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A NOTE ON TORSION POINTS ON AMPLE DIVISORS

ON ABELIAN VARIETIES

Yuichiro Hoshi

Abstract. In the present paper, we consider torsion points on ample
divisors on abelian varieties. We prove that, for each integer n ≥ 2, an
effective divisor of level n on an abelian variety does not contain the
subgroup of n-torsion points. Moreover, we also discuss an application
of this result to the study of the p-rank of cyclic coverings of curves in
positive characteristic.

Introduction

In the present paper, we consider torsion points on ample divisors on
abelian varieties. The main result of the present paper is as follows [cf.
Corollary 1.8, (i)].

Theorem A. Let k be an algebraically closed field, A an abelian variety over

k, D an effective divisor on A, and n ≥ 2 an integer invertible in k. Suppose
that the effective divisor D is of level n, i.e., that there exists an effective

divisor D1 on A such that D1 gives rise to a principal polarization on A,
and, moreover, D is linearly equivalent to nD1 [cf. Definition 1.3, (ii);
also Remark 1.3.1]. Then the subgroup of n-torsion points of A is not

contained in Supp(D).

Here, let us recall that R. Auffarth, G. P. Pirola, and R. S. Manni proved
that if D is an effective divisor on an abelian variety of dimension g ≥ 1
over the field of complex numbers that gives rise to a principal polarization

on the abelian variety, then, for each integer n ≥ 3, the set of n-torsion
(respectively, 2-torsion) points on Supp(D) is of cardinality ≤ n2g−(g+1)ng

(< n2g) (respectively, ≤ 22g − 2g−1g − 2g (< 22g)) [cf. [1], Theorem 1.1].
Theorem A may be regarded as a partial generalization of this result [cf.
Remark 1.8.1].

In §2 of the present paper, we apply Theorem A and Raynaud’s theory of
theta divisors [cf. [5]] to obtain an application to the study of the p-rank of
cyclic coverings of curves in positive characteristic. One consequence of our
application is as follows [cf. Theorem 2.7, (i)].

Theorem B. Let p be an odd prime number, k an algebraically closed field

of characteristic p, and X a projective smooth connected curve over k of
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genus ≥ 2. Then there exist a positive integer n such that p− 1 ∈ nZ and a

finite étale cyclic covering of X of degree n whose Jacobian variety is of

positive p-rank.

Here, let us recall that M. Raynaud proved that, in the situation of The-
orem B, the étale fundamental group of X is not pro-prime-to-p [cf. [5],
Corollaire 4.3.2]. In §2 of the present paper, we also derive a refinement of
this result from Theorem B [cf. Remark 2.8.1, (iii)].

1. Torsion Points on Ample Divisors on Abelian Varieties

In the present §1, we discuss torsion points on ample divisors on abelian
varieties and prove the main result of the present paper [cf. Corollary 1.8
below]. In the present §1, let g be a positive integer, k an algebraically
closed field,

A

an abelian variety over k of dimension g, n a positive integer, and

L

an ample invertible sheaf on A of separable type [cf. [2], p.289].

Definition 1.1. We shall write A[n] ⊆ A for the closed subgroup scheme
of A obtained by forming the kernel of the endomorphism of A given by
multiplication by n.

Lemma 1.2. The following four conditions are equivalent:

(1) There exist an ample invertible sheaf L1 on A of degree one [cf.

[2], p.289, (III)] and an isomorphism L
∼
→ L⊗n

1 .

(2) The invertible sheaf L is of degree n
g, and, moreover, there exist

an ample invertible sheaf L1 on A and an isomorphism L
∼
→ L⊗n

1 .

(3) The equality H(L) = A[n] [cf. [2], p.288, Definition] holds, and,

moreover, there exist an ample invertible sheaf L1 on A and an iso-

morphism L
∼
→ L⊗n

1 .

(4) The equality H(L) = A[n] holds.

