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NOTES ON THE FILTRATION OF THE K-THEORY FOR

ABELIAN p-GROUPS

Nobuaki Yagita

Abstract. Let p be a prime number. For a given finite group G, let
gr∗γ(BG) be the associated ring of the gamma filtration of the topological
K-theory for the classifying space BG. In this paper, we study gr∗γ(BG)
when G are abelian p-groups which are not elementary. In particular,
we extend related Chetard’s results for such 2-groups to p-groups for
odd p.

1. Introduction

Let p be a prime number. For a given finite group G, let gr∗top(BG) (resp.
gr∗γ(BG)) be the associated graded ring of the topological (resp. gamma)

filtration of the K-theory K0(BG) for the classifying space BG.
In Theorem 4.1 in [5], I wrote that for q = pr and G = ⊕n

Z/q, we had

(∗) gr∗top(BG) ∼= Z[y1, ..., yn]/(qyi, y
q
i yj − yiy

q
j |1 ≤ i, j ≤ n), |yi| = 2.

But (∗) is not correct for r ≥ 2, indeed, arguments for the higher Bokstein
Q′

0 in its proof were errors. However the statement (∗) holds still (without
changing any arguments) for r = 1, i.e., for an elementary abelian p-group
G. (The fact gr∗top(BG) ∼= gr∗γ(BG) holds for all abelian p-groups [1].)

Beatrice Chetard pointed out this fact [2]. She also gives another proof of
(∗) for r = 1, and shows the following isomorphism by using the definition
of the gamma filtration of the representation ring

gr∗γ(B(Z/4× Z/4)) ∼= Z[y1, y2]/(4y1, 4y2, 2y
2
1y2 + 2y1y

2
2, y

4
1y

2
2 − y21y

4
2).

She also computes gr∗γ(B(Z/4× Z/2)), and conjectured

gr∗γ(B(Z/2r × Z/2)) ∼= Z[y1, y2]/(2
ry1, 2y2, y1y

r+1
2 + y21y

r
2).

In this note, we will prove her conjecture and see that the above Chetard
results can be extended to odd prime cases. Let us write y(1) = yp1y2−y1y

p
2 .

Then we have

Theorem 1.1. For each prime p, let G = Z/p2 × Z/p2. Then

gr∗top(BG) ∼= Z[y1, y2]/(p
2y1, p

2y2, py(1), y(1)
p).
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Theorem 1.2. For each prime p, let G = (Z/pr × Z/p), r ≥ 1. Then

gr∗top(BG) ∼= Z[y1, y2]/(p
ry1, py2, sr)

where sr = y1y
r(p−1)+1
2 − yp1y

(r−1)(p−1)+1
2 = y(1)y

(r−1)(p−1)
2 .

Here we note that gr∗γ(BG) are known for many nonabelian p-groups G
by using gr∗top(BG) and the Atiyah-Hirzebruch spectral sequence, while the
direct computations of gr∗γ(BG) by using representations theory are not so
many.

For example, when |G| = p3 and nonabelian, we know [5]

gr∗γ(BG) ∼= gr∗top(BG) ∼= Heven(BG)/(Q1H
odd(BG)).

Here Hodd(BG) is just p-torsion and we can define the Milnor Q1-operation
on Hodd(BG) (see the proof of Theorem 4.2 in [5]). In particular, when
G = Q8 the quaternion group of the order 8, it is known Hodd(BG) = 0,
which implies Heven(BG) ∼= gr∗γ(BG). Using representation arguments and
the ring structure of gr∗γ(BG), Atiyah [1] gets the ring structure ofH∗(BQ8).

I thank very much Beatrice Chetard who pointed out my error in [5]. I
also thank the referee for many suggestions. In particular, proofs in this
note of main theorems are suggested by him.

2. H∗(B(Z/q × Z/q)) and H∗(BZ/q ×BZ/p)

Let X = BZ/q with q = pr, r ≥ 2. Its integral cohomology is H∗(X) ∼=
Z[y]/(qy) with the degree |y| = 2. Considering the long exact sequence for
q′ = q or q′ = p

... → H∗−1(X;Z/q′)
δ
→ H∗(X)

q′
→ H∗(X) → H∗(X;Z/q′) → ...,

we have

(2.1) H∗(X;Z/q) ∼= H∗(X)/q{1, x}, x = δ−1y

(2.2) H∗(X;Z/p) ∼= H∗(X)/p{1, x′} x′ = δ−1(pr−1y).

