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NOTES ON THE FILTRATION OF THE K-THEORY FOR
ABELIAN p-GROUPS

NOBUAKI YAGITA

ABSTRACT. Let p be a prime number. For a given finite group G, let
gr:(BG) be the associated ring of the gamma filtration of the topological
K-theory for the classifying space BG. In this paper, we study gr3(BG)
when G are abelian p-groups which are not elementary. In particular,

we extend related Chetard’s results for such 2-groups to p-groups for
odd p.

1. INTRODUCTION

Let p be a prime number. For a given finite group G, let gr,,(BG) (resp.
gry(BG)) be the associated graded ring of the topological (resp. gamma)

filtration of the K-theory K°(BG) for the classifying space BG.
In Theorem 4.1 in [5], I wrote that for ¢ = p” and G = @"Z/q, we had

(*)  griop(BG) = Zly1, - ynl /(qyis vy — viyi 1l < 4,5 <), |y = 2.

But (%) is not correct for r > 2, indeed, arguments for the higher Bokstein
Q) in its proof were errors. However the statement (x) holds still (without
changing any arguments) for r = 1, i.e., for an elementary abelian p-group
G. (The fact gry,,(BG) = gr3(BG) holds for all abelian p-groups [1].)

Beatrice Chetard pointed out this fact [2]. She also gives another proof of
(x) for r = 1, and shows the following isomorphism by using the definition
of the gamma filtration of the representation ring

gri(B(Z/A x Z/4)) = Zly1, y2] / (4y1, 42, 257 y2 + 20193, Y15 — Yivs)-
She also computes gr}(B(Z/4 x Z/2)), and conjectured
gri(B(Z)2" x Z/2)) = Zlyr, y2]/ (2"y1, 2y2, y1y5 T + yivh).-

In this note, we will prove her conjecture and see that the above Chetard
results can be extended to odd prime cases. Let us write y(1) = y{y2 —y195.
Then we have

Theorem 1.1. For each prime p, let G = Z/p* x Z/p*. Then
griop(BG) = Zly1, y2]/ (0*y1, 0>y, py (1), y(1)F).

Mathematics Subject Classification. Primary 57T15; Secondary 20G15.
Key words and phrases. K-theory, gamma fitration, abelian p-group.

109



110 NOBUAKI YAGITA

Theorem 1.2. For each prime p, let G = (Z/p" x Z/p), r > 1. Then

97iop(BG) = Zly1, y2]/ (0 y1, py2, 5r)

where s, = y1y£(p_1)+1 _ yz;y;r—l)(p—l)ﬂ _ y(l)yg“—l)(p—l)_

Here we note that gri(BG) are known for many nonabelian p-groups G
by using gry,,(BG) and the Atiyah-Hirzebruch spectral sequence, while the
direct computations of gri;(BG) by using representations theory are not so
many.

For example, when |G| = p* and nonabelian, we know [5]

gr3(BG) = gri,,(BG) = H"(BG)/(Q1H*"(BG)).

Here H°¥(BQ) is just p-torsion and we can define the Milnor (Q1-operation
on H°¥(BG) (see the proof of Theorem 4.2 in [5]). In particular, when
G = Qg the quaternion group of the order 8, it is known H°(BG) = 0,
which implies H®**"(BG) = gr’(BG). Using representation arguments and
the ring structure of gr’ (BG), Atiyah [1] gets the ring structure of H*(BQs).

I thank very much Beatrice Chetard who pointed out my error in [5]. I
also thank the referee for many suggestions. In particular, proofs in this
note of main theorems are suggested by him.

2. H*(B(Z/q x 7./q)) AND H*(BZ/q x BZ/p)

Let X = BZ/q with ¢ = p", r > 2. Its integral cohomology is H*(X) &
Z[y]/(qy) with the degree |y| = 2. Considering the long exact sequence for
¢ =qorq =p

/

oo HYXG2/q) S HY(X) S HY(X) » HY(X;Z/q) — ...,
we have
(2.1) HY(X;Z/q) = H*(X)/q{l,2}, z=0""y
(2.2) H*(X;Z/p) = H*(X)/p{1,2'} ' =6"(p""'y).