Proof. The equivalence (1) ⇔ (2) follows from [2], p.289, (II). Moreover, the
equivalence (3) ⇔ (4) follows from [3], p.214, Theorem 3. Next, since the
group scheme A[n] is of degree n2g over k [cf. [3], p.60, Proposition, (1)], the
implication (3) ⇒ (2) follows from [2], p.289, (IV).

Finally, we verify the implication (2) ⇒ (3). Suppose that condition (2)
is satisfied. Then since L is isomorphic to L⊗n

1 [cf. condition (2)], the homo-
morphisms Λ(L), Λ(L1) : A → A∧ [cf. [2], p.289, (IV)] satisfy the equality
Λ(L) = n·Λ(L1). Thus, it follows that A[n] ⊆ Ker(n·Λ(L1)) = Ker(Λ(L)) =
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H(L). On the other hand, since L is of degree ng [cf. condition (2)], it fol-
lows from [2], p.289, (IV), that the group scheme H(L) is of degree n2g over
k. Thus, since the group scheme A[n] is of degree n2g over k [cf. [3], p.60,
Proposition, (1)], the equality H(L) = A[n], hence also condition (3), holds,
as desired. This completes the proof of the implication (2) ⇒ (3), hence
also of Lemma 1.2. �

Definition 1.3.

(i) We shall say that the ample invertible sheaf L of separable type is
of level n if L satisfies the four conditions [i.e., with respect to the
fixed “n”] in the statement of Lemma 1.2.

(ii) We shall say that an effective divisor D on A is of level n if the
invertible sheaf OA(D) is [ample, of separable type, and] of level n.

Remark 1.3.1. Let M be an invertible sheaf on A. Then it is immediate
that M gives rise to a principal polarization on A if and only if M is [ample,
of separable type, and] of level one.

Lemma 1.4. Let M be an invertible sheaf on A algebraically equivalent

to L. Then the following hold:

(i) There exists a closed point a ∈ A of A such that L is isomorphic

to T ∗
aM [cf. [2], p.288, Definition].

(ii) The invertible sheaf M is ample and of separable type.

(iii) Suppose that M is of level n [cf. (ii)]. Then L is of level n.

Proof. First, we verify assertion (i). Let us first observe that the homo-
morphism A(k) → Pic0(A) determined by Λ(L) is surjective [cf. [2], p.289,
(IV)]. Thus, there exists a closed point a ∈ A of A such that M ⊗OA

L−1

is isomorphic to T ∗
−aL⊗OA

L−1. Thus, we conclude that L is isomorphic to
T ∗
aM, as desired. This completes the proof of assertion (i). Assertions (ii),

(iii) follow from assertion (i). This completes the proof of Lemma 1.4. �

Lemma 1.5. Suppose that L is of level n. Then the following two condi-

tions are equivalent:

(1) The inequality n > 1 holds.

(2) The invertible sheaf L is generated by global sections.

Proof. The implication (1) ⇒ (2) follows immediately from [3], pp.57-58,
Application 1, (iii). Next, to verify the implication (2) ⇒ (1), assume that
condition (2) is satisfied, but that condition (1) is not satisfied [i.e., that
n = 1]. Then it follows from [2], p.289, (II), that Γ(A,L) is of dimension

one. Thus, since L is generated by global sections [cf. condition (2)], the
invertible sheaf L is trivial. In particular, since [we have assumed that]
L is ample, we conclude that g = 0. Thus, since [we have assumed that]



4 Y. HOSHI

g > 0, we obtain a contradiction, as desired. This completes the proof of
the implication (2) ⇒ (1), hence also of Lemma 1.5. �

One main technical observation of the present paper is as follows.

Lemma 1.6. Let D be an effective divisor on A obtained by forming the

zero locus of a nonzero global section of the invertible sheaf L. Write

H(D) ⊆ H(L) for the subgroup of H(L) consisting of a ∈ A such that

T ∗
aD = D. Let H ⊆ H(L) be a subgroup of H(L) such that H + H(D)

(
def
= {h + hd ∈ H(L) |h ∈ H, hd ∈ H(D) }) = H(L). Suppose that the

inclusion

H ⊆ Supp(D)

holds. Then the subset H ⊆ A of A is contained in the base locus of the

[complete linear system associated to the] invertible sheaf L.

