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BIJECTIVE PROOFS OF THE IDENTITIES
ON THE VALUES OF INNER PRODUCTS
OF THE MACDONALD POLYNOMIALS

Yuta NISHIYAMA

ABSTRACT. In this article, we introduce some identities obtained from
the inner products of some symmetric polynomials including the Mac-
donald polynomials. These identities are obtained not only from the in-
ner products, but also by constructing certain bijections. The bijections
are constructed through transforming the Young diagrams of partitions.

INTRODUCTION

The Hall-Littlewood polynomials Py(t) are a family of symmetric poly-
nomials indexed by partitions [2]. They are a generalization of the Schur
polynomials having a parameter ¢. The Macdonald polynomials Py(q,t) are
a yet more generalization having two parameters ¢ and ¢ [3].

There are inner products defined on the space of symmetric polynomials
with which the power sum symmetric polynomials form an orthogonal basis.
These kind of inner products are introduced originally by Redfield [6] and
Hall [1]. One obtains some identities of parameters by calculating the inner
products of some symmetric polynomials.

In this article, we give alternative proofs of the following well-known iden-
tities:

1— qtz 1 l()‘) 1 — q)\i
Z_Hl 11—t Z H 1—th
it — € l()\) 1-— q
Z,Hl 1-— t’L Z H 1—th’
The identities are immediately obtalned by using (2.14’) and Example 5 in
the Chapter I, Section 2 of [4]. We prove them by calculating the inner
products of Hall-Littlewood polynomials and Macdonald polynomials, and
by constructing certain bijections through transforming the Young diagrams
of partitions.

This article consists of two sections. In Section 1, we introduce some
concepts, and prove the identities in the case ¢ = 0, which have only one
parameter t. The identities in this case are obtained by calculating the
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inner product of some symmetric polynomials including the Hall-Littlewood
polynomials. In Section 2, we prove the identities in the general case, which
have two parameters ¢,t. The identities are obtained from the inner product
of symmetric polynomials including the Macdonald polynomials. In each
section, we provide a bijective proof of the identity. In this article, N denotes
the set of all non-negative integers.

1. THE CASE OF ONE PARAMETER

A partition is a weakly decreasing finite series of positive integers. Let
2 denote the set of all partitions. For A = (A1, Ae,..., ) € P, |\ =
A+ Ag + -+ 4+ A is called the weight of A and I[(\) = [ is the length of A.
Write &, = {A € Z|l(\) <n}and &, ={A e Z| A\ <n}. If |\ =n,
A is called a partition of n. We write A F n if A is a partition of n. Write
Pn)={ e Z | AFn}.

For A = (A1, A\a,...,\p) € &, the Young diagram of X is the diagram
consisting of [ rows of left-aligned cells, the ith row from the top has \;
cells. For example, (4,3,1) is a partition of 8 and its Young diagram is as
follows.

|

For A = (A, A2,...,N) € P and i > 1, my(A) = #{j | \; = i} is
called the multiplicity of ¢ in X\. A partition A € & is also written as
A= (17”1()‘)2’“2()‘) x ) by using the multiplicities. We define

Z\ = H ™ MmN,
1=1

r = [J(~1)-1m.
i=1
It is easy to see that €y = 1 if a permutation with cycle type A\ is even, and
that ey = —1 if the permutation is odd.
Here are the theorems we prove in this section:

Theorem 1.1. For n € N, the following formula holds as an identity of
formal power series of t:

n LA

1 1 1
1— ¢t :Zznl—t%
AFn =1

=1
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Theorem 1.2. For n € N, the following formula holds as an identity of
formal power series of t:

noyiel LA

1
. 1Y ) (L
AFn =1

1=1

It is also shown that the both sides of the equations of Theorem 1.1 and
1.2 are equal to the inner product of the elementary symmetric polynomials
(€(n)s €(n))t> and the inner product of the elementary symmetric polynomial
and the complete symmetric polynomial (e(,), h(,))t, respectively.

1.1. Proof of Theorem 1.1 and 1.2 using symmetric polynomials.
In this section we give a proof of Theorem 1.1 and 1.2 using symmetric
polynomials. We fix a non-negative integer n € N. The symmetric group
S, acts on the polynomial ring Q[z1, z9, ..., x,] by permuting the variables.
A polynomial in Q[x1,x9,...,zy] is called symmetric if it is invariant under
this action. We denote the vector space of all symmetric polynomials in
Q[x1,x2,...,25] by Ap.

Let % = 1% x9%? -+ 2, for a = (aq,q2,...,ay) € N*. For \ =
(A1, A2,y A) € Py let my = my(z1, 22, ..., 2p) = Zxa where « runs

(0%
over all distinct finite series (a1, ag,...,qa,) € N obtained by permuting
the parts of the series of n non-negative integers (A1, Aa,..., A;,0,...,0). my
is called the monomial symmetric polynomial corresponding to A. {my | A €
P} is a basis of A,.
There are other well-known bases of A,,. First, the elementary symmetric

polynomial ey = ex(x1,x2,...,Ty) is defined by
ex =ex(zy,xo, ..., xy) = M2 (122) --m(lxlm)
for A € 2. {ex | A € &)} is a basis of A, [5, Theorem 5.3.5.]. Next, the
complete symmetric polynomial hy = hy(z1,x2,...,x,) is defined by
hy =hx(x1,x2,...,2p)

= Z my Z my2 | Z T (>

)u‘ll_>‘1 .U'QI_)\Q ul()‘)}—)\lo\)

l(ph)<n W(p?)<n I(WM)<n
for A€ 2. {hy |\ € £,} is a basis of A,, [5, Theorem 5.3.8.]. Finally, the
power sum symmetric polynomial py = px(r1,x2,...,x,) is defined by

A = DA(T1, 22, ) = M yM(n,) M )
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for A€ Z. {pr| A € #,} is a basis of A,, [5, Theorem 5.3.9.]. These bases
of A,, have the following relations:

Proposition 1.3 ([4, Chapter I, (2.14’)]). The following relations hold:
€x
1 = —Dh.
(1) ey = P

/\I—n1
2) by =S —py.
(2) hm) ;ZAPA

We also recall some concepts about the symmetric polynomials which
have a parameter ¢ to prove the theorems. Let A, = A, ® Q(t), which is
the set of all elements in the polynomial ring Q(t)[z1, x2, ..., x,| which are
invariant under the permuting of the variables x1,xs,...,x,. We define a
inner product (-, ) on A¢,, by

L(A) 1
<PA7pu>t = 5AMZ>\ 1_[1 11—t~
1=

for A\, € &, where 6y, is the Kronecker delta. For A\ € &, the Hall-

Littlewood symmetric polynomial Py\(t) = Px(z1,%2,...,Zn;t) € Ay p is de-
fined by
P)\(t) :P)\(:El, Loy, Ty t)
m;(A)
_ 1—t Mode oA T %t
(T ) 5w (o).
i>0 j=1 weS, i<j

where mo(A) = n — (). Especially if A = (1"), P3n)(t) = e, holds [4,
Chapter III, (2.8)]. The inner product of the Hall-Littlewood symmetric
polynomials satisfies the following property:

Proposition 1.4 ([4, Chapter III, (4.9)]). For A\,u € Py, (Px(t),Qu(t)): =

oo m;(p)

Oy holds, where Q,(t) = H H (1—t7) | Pu(t) for p.

i=1 j=1

The complete symmetric polynomials can be expressed by the Hall-Littlewood

symmetric polynomials as follows:

Proposition 1.5 ([4, Chapter I11, 4, Example 1]). With n(\) = Z(z — 1)\
i>1
forAe 2,
h(n) = Ztn()‘)PA(t)
AFn

holds.
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Now we can prove Theorem 1.1 and 1.2. By calculating the inner product
<€(n)7 e(n)>t, we obtain

(et €n) t<z —px,z—pﬂ> =) ZZ’:@A,pu)t
t

AFn ukn “p A pubn
o5 1(N) l(/\

o Z H
AFn 1= 1
and
(e, eyt =(Fan)(t), Pany (t))r = <P<1”>(t)’ (H 1 i tz-) Q<1n>(t)>
=1 t
(Hlltz-) (Pany (1), Qanm)(t H1
=1 =1

which completes the proof of Theorem 1.1. Similarly, we obtain Theorem
1.2 by calculating (e(y), hn)): as follows:

<€(n)7 n) t — <Z — DX Z _p,u> = Z Zi;u <p)\7pu>t
t

AFn ukEn A pbEn
(N

X
_Z Hl_t)\’

(em)s hn))t = <P(1n) > NPyt > = " (Pny (1), PA(t))e
t

AFn AFn
o0 1()\)
n(A
_Zt ( )<P(1n) H H T & Q)\(t)>
AFn i=1 j=1 .
oo mi(A) 1
=> AT T =5 | Pam (@ Qa0
AFn =1 j5=1
n 1 tz—l
_n(1™) _

1.2. Bijective proof of Theorem 1.1 and 1.2. In this section we give
another proof of Theorem 1.1 and 1.2 by constructing certain bijections. We
fix a non-negative integer n € N.
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First, we prove Theorem 1.1. Let

aiEN,iai-i—d}
=1

An,d - {(a17a27 ey an)

for d € N,

I(N)

Bya=q (1.b2... biy) [0 €NY bi-Ai=d
1=1

for A - n, d € N, and C) be the conjugacy class of &,, corresponding to
A Fn. One obtains

n n o
1 . .
[y =nt ][O+ ) =nl) A
i=1 i=1 d=0

oo
th=">"|Apq x Gyt
d=0

and

n! ) 1 n! ‘) °©
. — 3 i 2N ) — d
o= =2 I+ ) = 37U D Bl

A i=1 AFn i=1 AFn d=0

o0 (e e]
=Y ) IBadllCalt? =D || | (Bra x C)| 4.
AFn d=0 d=0 | A\Fn

Therefore it suffices to construct a bijection

Jrd:And X 6, — |_| (Bxg x Cy)
AFn

for d € N.
To construct f, 4, we define

fra((a1,az,...,an),0) € |_|(B)\,d x C})
AFn
for (a1,as,...,a,) € Ay q and 0 € &,, by the following algorithm:
e Step 1. Draw the rim of the Young diagram of the partition

(191292 ... ) |-

and split it into blocks of columns by depth.

e Step 2. Write the numbers o(1),0(2),...,0(n) on each column
from the left to the right. If the width of the diagram is less then n,
add columns of depth 0 to the right of the diagram to make it has
n columns before writing the numbers.
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e Step 3. For each blocks of the diagram, split it at just to the left
of the smallest number if the smallest number of the block is not
at the most left place. Repeat the operation on new blocks until
every block has its smallest number at the most left place. For
example, the following diagrams need this operation once or twice,

respectively.
I s B
214 3 214 3
L 1 —- L 11— [LL1]
3 21 3 21 3 21

e Step 4. Rearrange the blocks by the following rules:
(1) Put wider one to the left.
(2) If there are blocks of the same width, put one which has the

smallest number to the left.

e Step 5. Let [ be the number of blocks in the diagram. Let \; be
the width of the ith block from the left, and b; be the depth of it for
1 < i <. It determines the partition A = (A1, A2,...,\;) - n. For
1 <14 <[, let 7; be the cyclic permutation (j; 1,ji2,---,7ix;) € Gn
if 7th block from the left has the numbers j; 1, ji2,...,ji \, from the
left.

e Step 6. Define

fd((a,a2,. .. an),0) = ((b1,b2,. .., byn), 7172 () € Bag x Ca.

We illustrate this algorithm with an example

1 2 3 4
(0,0,1,1)6144’7 and <3 1 4 2)664.

We get the following left diagram after Step 3, and the right one after Step

4.
v | b

31 4 1 4 3

Therefore we get

nr(001n (5 7 1 3)) ~(@12.00ee)

€B(2,1,1),7 X 0(2,1,1)-
We can define

Fra (01,02, .. byx) . T) € Apa X Gy
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for A = n, (b1,b2,...,byx)) € Brxg and 7 € C) to construct the inverse
function

fra |_| (Brg x Cy) = Apa x 6y,
An

by the following algorithm:
e Step 1. Suppose

T= (7“1,1,7“1,2,---,7“1,A1)(7“2,1,7“2,2,---,TQ,AQ)"'(Tz(,\),b?“z(,\),za---arl(A),Al(A))

is the decomposition of 7 into disjoint cycles with conditions r; 1 =
min{r; 1,7i2,...,7i } for each i, and r; 1 < riy11 if Ay = Ay

e Step 2. For 1 <i <I()\), let X; be the block of width \;, depth b;.
Write the numbers 7; 1,7;2,...,7; ), on each column of X; from the
left to the right.

e Step 3. Arrange the blocks X1, Xy, ..., Xj(y) by the following rules:

(1) Put deeper one to the left.
(2) If there are blocks of the same depth, put one which has the
smallest number to the right.

e Step 4. Define fn’d_l((bl,bz,...,bl()\)),T) = ((al,ag,...,an),a)
where the blocks form the Young diagram of shape (191292 ...n%)
and each column of the diagram has the numbers o(1),0(2),...,0(n)
from the left.

By the above two algorithms, we can see that f,, 4 is a bijection between

Apq % 6, and |_| (Bx,d x Cy). It completes the proof of Theorem 1.1.

