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BIJECTIVE PROOFS OF THE IDENTITIES

ON THE VALUES OF INNER PRODUCTS

OF THE MACDONALD POLYNOMIALS

Yuta NISHIYAMA

Abstract. In this article, we introduce some identities obtained from
the inner products of some symmetric polynomials including the Mac-
donald polynomials. These identities are obtained not only from the in-
ner products, but also by constructing certain bijections. The bijections
are constructed through transforming the Young diagrams of partitions.

Introduction

The Hall-Littlewood polynomials Pλ(t) are a family of symmetric poly-
nomials indexed by partitions [2]. They are a generalization of the Schur
polynomials having a parameter t. The Macdonald polynomials Pλ(q, t) are
a yet more generalization having two parameters q and t [3].

There are inner products defined on the space of symmetric polynomials
with which the power sum symmetric polynomials form an orthogonal basis.
These kind of inner products are introduced originally by Redfield [6] and
Hall [1]. One obtains some identities of parameters by calculating the inner
products of some symmetric polynomials.

In this article, we give alternative proofs of the following well-known iden-
tities:

n∏
i=1

1− qti−1

1− ti
=
∑
λ⊢n

1

zλ

l(λ)∏
i=1

1− qλi

1− tλi
,

n∏
i=1

ti−1 − q

1− ti
=
∑
λ⊢n

ϵλ
zλ

l(λ)∏
i=1

1− qλi

1− tλi
.

The identities are immediately obtained by using (2.14’) and Example 5 in
the Chapter I, Section 2 of [4]. We prove them by calculating the inner
products of Hall-Littlewood polynomials and Macdonald polynomials, and
by constructing certain bijections through transforming the Young diagrams
of partitions.

This article consists of two sections. In Section 1, we introduce some
concepts, and prove the identities in the case q = 0, which have only one
parameter t. The identities in this case are obtained by calculating the
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inner product of some symmetric polynomials including the Hall-Littlewood
polynomials. In Section 2, we prove the identities in the general case, which
have two parameters q, t. The identities are obtained from the inner product
of symmetric polynomials including the Macdonald polynomials. In each
section, we provide a bijective proof of the identity. In this article, N denotes
the set of all non-negative integers.

1. The case of one parameter

A partition is a weakly decreasing finite series of positive integers. Let
P denote the set of all partitions. For λ = (λ1, λ2, . . . , λl) ∈ P, |λ| =
λ1 + λ2 + · · · + λl is called the weight of λ and l(λ) = l is the length of λ.
Write Pn = {λ ∈ P | l(λ) ≤ n} and P ′

n = {λ ∈ P | λ1 ≤ n}. If |λ| = n,
λ is called a partition of n. We write λ ⊢ n if λ is a partition of n. Write
P(n) = {λ ∈ P | λ ⊢ n}.

For λ = (λ1, λ2, . . . , λn) ∈ P, the Young diagram of λ is the diagram
consisting of l rows of left-aligned cells, the ith row from the top has λi

cells. For example, (4, 3, 1) is a partition of 8 and its Young diagram is as
follows.

For λ = (λ1, λ2, . . . , λl) ∈ P and i ≥ 1, mi(λ) = #{j | λj = i} is
called the multiplicity of i in λ. A partition λ ∈ P is also written as
λ =

(
1m1(λ)2m2(λ) · · ·

)
by using the multiplicities. We define

zλ =
∞∏
i=1

imi(λ)mi(λ)!,

ϵλ =
∞∏
i=1

(−1)(i−1)mi(λ).

It is easy to see that ϵλ = 1 if a permutation with cycle type λ is even, and
that ϵλ = −1 if the permutation is odd.

Here are the theorems we prove in this section:

Theorem 1.1. For n ∈ N, the following formula holds as an identity of
formal power series of t:

n∏
i=1

1

1− ti
=
∑
λ⊢n

1

zλ

l(λ)∏
i=1

1

1− tλi
.
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Theorem 1.2. For n ∈ N, the following formula holds as an identity of
formal power series of t:

n∏
i=1

ti−1

1− ti
=
∑
λ⊢n

ϵλ
zλ

l(λ)∏
i=1

1

1− tλi
.

It is also shown that the both sides of the equations of Theorem 1.1 and
1.2 are equal to the inner product of the elementary symmetric polynomials
⟨e(n), e(n)⟩t, and the inner product of the elementary symmetric polynomial
and the complete symmetric polynomial ⟨e(n), h(n)⟩t, respectively.

1.1. Proof of Theorem 1.1 and 1.2 using symmetric polynomials.
In this section we give a proof of Theorem 1.1 and 1.2 using symmetric
polynomials. We fix a non-negative integer n ∈ N. The symmetric group
Sn acts on the polynomial ring Q[x1, x2, . . . , xn] by permuting the variables.
A polynomial in Q[x1, x2, . . . , xn] is called symmetric if it is invariant under
this action. We denote the vector space of all symmetric polynomials in
Q[x1, x2, . . . , xn] by Λn.

Let xα = x1
α1x2

α2 · · ·xnαn for α = (α1, α2, . . . , αn) ∈ Nn. For λ =

(λ1, λ2, . . . , λl) ∈ Pn, let mλ = mλ(x1, x2, . . . , xn) =
∑
α

xα where α runs

over all distinct finite series (α1, α2, . . . , αn) ∈ Nn obtained by permuting
the parts of the series of n non-negative integers (λ1, λ2, . . . , λl, 0, . . . , 0). mλ

is called the monomial symmetric polynomial corresponding to λ. {mλ | λ ∈
Pn} is a basis of Λn.

There are other well-known bases of Λn. First, the elementary symmetric
polynomial eλ = eλ(x1, x2, . . . , xn) is defined by

eλ = eλ(x1, x2, . . . , xn) = m(1λ1)m(1λ2) · · ·m
(
1
λl(λ)

)
for λ ∈ P ′

n. {eλ | λ ∈ P ′
n} is a basis of Λn [5, Theorem 5.3.5.]. Next, the

complete symmetric polynomial hλ = hλ(x1, x2, . . . , xn) is defined by

hλ =hλ(x1, x2, . . . , xn)

=

 ∑
µ1⊢λ1

l(µ1)≤n

mµ1


 ∑

µ2⊢λ2

l(µ2)≤n

mµ2

 · · ·


∑

µl(λ)⊢λl(λ)

l(µl(λ))≤n

mµl(λ)


for λ ∈ P. {hλ | λ ∈ Pn} is a basis of Λn [5, Theorem 5.3.8.]. Finally, the
power sum symmetric polynomial pλ = pλ(x1, x2, . . . , xn) is defined by

pλ = pλ(x1, x2, . . . , xn) = m(λ1)m(λ2) · · ·m(λl(λ))
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for λ ∈ P. {pλ | λ ∈ Pn} is a basis of Λn [5, Theorem 5.3.9.]. These bases
of Λn have the following relations:

Proposition 1.3 ([4, Chapter I, (2.14’)]). The following relations hold:

(1) e(n) =
∑
λ⊢n

ϵλ
zλ

pλ.

(2) h(n) =
∑
λ⊢n

1

zλ
pλ.

We also recall some concepts about the symmetric polynomials which
have a parameter t to prove the theorems. Let Λt,n = Λn ⊗ Q(t), which is
the set of all elements in the polynomial ring Q(t)[x1, x2, . . . , xn] which are
invariant under the permuting of the variables x1, x2, . . . , xn. We define a
inner product ⟨·, ·⟩t on Λt,n by

⟨pλ, pµ⟩t = δλµzλ

l(λ)∏
i=1

1

1− tλi

for λ, µ ∈ Pn, where δλµ is the Kronecker delta. For λ ∈ Pn, the Hall-
Littlewood symmetric polynomial Pλ(t) = Pλ(x1, x2, . . . , xn; t) ∈ Λt,n is de-
fined by

Pλ(t) =Pλ(x1, x2, . . . , xn; t)

=

∏
i≥0

mi(λ)∏
j=1

1− t

1− tj

 ∑
w∈Sn

w

xλ1
1 xλ2

2 · · ·xλn
n

∏
i<j

xi − txj
xi − xj

 ,

where m0(λ) = n − l(λ). Especially if λ = (1n), P(1n)(t) = e(n) holds [4,
Chapter III, (2.8)]. The inner product of the Hall-Littlewood symmetric
polynomials satisfies the following property:

Proposition 1.4 ([4, Chapter III, (4.9)]). For λ, µ ∈ Pn, ⟨Pλ(t), Qµ(t)⟩t =

δλµ holds, where Qµ(t) =

 ∞∏
i=1

mi(µ)∏
j=1

(1− tj)

Pµ(t) for µ.