Proof. Let s ∈ Γ(A,L) be a nonzero global section of L whose zero locus is
given by D.

Here, let us recall the exact sequence

0 // k× // G(L) // H(L) // 0

in [2], p.290, concerning the theta group G(L) associated to L. It follows
from the definition of G(L) that there exists a natural action of G(L) on
the linear space Γ(A,L) over k, which restricts to the natural action of the
subgroup k× ⊆ G(L) on Γ(A,L) [cf. [2], p.295, Definition]. In particular,

(a) for each a ∈ H(L), if ã ∈ G(L) is a lifting of a ∈ H(L), then the zero
locus of the nonzero global section ã · s ∈ Γ(A,L) is given by T ∗

−aD.

Now let us fix a subset

H̃ ⊆ G(L)

of G(L) such that the composite H̃ →֒ G(L) ։ H(L) determines a bijection

H̃
∼
→ H. Then since [we have assumed that] the inclusion H ⊆ Supp(D)

holds, it follows from (a) that,

(b) for every ã ∈ H̃, the subset H ⊆ A [i.e., the subset “T ∗
−aH” of A —

where we write a for the image of ã ∈ H̃ in H] is contained in the
zero locus of the nonzero global section ã · s ∈ Γ(A,L).

Next, let us observe that it follows immediately from (a), together with
our assumption that H +H(D) = H(L), that

(c) the linear subspace of Γ(A,L) generated by the G(L)-orbit of s ∈
Γ(A,L) coincides with the linear subspace of Γ(A,L) generated by
the subset {ã · s}ã∈H̃ ⊆ Γ(A,L).
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On the other hand, it follows from [2], p.297, Theorem 2, that the action of
G(L) on Γ(A,L) is irreducible. Thus, we conclude from (c) that

(d) the subset {ã · s}
ã∈H̃

⊆ Γ(A,L) generates the linear space Γ(A,L).

Thus, it follows from (b) and (d) that the subset H ⊆ A is contained in
the base locus of the invertible sheaf L, as desired. This completes the proof
of Lemma 1.6. �

Theorem 1.7. Let k be an algebraically closed field, A an abelian variety

over k, and D an effective divisor on A. Suppose that the invertible sheaf

OA(D) is ample, of separable type [cf. [2], p.289], and generated by

global sections. Then the following hold:

(i) Recall the closed subgroup scheme H(OA(D)) ⊆ A of A defined in [2],
p.288, Definition. Then H(OA(D)) is not contained in Supp(D).

(ii) Write deg(D) for the degree of the ample invertible sheaf OA(D)
[cf. [2], p.289, (III)]. Then A[deg(D)] [cf. Definition 1.1] is not

contained in Supp(D).

Proof. Assertion (i) follows from Lemma 1.6. Assertion (ii) follows from
assertion (i), together with the inclusion H(OA(D)) ⊆ A[deg(D)] [cf. [2],
p.289, (IV); [2], p.293, Theorem 1; also the first Definition in [2], p.294]. �

The main result of the present paper is as follows.

Corollary 1.8. Let k be an algebraically closed field, A an abelian variety

over k, D an effective divisor on A, and n a positive integer invertible in k.
Suppose that the effective divisor D is of level n [cf. Definition 1.3, (ii)].
Then the following hold:

(i) Suppose that n ≥ 2. Then A[n] is not contained in Supp(D).
(ii) Suppose that n = 1. Then, for each integer m ≥ 2 invertible in k,

A[m] is not contained in Supp(D).

Proof. Let us recall from condition (4) of Lemma 1.2 that the equality
H(OA(D)) = A[n] holds. Thus, assertion (i) follows from Lemma 1.5 and
Theorem 1.7, (i).