AFn
Next, we prove Theorem 1.2. We call A € &2 even if €y, = 1, and we call

it odd if €y = —1. One obtains

1 (M M) .
n..l_‘[l—ti_t2 n'Hl_ti_t2 Z|An,dx6n|t
=1 i=1 d—0
o
= d
=D ‘An,d—(g) X Gp|t
d=0
and
e 1(A) 1 )l 1(A) ] o
2 B PN N By x Cy[t?
ngzmﬂl_t/\i gekzxgl—t% %6Ad20| Ad Al

=) (Z exlBxra X CA) t

d=0 \\Fn
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Z |Bxa x Cy| — Z |Brg x Cyl | ¢

0 AFn AFn
A:even A:odd

=> || L] Brax )= ||| (Brax ||t

~0 \ Arn Arn
A:even A:odd

o0

d

Therefore it suffices to construct a bijection

In,d : I_l (B,\)d X C,\) L <An,d—(”) X 6n> — |_| (BA,d X C)\)

2
AFn AFn
A:odd Aeven

for d € N. We construct g, 4 by constructing two bijections

gnar: || (BraxCy) = | | (BrnaxCh) | \ADpg,

AFn AFn
A:odd A:even

In,d2 : An,d—(”) X G, — ADn,d,

2
where AD,, 4 is the set of all elements

((b1, b2, .., bn), (1)(2) - - (n))

in B(yn) 4 X C(1ny such that b1, bg, ..., b, are all distinct.

We construct g, 4,1 by the involution I on <|_| (Ba,d C’)\)> \ AD,, 4 de-

AFn
fined by the following algorithm:

e Step 1. Take u - n and ((bl, ba, -5 b)), 7') € (BuaxCy)\AD,, 4.
e Step 2. Take

((CL1,CL2, . .,an),o) = fmd_l((bl,bg, . .,bl(u)),T) € Apa xSy,
where f,, 4 is the one constructed to prove Theorem 1.1.

o Step 3. Let J ={j € {1,2,...,n—1} | a;j = 0}. J is not empty
because ((bl,bg, .. .,bl(u))ﬂ') is not in AD,, 4. Hence we can take
Jo = min J.

e Step 4. Define

I((bl?b27 ) bl(,u))vT) :fn,d((al7a27 SR CLn),O' ’ (jOij + 1))

~ |_| (B/\7d X CA)
AFn
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We illustrate this algorithm with an example (2,2,1) € By 17 and
(1,4)(2)(3) € C(2,1,1)- By using the algorithm for fna~ ' in Theorem 1.1, we
obtain the following diagram.

3 3
1 4 2 2 1 4

Thus we get

fr (2 .00@0) = (0010, (3 T 5)) cdirxe:

in Step 1. In the case, J = {1,2} and jo = 1. Therefore in Step 4, we get

)
—far <(o,o, 1,1), G g)) .

By the algorithm for f,, 4 in Theorem 1.1, we obtain the following diagram

from (0,0,1,1) € A4 7 and <1 23 4) € Gy.

1((2,2,1),(1,4)(2)(3)) =far <(0,0, 1,1), G

NN =N
=W AW

1 2 4 3
I ||
3 3
1 2 4 1 2 4

Therefore

I((2,2,1),(1,4)(2)(3)) =fa7 ((070@71)’ G 2 4 §)>

=((2,1),(1,2,4)(3))
€B31),7 X C31)

C || (Bazx Q).

A4
A:even

The operation of (jo,jo + 1) on o in the Step 4 exchanges the numbers
written on the most left two column of the same depth. Hence it exchanges
even number of blocks of the depth to odd number of them and vise versa.
Moreover, the algorithm does not give an element of AD,, 4 because it does
not change the depth of each column of the diagram. Therefore one can see
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that
I((bl,bQ,...,bl(“)),T) € |_| (B)HdXC)\) \ADn’d
AFn
A:even
for ((bl, ba, ..., bl(u))a7_> € |_| (B/\,d X C)\)? and
Xoda
I((bl, ba, ..., bl(u)),’r) S I_I (B)\,d X C/\)
Xodd

for ((b1,b2,...,by):7) € |_| (Bynag x Cy) | \ AD,, 4. Since I is involu-

)
A:even

tion, we obtain a bijection

Gn,d1 |_| (Bra x Cy) — |_| (Bxa x Cy) | \ADy, 4.

AFn AFn
A:odd A:even

Next, we define
Inaz((ar,az2,...,a,),0) € ADy 4
for (a1,as2,...,a,) € A, a—(7) and 0 € &,, by

2
9n,d,2((a1, agy ..., a’n)a U) = fn,d((a’l + 17 az + 17 N e 17 an)7 U)a
where f, 4 is the one constructed to prove Theorem 1.1.

For example, for (1,0,0,0) € A4 and G) ? i ;), we have

1 23 4 1 23 4
ga72 ((1,0,0,0), (3 . 2)>:f4,7 ((2,1,1,0),<3 1 4 2))

Using the algorithm for f4 7, we obtain the following diagrams for (2,1, 1,0) €

1234
A4v7a“d3142

-0
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Therefore, we have

1 2 3 4 1 2 3 4
gar ((1707070)7<3 1 4 2>> :f4,7 <(2717170)7 (3 1 4 2))

=((2,0,4,1), (1)(2)(3)(4))

€Bui11),7 X Cua-

Since the diagram made from ((al +1,a0+1,...,an-1+1,a,), J) by the al-
gorithm for f,, 4 has columns of all distinct depths, gmd,g((al, ag,...,ay), 0)
is an element of AD,, 4.

We can construct the inverse function

gn,dg_l : ADn,d — An,d—(n) X G,

2

by defining
gn’d’g_l((bl, bo, ..., bn), (1)(2) s (n)) € An,d—(") x &,

2
for ((b1,b2,...,bn),(1)(2)---(n)) € AD,, 4 by the following algorithm:
e Step 1. Take

((al,ag, .. .,an),a) = fmd_l((bl,bg, .. .,bn), (1)(2) ce (n)) € An,d X G,

where f,, 4 is the one constructed to prove Theorem 1.1.
e Step 2. Define

g’n,d,2((bl7 b27 ) bn)? (]‘)(2) o (n))
:<(CL1 — 1,a2 — 1, N 7 l,an),a)
SAna-(3) < O
Since ((b1,ba,...,bn),(1)(2) -+ (n)) € ADy,g4, a1,a2,...,an-1 # 0

and (al - 1,@2 - ]-7 ceeyn—1 — 17a’n) < An d—(n)'
0=\ o

Therefore we have defined a bijection

n,d2 : An,d—(") X S, — ADn,d-

2

By two bijections g, 41 and g, 42 we have constructed, now we have a
bijection

In,d : |_| (B)\,d X C)\) L (An,d—(") X Gn) — |_| (B)\,d X C)\)

2
AFn AFn
A:odd A:even

and it completes the proof of Theorem 1.2.
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1.3. Generalizations of Theorem 1.1 and 1.2. In Section 1.1, we gave
a proof of Theorem 1.1 by calculating the inner product

(€(n) eyt = (Pan)(t), Pany ()t

We can easily generalize it to the inner product (Py(t), P\(t)); of an arbitrary
Hall-Littlewood polynomial as follows using Theorem 1.1 and Proposition
1.4.

Theorem 1.6. For A € &2, the following formula holds as an identity of
formal power series of t:

oo m;(A)
(), ) =11 11 -
j=1 i=1

We give another generalization of Theorem 1.1 and Theorem 1.2. The
Schur polynomial sy is a symmetric polynomial defined by

by
det( e J)
1<4,7<n

det <:1:ZL‘7)
1<i,5<n

for A € Z. {sa | A € P} is a basis of A, [5, Theorem 5.4.4.]. The Kostka
polynomial Ky,(t) € Q(t) corresponding to A\, u € & is defined as the entry
of the transition matrix from the basis of Schur polynomials and the basis
of Hall-Littlewood polynomials:

Sy = Z Ku(O)Pu(t) (A€ 2).