The complete symmetric polynomials can be expressed by the Hall-Littlewood
symmetric polynomials as follows:

Proposition 1.5 ([4, Chapter III, 4, Example 1]). With n(λ) =
∑
i≥1

(i− 1)λi

for λ ∈ P,

h(n) =
∑
λ⊢n

tn(λ)Pλ(t)

holds.
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Now we can prove Theorem 1.1 and 1.2. By calculating the inner product
⟨e(n), e(n)⟩t, we obtain

⟨e(n), e(n)⟩t =

⟨∑
λ⊢n

ϵλ
zλ

pλ,
∑
µ⊢n

ϵµ
zµ

pµ

⟩
t

=
∑
λ,µ⊢n

ϵλϵµ
zλzµ

⟨pλ, pµ⟩t

=
∑
λ⊢n

ϵλ
2

zλ

l(λ)∏
i=1

1

1− tλi
=
∑
λ⊢n

1

zλ

l(λ)∏
i=1

1

1− tλi

and

⟨e(n), e(n)⟩t =⟨P(1n)(t), P(1n)(t)⟩t =

⟨
P(1n)(t),

(
n∏

i=1

1

1− ti

)
Q(1n)(t)

⟩
t

=

(
n∏

i=1

1

1− ti

)
⟨P(1n)(t), Q(1n)(t)⟩t =

n∏
i=1

1

1− ti
,

which completes the proof of Theorem 1.1. Similarly, we obtain Theorem
1.2 by calculating ⟨e(n), h(n)⟩t as follows:

⟨e(n), h(n)⟩t =

⟨∑
λ⊢n

ϵλ
zλ

pλ,
∑
µ⊢n

1

zµ
pµ

⟩
t

=
∑
λ,µ⊢n

ϵλ
zλzµ

⟨pλ, pµ⟩t

=
∑
λ⊢n

ϵλ
zλ

l(λ)∏
i=1

1

1− tλi
,

⟨e(n), h(n)⟩t =

⟨
P(1n)(t),

∑
λ⊢n

tn(λ)Pλ(t)

⟩
t

=
∑
λ⊢n

tn(λ)⟨P(1n)(t), Pλ(t)⟩t

=
∑
λ⊢n

tn(λ)

⟨
P(1n)(t),

 ∞∏
i=1

mi(λ)∏
j=1

1

1− tj

Qλ(t)

⟩
t

=
∑
λ⊢n

tn(λ)

 ∞∏
i=1

mi(λ)∏
j=1

1

1− tj

 ⟨P(1n)(t), Qλ(t)⟩t

=tn(1
n)

(
n∏

i=1

1

1− ti

)
=

n∏
i=1

ti−1

1− ti
.

1.2. Bijective proof of Theorem 1.1 and 1.2. In this section we give
another proof of Theorem 1.1 and 1.2 by constructing certain bijections. We
fix a non-negative integer n ∈ N.
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First, we prove Theorem 1.1. Let

An,d =

{
(a1, a2, . . . , an)

∣∣∣∣∣ ai ∈ N,
n∑

i=1

ai · i = d

}
for d ∈ N,

Bλ,d =

(b1, b2 . . . , bl(λ))

∣∣∣∣∣∣ bi ∈ N,
l(λ)∑
i=1

bi · λi = d


for λ ⊢ n, d ∈ N, and Cλ be the conjugacy class of Sn corresponding to
λ ⊢ n. One obtains

n!

n∏
i=1

1

1− ti
= n!

n∏
i=1

(1 + ti + t2i + · · · ) = n!

∞∑
d=0

|An,d|td =

∞∑
d=0

|An,d ×Sn|td

and∑
λ⊢n

n!

zλ

l(λ)∏
i=1

1

1− tλi
=
∑
λ⊢n

n!

zλ

l(λ)∏
i=1

(1 + tλi + t2λi + · · · ) =
∑
λ⊢n

|Cλ|
∞∑
d=0

|Bλ,d|td

=
∑
λ⊢n

∞∑
d=0

|Bλ,d||Cλ|td =

∞∑
d=0

∣∣∣∣∣⊔
λ⊢n

(Bλ,d × Cλ)

∣∣∣∣∣ td.
Therefore it suffices to construct a bijection

fn,d : An,d ×Sn →
⊔
λ⊢n

(Bλ,d × Cλ)

for d ∈ N.
To construct fn,d, we define

fn,d
(
(a1, a2, . . . , an), σ

)
∈
⊔
λ⊢n

(Bλ,d × Cλ)

for (a1, a2, . . . , an) ∈ An,d and σ ∈ Sn by the following algorithm:

• Step 1. Draw the rim of the Young diagram of the partition

(1a12a2 · · ·nan) ⊢ d,

and split it into blocks of columns by depth.
• Step 2. Write the numbers σ(1), σ(2), . . . , σ(n) on each column
from the left to the right. If the width of the diagram is less then n,
add columns of depth 0 to the right of the diagram to make it has
n columns before writing the numbers.
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• Step 3. For each blocks of the diagram, split it at just to the left
of the smallest number if the smallest number of the block is not
at the most left place. Repeat the operation on new blocks until
every block has its smallest number at the most left place. For
example, the following diagrams need this operation once or twice,
respectively.

2 1 4 3 2 1 4 3

3 2 1 3 2 1 3 2 1

• Step 4. Rearrange the blocks by the following rules:
(1) Put wider one to the left.
(2) If there are blocks of the same width, put one which has the

smallest number to the left.
• Step 5. Let l be the number of blocks in the diagram. Let λi be
the width of the ith block from the left, and bi be the depth of it for
1 ≤ i ≤ l. It determines the partition λ = (λ1, λ2, . . . , λl) ⊢ n. For
1 ≤ i ≤ l, let τi be the cyclic permutation (ji,1, ji,2, . . . , ji,λi

) ∈ Sn

if ith block from the left has the numbers ji,1, ji,2, . . . , ji,λi
from the

left.
• Step 6. Define

fn,d
(
(a1, a2, . . . , an), σ

)
=
(
(b1, b2, . . . , bl(λ)), τ1τ2 · · · τl(λ)

)
∈ Bλ,d × Cλ.

We illustrate this algorithm with an example

(0, 0, 1, 1) ∈ A4,7 and

(
1 2 3 4
3 1 4 2

)
∈ S4.

We get the following left diagram after Step 3, and the right one after Step
4.

3 1 4

2

1 4

2

3

Therefore we get

f4,7

(
(0, 0, 1, 1),

(
1 2 3 4
3 1 4 2

))
=
(
(2, 1, 2), (1, 4)(2)(3)

)
∈B(2,1,1),7 × C(2,1,1).

We can define

fn,d
−1
(
(b1, b2, . . . , bl(λ)), τ

)
∈ An,d ×Sn



160 Y. NISHIYAMA

for λ ⊢ n, (b1, b2, . . . , bl(λ)) ∈ Bλ,d and τ ∈ Cλ to construct the inverse
function

fn,d
−1 :

⊔
λ⊢n

(Bλ,d × Cλ) → An,d ×Sn

by the following algorithm:

• Step 1. Suppose

τ = (r1,1, r1,2, . . . , r1,λ1)(r2,1, r2,2, . . . , r2,λ2) · · · (rl(λ),1, rl(λ),2, . . . , rl(λ),λl(λ)
)

is the decomposition of τ into disjoint cycles with conditions ri,1 =
min{ri,1, ri,2, . . . , ri,λi

} for each i, and ri,1 < ri+1,1 if λi = λi+1.
• Step 2. For 1 ≤ i ≤ l(λ), let Xi be the block of width λi, depth bi.
Write the numbers ri,1, ri,2, . . . , ri,λi

on each column of Xi from the
left to the right.

• Step 3. Arrange the blocks X1, X2, . . . , Xl(λ) by the following rules:
(1) Put deeper one to the left.
(2) If there are blocks of the same depth, put one which has the

smallest number to the right.
• Step 4. Define fn,d

−1
(
(b1, b2, . . . , bl(λ)), τ

)
=
(
(a1, a2, . . . , an), σ

)
where the blocks form the Young diagram of shape (1a12a2 · · ·nan),
and each column of the diagram has the numbers σ(1), σ(2), . . . , σ(n)
from the left.

By the above two algorithms, we can see that fn,d is a bijection between

An,d ×Sn and
⊔
λ⊢n

(Bλ,d × Cλ). It completes the proof of Theorem 1.1.

Next, we prove Theorem 1.2. We call λ ∈ P even if ϵλ = 1, and we call
it odd if ϵλ = −1. One obtains

n!

n∏
i=1

ti−1

1− ti
=t(

n
2) · n!

n∏
i=1

1

1− ti
= t(

n
2) ·

∞∑
d=0

|An,d ×Sn|td

=

∞∑
d=0

∣∣∣An,d−(n2)
×Sn

∣∣∣ td
and

n!
∑
λ⊢n

ϵλ
zλ

l(λ)∏
i=1

1

1− tλi
=
∑
λ⊢n

ϵλ
n!

zλ

l(λ)∏
i=1

1

1− tλi
=
∑
λ⊢n

ϵλ

∞∑
d=0

|Bλ,d × Cλ|td

=
∞∑
d=0

(∑
λ⊢n

ϵλ|Bλ,d × Cλ|

)
td
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=

∞∑
d=0

 ∑
λ⊢n

λ:even

|Bλ,d × Cλ| −
∑
λ⊢n
λ:odd

|Bλ,d × Cλ|

 td

=
∞∑
d=0


∣∣∣∣∣∣∣
⊔
λ⊢n

λ:even

(Bλ,d × Cλ)

∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣
⊔
λ⊢n
λ:odd

(Bλ,d × Cλ)

∣∣∣∣∣∣∣
 td.