Here the notation H{x, ..., z} means the H-free module generated by x, ..., z.
We consider the Serre spectral sequence for X = X1 = X2

E∗,∗′

2
∼= H∗(X1;H

∗
′

(X2)) =⇒ H∗(X1 ×X2)

with E∗.∗′

2
∼=

{

Z[y1]/(qy1) ∗′ = 0

Z/(q)[y1]{1, x1} ⊗ y∗
′

2 ∗′ > 0.

Here we identify y1 ∈ E2,0
2

∼= H2(X1), and y2 ∈ E0.2
2

∼= H2(X2). Moreover

x1y2 ∈ E1,2
2

∼= H1(X1,H
2(X2)) with H2(X2) ∼= Z/q from (2.1).
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Since H∗(Xi) ⊂ H∗(X1 ×X2), elements y1, y2 are permanent cycles, and

so is x1y2. The E∗,∗′

2 -term is multiplicatively generated by these elements.
Hence we have

E∗,∗′
∞

∼= Z/q[y1, y2]{1, y2x1} for (∗, ∗′) 6= (0, 0).

Writing by α ∈ H3(X ×X) which represents y2x1 ∈ E1,2
∞ , we have

Lemma 2.1. For X = BZ/q, q = pr, we have

H∗(X ×X) ∼= Z[y1, y2]{1, α}/(qy1, qy2, qα), |α| = 3.

Next, we compute the spectral sequence for X ×BZ/p by using (2.2)

E∗,∗′

2
∼= H∗(X;H∗

′

(BZ/p)) =⇒ H∗(X ×BZ/p)

with E∗.∗′
2

∼=

{

Z[y1]/(qy1) ∗′ = 0

Z/p[y1]{1, x
′

1} ⊗ y∗
′

2 ∗′ > 0.

Lemma 2.2. For X = BZ/q, q = pr, (identifying α′ = x′1y2), we have

H∗(X ×BZ/p) ∼= Z[y1, y2]{1, α
′}/(qy1, py2, pα

′), |α′| = 3.

3. gr∗top(X ×BZ/p)

In this note we study gr∗top(BG) only for a p-group G. Then gr∗top(BG) ∼=

E∗,0
∞ for the infinite term of the Atiyah-Hirzebruch spectral sequence con-

verging to the integral Morava K-theory K̃(1)∗(BG) with the coefficient

K̃(1)∗ = Z(p)[v1, v
−1
1 ]. In this note, we use this Morava K-theory, instead of

the usual complex K-theory. So hereafter this note, let K∗(BG) mean the

Morava K-theory K̃(1)∗(BG).
Also hereafter this section, we assume G = (Z/q × Z/p) and X = BZ/q.

We will prove

Theorem 3.1. Let G = Z/pr × Z/p. Then we have

gr∗top(BG) ∼= Z[y1, y2]/(p
ry1, py2, sr)

where sr = y1y
r(p−1)+1
2 − yp1y

(r−1)(p−1)+1
2 .

At first, we study relations in K∗(BG). Recall that [p](y) is the p-th
product of the formal group law of the Morava K-theory ([3], [4]) so that

K∗(BZ/p) ∼= K∗[[y]]/([p](y)) |y| = 2.

We can identify K∗ = Z(p)[v1, v
−1
1 ], with |v1| = −2(p− 1), and write

[p](y) = py + v1y
p.
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Similarly we have K∗(BZ/q) ∼= K∗[[y]]/([q](y)). The K-theory of BG has
the Kunneth formula, and we have

K∗(BG) ∼= K∗(X)⊗K∗ K∗(BZ/p) ∼= K∗[[y1, y2]]/([p
r](y1), [p](y2)).

The equation [p](y2) = py2 + v1y
p
2 implies

(∗) pry2 = −pr−1v1y
p
2 = pr−2v21y

2p−1
2 = ... = (−1)rvr1y

r(p−1)+1
2

in K∗(BZ/p).
To study [pr](y1), at first, we consider it in C = Z(p)[v1, y1, y2]. Let

I = (p, v1) be the ideal in Z(p)[v1] generated by p, v1, and let Ik(y1) be the

ideal in C generated by the product of Ik and y1 for k = 1, 2, ....
Then we easily see by induction

[pr](y1) = [p]([pr−1](y1)) = pry1 + pr−1v1y
p
1 mod(Ir+1).

We compute y2[p
r](y1) in C ′ = C/([p](y2)), (which is zero inK∗(BG)(y2)).

Let us write f ≡ g mod(A) for f, g ∈ C if there is x ∈ A ⊂ C such that
f = g + x ∈ C ′. Then modulo Ir+1(y1, y2), we can write

y2[p
r](y1) ≡ pry1y2 + pr−1v1y

p
1y2

≡ (−1)rvr1y1y
r(p−1)+1
2 + (−1)r−1vr1y

p
1y

(r−1)(p−1)+1
2 (from(∗))

≡ (−1)rvr1sr (by definition).