UeZ

l(u)

_H Z Hl_tm

J=1 pFm;(\) i

sx = sx(z1, T, ..., xp) =

Schur polynomials and power sum polynomials enjoy the following relation:

A
Proposition 1.7 ([4, Chapter I, pl114]). For A b n, s) = ZX (M)pm
z

ukn ®

where x* is the irreducible character of &, corresponding to .
By calculating the inner product (sy, s,,)¢, we show the following theorem:

Theorem 1.8. Forn € N and A\, u € &, the following formula holds as an
identity of formal power series of t:

oo my(v) (V)

1
<3/\75u>t:ZK/\V Ko ( H H 1_tz_ZX Hl—t’/i'

vkn 7j=1 =1 vkn =1
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Since s(in) = €(,) and s(,) = h(y,y [4, Chapter I, (3.9)], Theorem 1.8 is
a generalization of Theorem 1.1 and 1.2. Now we prove Theorem 1.8. For
n € N and A F n, we define Sy(t) = Sx(x1,x2,...,2n;t) € Ary by

Sx(t) = Sa(z1, T2, ..., xy;t) = det (q>‘i_i+j(t))1§i,j§l(A)’

where ¢, (t) = Q) (t) = (1 — )P (t) for r > 1, qo(t) = 1, and ¢.(t) = 0 if
r < 0. S)(t) and Schur polynomials have the following properties:

Proposition 1.9 ([4, Chapter III, p241]). For A\, u - n,

oo m;(v)
] DILROENTY) § | g FACH
uFn \ vkn 7j=1 =1

Proposition 1.10 (4, Chapter III, (4.10)]). For A, u = n, (Sx(t),s.)t = Oxu
holds.

Using these propositions, we can calculate

#( A B
S)\,Slu t—<ZX pyzx > = Z %Q?p)paﬁ

pFn okn

1)
(v)

1
_ZX Hl_tui

vkn =1

and

oo mj(v)
<swt<z S K I 1T+ | 50 >>

pFn \vkn j=1 =1 ¢
oo m;(v)
=Y mn0kL O] ] =5
vkn 7j=1 =1

which completes the proof of Theorem 1.8.

We do not know a bijective proof of Theorem 1.8. It would be an in-
teresting problem to prove Theorem 1.8 bijectively like Theorem 1.1 and
1.2.

2. THE CASE OF TWO PARAMETERS

In this section we prove the following identities of two parameters ¢,t as
generalizations of Theorem 1.1 and 1.2.
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Theorem 2.1. For n € N, the following formula holds as an identity of
formal power series of q,t:

l(>\) A
1 — gttt 1—qg™
H 1— ¢ Z H 1 — N
Theorem 2.2. For n € N, the followmg formula holds as an identity of
formal power series of q,t:
I(A
I Dy ) s

i=1

It is also shown that the both 51des of the equations of Theorem 2.1
and 2.2 are equal to the g,t-inner product (e(,),€m))qt and (e, hn))at;
respectively.

2.1. A proof of Theorem 2.1 and 2.2 using symmetric polynomials.
In this section we prove Theorem 2.1 and 2.2 using symmetric polynomials.
Let Agtn = Ay ® Q(g,t), which is the vector space of all elements in the

polynomial ring Q(q, t)[z1, x2, ..., x,] which are invariant under the permu-
tations of the variables z1,x2,...,z,. We define a inner product (-,-),+ of
Agtn by
Ny
—q
(P, Pu)g,t = Oxp2n H T

for A\, u € &,. We also define the partlal order on & (n) called dominance
order by

pE<N = Vic{l,2,...,nf,pur+pe - pg KA F Ao AN
for \,p € Z(n), where \; = 0 for I(\) < j, pj = 0 for {(n) < j. The
following proposition holds for the inner product and the partial order:

Proposition 2.3 ([4, Chapter VI, (4.7)]). There is a unique family
{Pr(q, ) }arn

which consists of elements of Ay, satisfying the following conditions:
(1) There is a map
w: {Ap) [ ApePm),u<Art — Qg1)
W w
(A, 1) = Un
satisfying the following:

(a) For A € Z(n), Px(q,t Z UN My -

ukEn
P
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(b) For A € Z(n), uyy = 1.
(2) For A\, p € P(n) such that X # u, (Px(q,t), Pu(q,t))qt = 0.

The symmetric polynomials Py(q,t) defined by the proposition are called
the Macdonald polynomials. In particular, Pin)(q,t) = e(,) [4, Chapter VI,

(48)] Let bA(Qat) = <P)\(Q7t))P)\(Q)t)>;i} and Q)\(Q7t) - b)\(Q? t)P)\(Q7t)a
so (Pr(q,t),Qu(q,t))gt = 6xu- The following explicit formula of by(q,t) is
known:

Proposition 2.4 ([4, Chapter VI, (6.19)]). For A € &,

1 — qa(s)tl(s)+1
bA(Qat) - H 1 — qa(s)—i—ltl(S)

SEN

holds, where the right hand side is the product for all cells s in the Young
diagram of A, and for a cell s, a(s) is the number of cells right of s in the
same row as s in the diagram, and l(s) is the number of cells below s in the
same column as s in the diagram.

By calculating the inner product (e(y), €(n))q,t; We obtain

€)€
(€n)> €(m) )t —<Z—px,z—pu> =) Ziz“ (P Pu)g.
1

AFn ukn q,t A, pbEn

SIEN | et
N i 1o 1T—th
and
(e(n)s €n))at =(Pany(a,t), Pany(q,t))qe = bany(q,t) ™"
qa(s)—l—ltl(s) n 1 — qtn—i

1— A
- H 1 — g+ H 1 — ikl — H 1—¢

56(1") 1=1 1=1

which completes the proof of Theorem 2.1.
Next, we prove Theorem 2.2. Let A, ; = @ Aginandegs : Agr — Q(q,t)

n>0

be the homomorphism defined by
1—4q"
gqat(p('l’)) = 1 _ trr *

The followings are known about Py(g,t), Qx(g,t) and g4
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Proposition 2.5 ([4, Chapter VI, (2.6) and (4.13)]). For n € N,

()

S P@anwan =3 — (11 | @)

1 — gt
AFn ukn Bo\i=1 q

holds, where Py(x;q,t),p,(x) are symmetric polynomials of variables x1,xa, . ..

and Qx(y; q,t),pu(y) are symmetric polynomials of variables y1,y2, ..., Yn.

Proposition 2.6 ([4, Chapter VI, (6.17)]). For A € &2,

tl/(s) o qa’(s)+1
€qpt (PA(q’t)) - H 1 — ga(s)l(s)+1
A

seE

holds, where a'(s) is the number of cells left of s in the same row as s in the
diagram, and I'(s) is the number of cells above s in the same column as s in
the diagram for a cell s.