Here the notation H{x, ..., z} means the H-free module generated by z, ..., z.
We consider the Serre spectral sequence for X = X7 = X5

/ Z / —
with J Dl [y1l/(qu1) = 0*/ /
Z/(Qwl{l,z1} ®ys ' >0.

Here we identify y; € E%’O =~ H?%(X1), and yp € ES? = H?(X3). Moreover
T1ys € By? = HY(X1, H*(Xy)) with H?(X,) 2 Z/q from (2.1).



K-THEORY FOR Z/p? x Z/p? 111

Since H*(X;) C H*(X1 x X2), elements y1,y2 are permanent cycles, and

s0 is x1y2. The Ej *_term is multiplicatively generated by these elements.
Hence we have

By = Z/qlyr, yal{1, 5221} for (x,+) # (0,0).
Writing by a € H3(X x X) which represents sz € E%?. we have
Lemma 2.1. For X = BZ/q, q = p", we have
H*(X x X) = Zlyr, y2l{1, a}/(qy1, qy2,qa),  |af = 3.

Next, we compute the spectral sequence for X x BZ/p by using (2.2)
EX* =~ H*(X; H* (BZ/p)) = H*(X x BZ/p)

Zlyil/(qy1) + =0

with — Ef* = ,
? {Z/p[yl]{l,flf’l} ®y; >0

Lemma 2.2. For X = BZ/q, q =p", (identifying o = x{y2), we have
H*(X X BZ/p) = Z[yl,yg]{l,a/}/(qyl,pr,pa/), |O/| =3.

3. gr;fop(X X BZ/p)

In this note we study gr},,(BG) only for a p-group G. Then gr;,,(BG) =
E%Y for the infinite term of the Atiyah-Hirzebruch spectral sequence con-
verging to the integral Morava K-theory K(1)*(BG) with the coefficient
K(1)* = Lpyv1, vy 11. In this note, we use this Morava K-theory, instead of
the usual complex K-theory. So hereafter this note, let K*(BG) mean the
Morava K-theory K (1)*(BG).

Also hereafter this section, we assume G = (Z/q x Z/p) and X = BZ/q.
We will prove

Theorem 3.1. Let G =Z/p" x Z/p. Then we have
971op(BG) = Zly1, y2]/ (0 y1, py2, 5r)

—1)+1 —1)(p—1)+1
where sT:yly;(p )+ —ylfygr )(p=1)+1

At first, we study relations in K*(BG). Recall that [p](y) is the p-th
product of the formal group law of the Morava K-theory ([3], [4]) so that

K*(BZ/p) = K*[[y]l/([pl(v)) [yl = 2.
We can identify K* = Z,)[v1, v Y, with |vg] = —2(p — 1), and write

[p](y) = py + v1y?.
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Similarly we have K*(BZ/q) = K*[[y]]/([g)(y)). The K-theory of BG has
the Kunneth formula, and we have

K*(BG) = K*(X) @k+ K*(BZ/p) = K~ [[y1, 32]]/([p"] (1), [P)(y2))-

The equation [p](y2) = py2 + v1y5 implies

2p—1 r(p—1)+1

T_QU%yQ = .= (—1)"v]y,

(+) Plyz=—p""lorgh =p
in K*(BZ/p).

To study [p"](y1), at first, we consider it in C' = Z,[vi,y1,92]. Let
I = (p,v1) be the ideal in Z,)[v1] generated by p,v1, and let I*(y1) be the

ideal in C generated by the product of I* and y; for k = 1,2, ....
Then we easily see by induction

1) = )" (1)) =Py + 0" Tory mod(I™HY).