Take x ∈ Ir+1(y1, y2) such that

y2[p
r](y1) = vr1sr + x in C ′.

Moreover, by using py2 = −v1y
p
2 , we can take x = vr+1

1 x′. Recall that the
filtration for gr∗top(BG) is defined by the degree of H∗(BG). Since |v1| < 0,
we have

Lemma 3.2. There is x′ ∈ Z/p[v1, y1, y2] such that

K∗(BG)(y2) ∼= K∗[[y1, y2]]{y2}/([p](y2), sr + v1x
′).

Hence sr = 0 in gr∗top(BG).

Now we study the Atiyah-Hirzebruch spectral sequence

E∗,∗′

2
∼= H∗(BG)⊗K∗

′

=⇒ K∗(BG).

By Atiyah [1], we know E∗,0
∞

∼= gr∗top(BG). Moreover if E∗,0
∞ is multiplica-

tively generated by Chern classes in H∗(BG), then gr∗top(BG) ∼= gr∗γ(BG).
Note y1, y2 are the first Chern classes for Z/q and Z/p (and so for G).

Here we recall from Lemma 2.2, Hodd(BG) ∼= Z/p[y1, y2]{α
′} with |α′| =

3.
Since K∗(BG) is generated by even dimensional elements, there are t, t′ >

1 and s′ 6= 0 in Heven(BG) such that dt(α
′) = vt

′

1 ⊗ s′. Here note s′ ∈
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Heven(BG)/p{y2} ∼= Z/p[y1, y2]{y2} since elements in Z[y1]/(q) are perma-
nent from K∗(X) ⊂ K∗(BG).

Hence the map

v−t′

1 ⊗ dt : H
odd(BG) ∼= Z/p[y1, y2]{α

′} → Z/p[y1, y2]{s
′} ⊂ Z/p[y1, y2]{y2}

(via α′ 7→ s′) is injective (since s′ 6= 0). Hence we get

E∗.0
t+1

∼= Z[y1]/(qy1)⊕ Z/p[y1, y2]{y2}/(s
′).

This term is generated by even dimensional elements, and is isomorphic to

E∗,0
t+1

∼= E∗,0
∞

∼= gr∗top(BG).

From the preceding lemma, we have the graded ring, by the filtration (v1)

grK∗(BG)(y2) ∼= Z/p[y1, y2]{y2}/(sr).

Hence we can take s′ = sr. Thus we have E∗,0
∞

∼= gr∗top(BG), and Theorem
3.1.

4. gr∗top(BZ/p2 ×BZ/p2)

Throughout this section let G = Z/p2×Z/p2 and X = BZ/p2. We study
the Atiyah-Hirzebruch spectral sequence

E∗,∗′

2
∼= H∗(BG)⊗K∗

′

=⇒ K∗(BG).

Here we recall H∗(BG) ∼= Z[y1, y2]{1, α}/(p
2y1, p

2y2, p
2α) with |α| = 3. We

will prove

d2p−1(α) = v1 ⊗ py(1), d2p2+2p−3(pα) = vp+2
1 ⊗ y(1)p

for y(1) = yp1y2 − y1y
p
2 . Then we see that

Theorem 4.1. Let G = Z/p2 × Z/p2. Then we have the isomorphism

gr∗top(BG) ∼= Z[y1, y2]/(p
2y1, p

2y2, py(1), y(1)
p).

Recall that the p-product of the formal group law for K∗-theory is given
by [p](y) = py + v1y

p. Recall f ≡ g mod(A) for f, g ∈ C = Z(p)[v1, y1, y2]
if there is x ∈ A ⊂ C such that f = g + x ∈ C ′. Hereafter, we take
C ′ = C/([p2](y1), [p

2](y2)).
We note in C

[p2](y1) = p(py1 + v1y
p
1) + v1(py1 + v1y

p
1)

p

= p2y1 + pv1y
p
1 + ppv1y

p
1 +B + vp1y

p2

1

where B = v1

p−1
∑

k=1

(

p

k

)

pkvp−k
1 y

k+p(p−k)
1 .
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Since p2y1 ≡ −pv1y
p
1 mod(Ip+1(y1)) and pkvp−k

1 ∈ Ip, we have in C ′

B ≡
(

p−1
∑

k=1

(

p

k

)

(−1)k
)

vp+1
1 yp

2

1 ≡ 0 mod(I2p+1(y1)).