Therefore it suffices to construct a bijection

gn,d :

 ⊔
λ⊢n
λ:odd

(Bλ,d × Cλ)

 ⊔
(
An,d−(n2)

×Sn

)
→

⊔
λ⊢n

λ:even

(Bλ,d × Cλ)

for d ∈ N. We construct gn,d by constructing two bijections

gn,d,1 :
⊔
λ⊢n
λ:odd

(Bλ,d × Cλ) →

 ⊔
λ⊢n

λ:even

(Bλ,d × Cλ)

 \ADn,d,

gn,d,2 : An,d−(n2)
×Sn → ADn,d,

where ADn,d is the set of all elements(
(b1, b2, . . . , bn), (1)(2) · · · (n)

)
in B(1n),d × C(1n) such that b1, b2, . . . , bn are all distinct.

We construct gn,d,1 by the involution I on

(⊔
λ⊢n

(Bλ,d × Cλ)

)
\ADn,d de-

fined by the following algorithm:

• Step 1. Take µ ⊢ n and
(
(b1, b2, . . . , bl(µ)), τ

)
∈ (Bµ,d×Cµ)\ADn,d.

• Step 2. Take(
(a1, a2, . . . , an), σ

)
= fn,d

−1
(
(b1, b2, . . . , bl(µ)), τ

)
∈ An,d ×Sn,

where fn,d is the one constructed to prove Theorem 1.1.
• Step 3. Let J = {j ∈ {1, 2, . . . , n − 1} | aj = 0}. J is not empty
because

(
(b1, b2, . . . , bl(µ)), τ

)
is not in ADn,d. Hence we can take

j0 = min J .
• Step 4. Define

I
(
(b1, b2, . . . , bl(µ)), τ

)
=fn,d

(
(a1, a2, . . . , an), σ · (j0, j0 + 1)

)
∈
⊔
λ⊢n

(Bλ,d × Cλ).
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We illustrate this algorithm with an example (2, 2, 1) ∈ B(2,1,1),7 and

(1, 4)(2)(3) ∈ C(2,1,1). By using the algorithm for fn,d
−1 in Theorem 1.1, we

obtain the following diagram.

1 4 2

3

2 1 4

3

Thus we get

f4,7
−1
(
(2, 2, 1), (1, 4)(2)(3)

)
=

(
(0, 0, 1, 1),

(
1 2 3 4
2 1 4 3

))
∈ A4,7 ×S4

in Step 1. In the case, J = {1, 2} and j0 = 1. Therefore in Step 4, we get

I
(
(2, 2, 1), (1, 4)(2)(3)

)
=f4,7

(
(0, 0, 1, 1),

(
1 2 3 4
2 1 4 3

)
· (1, 2)

)
=f4,7

(
(0, 0, 1, 1),

(
1 2 3 4
1 2 4 3

))
.

By the algorithm for fn,d in Theorem 1.1, we obtain the following diagram

from (0, 0, 1, 1) ∈ A4,7 and

(
1 2 3 4
1 2 4 3

)
∈ S4.

1 2 4

3

1 2 4

3

Therefore

I
(
(2, 2, 1), (1, 4)(2)(3)

)
=f4,7

(
(0, 0, 1, 1),

(
1 2 3 4
1 2 4 3

))
=
(
(2, 1), (1, 2, 4)(3)

)
∈B(3,1),7 × C(3,1)

⊆
⊔
λ⊢4

λ:even

(Bλ,7 × Cλ).

The operation of (j0, j0 + 1) on σ in the Step 4 exchanges the numbers
written on the most left two column of the same depth. Hence it exchanges
even number of blocks of the depth to odd number of them and vise versa.
Moreover, the algorithm does not give an element of ADn,d because it does
not change the depth of each column of the diagram. Therefore one can see
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that

I
(
(b1, b2, . . . , bl(µ)), τ

)
∈

 ⊔
λ⊢n

λ:even

(Bλ,d × Cλ)

 \ADn,d

for
(
(b1, b2, . . . , bl(µ)), τ

)
∈
⊔
λ⊢n
λ:odd

(Bλ,d × Cλ), and

I
(
(b1, b2, . . . , bl(µ)), τ

)
∈
⊔
λ⊢n
λ:odd

(Bλ,d × Cλ)

for
(
(b1, b2, . . . , bl(µ)), τ

)
∈

 ⊔
λ⊢n

λ:even

(Bλ,d × Cλ)

 \ADn,d. Since I is involu-

tion, we obtain a bijection

gn,d,1 :
⊔
λ⊢n
λ:odd

(Bλ,d × Cλ) →

 ⊔
λ⊢n

λ:even

(Bλ,d × Cλ)

 \ADn,d.

Next, we define

gn,d,2
(
(a1, a2, . . . , an), σ

)
∈ ADn,d

for (a1, a2, . . . , an) ∈ An,d−(n2)
and σ ∈ Sn by

gn,d,2
(
(a1, a2, . . . , an), σ

)
= fn,d

(
(a1 + 1, a2 + 1, . . . , an−1 + 1, an), σ

)
,

where fn,d is the one constructed to prove Theorem 1.1.

For example, for (1, 0, 0, 0) ∈ A4,1 and

(
1 2 3 4
3 1 4 2

)
, we have

g4,7,2

(
(1, 0, 0, 0),

(
1 2 3 4
3 1 4 2

))
= f4,7

(
(2, 1, 1, 0),

(
1 2 3 4
3 1 4 2

))
.

Using the algorithm for f4,7, we obtain the following diagrams for (2, 1, 1, 0) ∈

A4,7 and

(
1 2 3 4
3 1 4 2

)
∈ S4.

3

1

4

2

1

2

3

4
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Therefore, we have

g4,7

(
(1, 0, 0, 0),

(
1 2 3 4
3 1 4 2

))
=f4,7

(
(2, 1, 1, 0),

(
1 2 3 4
3 1 4 2

))
=
(
(2, 0, 4, 1), (1)(2)(3)(4)

)
∈B(1,1,1,1),7 × C(1,1,1,1).

Since the diagram made from
(
(a1+1, a2+1, . . . , an−1+1, an), σ

)
by the al-

gorithm for fn,d has columns of all distinct depths, gn,d,2
(
(a1, a2, . . . , an), σ

)
is an element of ADn,d.

We can construct the inverse function

gn,d,2
−1 : ADn,d → An,d−(n2)

×Sn

by defining

gn,d,2
−1
(
(b1, b2, . . . , bn), (1)(2) · · · (n)

)
∈ An,d−(n2)

×Sn

for
(
(b1, b2, . . . , bn), (1)(2) · · · (n)

)
∈ ADn,d by the following algorithm:

• Step 1. Take(
(a1, a2, . . . , an), σ

)
= fn,d

−1
(
(b1, b2, . . . , bn), (1)(2) · · · (n)

)
∈ An,d ×Sn,

where fn,d is the one constructed to prove Theorem 1.1.
• Step 2. Define

gn,d,2
(
(b1, b2, . . . , bn), (1)(2) · · · (n)

)
=
(
(a1 − 1, a2 − 1, . . . , an−1 − 1, an), σ

)
∈An,d−(n2)

×Sn.

Since
(
(b1, b2, . . . , bn), (1)(2) · · · (n)

)
∈ ADn,d, a1, a2, . . . , an−1 ̸= 0

and (a1 − 1, a2 − 1, . . . , an−1 − 1, an) ∈ An,d−(n2)
.

Therefore we have defined a bijection

gn,d,2 : An,d−(n2)
×Sn → ADn,d.

By two bijections gn,d,1 and gn,d,2 we have constructed, now we have a
bijection

gn,d :

 ⊔
λ⊢n
λ:odd

(Bλ,d × Cλ)

 ⊔
(
An,d−(n2)

×Sn

)
→

⊔
λ⊢n

λ:even

(Bλ,d × Cλ)

and it completes the proof of Theorem 1.2.
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1.3. Generalizations of Theorem 1.1 and 1.2. In Section 1.1, we gave
a proof of Theorem 1.1 by calculating the inner product

⟨e(n), e(n)⟩t = ⟨P(1n)(t), P(1n)(t)⟩t.

We can easily generalize it to the inner product ⟨Pλ(t), Pλ(t)⟩t of an arbitrary
Hall-Littlewood polynomial as follows using Theorem 1.1 and Proposition
1.4.

Theorem 1.6. For λ ∈ P, the following formula holds as an identity of
formal power series of t:

⟨Pλ(t), Pλ(t)⟩t =
∞∏
j=1

mj(λ)∏
i=1

1

1− ti
=

∞∏
j=1

∑
µ⊢mj(λ)

1

zµ

l(µ)∏
i=1

1

1− tµi
.

We give another generalization of Theorem 1.1 and Theorem 1.2. The
Schur polynomial sλ is a symmetric polynomial defined by

sλ = sλ(x1, x2, . . . , xn) =
det
(
x
λj+n−j
i

)
1≤i,j≤n

det
(
xn−j
i

)
1≤i,j≤n

for λ ∈ Pn. {sλ | λ ∈ Pn} is a basis of Λn [5, Theorem 5.4.4.]. The Kostka
polynomial Kλµ(t) ∈ Q(t) corresponding to λ, µ ∈ P is defined as the entry
of the transition matrix from the basis of Schur polynomials and the basis
of Hall-Littlewood polynomials:

sλ =
∑
µ∈P

Kλµ(t)Pµ(t) (λ ∈ P).