We compute ya[p"](y1) in C" = C/([p](y2)), (which is zero in K*(BG)(y2)).
Let us write f = g mod(A) for f,g € C if there is x € A C C such that
f=g+2z €' Then modulo I""!(y1,%2), we can write

ya[p" (1) = P yrye + P toryys

—1)+1 _ —1)(p—1)+1
= (1) P (0Tl VP (from(x)
= (—1)"vis, (by definition).
Take x € I""1(y1,y2) such that
yo[p"l(y1) = vis, +x in C'.

Moreover, by using pys = —v1yh, we can take r = v’{“x' . Recall that the
filtration for gry,,(BG) is defined by the degree of H*(BG). Since |vi| < 0,
we have

Lemma 3.2. There is ©’ € Z/plv1,y1,y2] such that
K*(BG)(y2) = K™ [[y1, y2ll{y2}/([Pl(y2), 5 + v12').
Hence s, =0 in grz‘op(BG).
Now we study the Atiyah-Hirzebruch spectral sequence
EX* =~ H*(BG) ® K¥ = K*(BG).
By Atiyah [1], we know E&’ = gri »(BG). Moreover if EZY is multiplica-

o
tively generated by Chern classes in H*(BG), then grf, (BG) = gr’(BG).
Note y1,y2 are the first Chern classes for Z/q and Z/p (and so for G).

Here we recall from Lemma 2.2, H°%(BG) = Z/py1, y2]{’} with |o/| =
3.

Since K*(BG) is generated by even dimensional elements, there are ¢,t' >
1 and s’ # 0 in H®*"(BG) such that di(/) = v/ ® s'. Here note s’ €
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He*"(BG)/p{y2} = Z/ply1,y2]{y2} since elements in Z[y;]|/(q) are perma-
nent from K*(X) C K*(BG).
Hence the map

o @dy : H(BG) = Z/plyr, y2l{o'} — Z/plyr,y2l{s'} € Z/plyr, yal{y2}
(via o/ +— §) is injective (since s’ # 0). Hence we get
EfL =2 Zln]/ (qyn) © Z/plyr, y2 {2}/ (s).
This term is generated by even dimensional elements, and is isomorphic to
E:—;—Ol = E* Y = grtop(BG)
From the preceding lemma, we have the graded ring, by the filtration (v)
grEK*(BG)(y2) = Z/plyr, y2[{y2}/ (sr)-

Hence we can take s' = s,. Thus we have B’ = gri,p(BG), and Theorem
3.1.

4. gri,,(BZ/p* x BL/p*)

Throughout this section let G = Z/p* x Z/p? and X = BZ/p?. We study
the Atiyah-Hirzebruch spectral sequence

EX* =~ H*(BG) ® K* = K*(BG).

Here we recall H*(BG) =2 Z[y1, y2){1, a}/(p*y1, p*y2, p*x) with |a| = 3. We
will prove

dop-1(a) =v1 @ py(1),  dapyay—3(pa) = v} @ y(1)P
for y(1) = y{'y2 — y195. Then we see that
Theorem 4.1. Let G = Z/p? x Z/p*. Then we have the isomorphism
9riop(BG) = Zly1, 2]/ (0°y1, p°y2, py(1), y(1)P).

Recall that the p-product of the formal group law for K*-theory is given

by [pl(y) = py + v1yP. Recall f =g mod(A) for f,g € C = Z)[v1,y1, 2]
if there is x € A C C such that f = g+ 2 € C’. Hereafter, we take

C" = C/([p°)(n), [P°](32)).

We note in
[P (y1) = p(py1 + v19h) + v1(py1 + viyh)P

2
= p*y1 + puiy} + pPoryl + B+ ofyf

where —U1Z< )pkvgla k k:+p(p k)
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Since p?y; = —pv1y? mod(IP+(yy)) and pFo?* € 1P, we have in C’

p—1
B=() <Z>(—1)k) WY =0 mod(IP ().

k=1
Hence we have

2
() [P*w1) = p*y1 + (o1 + pPo)yh + 0 mod(I7PF (y1)).