Hence we have

(∗) [p2](y1) ≡ p2y1 + (pv1 + ppv1)y
p
1 + vp+1

1 yp
2

1 mod(I2p+1(y1)).

Similar equation holds for y2.
We consider the following elements a1, a2 in C (which are zero inK∗(BG))

a1 = y2[p
2](y1)− y1[p

2](y2),

a2 = yp2[p
2](y1)− yp1[p

2](y2).

Then from (∗), we have

a1 ≡ (pv1 + ppv1)y(1) + vp+1
1 y(2) mod(I2p+1(y1, y2)),

a2 ≡ −p2y(1) + vp+1
1 y(1)′ mod(I2p+1(y1, y2))

where y(2) = yp
2

1 y2 − y1y
p2

2 and y(1)′ = yp
2

1 yp2 − yp1y
p2

2 . (Hence y(1)′ =
y(1)p mod(p).)

Here we note if x ∈ Ik+1(y1, y2), then there is x′ ∈ (v1)
k(y1, y2) such that

x = x′ in C ′ by using [p2](y1) = 0 ∈ C ′. Since a1 ≡ 0, we have in C

(∗∗) p(1 + pp−1)y(1) ≡ −vp1y(2) mod((v1)
2p−1(y1, y2)).

In particular, we have py(1) = 0 ∈ gr∗top(BG).
Next, we will see y(1)p = 0 ∈ gr∗top(BG). Delete y(1) from the equations

for a1, a2. Modulo I2p+2(y1, y2), we have

(1+pp−1)pa1+(1+pp−1)2v1a2 ≡ p(1+pp−1)vp+1
1 y(2)+(1+pp−1)2vp+2

1 y(1)′

≡ −v2p+1
1 y(2)2/y(1) + (1 + pp−1)2vp+2

1 y(1)′ from (∗∗).

Since a1, a2 are zero in C ′, there is x ∈ C such that

(1 + pp−1)2y(1)′ − vp−1
1 (y(2)2/y(1) + x) = 0 in K∗(BG).

Therefore y(1)′ = 0 in gr∗top(BG).
Now we sudy the Atiyah-Hirzebruch spectral sequence. Recall py(1) is

zero in gr∗top(BG) ∼= E∗,0
∞ (but it is nonzero in K∗(BG), hence y(2) 6= 0,

since K∗(BG) is torsion free). Therefore py(1) is not permanent cycle in
the spectral sequence for K∗(G).

It is known that the first possible nonzero differential is d2p−1 since |v1| =
−2p+ 2. For dimensional reasons, we see

d2p−1(α) = v1⊗py(1), and E∗,0
2p

∼= Z[y1, y2]{1, pα}/(p
2y1, p

2y2, p
2α, py(1)).
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Since K∗(BG) is generated by even dimensional elements, we see α′′ = pα

is not a permanent cycle, i.e. there are r > 2p, t′′ > 1, d ∈ E∗,0
r such that

dr(α
′′) = vt

′′

1 ⊗ d 6= 0.
We study this d. At first d is invariant mod(p) under the action of

SL2(Z/p), (since so is α
′′) namely d is written as b or pb for b ∈ Z/p[y1, y2]

SL2(Z/p).
The invariant ring is known as the Dickson algebra

Z/p[y1, y2]
SL2(Z/p) ∼= Z/p[y(1), y(2)/y(1)],

where y(2)/y(1) = y
p(p−1)
1 + y

(p−1)(p−1)
1 yp−1

2 + ...+ y
p(p−1)
2 .

Consider the restriction to K∗(X)

res(y(2)/y(1)) = y
p(p−1)
1 6= 0 ∈ K∗(X) ∼= K∗[y1]/([p

2](y1)).

Hence we can not take d = y(2)/y(1) neither d = py(2)/y(1).
Moreover we still see that y(2) is nonzero.
Therefore if |d| ≤ 2(p2 + p), then we see d = y(1)i for i ≤ p. Here we

consider the restriction to the mod(p) K-theory

K∗(BG;Z/p) ∼= K∗/p[y1, y2]/(y
p2

1 , yp
2

2 ).

Hence d is in the Ideal(yp
2

1 , yp
2

2 ). Thus we see that the possibility of the
smallest degree element for d is y(1)p.

We still see y(1)′ = y(1)p = 0 in gr∗top(BG). Thus we can take d = y(1)p.
We see that the map

Z/p[y1, y2]{α
′} → Z/p[y1, y2]{y(1)}

by α′ 7→ y(1)p is injective. Hence E∗,∗′

2p2+2p−3
is generated by even dimensional

elements, and is isomorphic to the infinite term E∗,∗′
∞ . Thus we have Theorem

4.1.
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