Schur polynomials and power sum polynomials enjoy the following relation:

Proposition 1.7 ([4, Chapter I, p114]). For λ ⊢ n, sλ =
∑
µ⊢n

χλ(µ)

zµ
pµ,

where χλ is the irreducible character of Sn corresponding to λ.

By calculating the inner product ⟨sλ, sµ⟩t, we show the following theorem:

Theorem 1.8. For n ∈ N and λ, µ ∈ P, the following formula holds as an
identity of formal power series of t:

⟨sλ, sµ⟩t =
∑
ν⊢n

Kλν(t)Kµν(t)

∞∏
j=1

mj(ν)∏
i=1

1

1− ti
=
∑
ν⊢n

χλ(ν)χµ(ν)

zν

l(ν)∏
i=1

1

1− tνi
.
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Since s(1n) = e(n) and s(n) = h(n) [4, Chapter I, (3.9)], Theorem 1.8 is
a generalization of Theorem 1.1 and 1.2. Now we prove Theorem 1.8. For
n ∈ N and λ ⊢ n, we define Sλ(t) = Sλ(x1, x2, . . . , xn; t) ∈ Λt,n by

Sλ(t) = Sλ(x1, x2, . . . , xn; t) = det
(
qλi−i+j(t)

)
1≤i,j≤l(λ)

,

where qr(t) = Q(r)(t) = (1 − t)P(r)(t) for r ≥ 1, q0(t) = 1, and qr(t) = 0 if
r < 0. Sλ(t) and Schur polynomials have the following properties:

Proposition 1.9 ([4, Chapter III, p241]). For λ, µ ⊢ n,

sλ =
∑
µ⊢n

∑
ν⊢n

Kλν(t)Kµν(t)

∞∏
j=1

mj(ν)∏
i=1

1

1− ti

Sµ(t).

Proposition 1.10 ([4, Chapter III, (4.10)]). For λ, µ ⊢ n, ⟨Sλ(t), sµ⟩t = δλµ
holds.

Using these propositions, we can calculate

⟨sλ, sµ⟩t =

⟨∑
ρ⊢n

χλ(ρ)

zρ
pρ,
∑
σ⊢n

χµ(σ)

zσ
pσ

⟩
t

=
∑
ρ,σ⊢n

χλ(ρ)χµ(σ)

zρzσ
⟨pρ, pσ⟩t

=
∑
ν⊢n

χλ(ν)χµ(ν)

zν

l(ν)∏
i=1

1

1− tνi

and

⟨sλ, sµ⟩t =

⟨∑
ρ⊢n

∑
ν⊢n

Kλν(t)Kρν(t)

∞∏
j=1

mj(ν)∏
i=1

1

1− ti

Sρ(t), sµ

⟩
t

=
∑
ν⊢n

Kλν(t)Kµν(t)
∞∏
j=1

mj(ν)∏
i=1

1

1− ti
,

which completes the proof of Theorem 1.8.
We do not know a bijective proof of Theorem 1.8. It would be an in-

teresting problem to prove Theorem 1.8 bijectively like Theorem 1.1 and
1.2.

2. The case of two parameters

In this section we prove the following identities of two parameters q, t as
generalizations of Theorem 1.1 and 1.2.
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Theorem 2.1. For n ∈ N, the following formula holds as an identity of
formal power series of q, t:

n∏
i=1

1− qti−1

1− ti
=
∑
λ⊢n

1

zλ

l(λ)∏
i=1

1− qλi

1− tλi
.

Theorem 2.2. For n ∈ N, the following formula holds as an identity of
formal power series of q, t:

n∏
i=1

ti−1 − q

1− ti
=
∑
λ⊢n

ϵλ
zλ

l(λ)∏
i=1

1− qλi

1− tλi
.

It is also shown that the both sides of the equations of Theorem 2.1
and 2.2 are equal to the q, t-inner product ⟨e(n), e(n)⟩q,t and ⟨e(n), h(n)⟩q,t,
respectively.

2.1. A proof of Theorem 2.1 and 2.2 using symmetric polynomials.
In this section we prove Theorem 2.1 and 2.2 using symmetric polynomials.
Let Λq,t,n = Λn ⊗ Q(q, t), which is the vector space of all elements in the
polynomial ring Q(q, t)[x1, x2, . . . , xn] which are invariant under the permu-
tations of the variables x1, x2, . . . , xn. We define a inner product ⟨·, ·⟩q,t of
Λq,t,n by

⟨pλ, pµ⟩q,t = δλµzλ

l(λ)∏
i=1

1− qλi

1− tλi

for λ, µ ∈ Pn. We also define the partial order on P(n) called dominance
order by

µ ≤ λ ⇐⇒ ∀i ∈ {1, 2, . . . , n}, µ1 + µ2 + · · ·+ µi ≤ λ1 + λ2 + · · ·+ λi

for λ, µ ∈ P(n), where λj = 0 for l(λ) < j, µj = 0 for l(µ) < j. The
following proposition holds for the inner product and the partial order:

Proposition 2.3 ([4, Chapter VI, (4.7)]). There is a unique family

{Pλ(q, t)}λ⊢n
which consists of elements of Λq,t,n satisfying the following conditions:

(1) There is a map

u : {(λ, µ) | λ, µ ∈ P(n), µ ≤ λ} → Q(q, t)

∈ ∈

(λ, µ) 7→ uλµ

satisfying the following:

(a) For λ ∈ P(n), Pλ(q, t) =
∑
µ⊢n
µ≤λ

uλµmµ.
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(b) For λ ∈ P(n), uλλ = 1.
(2) For λ, µ ∈ P(n) such that λ ̸= µ, ⟨Pλ(q, t), Pµ(q, t)⟩q,t = 0.

The symmetric polynomials Pλ(q, t) defined by the proposition are called
the Macdonald polynomials. In particular, P(1n)(q, t) = e(n) [4, Chapter VI,

(4.8)]. Let bλ(q, t) = ⟨Pλ(q, t), Pλ(q, t)⟩−1
q,t and Qλ(q, t) = bλ(q, t)Pλ(q, t),

so ⟨Pλ(q, t), Qµ(q, t)⟩q,t = δλµ. The following explicit formula of bλ(q, t) is
known:

Proposition 2.4 ([4, Chapter VI, (6.19)]). For λ ∈ P,

bλ(q, t) =
∏
s∈λ

1− qa(s)tl(s)+1

1− qa(s)+1tl(s)

holds, where the right hand side is the product for all cells s in the Young
diagram of λ, and for a cell s, a(s) is the number of cells right of s in the
same row as s in the diagram, and l(s) is the number of cells below s in the
same column as s in the diagram.

By calculating the inner product ⟨e(n), e(n)⟩q,t, we obtain

⟨e(n), e(n)⟩q,t =

⟨∑
λ⊢n

ϵλ
zλ

pλ,
∑
µ⊢n

ϵµ
zµ

pµ

⟩
q,t

=
∑
λ,µ⊢n

ϵλϵµ
zλzµ

⟨pλ, pµ⟩q,t

=
∑
λ⊢n

1

zλ

l(λ)∏
i=1

1− qλi

1− tλi

and

⟨e(n), e(n)⟩q,t =⟨P(1n)(q, t), P(1n)(q, t)⟩q,t = b(1n)(q, t)
−1

=
∏

s∈(1n)

1− qa(s)+1tl(s)

1− qa(s)tl(s)+1
=

n∏
i=1

1− qtn−i

1− tn−i+1
=

n∏
i=1

1− qti−1

1− ti
,

which completes the proof of Theorem 2.1.

Next, we prove Theorem 2.2. Let Λq,t =
⊕
n≥0

Λq,t,n and εq,t : Λq,t → Q(q, t)

be the homomorphism defined by

εq,t(p(r)) =
1− qr

1− tr
.

The followings are known about Pλ(q, t), Qλ(q, t) and εq,t:
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Proposition 2.5 ([4, Chapter VI, (2.6) and (4.13)]). For n ∈ N,

∑
λ⊢n

Pλ(x; q, t)Qλ(y; q, t) =
∑
µ⊢n

1

zµ

l(µ)∏
i=1

1− tµi

1− qµi

 pµ(x)pµ(y)

holds, where Pλ(x; q, t), pµ(x) are symmetric polynomials of variables x1, x2, . . . , xn,
and Qλ(y; q, t), pµ(y) are symmetric polynomials of variables y1, y2, . . . , yn.

Proposition 2.6 ([4, Chapter VI, (6.17)]). For λ ∈ P,

εq,t
(
Pλ(q, t)

)
=
∏
s∈λ

tl
′(s) − qa

′(s)+1

1− qa(s)tl(s)+1

holds, where a′(s) is the number of cells left of s in the same row as s in the
diagram, and l′(s) is the number of cells above s in the same column as s in
the diagram for a cell s.