Next, we verify assertion (ii). Let m ≥ 2 be an integer invertible in k.
Then since D is of level one, it is immediate that mD is of level m. Thus,
since Supp(mD) = Supp(D), it follows from assertion (i) that A[m] is not

contained in Supp(D), as desired. This completes the proof of assertion (ii),
hence also of Corollary 1.8. �

Remark 1.8.1. R. Auffarth, G. P. Pirola, and R. S. Manni proved that, in
the situation of Corollary 1.8, if, moreover, k is the field of complex numbers,
and n = 1 [i.e., the divisor D gives rise to a principal polarization on A —
cf. Remark 1.3.1], then, for each integer m ≥ 3, the set A[m] ∩ Supp(D)
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(respectively, A[2] ∩ Supp(D)) is of cardinality ≤ n2g − (g + 1)ng (< n2g)
(respectively, ≤ 22g − 2g−1g − 2g (< 22g)) — where we write g for the
dimension of A [cf. [1], Theorem 1.1]. Corollary 1.8 may be regarded as a
partial generalization of this result.

2. Application: p-Rank of Cyclic Coverings of Curves

In the present §2, we apply the main result of the present paper and
Raynaud’s theory of theta divisors [cf. [5]] to obtain an application to the
study of the p-rank of cyclic coverings of curves in positive characteristic
[cf. Theorem 2.7 below]. In the present §2, let p be a prime number, k an
algebraically closed field of characteristic p, g ≥ 2 an integer,

X

a projective smooth connected curve over k of genus g, n ≥ 2 an integer
invertible in k, and

L

an invertible sheaf on X of order n.

Definition 2.1. We shall write XF for the projective smooth connected
curve over k obtained by forming the base-change of X by the absolute
Frobenius endomorphism of k, LF for the invertible sheaf on XF obtained
by forming the base-change of L by the absolute Frobenius endomorphism
of k, and Φ: X → XF for the relative Frobenius morphism associated to X
over k.

Remark 2.1.1. Let us recall that we have a natural isomorphism of invert-
ible sheaves on X

L⊗p ∼
// Φ∗LF

given by, for each local section l of L, mapping l⊗p to Φ−1lF — where we
write lF for the local section of LF obtained by forming the base-change of
the local section l by the absolute Frobenius endomorphism of k. Let us
identify L⊗p with Φ∗LF by means of this isomorphism.

Definition 2.2.

(i) Let i be an element of {1, . . . , n}. Then we shall write

γL,i : H
1(XF , (LF )⊗i) // H1(X,L⊗pi)

for the k-linear homomorphism obtained by applying “H1(XF , (−)⊗O
XF

(LF )⊗i)” to the homomorphism OXF → Φ∗OX determined by Φ [cf.
also Remark 2.1.1].
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(ii) We shall say that the invertible sheaf L is new-ordinary if, for every
element i ∈ {1, . . . , n − 1} with nZ + iZ = Z, the homomorphism
γL,i of (i) is an isomorphism.

Remark 2.2.1.

(i) One verifies immediately from the theory of finite étale cyclic cover-
ings and generalized Hasse-Witt invariants [cf., e.g., [6], §2.1, or [7],
pp.73-74] that

the existence of a new-ordinary invertible sheaf on X of

order n
is equivalent to

the existence of a new-ordinary finite étale cyclic covering
of X of degree n, i.e., a finite étale cyclic covering of X of

degree n that has a new ordinary part in the sense of [6],
Définition 2.1.1,

which thus implies

the existence of a finite étale cyclic covering of X of degree

n whose Jacobian variety is of p-rank ≥ (g− 1) · ♯(Z/nZ)×

(> 0).
(ii) Suppose that p − 1 ∈ nZ. Then each trivialization ι of L⊗n deter-

mines an isomorphism of invertible sheaves on X

ι(p−1)/n : L⊗p ∼
// L.

Thus, the homomorphism γL,i may be “identified”, i.e., by means of

ι(p−1)/n, with the homomorphism

H1(XF , (LF )⊗i) // H1(X,L⊗i).