Since one obtains

> Pa(@iq,t)eqi (Qa(y;a:t)) = balq,t) Pa(ws; . t)eqe (Pa(yi . 1))

en AFn
#'(s) _ ga/(s)+1
:Zb)\(q,t) (H 1 —qa(s)tl($)+1 P)\(xaQ7t)
An SEA
tl/(s) _ qa/(3)+1>
_ qa(s)+1+l(s
AI—n(sE)\l g
and
() -
1 1 —the
— I = | Pu@)eas (pa )
pFn TR \i=1 1
L) , L) »
1 1 — t,uz 1-— q/h
S (H =g ) ) | L=
ukn i=1 =1

Zipu(x) = h(n)(z)

pukEn

by applying e, with respect to variables yi,y2, ..., yn,

hiwy =D (H

AFn \sel

tl’(s) _ qa’(s)—l—l
1 — qa(s)—l-ltl(s)

> PA(Qat)
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holds by Proposition 2.5. Now we complete the proof of Theorem 2.2 by
calculating (e, h(n))q,t as follows:

(SN 1 (S
<€(n)7 h(n)>q,t = <Z Zp)\a Zp,u> = Z o <p)\7pu>q,t

AFn ukn q,t A ubn
(A ]
yeqin
N z 1 — N’
Aen A=

tl’(s) _ qa’(s)—i—l
<e(n)a h(n)>q,t = P(l”)(Qa t)a Z H 1_ qa(3)+1tl(s) PN(Qa t)

pukEn \sep

tl'(s) _ qa’(s)—|—1 1
1 — qa(s)—l-ltl(s) b(ln)(q, t)

= 11
se(1m)

$(s) _ qa’(s)—l—l
1 — qa(s)tl(s)—H

86(1”)

t'Ll

H 1_tz )

=1

2.2. A bijective proof of Theorem 2.1 and 2.2. In this section we
prove Theorem 2.1 and 2.2 by constructing certain bijections. We fix a
non-negative integer n € N.

First, we prove Theorem 2.1. Let

Dnae=<SJC{0,1,....n—1} | j=d|J|=e

JeJ
for e,k € N. One obtains
n oo n
[T =t = ") IDnaclt’(—a),
i=1 d=0 e=0

and therefore
=1 gttt -
| B | 7 21 . i— 1
nﬂH—l—ti —n.H(1+t +t - T =gt
=1 =1
n

=|Gn| Z [Ana [t - Z > Dy elt?

dg 0e=0

~.

—q)°
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- Z(_l)e |_| (An.dy X D dye X &5)| %"

d=0 e=0 di1+do=d
Next, let

EY =<JC{1,2,...,1(\)} Z)\j:e,|J|iseven :
JjeJ

By, =S JC{L,2,..,I(N}| ) N =el|J]isoddy,
jedJ

and then we obtain
I(\)

! 1 — g
Z — H 1 _ZA
l()\) L)

:ZZ—; [Ja+ed+2 ) TJa-¢™)
AFn

i=1 i=1

= 1Cy (Z Bralt?- ) (‘E;re — ‘E;e > qe>

AFn e=0
S Y (1|5, - o)

d=0 e=0 \rn

oo n
53 (U 55 x| - [ 5 <)

d=0 e=0 AFn n

Therefore it suffices to construct a bijection

frde <|_| (Bra X By, X CA)) Ul || (Ana X Dngye x Sn)

AFn di1+do=d

— |_|(B,\7d X E;—e X C,\)
AFn

for d € N and even number e satisfying 0 < e < n, and

fnde : <|_| (Bx,d X E,J\fe X CA)) L |_| (An.dy, X Dpdye X Gp)

AFn di1+do=d

— I_l(BAvd X E):e X C,\)
AFn
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for d € N and odd number e satisfying 0 < e < n. Here we construct a
bijection fy 4. for d € N and even number e satisfying 0 < e < n. We
construct f, 4. by constructing two bijections

frdea : | |(Bra X By, x Cy) = <|_| (Bra x By, x CA)) \ADy g,

AFn AFn

fn,d,e,Q : |_| (An,dl X Dn,dg,e X 671) — ADn,d,ea
di+do=d

where AD,, 4. is the set of all elements

((b1, b2, ... byny), I 7)

in |_| (Bx,d % E;\re x () such that \; =1 for all j € J, and b; for j € J are

AFn
all distinct.

We construct f, 4.1 by the involution I on

<|_|(BA,d X E):e X C)J) LJ (I_l(B)"d X E;\i_,e X C,\)) \ADn,d,e

AFn AFn
defined by the following algorithm:
e Step 1. Take puFn and

((bl,bg,...,bl(u)),J,T) € (B dXE_ x C )U(Bu,dXE;ZeXO,u)

satisfying ((bl, ba, .5 b)), J ) ¢ ADy, 4.

e Step 2. Use Step 1 and 2 of the algorithm for fn,d_l in Theorem
1.1, and obtain a diagram of blocks. The ith block from the left is
of width u; and depth b;, and each column has number defined by
T.

e Step 3. For 5 € J, paint the jth block from the left. There are e
painted columns because J € EJr UE, ..

e Step 4. Rearrange the blocks by the followmg rules:

(1) Put deeper one to the left.

(2) If there are blocks of the same depth, put painted one to the
left.

(3) If there are blocks of the same depth and painting, put one
which has the smallest number to the left.

e Step 5. Since ((bl, ba, .5 bywy), J, 7') ¢ AD,, 4., there is a painted
block with width at least 2, or there are painted blocks of width 1
and same depth. Therefore there is a depth ¢ such that there are
at least two painted columns of depth d. Let §y be the deepest such
depth 9.
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e Step 6. Write the painted blocks of depth dy X1, Xo,... from
left. For each j, write the numbers written on each column of X;
¢j,1,4j,2, - - - from left. Let

p=(q11,q12,---)(¢2,1,922,...) - € Gy,

and 71,79 be the smallest two numbers in

{an, 01,2, FU{g21, 922, .- J U -+

which satisfies 71 < is.

e Step 7. (i1,i2)p is written (ry1,71,2,...)(r21,722,...)- - by some
disjoint cycles (rj1,7j2,...) satisfying ;1 = min{r;1,r;2,...} for
each j, and r11 <21 < ---. For each j, let Y; be the painted block
whose width is the length of (rj1,7;2,...) and whose depth is do,
and whose each column has the numbers r;1,7;2,... from the left.
Arrange Y7, Y5, ... from the left, and exchange the all painted blocks
of depth dg of the diagram made in Step 4 for them.

The operation of (i1,i2) on p changes the sign of p. Hence (i1,i2)p
consists of even numbers of cycles if p consists of odd numbers of
them, and vice versa. Therefore this step exchanges the parity of
the number of painted blocks in the diagram.

e Step 8. Use Step 4 to Step 6 of the algorithm for f, 4 in Theorem
1.1, and take the corresponding partition A - n and the elements of
B)\,d, and C’)\.

e Step 9. Put J' be the subset of {1,2,...,l(\)} such that j € J’
if and only if the jth block from the left of the diagram is painted.
One can see J' € E;Ce if Je E,,, and J' € By if J € E..

e Step 10. The elements of B) g4, Ej\r’e L E;e and C are determined
by Step 8 and 9. Therefore one can define

I((br,ba, s byy), )

€ <|_|(B)\7d X E;,e X C)J) LJ <|_|(B>\7d X E;\_,e X C)\)> .