Since one obtains∑
λ⊢n

Pλ(x; q, t)εq,t
(
Qλ(y; q, t)

)
=
∑
λ⊢n

bλ(q, t)Pλ(x; q, t)εq,t
(
Pλ(y; q, t)

)
=
∑
λ⊢n

bλ(q, t)

(∏
s∈λ

tl
′(s) − qa

′(s)+1

1− qa(s)tl(s)+1

)
Pλ(x; q, t)

=
∑
λ⊢n

(∏
s∈λ

tl
′(s) − qa

′(s)+1

1− qa(s)+1tl(s)

)
Pλ(x; q, t)

and

∑
µ⊢n

1

zµ

l(µ)∏
i=1

1− tµi

1− qµi

 pµ(x)εq,t
(
pµ(y)

)

=
∑
µ⊢n

1

zµ

l(µ)∏
i=1

1− tµi

1− qµi

 pµ(x)

l(µ)∏
i=1

1− qµi

1− tµi


=
∑
µ⊢n

1

zµ
pµ(x) = h(n)(x)

by applying εq,t with respect to variables y1, y2, . . . , yn,

h(n) =
∑
λ⊢n

(∏
s∈λ

tl
′(s) − qa

′(s)+1

1− qa(s)+1tl(s)

)
Pλ(q, t)
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holds by Proposition 2.5. Now we complete the proof of Theorem 2.2 by
calculating ⟨e(n), h(n)⟩q,t as follows:

⟨e(n), h(n)⟩q,t =

⟨∑
λ⊢n

ϵλ
zλ

pλ,
∑
µ⊢n

1

zµ
pµ

⟩
q,t

=
∑
λ,µ⊢n

ϵλ
zλzµ

⟨pλ, pµ⟩q,t

=
∑
λ⊢n

ϵλ
zλ

l(λ)∏
i=1

1− qλi

1− tλi
,

⟨e(n), h(n)⟩q,t =

⟨
P(1n)(q, t),

∑
µ⊢n

(∏
s∈µ

tl
′(s) − qa

′(s)+1

1− qa(s)+1tl(s)

)
Pµ(q, t)

⟩
q,t

=

 ∏
s∈(1n)

tl
′(s) − qa

′(s)+1

1− qa(s)+1tl(s)

 1

b(1n)(q, t)

=
∏

s∈(1n)

tl
′(s) − qa

′(s)+1

1− qa(s)tl(s)+1

=

n∏
i=1

ti−1 − q

1− ti
.

2.2. A bijective proof of Theorem 2.1 and 2.2. In this section we
prove Theorem 2.1 and 2.2 by constructing certain bijections. We fix a
non-negative integer n ∈ N.

First, we prove Theorem 2.1. Let

Dn,d,e =

J ⊆ {0, 1, . . . , n− 1}

∣∣∣∣∣∣
∑
j∈J

j = d, |J | = e


for e, k ∈ N. One obtains

n∏
i=1

(1− qti−1) =

∞∑
d=0

n∑
e=0

|Dn,d,e|td(−q)e,

and therefore

n!

n∏
i=1

1− qti−1

1− ti
=n!

n∏
i=1

(1 + ti + t2i + · · · ) ·
n∏

i=1

(1− qti−1)

=|Sn|
∞∑

d1=0

|An,d1 |td1 ·
∞∑

d2=0

n∑
e=0

|Dn,d2,e|td2(−q)e
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=
∞∑
d=0

n∑
e=0

(−1)e

∣∣∣∣∣∣
⊔

d1+d2=d

(An,d1 ×Dn,d2,e ×Sn)

∣∣∣∣∣∣ tdqe.
Next, let

E+
λ,e =

J ⊆ {1, 2, . . . , l(λ)}

∣∣∣∣∣∣
∑
j∈J

λj = e, |J | is even

 ,

E−
λ,e =

J ⊆ {1, 2, . . . , l(λ)}

∣∣∣∣∣∣
∑
j∈J

λj = e, |J | is odd

 ,

and then we obtain∑
λ⊢n

n!

zλ

l(λ)∏
i=1

1− qλi

1− tλi

=
∑
λ⊢n

n!

zλ

l(λ)∏
i=1

(1 + tλi + t2λi + · · · ) ·
l(λ)∏
i=1

(1− qλi)


=
∑
λ⊢n

|Cλ|

( ∞∑
d=0

|Bλ,d|td ·
n∑

e=0

(∣∣∣E+
λ,e

∣∣∣− ∣∣∣E−
λ,e

∣∣∣) qe)

=

∞∑
d=0

n∑
e=0

∑
λ⊢n

(
|Bλ,d|

∣∣∣E+
λ,e

∣∣∣ |Cλ| − |Bλ,d|
∣∣∣E−

λ,e

∣∣∣ |Cλ|
)
tdqe

=
∞∑
d=0

n∑
e=0

(∣∣∣∣∣⊔
λ⊢n

(Bλ,d × E+
λ,e × Cλ)

∣∣∣∣∣−
∣∣∣∣∣⊔
λ⊢n

(Bλ,d × E−
λ,e × Cλ)

∣∣∣∣∣
)
tdqe.

Therefore it suffices to construct a bijection

fn,d,e :

(⊔
λ⊢n

(Bλ,d × E−
λ,e × Cλ)

)
⊔

 ⊔
d1+d2=d

(An,d1 ×Dn,d2,e ×Sn)


→
⊔
λ⊢n

(Bλ,d × E+
λ,e × Cλ)

for d ∈ N and even number e satisfying 0 ≤ e ≤ n, and

fn,d,e :

(⊔
λ⊢n

(Bλ,d × E+
λ,e × Cλ)

)
⊔

 ⊔
d1+d2=d

(An,d1 ×Dn,d2,e ×Sn)


→
⊔
λ⊢n

(Bλ,d × E−
λ,e × Cλ)
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for d ∈ N and odd number e satisfying 0 ≤ e ≤ n. Here we construct a
bijection fn,d,e for d ∈ N and even number e satisfying 0 ≤ e ≤ n. We
construct fn,d,e by constructing two bijections

fn,d,e,1 :
⊔
λ⊢n

(Bλ,d × E−
λ,e × Cλ) →

(⊔
λ⊢n

(Bλ,d × E+
λ,e × Cλ)

)
\ADn,d,e,

fn,d,e,2 :
⊔

d1+d2=d

(An,d1 ×Dn,d2,e ×Sn) → ADn,d,e,

where ADn,d,e is the set of all elements(
(b1, b2, . . . , bl(λ)), J, τ

)
in
⊔
λ⊢n

(Bλ,d × E+
λ,e × Cλ) such that λj = 1 for all j ∈ J , and bj for j ∈ J are

all distinct.
We construct fn,d,e,1 by the involution I on(⊔

λ⊢n
(Bλ,d × E−

λ,e × Cλ)

)
⊔

(⊔
λ⊢n

(Bλ,d × E+
λ,e × Cλ)

)
\ADn,d,e

defined by the following algorithm:

• Step 1. Take µ ⊢ n and(
(b1, b2, . . . , bl(µ)), J, τ

)
∈ (Bµ,d ×E−

µ,e × Cµ) ⊔ (Bµ,d × E+
µ,e × Cµ)

satisfying
(
(b1, b2, . . . , bl(µ)), J, τ

)
/∈ ADn,d,e.

• Step 2. Use Step 1 and 2 of the algorithm for fn,d
−1 in Theorem

1.1, and obtain a diagram of blocks. The ith block from the left is
of width µi and depth bi, and each column has number defined by
τ .

• Step 3. For j ∈ J , paint the jth block from the left. There are e
painted columns because J ∈ E+

µ,e ⊔ E−
µ,e.

• Step 4. Rearrange the blocks by the following rules:
(1) Put deeper one to the left.
(2) If there are blocks of the same depth, put painted one to the

left.
(3) If there are blocks of the same depth and painting, put one

which has the smallest number to the left.
• Step 5. Since

(
(b1, b2, . . . , bl(µ)), J, τ

)
/∈ ADn,d,e, there is a painted

block with width at least 2, or there are painted blocks of width 1
and same depth. Therefore there is a depth δ such that there are
at least two painted columns of depth δ. Let δ0 be the deepest such
depth δ.
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• Step 6. Write the painted blocks of depth δ0 X1, X2, . . . from
left. For each j, write the numbers written on each column of Xj

qj,1, qj,2, . . . from left. Let

ρ = (q1,1, q1,2, . . .)(q2,1, q2,2, . . .) · · · ∈ Sn,

and i1, i2 be the smallest two numbers in

{q1,1, q1,2, . . .} ∪ {q2,1, q2,2, . . .} ∪ · · ·

which satisfies i1 < i2.
• Step 7. (i1, i2)ρ is written (r1,1, r1,2, . . .)(r2,1, r2,2, . . .) · · · by some
disjoint cycles (rj,1, rj,2, . . .) satisfying rj,1 = min{rj,1, rj,2, . . .} for
each j, and r1,1 < r2,1 < · · · . For each j, let Yj be the painted block
whose width is the length of (rj,1, rj,2, . . .) and whose depth is δ0,
and whose each column has the numbers rj,1, rj,2, . . . from the left.
Arrange Y1, Y2, . . . from the left, and exchange the all painted blocks
of depth δ0 of the diagram made in Step 4 for them.

The operation of (i1, i2) on ρ changes the sign of ρ. Hence (i1, i2)ρ
consists of even numbers of cycles if ρ consists of odd numbers of
them, and vice versa. Therefore this step exchanges the parity of
the number of painted blocks in the diagram.

