∪ {β̂ | β ∈ Γ1, t(β) = i} ∪ {ω}.
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Relations: For an arrow β : j → i in Γ, the path ωβ̂ : j → i in Γ̃
is denoted by the same β. For a path q : k → i in Γ with q = βp,
where β : j → i is an arrow and p : k → j is a path in Γ, the path

β̂p : k → î in Γ̃ is denoted by q̂. Then

ρ̃ = {u | u ∈ ρ, t(u) 6= i} ∪ {v̂ | v ∈ ρ, t(v) = i}

is a set of relations of KΓ̃ that generates Ĩ, where v̂ =
∑

l alq̂l for
v =

∑
l alql ∈ ρ with al ∈ K and paths ql : k → i in Γ.

Proof. It follows from Lemma 4.1 that the quiver Γ̃ = (Γ̃0, Γ̃1) of the algebra

R̃ = Rei has the vertices and the arrows in the proposition. To observe the

relations, let ej be the idempotent of R or KΓ̃ corresponding to a vertex

j ∈ Γ0 ⊂ Γ̃0 and let êi = eî be the idempotent of KΓ̃ corresponding to the

vertex î ∈ Γ̃0. We define a K-algebra homomorphism Φ : KΓ̃ → R̃ by

ej 7→

(
ej 0
0 0

)
(j ∈ Γ0), êi 7→

(
0 0
0 ei

)
, ω 7→

(
0 ei
0 0

)
,

α 7→

(
α 0
0 0

)
(α ∈ Γ1, t(α) 6= i), β̂ 7→

(
0 0
β 0

)
(β ∈ Γ1, t(β) = i).

Then it is routine to check that Φ is surjective and Ker(Φ), which is just

the admissible ideal Ĩ, is generated by ρ̃ in the proposition. �

For a concrete quiver with relations of Rei , see Example 4.3 below. We
should also note that the quiver with relations of a right co-Harada algebra
is described in Yamaura [7].

Concluding the paper, we illustrate Theorem 2.1 with the following ex-
amples.

Example 4.3. (1) Let K be a field and let A be the factor algebra of the
path algebra over K defined by the quiver and the relations

ΓA : 1
α

&&2
γ

ff
δ

883
β

xx and ρA = {δα, γβ, αγ − βδ}.

Then A is a QF algebra and hence A is a right co-Harada ring (by Theo-
rem 2.1(1)). Let ei be the primitive idempotent of A corresponding to the
vertex i for i = 1, 2, 3. We denote by “i” the simple right A-module T (eiR).
Then the Loewy series of the indecomposable projective right A-modules
are the following:

AA = 1
2
1

⊕ 2 ■■✉✉
1 ■■ 3

✉✉
2

⊕ 3
2
3

.
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(2) We consider the algebra B = Ae3 . Theorem 2.1(2) claims that B is a
right co-Harada ring. By Proposition 4.2 the quiver and the relations of B
are the following:

ΓB : 1
α

&&2
γ

ff

δ̂ ((

3
β

xx

3̂

ω

OO and ρB = ρ̃A = {δ̂α, γβ, αγ − βδ (= αγ − βωδ̂)},

where δ denotes the path ωδ̂. Then the Loewy series of the indecomposable
projective right B-modules are the following:

BB = 1
2
1

⊕ 2 ■■

✟✟
✟ 3

1
✹✹

✹
3̂

①①
2

⊕ 3
3̂
2
3
3̂

⊕ 3̂
2
3
3̂

.

Let ê3 = e3̂ be the primitive idempotent of B corresponding to the vertex

3̂. Then eiBB (i = 1, 2, 3) are injective and J(e3B) ∼= e3̂B. Therefore B
satisfies the definition of right co-Harada rings. The frame QF subring of B
is just the QF algebra A.

(3) For the right co-Harada ring B, e3B is injective, S(e3B) ∼= T (e3̂B)
and e3̂B is not injective. Thus by Theorem 2.1(3) the factor ring C =
B/S(e3B) = B/S(Be3̂) is also a right co-Harada ring. Actually, this is a
QF ring. So the frame QF subring of C is just C itself but not A. The
quiver of C is the same as B, and the relations of C are that of B adding
by ωδ̂βω. That is, ΓC = ΓB and ρC = ρB ∪{ωδ̂βω}. Then the Loewy series
of the indecomposable projective right C-modules are the following:

CC = 1
2
1

⊕ 2 ■■

✟✟
✟ 3

1
✹✹

✹
3̂

①①
2

⊕ 3
3̂
2
3

⊕ 3̂
2
3
3̂

.

(4) For the right co-Harada ring C, e3̂C is injective and e3̂C/S(e3̂C) ∼=
J(e3C). By Theorem 2.1(4) (or by Theorem 2.16) the factor ring

D = C/S(e3̂C) = B/S2(Be3̂) = B/(S(e3B)⊕ S(e3̂B))

is a right co-Harada ring. The frame QF subring of D is the QF algebra
A. The quiver of D is the same as B, and the relations of D are that of B
adding by ωδ̂βω and δ̂βω. That is, ΓD = ΓB and ρD = ρB ∪ {ωδ̂βω, δ̂βω}.
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Then the Loewy series of the indecomposable projective right D-modules
are the following:

DD = 1
2
1

⊕ 2 ■■

✟✟
✟ 3

1
✹✹

✹
3̂

①①
2

⊕ 3
3̂
2
3

⊕ 3̂
2
3

.

We note that the ring D is just the case of n = 3 of [5, Example 2.2].
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