In particular, one verifies immediately from the theory of finite étale
cyclic coverings and generalized Hasse-Witt invariants [cf., e.g., [6],
§2.1, or [7], pp.73-74] that

the existence of an invertible sheaf M on X of order n such
that the homomorphism γM,i is an isomorphism for some
i ∈ {1, . . . , n− 1}

implies

the existence of a finite étale cyclic covering of X of degree

n whose Jacobian variety is of p-rank ≥ dimk H
1(X,L⊗i) =

g − 1 (> 0).

In the remainder of the present §2, write JF for the Jacobian variety of
XF and BF for the OXF -module obtained by forming the cokernel of the
homomorphism OXF → Φ∗OX determined by Φ. Moreover, let us fix a
universal invertible sheaf PF on XF ×k J

F of degree zero.
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Definition 2.3. We shall write

ΘBF ⊆ JF

for the closed subscheme of JF defined by the zeroth Fitting ideal of the
coherent OJF -module

R
1(XF ×k J

F pr
2→ JF )∗

(
PF ⊗O

XF×kJF
(XF ×k J

F pr
1→ XF )∗BF

)

[cf. also [7], Remark 1.1].

Proposition 2.4. The following hold:

(i) The closed subscheme ΘBF ⊆ JF of JF forms a [necessarily effective]
divisor on JF of level p − 1 [cf. Definition 1.3, (ii)].

(ii) Let x ∈ JF be a closed point of JF and MF an invertible sheaf on

XF of degree zero whose isomorphism class corresponds to x ∈ JF .

Then the following three conditions are equivalent:

(1) The closed point x ∈ JF is not contained in ΘBF .

(2) The equality Γ(XF ,MF ⊗O
XF

BF ) = {0} holds.

(3) The equality H1(XF ,MF ⊗O
XF

BF ) = {0} holds.

(iii) The underlying closed subset of the closed subscheme ΘBF ⊆ JF of

JF is stabilized by the automorphism of JF given by multiplication

by −1.

Proof. First, we verify assertion (i). It follows from [5], Théorème 4.1.1,
that the closed subscheme ΘBF ⊆ JF of JF forms a [necessarily effective]
divisor on JF . Moreover, since [it is well-known that] the “classical theta
divisor” on JF gives rise to a principal polarization on JF , it follows from
[5], Proposition 1.8.1, (2) [cf. also [5], §4], together with Lemma 1.4, (iii),
of the present paper [cf. also Remark 1.3.1 of the present paper], that the
divisor determined by ΘBF ⊆ JF is of level p−1, as desired. This completes
the proof of assertion (i).

Assertion (ii) follows immediately from the definition of the closed sub-
scheme ΘBF ⊆ JF [cf. also [5], §4; [7], Lemma 1.2]. Finally, we verify
assertion (iii). Let us recall from the discussion preceding [5], Théorème

4.1.1, that there exists an isomorphism BF ∼
→ HomO

XF
(BF ,Ω1

XF /k
) of OXF -

modules. Thus, assertion (iii) follows immediately from assertion (ii), to-
gether with Serre duality. This completes the proof of assertion (iii), hence
also of Proposition 2.4. �

Lemma 2.5. The following hold:

(i) Suppose that p 6= 2. Then JF [p− 1] [cf. Definition 1.1] is not con-

tained in ΘBF .
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(ii) Suppose that p = 2. Then, for each odd integer m ≥ 3, JF [m] is
not contained in ΘBF .

Proof. These assertions follow from Corollary 1.8 and Proposition 2.4, (i).
�

Lemma 2.6. The following hold:

(i) Let i be an element of {1, . . . , n}. Then it holds that the homomor-

phism γL,i is an isomorphism if and only if the closed point of JF

that corresponds to (LF )⊗i is not contained in ΘBF ⊆ JF .

(ii) It holds that the Jacobian variety of X is ordinary if and only if

the identity element of JF is not contained in ΘBF ⊆ JF .

(iii) It holds that the invertible sheaf L is new-ordinary if and only if,

for every element i ∈ {1, . . . , n−1} with nZ+iZ = Z, the closed point

of JF that corresponds to (LF )⊗i is not contained in ΘBF ⊆ JF .