• Step 8. Use Step 4 to Step 6 of the algorithm for fn,d in Theorem
1.1, and take the corresponding partition λ ⊢ n and the elements of
Bλ,d and Cλ.

• Step 9. Put J ′ be the subset of {1, 2, . . . , l(λ)} such that j ∈ J ′

if and only if the jth block from the left of the diagram is painted.
One can see J ′ ∈ E+

λ,e if J ∈ E−
µ,e, and J ′ ∈ E−

λ,e if J ∈ E+
µ,e.

• Step 10. The elements of Bλ,d, E
+
λ,e ⊔ E−

λ,e and Cλ are determined

by Step 8 and 9. Therefore one can define

I
(
(b1, b2, . . . , bl(µ)), J, τ

)
∈

(⊔
λ⊢n

(Bλ,d ×E−
λ,e × Cλ)

)
⊔

(⊔
λ⊢n

(Bλ,d × E+
λ,e × Cλ)

)
.

Since this algorithm does not change the depth of the painted columns,
one can see I

(
(b1, b2, . . . , bl(µ)), J, τ

)
/∈ ADn,d,e.

We illustrate this algorithm with an example (2, 1, 2, 2, 2) ∈ B(2,1,1,1,1),11,

{1, 3, 5} ∈ E−
(2,1,1,1,1),4, (2, 5)(1)(3)(4)(6) ∈ C(2,1,1,1,1) where n = 6, d = 11,

e = 4. One obtains the following left diagram after Step 3, and the right
one after Step 4.
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2 5

1

3 4 6 2 5 3 6 4

1

In this case, δ0 = 2 and ρ = (2, 5)(3)(6), i1 = 2, i2 = 3. Since (i1, i2)ρ =
(2, 3)(2, 5)(3)(6) = (2, 5, 3)(6), one obtains the following left diagram after
Step 7 and the right one after Step 8.

2 5 3 6 4

1

2 5 3

1

4 6

Therefore we have

I
(
(2, 1, 2, 2, 2), {1, 3, 5}, (2, 5)(1)(3)(4)(6)

)
=
(
(2, 1, 2, 2), {1, 4}, (2, 5, 3)(1)(4)(6)

)
∈B(3,1,1,1),11 × E+

(3,1,1,1),4 × C(3,1,1,1).

Since this algorithm changes the parity of the number of painted blocks
in the Step 7,

I
(
(b1, b2, . . . , bl(µ)), J, τ

)
∈

(⊔
λ⊢n

(Bλ,d × E+
λ,e × Cλ)

)
\ADn,d,e

for
(
(b1, b2, . . . , bl(µ)), J, τ

)
∈
⊔
λ⊢n

(Bλ,d × E−
λ,e × Cλ), and

I
(
(b1, b2, . . . , bl(µ)), J, τ

)
∈
⊔
λ⊢n

(Bλ,d × E−
λ,e × Cλ)

for
(
(b1, b2, . . . , bl(µ)), J, τ

)
∈

(⊔
λ⊢n

(Bλ,d × E+
λ,e × Cλ)

)
\ADn,d,e. Since I is

involution, we obtain a bijection

fn,d,e,1 :
⊔
λ⊢n

(Bλ,d × E−
λ,e × Cλ) →

(⊔
λ⊢n

(Bλ,d × E+
λ,e × Cλ)

)
\ADn,d,e.

Next, we define

fn,d,e,2
(
(a1, a2, . . . , an), J, σ

)
∈ ADn,d,e

for d1, d2 satisfying d1 + d2 = d and (a1, a2, . . . , an) ∈ An,d1 , J ∈ Dn,d2,e,
and σ ∈ Sn by the following algorithm:

• Step 1. Write J = {j1, j2, . . . , je} with 0 ≤ j1 < j2 < · · · < je ≤
n− 1, and draw the rim of the Young diagram of the partition of d
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obtained by adding parts j1, j2, . . . , je to (1a12a2 · · ·nan). If j1 = 0,
we consider the diagram has a row of width 0 at the bottom.

• Step 2. Split the diagram into blocks of columns by depth.
• Step 3. For 1 ≤ m ≤ e, the diagram has a row of width jm by Step
1. Write the highest such row the imth row.

• Step 4. For 1 ≤ m ≤ e, the diagram has a column of depth im − 1
by Step 3. Split the most right such column and paint it. This step
makes e painted columns whose depths are all distinct.

• Step 5. Use Step 2 to Step 6 of the algorithm for fn,d in Theorem
1.1 for the diagram, and take the corresponding λ ⊢ n and elements
of Bλ,d and Cλ.

• Step 6. Put J ′ be the subset of {1, 2, . . . , l(λ)} such that j ∈ J ′

if and only if the jth block from the left of the diagram is painted.
One can see J ′ ∈ E+

λ,e since e is even.

• Step 7. The elements of Bλ,d, E
+
λ,e and Cλ are determined by Step

5 and 6. Therefore one can define

fn,d,e
(
(a1, a2, . . . , an), J, σ

)
∈
⊔
λ⊢n

(Bλ,d ×E+
λ,e × Cλ).

Moreover, this is an element of ADn,d,e because the depths of the
painted columns in the diagram are all distinct.

We illustrate this algorithm with an example (0, 0, 1, 1) ∈ A4,7, {0, 3} ∈

D4,3,2 and

(
1 2 3 4
3 1 4 2

)
∈ S4, where n = 4, d = 10, and e = 2. In this case

j1 = 0 and j2 = 3, thus we draw in Step 1 the rim of the Young diagram of
(4, 3, 3, 0) ⊢ 10, which is obtained by adding parts 0, 3 to

(
10203141

)
= (4, 3).

Since i1 = 4 and i2 = 2, we get the following left diagram after Step 4. We
use Step 2 to Step 6 of the algorithm for Theorem 1.1 in Step 5, and we get
the following middle diagram after the Step 3 and the right one after the
Step 4.

3 1 4

2

1

2

3 4

Thus we obtain

f4,10,2

(
(0, 0, 1, 1), {0, 3},

(
1 2 3 4
3 1 4 2

))
=
(
(3, 1, 3, 3), {2, 4}, (1)(2)(3)(4)

)
∈B(1,1,1,1),10 × E+

(1,1,1,1),2 × C(1,1,1,1).
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We can construct the inverse function

fn,d,e,2
−1 : ADn,d,e →

⊔
d1+d2=d

(An,d1 ×Dn,d2,e ×Sn)

by defining

fn,d,e,2
−1
(
(b1, b2, . . . , bl(µ)), J

′, τ
)
∈

⊔
d1+d2=d

(An,d1 ×Dn,d2,e ×Sn)

for
(
(b1, b2, . . . , bl(µ)), J

′, τ
)
∈ ADn,d,e by the following algorithm:

• Step 1. Use Step 1 and 2 of the algorithm for fn,d
−1 in Theorem

1.1, and obtain a diagram of blocks. The ith block from the left is
of width µi and depth bi, and each column has number defined by
τ .

• Step 2. For j ∈ J ′, paint the jth block from the left. There are e
painted columns of all distinct depths.

• Step 3. Arrange the blocks by the following rules:
(1) Put deeper one to the left.
(2) If there are blocks of the same depth, put painted one to the

right.
(3) If there are blocks of the same depth and painting, put one

which has the smallest number to the right.
• Step 4. Let the depths of the painted columns are i1, i2, . . . , ie with
the condition i1 > i2 > · · · > ie.

• Step 5. For 1 ≤ m ≤ e, write the (im +1)th row has width jm ≥ 0.
• Step 6. Define

fn,d,e,2
−1
(
(b1, b2, . . . , bl(µ)), J

′, τ
)
=
(
(a1, a2, . . . , an), J, σ

)
by the following condition:
(1) J = {j1, j2, . . . , je}.
(2) (1a12a2 · · ·nan) is the partition obtained by removing the parts

j1, j2, . . . , je from the shape of the diagram.
(3) Each column of the diagram has the numbers

σ(1), σ(2), . . . , σ(n)

from the left.

Therefore we have defined a bijection

fn,d,e,2 :
⊔

d1+d2=d

(An,d1 ×Dn,d2,e ×Sn) → ADn,d,e.
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By two bijections fn,d,e,1 and fn,d,e,2 we have constructed, now we have a
bijection

fn,d,e :

(⊔
λ⊢n

(Bλ,d × E−
λ,e × Cλ)

)
⊔

 ⊔
d1+d2=d

(An,d1 ×Dn,d2,e ×Sn)


→
⊔
λ⊢n

(Bλ,d × E+
λ,e × Cλ)

for d ∈ N and even number e satisfying 0 ≤ e ≤ n. In a similar way, one can
construct a bijection

fn,d,e :

(⊔
λ⊢n

(Bλ,d × E+
λ,e × Cλ)

)
⊔

 ⊔
d1+d2=d

(An,d1 ×Dn,d2,e ×Sn)


→
⊔
λ⊢n

(Bλ,d × E−
λ,e × Cλ)

for d ∈ N and odd number e satisfying 0 ≤ e ≤ n. By these bijections, we
complete the proof of Theorem 2.1.

Next, we prove Theorem 2.2. One obtains

n!

n∏
i=1

ti−1 − q

1− ti
=n!