Similar equation holds for ys.
We consider the following elements a1, az in C' (which are zero in K*(BG))

a1 = y2[p*] (1) — 1 [p*) (y2),
az = 5 [0°] (1) — A [p°) (12).-

Then from (%), we have

a1 = (puy + pPun)y(1) + 7 y(2)  mod(I* M (y1,y2)),
ag = —p2y(1) + Py (1) mod(IPP (y1, )

where y(2) = nyyQ - y1y2 and y(1) = nyng - yfyé’Q. (Hence y(1) =
y(1)P mod(p).)

Here we note if z € I¥71(y1, y2), then there is 2’ € (v1)*(y1,y2) such that
z =2’ in C’' by using [p?](y1) =0 € C". Since a; = 0, we have in C

() p(L+pP Hy(l) = —y(2) mod((v1)* (Y1, v2))-

In particular, we have py(1) = 0 € gry,,(BG).
Next, we will see y(1)? = 0 € gr},,(BG). Delete y(1) from the equations
for ay,as. Modulo I?P*2(y1,y2), we have

(14 pPNpar + (1+p7 ) 2v1az = p(1+pP~ Py (2) + (147712l 2y (1)
= Py (2)2/y(1) + (1 + P H2E Y1) from (sx).

Since a1, as are zero in C’, there is z € C such that
) )

(1427 (1) — ol (@(2)*/y(1) + 2) =0 in K*(BG).
Therefore y(1) = 0 in gr},,(BG).

Now we sudy the Atiyah-Hirzebruch spectral sequence. Recall py(1) is
zero in gry, (BG) = EXY (but it is nonzero in K*(BG), hence y(2) # 0,
since K*(BG) is torsion free). Therefore py(1) is not permanent cycle in
the spectral sequence for K*(G).

It is known that the first possible nonzero differential is da,_1 since |v1| =
—2p + 2. For dimensional reasons, we see

dop-1(e) = vi@py(1), and By’ = Zlyi,yol{1,pa}/(0*y1, p°y2, v, py(1)).
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Since K*(BGQ) is generated by even dimensional elements, we see o = pa
is not a permanent cycle, i.e. there are r > 2p,t” > 1, d € EY such that
dy(a") =" @ d #0.

We study this d. At first d is invariant mod(p) under the action of
SLy(Z/p), (since so is &) namely d is written as b or pb for b € Z/plyy, ya]SF2(2/P),
The invariant ring is known as the Dickson algebra

Z/ply1, yo) 22 EP) = 7,/ ply(1), y(2)/y(1)],

where  y(2)/y(1) = yf(p_l) + ygp_l)(p_l)yg_l +..+ yg(p_l).
Consider the restriction to K*(X)

res(y(2)/y(1)) = ¥ £ 0 € K*(X) = K*[n]/(1p*](n1)).

Hence we can not take d = y(2)/y(1) neither d = py(2)/y(1).

Moreover we still see that y(2) is nonzero.

Therefore if |d| < 2(p? + p), then we see d = y(1)* for i < p. Here we
consider the restriction to the mod(p) K-theory

K*(BG; Z/p) = K* /ply1, ya) /(0 ).

Hence d is in the I deal(yzf,ygz). Thus we see that the possibility of the
smallest degree element for d is y(1)P.
We still see y(1)" = y(1)? = 0 in gr{,,(BG). Thus we can take d = y(1)P.
We see that the map

Z/ply1,y2l{a’} = Z/plyr, y2l{y(1)}
2]7)2+2P—
elements, and is isomorphic to the infinite term E%" . Thus we have Theorem
4.1.

by o’ — y(1)P is injective. Hence E 5 1s generated by even dimensional
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