AFn AFn

Since this algorithm does not change the depth of the painted columns,
one can see I((by, by, ..., b)), J,7) & ADy ge.

We illustrate this algorithm with an example (2, 1,2,2,2) € B1,1,1,1),115
{1,3,5} € Eoi111)4 (2,5)(1)(3)(4)(6) € C(21,1,1,1) Where n =6, d = 11,
e = 4. One obtains the following left diagram after Step 3, and the right

one after Step 4.
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- ||

1 1
2 5 3 4 6 25 3 6 4

In this case, do = 2 and p = (2,5)(3)(6), i1 = 2, ia = 3. Since (i1,i2)p =
(2,3)(2,5)(3)(6) = (2,5,3)(6), one obtains the following left diagram after
Step 7 and the right one after Step 8.

. — B

1 1
25 3 6 4 2 5 3 4 6

Therefore we have

1((2,1,2,2,2),{1,3,5},(2,5)(1)(3)(4)(6))
:((27 1,2, 2)7 {17 4}5 (27 9, 3)(1)(4)(6))
€B3,1,1,1),11 X E(t,,l,l,m X C(3,1,1,1)-

Since this algorithm changes the parity of the number of painted blocks
in the Step 7,

I((b1,ba, ... b)), J,7) € (I_l(BA,d x By, % CA)) \AD; 4.
AFn

for ((bl,bg, .. .,bl(u)),J,T) c |_|<B/\:d X E):e X C,\), and
A-n

I((b1, b2, by, 1 7) € | |(Baa x By, x Cy)
AFn

for ((bl, ba, ..., bl(u))> J, T) € (I_I (B)\’d X E;te X C’)\)> \ ADn,d,e- Since [ is
AFn
involution, we obtain a bijection

fn,d,e,l : |_| (BA,d X E;?e X C)\) — (I—l (B>\7d X E;\i_,e X C)J) \ADn,d,e-
AFn AFn

Next, we define

fn,d,e,2 ((ala az, . .. 7an)> Ja 0) € ADn,d,e
for di,ds satisfying di + do = d and (a1,a2,...,a,) € Angy, J € Dpd,e,
and o € G,, by the following algorithm:

e Step 1. Write J = {j1,72,---,Je} With 0 < j; < jo < -+ < Je <
n — 1, and draw the rim of the Young diagram of the partition of d
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obtained by adding parts ji, jo,. .., je to (191292...n%) If j; = 0,
we consider the diagram has a row of width 0 at the bottom.

e Step 2. Split the diagram into blocks of columns by depth.
e Step 3. For 1 < m < e, the diagram has a row of width j,,, by Step

1. Write the highest such row the i,,th row.

Step 4. For 1 < m < e, the diagram has a column of depth i,, — 1
by Step 3. Split the most right such column and paint it. This step
makes e painted columns whose depths are all distinct.

Step 5. Use Step 2 to Step 6 of the algorithm for f,, 4 in Theorem
1.1 for the diagram, and take the corresponding A - n and elements
of B)\)d and C)\.

Step 6. Put J’ be the subset of {1,2,...,I(\)} such that j € J'
if and only if the jth block from the left of the diagram is painted.
One can see J' € E;Ce since e is even.

Step 7. The elements of B) 4, E/J\r . and C) are determined by Step
5 and 6. Therefore one can define

fn7d,e((a1>a27 . '7a’n)7 J, J) S |_|(B)\,d X E;\}:e X C)\)
AFn

Moreover, this is an element of AD,, 4. because the depths of the
painted columns in the diagram are all distinct.

We illustrate this algorithm with an example (0,0,1,1) € A4 7, {0,3} €

D4’372 and

1 2 3 4

3 1 4 9 € G4, wheren =4, d = 10, and e = 2. In this case

j1 =0 and jo = 3, thus we draw in Step 1 the rim of the Young diagram of
(4,3,3,0) F 10, which is obtained by adding parts 0,3 to (1°2°3'41) = (4, 3).
Since i1 = 4 and 15 = 2, we get the following left diagram after Step 4. We
use Step 2 to Step 6 of the algorithm for Theorem 1.1 in Step 5, and we get
the following middle diagram after the Step 3 and the right one after the

Step 4.

7 7

Thus we obtain

fat02 <(0,0,1,1),{0,3}, G ? i ‘21))
:((3’ 1,3, 3)7 {27 4}’ (1)(2)(3)(4))

+
€B(1,1,1,1),10 X E(1,1,1,1),2 x Ca1,1)-
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We can construct the inverse function

—1 .
fn,d,e,Q . ADn,d,e — |_| (An,dl X Dn,dg,e X Gn)
di1+do=d

by defining

fn,d,e,2_1 ((blv b27 ceey bl(u))a Jla 7—) € |_| (An,dl X Dn,dg,e X Gn)
di+do=d

for ((bl, ba, .. b)), I 7') € AD,, 4. by the following algorithm:

e Step 1. Use Step 1 and 2 of the algorithm for fmd_l in Theorem
1.1, and obtain a diagram of blocks. The ith block from the left is
of width u; and depth b;, and each column has number defined by
T.

e Step 2. For j € J/, paint the jth block from the left. There are e
painted columns of all distinct depths.

e Step 3. Arrange the blocks by the following rules:

(1) Put deeper one to the left.

(2) If there are blocks of the same depth, put painted one to the
right.

(3) If there are blocks of the same depth and painting, put one
which has the smallest number to the right.

e Step 4. Let the depths of the painted columns are i1, 9, ...,7. with
the condition 47 > 9 > -+ > 1.

e Step 5. For 1 < m < e, write the (i, + 1)th row has width j,, > 0.

e Step 6. Define

fn,d,e,2_1<(b17 b27 RN bl(u))a ‘]/7 T) = ((ala az,. .., a’n)a J) U)

by the following condition:
(1) J = {j17j27 R 7je}-
(2) (11292 ...n%) is the partition obtained by removing the parts
J1,72, - - -, Je from the shape of the diagram.
(3) Each column of the diagram has the numbers

from the left.