(
n∏

i=1

1

1− ti

)(
n∏

i=1

(ti−1 − q)

)

=|Sn|

 ∞∑
d1=0

|An,d1 |td1
 ∞∑

d2=0

n∑
e=0

|Dn,d2,n−e|td2(−q)e


=

∞∑
d=0

n∑
e=0

(−1)e
∑

d1+d2=d

|An,d1 ×Dn,d2,n−e ×Sn|

 tdqe

and

n!
∑
λ⊢n

ϵλ
zλ

l(λ)∏
i=1

1− qλi

1− tλi

=
∑
λ⊢n

ϵλ · n!
zλ

l(λ)∏
i=1

1

1− tλi

l(λ)∏
i=1

(1− qλi)


=
∑
λ⊢n

ϵλ|Cλ|

( ∞∑
d=0

|Bλ,d|td
)(

n∑
e=0

(∣∣∣E+
λ,e

∣∣∣− ∣∣∣E−
λ,e

∣∣∣) qe)
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=

∞∑
d=0

n∑
e=0

(∑
λ⊢n

(
ϵλ

∣∣∣Bλ,d ×E+
λ,e × Cλ

∣∣∣− ϵλ

∣∣∣Bλ,d × E−
λ,e × Cλ

∣∣∣)) tdqe

=

∞∑
d=0

n∑
e=0

 ∑
λ⊢n

λ:even

∣∣∣Bλ,d × E+
λ,e × Cλ

∣∣∣− ∑
λ⊢n

λ:even

∣∣∣Bλ,d × E−
λ,e × Cλ

∣∣∣
−
∑
λ⊢n
λ:odd

∣∣∣Bλ,d × E+
λ,e × Cλ

∣∣∣+ ∑
λ⊢n
λ:odd

∣∣∣Bλ,d × E−
λ,e × Cλ

∣∣∣
 tdqe.

Therefore it suffices to construct a bijection

gn,d,e :

 ⊔
λ⊢n

λ:even

(Bλ,d × E−
λ,e × Cλ)

 ⊔

 ⊔
λ⊢n
λ:odd

(Bλ,d × E+
λ,e × Cλ)


⊔

 ⊔
d1+d2=d

(An,d1 ×Dn,d2,n−e ×Sn)


→

 ⊔
λ⊢n

λ:even

(Bλ,d × E+
λ,e × Cλ)

 ⊔

 ⊔
λ⊢n
λ:odd

(Bλ,d × E−
λ,e × Cλ)


for d ∈ N and even number e satisfying 0 ≤ e ≤ n, and

gn,d,e :

 ⊔
λ⊢n

λ:even

(Bλ,d × E+
λ,e × Cλ)

 ⊔

 ⊔
λ⊢n
λ:odd

(Bλ,d × E−
λ,e × Cλ)


⊔

 ⊔
d1+d2=d

(An,d1 ×Dn,d2,n−e ×Sn)


→

 ⊔
λ⊢n

λ:even

(Bλ,d × E−
λ,e × Cλ)

 ⊔

 ⊔
λ⊢n
λ:odd

(Bλ,d × E+
λ,e × Cλ)


for d ∈ N and odd number e satisfying 0 ≤ e ≤ n. Here we construct a
bijection gn,d,e for d ∈ N and even number e satisfying 0 ≤ e ≤ n. We
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construct gn,d,e by constructing three bijections

gn,d,e,1 :
⊔
λ⊢n

λ:even

(Bλ,d × E−
λ,e × Cλ) →

 ⊔
λ⊢n
λ:odd

(Bλ,d × E−
λ,e × Cλ)

 \AD′
n,d,e,

gn,d,e,2 :
⊔
λ⊢n
λ:odd

(Bλ,d × E+
λ,e × Cλ) →

 ⊔
λ⊢n

λ:even

(Bλ,d × E+
λ,e × Cλ)

 \AD′
n,d,e,

gn,d,e,3 :
⊔

d1+d2=d

(An,d1 ×Dn,d2,n−e ×Sn) → AD′
n,d,e,

where AD′
n,d,e is the set of all elements(
(b1, b2, . . . , bl(λ)), J, τ

)
∈

 ⊔
λ⊢n

λ:even

(Bλ,d × E+
λ,e × Cλ)

 ⊔

 ⊔
λ⊢n
λ:odd

(Bλ,d × E−
λ,e × Cλ)


such that λj = 1 for all j ∈ {1, 2, . . . , l(λ)}\J , and bj for j ∈ {1, 2, . . . , l(λ)}\
J are all distinct.

We construct gn,d,e,1 and gn,d,e,2 by the involution I on(⊔
λ⊢n

(Bλ,d × E−
λ,e × Cλ)

)
⊔

(⊔
λ⊢n

(Bλ,d × E+
λ,e × Cλ)

)
\AD′

n,d,e

defined by the following algorithm:

• Step 1. Take µ ⊢ n and(
(b1, b2, . . . , bl(µ)), J, τ

)
∈ (Bµ,d ×E−

µ,e × Cµ) ⊔ (Bµ,d × E+
µ,e × Cµ)

satisfying
(
(b1, b2, . . . , bl(µ)), J, τ

)
/∈ AD′

n,d,e.

• Step 2. Use Step 1 and 2 of the algorithm for fn,d
−1 in Theorem

1.1, and obtain a diagram of blocks. The ith block from the left is
of width µi and depth bi, and each column has number defined by
τ .

• Step 3. For j ∈ J , paint the jth block from the left. There are e
painted columns because J ∈ E+

µ,e ⊔ E−
µ,e.

• Step 4. Rearrange the blocks by the following rules:
(1) Put deeper one to the left.
(2) If there are blocks of the same depth, put painted one to the

left.
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(3) If there are blocks of the same depth and painting, put one
which has the smallest number to the left.

• Step 5. Since
(
(b1, b2, . . . , bl(µ)), J, τ

)
/∈ AD′

n,d,e, there is an un-
painted block with width at least 2, or there are unpainted blocks
of width 1 and same depth. Therefore there is a depth δ such that
there are at least two unpainted columns of depth δ. Let δ0 be the
deepest such depth δ.

• Step 6. Write the unpainted blocks of depth δ0 X1, X2, . . . from
left. For each j, write the numbers written on each column of Xj

qj,1, qj,2, . . . from left. Let

ρ = (q1,1, q1,2, . . .)(q2,1, q2,2, . . .) · · · ∈ Sn,

and i1, i2 be the smallest two numbers in

{q1,1, q1,2, . . .} ∪ {q2,1, q2,2, . . .} ∪ · · ·
which satisfies i1 < i2.

• Step 7. (i1, i2)ρ is written (r1,1, r1,2, . . .)(r2,1, r2,2, . . .) · · · by some
disjoint cycles (rj,1, rj,2, . . .) satisfying rj,1 = min{rj,1, rj,2, . . .} for
each j, and r1,1 < r2,1 < · · · . For each j, let Yj be the unpainted
block whose width is the length of (rj,1, rj,2, . . .) and whose depth
is δ0, and whose each column has the numbers rj,1, rj,2, . . . from the
left. Arrange Y1, Y2, . . . from the left, and exchange the all unpainted
blocks of depth δ0 of the diagram made in Step 4 for them.

The operation of (i1, i2) on ρ changes the sign of ρ. Hence (i1, i2)ρ
consists of even numbers of cycles if ρ consists of odd numbers of
them, and vice versa. Therefore this step exchanges the parity of
the number of unpainted blocks in the diagram.

• Step 8. Use Step 4 to Step 6 of the algorithm for fn,d in Theorem
1.1, and take the corresponding partition λ ⊢ n and the elements of
Bλ,d and Cλ.

• Step 9. Put J ′ be the subset of {1, 2, . . . , l(λ)} such that j ∈ J ′

if and only if the jth block from the left of the diagram is painted.
One can see J ′ ∈ E+

λ,e if J ∈ E+
µ,e, and J ′ ∈ E−

λ,e if J ∈ E−
µ,e.

• Step 10. The elements of Bλ,d, E
+
λ,e ⊔ E−

λ,e and Cλ are determined

by Step 8 and 9. Therefore one can define

I
(
(b1, b2, . . . , bl(µ)), J, τ

)
∈

(⊔
λ⊢n

(Bλ,d ×E−
λ,e × Cλ)

)
⊔

(⊔
λ⊢n

(Bλ,d × E+
λ,e × Cλ)

)
.

Since this algorithm does not change the depth of the unpainted
columns, one can see I

(
(b1, b2, . . . , bl(µ)), J, τ

)
/∈ AD′

n,d,e.
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We illustrate this algorithm with an example (2, 2, 1, 2) ∈ B(2,2,1,1),11,

{2} ∈ E−
(2,2,1,1),2, (2, 5)(3, 4)(1)(6) ∈ C(2,2,1,1) where n = 6, d = 11, e = 2.

One obtains the following left diagram after Step 3, and the right one after
Step 4.

2 5 3 4

1

6 3 4 2 5 6

1

In this case, δ0 = 2 and ρ = (2, 5)(6), i1 = 2, i2 = 5. Since (i1, i2)ρ =
(2, 5)(2, 5)(6) = (2)(5)(6), one obtains the following left diagram after Step
7 and the right one after Step 8.

3 4 2 5 6

1

3 4

1

2 5 6

Therefore we have

g6,11,2
(
(2, 2, 1, 2), {2}, (2, 5)(3, 4)(1)(6)

)
=
(
(2, 1, 2, 2, 2), {1}, (3, 4)(1)(2)(5)(6)

)
∈B(2,1,1,1,1),11 × E−

(2,1,1,1,1),2 × C(2,1,1,1,1).

Since this algorithm changes the parity of the number of unpainted blocks
in the Step 7,

I
(
(b1, b2, . . . , bl(µ)), J, τ

)
∈

 ⊔
λ⊢n

λ:even

(Bλ,d × E+
λ,e × Cλ)

 \AD′
n,d,e

for
(
(b1, b2, . . . , bl(µ)), J, τ

)
∈
⊔
λ⊢n
λ:odd

(Bλ,d × E+
λ,e × Cλ),

I
(
(b1, b2, . . . , bl(µ)), J, τ

)
∈
⊔
λ⊢n
λ:odd

(Bλ,d × E+
λ,e × Cλ)

for
(
(b1, b2, . . . , bl(µ)), J, τ

)
∈

 ⊔
λ⊢n

λ:even

(Bλ,d × E+
λ,e × Cλ)

 \AD′
n,d,e,

I
(
(b1, b2, . . . , bl(µ)), J, τ

)
∈
⊔
λ⊢n

λ:even

(Bλ,d × E−
λ,e × Cλ)
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for
(
(b1, b2, . . . , bl(µ)), J, τ

)
∈

 ⊔
λ⊢n
λ:odd

(Bλ,d × E−
λ,e × Cλ)

 \AD′
n,d,e, and

I
(
(b1, b2, . . . , bl(µ)), J, τ

)
∈

 ⊔
λ⊢n
λ:odd

(Bλ,d × E−
λ,e × Cλ)

 \AD′
n,d,e

for
(
(b1, b2, . . . , bl(µ)), J, τ

)
∈
⊔
λ⊢n

λ:even

(Bλ,d × E−
λ,e × Cλ). Since I is involution,

we obtain bijections

gn,d,e,1 :
⊔
λ⊢n

λ:even

(Bλ,d × E−
λ,e × Cλ) →

 ⊔
λ⊢n
λ:odd

(Bλ,d × E−
λ,e × Cλ)

 \AD′
n,d,e,

gn,d,e,2 :
⊔
λ⊢n
λ:odd

(Bλ,d × E+
λ,e × Cλ) →

 ⊔
λ⊢n

λ:even

(Bλ,d × E+
λ,e × Cλ)

 \AD′
n,d,e.

Next, we define

gn,d,e,3
(
(a1, a2, . . . , an), J, σ

)
∈ AD′

n,d,e

for d1, d2 satisfying d1 + d2 = d and (a1, a2, . . . , an) ∈ An,d1 , J ∈ Dn,d2,n−e

and σ ∈ Sn by the following algorithm:

• Step 1. Write J = {j1, j2, . . . , jn−e} with 0 ≤ j1 < j2 < · · · <
jn−e ≤ n−1, and draw the rim of the Young diagram of the partition
of d obtained by adding parts j1, j2, . . . , je to (1a12a2 · · ·nan). If
j1 = 0, we consider the diagram has a row of width 0 at the bottom.

• Step 2. Split the diagram into blocks of columns by depth.
• Step 3. Split the (jm+1)th column from the left for 1 ≤ m ≤ n−e,
and paint the other e columns.

• Step 4. Use Step 2 to Step 6 of the algorithm for fn,d in Theorem
1.1 for the diagram, and take the corresponding λ ⊢ n and elements
of Bλ,d and Cλ.

• Step 5. Put J ′ be the subset of {1, 2, . . . , l(λ)} such that j ∈ J ′

if and only if the jth block from the left of the diagram is painted.
One can see J ′ ∈ E+

λ,e ⊔ E−
λ,e.

• Step 6. There are |J ′| painted blocks, n − e unpainted blocks, e
painted columns, and n− e unpainted columns. Hence if λ is even,
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n − l(λ) = e − |J ′| is even and |J ′| is even, therefore J ′ ∈ E+
λ,e.

Similarly, J ′ ∈ E−
λ,e if λ is odd. Now we have the element of ⊔

λ⊢n
λ:even

(Bλ,d × E+
λ,e × Cλ)

 ⊔

 ⊔
λ⊢n
λ:odd

(Bλ,d × E−
λ,e × Cλ)


by Step 4, 5 and 6. Moreover, this is an element of AD′

n,d,e because
the depths of the unpainted columns in the diagram are all distinct.
Therefore one can define

gn,d,e
(
(a1, a2, . . . , an), J, σ

)
∈ AD′

n,d,e.

We illustrate this algorithm with an example

(0, 0, 0, 0, 1) ∈ A5,5, {0, 1, 4} ∈ D5,5,3 and

(
1 2 3 4 5
4 1 2 5 3

)
∈ S5,

where n = 5, d = 10, and e = 2. In this case j1 = 0, j2 = 1 and j3 = 4, thus
we draw in Step 1 the rim of the Young diagram of (5, 4, 1, 0) ⊢ 10, which
is obtained by adding parts 0, 1, 4 to

(
1020304051

)
= (5). Hence we get the

following left diagram after Step 3. We use Step 2 to Step 6 of the algorithm
for Theorem 1.1 in Step 4, and we get the following middle diagram after
the Step 3 and the right one after the Step 4.

4

1 2 5

3

2 5 1

3

4

Thus we obtain

g5,10,3

(
(0, 0, 0, 0, 1), {0, 1, 4},

(
1 2 3 4 5
4 1 2 5 3

))
=
(
(2, 2, 1, 3), {1}, (2, 5)(1)(3)(4)

)
∈B(2,1,1,1),10 × E−

(2,1,1,1),2 × C(2,1,1,1).

We can construct the inverse function

gn,d,e,3
−1 : AD′

n,d,e →
⊔

d1+d2=d

(An,d1 ×Dn,d2,n−e ×Sn).

by defining

gn,d,e,3
−1
(
(b1, b2, . . . , bl(µ)), J

′, τ
)
∈

⊔
d1+d2=d

(An,d1 ×Dn,d2,n−e ×Sn)

for
(
(b1, b2, . . . , bl(µ)), J

′, τ
)
∈ AD′

n,d,e by the following algorithm:
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• Step 1. Use Step 1 and 2 of the algorithm for fn,d
−1 in Theorem

1.1, and obtain a diagram of blocks. The ith block from the left is
of width µi and depth bi, and each column has number defined by
τ .

• Step 2. For j ∈ J ′, paint the jth block from the left. There are
n− e unpainted columns of all distinct depths.

• Step 3. Arrange the blocks by the following rules:
(1) Put deeper one to the left.
(2) If there are blocks of the same depth, put painted one to the

right.
(3) If there are blocks of the same depth and painting, put one

which has the smallest number to the right.
• Step 4. Let the depths of the unpainted columns are i1, i2, . . . , in−e

with the condition i1 > i2 > · · · > in−e.
• Step 5. For 1 ≤ m ≤ n − e, write the (im + 1)th row has width
jm ≥ 0.

• Step 6. Define

gn,d,e,3
−1
(
(b1, b2, . . . , bl(µ)), J

′, τ
)
=
(
(a1, a2, . . . , an), J, σ

)
by the following condition:
(1) J = {j1, j2, . . . , jn−e}.
(2) (1a12a2 · · ·nan) is the partition obtained by removing the parts

j1, j2, . . . , jn−e from the shape of the diagram.
(3) Each column of the diagram has the numbers

σ(1), σ(2), . . . , σ(n)

from the left.

Therefore we have defined a bijection

gn,d,e,3 :
⊔

d1+d2=d

(An,d1 ×Dn,d2,n−e ×Sn) → AD′
n,d,e,

By three bijections gn,d,e,1, gn,d,e,2 and gn,d,e,3 we have constructed, now
we have a bijection

gn,d,e :

 ⊔
λ⊢n

λ:even

(Bλ,d × E−
λ,e × Cλ)

 ⊔

 ⊔
λ⊢n
λ:odd

(Bλ,d × E+
λ,e × Cλ)


⊔

 ⊔
d1+d2=d

(An,d1 ×Dn,d2,n−e ×Sn)
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→

 ⊔
λ⊢n

λ:even

(Bλ,d × E+
λ,e × Cλ)

 ⊔

 ⊔
λ⊢n
λ:odd

(Bλ,d × E−
λ,e × Cλ)


for d ∈ N and even number e satisfying 0 ≤ e ≤ n. In a similar way, one can
construct a bijection

gn,d,e :

 ⊔
λ⊢n

λ:even

(Bλ,d × E+
λ,e × Cλ)

 ⊔

 ⊔
λ⊢n
λ:odd

(Bλ,d × E−
λ,e × Cλ)


⊔

 ⊔
d1+d2=d

(An,d1 ×Dn,d2,n−e ×Sn)


→

 ⊔
λ⊢n

λ:even

(Bλ,d × E−
λ,e × Cλ)

 ⊔

 ⊔
λ⊢n
λ:odd

(Bλ,d × E+
λ,e × Cλ)


for d ∈ N and odd number e satisfying 0 ≤ e ≤ n. By these bijections, we
complete the proof of Theorem 2.2.
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