Therefore we have defined a bijection

fn,d,e,Q : |_| (An,dl X Dn,dg,e X 671) — ADn,d,e-
di+do=d
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By two bijections f;, g1 and fp 4.2 we have constructed, now we have a
bijection

frde : <|_| (Bra x By, % CA)) Ul || (Ana X Dngye x Sn)

AFn di+do=d

— |_|(B)\,d X E)te X C)\)
AFn

for d € N and even number e satisfying 0 < e < n. In a similar way, one can
construct a bijection

fn,d,e : <|_| (B)\,d X E;\:e X CA)) L |_| (An,dl X Dn,dg,e X Gn)

AFn di+do=d

— I_l(B)‘vd X E):e x Cl)
AFn

for d € N and odd number e satisfying 0 < e < n. By these bijections, we
complete the proof of Theorem 2.1.
Next, we prove Theorem 2.2. One obtains

"'Ht:_ T -<ﬁ11t2> (ﬁ(t“@)

=1 i=1
00
=18l [ D [Ana,t" Z Z | Dy et (—q)°
d1=0 =0 e=0
o n
- Z (_1)6 Z |An,d1 X Dn,dg,n—e X 6n| tdqe
d=0 e=0 di1+d2=d
and
L(N) ,
n! Z A 1 - q)\l
' Zy++1-— A
AFn i=1
. 1)
_ i e
_ZE/\ Z) 1—[1—t>‘Z H(l a)
AFn =1 i=1
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( <€A’B)\’d><E;—eXC)\‘ EA’BA’dXEAeXC)\>>tdqe
AFn

0e=0
0o n
:Z Z ‘B)\dXE;\:eXC)\‘— Z ‘B)\dXE)\eXC)\‘
d=0 e=0 AFn AFn
A:even A:even

Therefore it suffices to construct a bijection

gnde: | | Brax Ex,xCy) U] || (BraxEf, xC)

AFn AFn
A:even A:odd

U |_| (An,dl X Dn,dg,n—e X Gn)
di+do=d

— |_| (B)\’dXE;\:eXC)\) ([ |_| (B)\’dXE):eXC)\)

AFn AFn
A:even A:odd

for d € N and even number e satisfying 0 < e < n, and

Inde |_| (Bra x By, xCy) | U |_| (Bra % Ey , x Cy)

AFn AFn
A:even A:odd

L |_| (An,dl X Dn,dg,n—e X Gn)
d1+do=d

— |_| (BA,d X E;’e x Cy) | U I_I (BA,d X E:\i_’e x Cly)

AFn AFn
Aeven A:odd

for d € N and odd number e satisfying 0 < e < n. Here we construct a
bijection g 4. for d € N and even number e satisfying 0 < e < n. We
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construct g, 4. by constructing three bijections

Indel - |_| (B)\7d><E>:€XC)\)—> |_| (B)\jdXE/\_,eXC)\) \ADnde?

AFn AFn
A:even A:odd

In,de? - |_| (BA,d X E;\:e X C/\) — |_| (Bk,d X E;\F’e X C)\) \ADndea

AFn AFn
A:odd A:even

gn7d7e73 : |_| (An7d1 X Dn,dgm—e X 6 ) - AD’I’L de?
d1+do=d

where AD’ is the set of all elements

n,d,e

((b1, b2, .-, byyy), J,7)

S |_| (B)\7d X E:\i_’e X C)\) LJ |_| (B/\,d X E):e X C,\)

AFn AFn
A:even A:odd

such that \; = 1forall j € {1,2,...,I(A\)}\J, and b; for j € {1,2,...,1(A)}\
J are all distinct.
We construct gy, g1 and gp 4.2 by the involution I on

(|_|<B)"d X E):e X C)\)> L (I_l(BAvd X E;\_,e X C)\)> \ADnde

AFn AFn
defined by the following algorithm:
e Step 1. Take y - n and

((bl,bg, .. -:bl(,u))ﬂ]a 7') S (Bud X E_ x C ) L (Bﬂ,d X E::e X Cﬂ)

satisfying ((bi,b2,. .., b)), J,7) € AD), 4.

e Step 2. Use Step 1 and 2 of the algorithm for fmd_l in Theorem
1.1, and obtain a diagram of blocks. The ith block from the left is
of width u; and depth b;, and each column has number defined by
T.

e Step 3. For j € J, paint the jth block from the left. There are e
painted columns because J € E+ UE,..

e Step 4. Rearrange the blocks by the followmg rules:

(1) Put deeper one to the left.

(2) If there are blocks of the same depth, put painted one to the
left.
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(3) If there are blocks of the same depth and painting, put one
which has the smallest number to the left.

e Step 5. Since ((bl,bg,...,bl(m),J, T) ¢ AD/ there is an un-

n,d,e’

painted block with width at least 2, or there are unpainted blocks
of width 1 and same depth. Therefore there is a depth ¢ such that
there are at least two unpainted columns of depth §. Let dy be the
deepest such depth §.

Step 6. Write the unpainted blocks of depth dy X1, Xo,... from
left. For each j, write the numbers written on each column of X;
41,452, - - - from left. Let

p=(q1,1,q1,2,---)(q2,1,92,2,-..) - € G,

and 71,79 be the smallest two numbers in

{ai,q12,-- 3 U{ae1, 922, ... J U -+

which satisfies 71 < is.

Step 7. (i1,42)p is written (r11,712,...)(r2,1,72,2,...) -+ by some
disjoint cycles (rj1,72,...) satisfying r;1 = min{r;,r;2,...} for
each j, and 711 < 791 < ---. For each j, let Y; be the unpainted
block whose width is the length of (rj1,7j2,...) and whose depth
is dp, and whose each column has the numbers 7;1,7;2,... from the
left. Arrange Y7, Y5,... from the left, and exchange the all unpainted
blocks of depth §g of the diagram made in Step 4 for them.

The operation of (i1,i2) on p changes the sign of p. Hence (i1,i2)p
consists of even numbers of cycles if p consists of odd numbers of
them, and vice versa. Therefore this step exchanges the parity of
the number of unpainted blocks in the diagram.

Step 8. Use Step 4 to Step 6 of the algorithm for f, 4 in Theorem
1.1, and take the corresponding partition A - n and the elements of
B)\’d and C)\.

Step 9. Put J’ be the subset of {1,2,...,I(\)} such that j € J’
if and only if the jth block from the left of the diagram is painted.
One can see J' € By if J € Ef, and J' € By HJEE,,.

Step 10. The elements of B) 4, Ej\ie L E;e and C are determined
by Step 8 and 9. Therefore one can define

I((blv b, ..., bl(u))’ J, T)

€ <|_|(B)\7d X E):e X C)\)> L <|_|(B)\’d X E:\i_’e X C)\)> .

AFn AFn

Since this algorithm does not change the depth of the unpainted
columns, one can see I((b1, by, ..., bi(w))s 5 T) ¢ AD,

n,d,e*
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We illustrate this algorithm with an example (2,2,1,2) € B21,1),11;
{2} € E(_2,2,1’1),27 (2,5)(3,4)(1)(6) € C(2,2,1,1) where n = 6, d = 11, e = 2.
One obtains the following left diagram after Step 3, and the right one after

Step 4.
1- Bk
1 1
6

34256

2 5 3 4

In this case, o = 2 and p = (2,5)(6), iy = 2, i3 = 5. Since (i1,i2)p =
(2,5)(2,5)(6) = (2)(5)(6), one obtains the following left diagram after Step
7 and the right one after Step 8.

~ H

1 1
34256 3 4 256

Therefore we have

g6,112((2,2,1,2), {2}, (2,5)(3,4)(1)(6))
=((2,1,2,2,2),{1},(3,4)(1)(2)(5)(6))
€B1,1,1,0),11 X Egqq11)2 X C,1,1,1,1)-

Since this algorithm changes the parity of the number of unpainted blocks
in the Step 7,

I((b1,ba, - bygy), 7)€ | || (Baa x EY, x C) | \AD], 4,

AFn
Aeven
for ((bl, ba, ..., bl(ﬂ))’ J, T) € |_| (B)\’d X E)te X C)\),
AFn
A:odd
I((bbo, . by 1) € | ] (Bag x Ef, x Ch)
AFn
Arodd

for ((b1,b2, .-, b)), 1. 7) € | || (Baa x EX, x Cy) [ \AD}, 4,

AFn
A:even

I((b17b27 . '7bl(,u))7‘]7 T) € |_| (BA,d X E):e X CA)

AFn
A:even
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for ((b1,b2,- -, b)), J.7) € | || (Baa x By, x Cx) | \AD), 4, and

n,d,e’
AFn
A:odd

AFn
A:odd

for ((bl, ba, -5 byy), J, 7') € |_| (Bxa x By, x Cy). Since I is involution,

AFn
A:even

we obtain bijections

Gnder: || Brax By, xC) = | || (BraxExy,xCy) [ \AD], .,

AFn AFn
A:even A:odd

In,de?2 - |_| (B)\7d X E;\:e X C)\) — |_| (B)\7d X E:\i:e X C)\) \AD%,d,e'

AFn AFn
A:odd A:even

Next, we define

gn,d,e,B((ala az, ..., an)7 J7 0-) S AD;Ld,e

for dq, do satisfying d; + dy = d and (al,ag, .. .,an) € An,d17 J € Dn,dg,n—e
and o € G,, by the following algorithm:

e Step 1. Write J = {j1,72,---,Jn--ey With 0 < j;1 < jo < -+ <
Jn—e < n—1, and draw the rim of the Young diagram of the partition
of d obtained by adding parts ji,j2,...,Je to (191292...n% ) If
71 = 0, we consider the diagram has a row of width 0 at the bottom.

e Step 2. Split the diagram into blocks of columns by depth.

e Step 3. Split the (j,, +1)th column from the left for 1 < m < n-—e,
and paint the other e columns.

e Step 4. Use Step 2 to Step 6 of the algorithm for f, 4 in Theorem
1.1 for the diagram, and take the corresponding A - n and elements
of B)\,d and C)\.

e Step 5. Put J' be the subset of {1,2,...,I(\)} such that j € J’
if and only if the jth block from the left of the diagram is painted.
One can see J' € Ej\r’e UE, .

e Step 6. There are |J'| painted blocks, n — e unpainted blocks, e
painted columns, and n — e unpainted columns. Hence if X is even,
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n —1(\) = e —|J'| is even and |J'| is even, therefore J' € E} .
Similarly, J' € Ey _ if A is odd. Now we have the element of

|_| (B)\’d X E;\i_,e X C)\) LJ |_| (B)\,d X E/\_,e X C)\)

AFn AFn
A:even A:odd

by Step 4, 5 and 6. Moreover, this is an element of AD;%d’e because

the depths of the unpainted columns in the diagram are all distinct.
Therefore one can define

/

gmd’e((al, ag,...,an), J, a) € ADy, 4

We illustrate this algorithm with an example

41 2 5 3

where n = 5, d = 10, and e = 2. In this case j; =0, jo = 1 and j3 = 4, thus
we draw in Step 1 the rim of the Young diagram of (5,4,1,0) - 10, which
is obtained by adding parts 0,1,4 to (192°3%4%5!) = (5). Hence we get the
following left diagram after Step 3. We use Step 2 to Step 6 of the algorithm
for Theorem 1.1 in Step 4, and we get the following middle diagram after
the Step 3 and the right one after the Step 4.

B B

3 3

(0,0,0,0, 1) S A5’5, {O, 1,4} € D5’5’3 and (1 2 3 4 5) € Gs,

Thus we obtain

1
95,10,3 ((07 07 07 07 1)7 {07 17 4}7 (4

=((2,2,1,3), {1}, (2,5)(1)(3)(4))

€B2,1,1,1),10 X £5111)2 X C2,1,1,1)-

N
N o
SIS
L Ot
N—
N—

We can construct the inverse function
gn7d7673_1 : AD;L,d,e —> |_| (An7d1 X Dn;ann_e X 6”)'
d1+do=d
by defining
gn,d,e,3_1 ((bla b2a ) bl(u))a J/a T) S |_| (An,dl X Dn,dg,n—e X Gn)
di1+do=d
for ((b1,b2, ..., byw).J's7) € AD;, 4. by the following algorithm:
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Step 1. Use Step 1 and 2 of the algorithm for fn,d_l in Theorem
1.1, and obtain a diagram of blocks. The ith block from the left is
of width u; and depth b;, and each column has number defined by
T.
Step 2. For j € J', paint the jth block from the left. There are
n — e unpainted columns of all distinct depths.
Step 3. Arrange the blocks by the following rules:
(1) Put deeper one to the left.
(2) If there are blocks of the same depth, put painted one to the
right.
(3) If there are blocks of the same depth and painting, put one
which has the smallest number to the right.
Step 4. Let the depths of the unpainted columns are iq,49,...,%, ¢
with the condition 71 > 19 > -+ > 1.
Step 5. For 1 < m < n — e, write the (i,, + 1)th row has width
Jm 2> 0.
Step 6. Define

gn,d,e,?)_l((bla b27 SRR bl(u))a J/) T) = ((ah az,..., an)7 Ja U)

by the following condition:

(1) J={j1,J2,- s Jn—e}-

(2) (1%1292...n%) is the partition obtained by removing the parts
1,72y« - - Jn—e from the shape of the diagram.

(3) Each column of the diagram has the numbers

o(1),0(2),...,0(n)

from the left.

Therefore we have defined a bijection

/
gn7d7ev3 : |_| (Anadl X Dn7d27n_e >< Gn) % ADn,d,e?
di1+d2=d

By three bijections g, de.1, 9n,de2 and gn g3 We have constructed, now

we have a bijection

Inde - I_I (B)\’dXE):eXC)\) L |_| (B)\’dXE;te x Cy)

AFn AFn
A:even A:odd

U |_| (An,d1 X Dn,dg,n—e X 6n)
di1+do=d
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— |_| (B)\’d X E;\:e x Cy) | U |_| (B)\’d X E'):e x Cl)

AFn AFn
A:even A:odd

for d € N and even number e satisfying 0 < e < n. In a similar way, one can
construct a bijection

gnde: | || BraxEf, x| u| || (Baax Ey, xCy)

AFn AFn
A:even A:odd

U |_| (An,d1 X Dn,dg,n—e X Gn)
di1+do=d

— |_| (B)\’d X E):e x Cy) | U I_I (BA,d X E;\i_’e x Cly)

AFn AFn
Aeven A:odd

for d € N and odd number e satisfying 0 < e < n. By these bijections, we
complete the proof of Theorem 2.2.
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