(iv) Suppose that n ∈ {2, 3, 4, 6}. Then it holds that the invertible sheaf L
is new-ordinary if and only if there exists an element i ∈ {1, . . . , n−
1} such that nZ+ iZ = Z, and, moreover, the closed point of JF that

corresponds to (LF )⊗i is not contained in ΘBF ⊆ JF .

Proof. Assertion (i) follows immediately from Proposition 2.4, (ii), together
with the definition of the OXF -module BF . Assertions (ii), (iii) follow from
assertion (i) [cf. also [6], §2.1]. Finally, we verify assertion (iv). The necessity
follows from assertion (iii). The sufficiency follows from Proposition 2.4, (iii),
and assertion (iii). This completes the proof of assertion (iv), hence also of
Lemma 2.6. �

One interesting application of the main result of the present paper is as
follows.

Theorem 2.7. Let p be a prime number, k an algebraically closed field of

characteristic p, and X a projective smooth connected curve over k of genus

≥ 2. Then the following hold:

(i) Suppose that p 6= 2. Then there exist a positive integer n such that

p − 1 ∈ nZ and a finite étale cyclic covering of X of degree n

whose Jacobian variety is of positive p-rank.

(ii) Suppose that the Jacobian variety of X is not ordinary. Let n
be an integer such that (p, n) ∈ {(2, 3), (3, 2)}. Then there exists a

new-ordinary finite étale cyclic covering of X of degree n, i.e.,

a finite étale cyclic covering of X of degree n that has a new

ordinary part in the sense of [6], Définition 2.1.1.

Proof. Assertion (i) follows immediately — in light of Remark 2.2.1, (ii)
— from Lemma 2.5, (i), and Lemma 2.6, (i), (ii). Assertion (ii) follows
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immediately — in light of Remark 2.2.1, (i) — from Lemma 2.5, (i), (ii),
and Lemma 2.6, (ii), (iv). �

Remark 2.7.1. Some results closely related to the content of Theorem 2.7
are as follows: In the situation of Theorem 2.7, suppose that X is of genus
g (≥ 2). Then:

(i) M. Raynaud proved that if, moreover, l is a prime number such that
l + 1 ≥ (p − 1)3g−1g!, then there exists a new-ordinary finite étale
cyclic covering of X of degree l [cf. [5], Théorème 4.3.1; also [7],
Remark 3.11].

(ii) S. Nakajima proved that if, moreover, (g, p) = (2, 2), and the Jaco-
bian variety of X is not ordinary [i.e., the curve X is either of type
I or of type II in the sense of [4], §6], then every finite étale cyclic
covering of X of degree three is new-ordinary [i.e., the curve X is
3-ordinary in the sense of the discussion at the beginning of [4], §4]
[cf. [4], §6].

Corollary 2.8. Let p be a prime number, k an algebraically closed field

of characteristic p, and X a projective smooth connected curve over k of

genus ≥ 2. Write π1(X) for the étale fundamental group [for some choice

of basepoint] of X,

np
def
=

{
p− 1 if p 6= 2
3 if p = 2,

N ⊆ π1(X) for the normal open subgroup of π1(X) obtained by forming the

kernel of the natural surjective homomorphism

π1(X) // // π1(X)ab ⊗
Ẑ
(Z/npZ),

and Y → X for the finite étale abelian covering that corresponds to the

normal open subgroup N ⊆ π1(X). Then the Jacobian variety of Y is of

positive p-rank. In particular, the maximal pro-p abelian quotient of

N is nontrivial [cf. Remark 2.8.1, (i), below].

Proof. This assertion is a formal consequence of Theorem 2.7, (i), (ii). �

Remark 2.8.1.

(i) Let us recall that it is well-known that, in the situation of Corol-
lary 2.8, the maximal pro-p abelian quotient of π1(X) has a natural
structure of finitely generated free Zp-module whose rank coincides

with the p-rank of the Jacobian variety of X.
(ii) Let G be a profinite group and l a prime number. Then it is imme-

diate that the following three conditions are equivalent:
(1) The profinite group G is pro-prime-to-l.
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(2) The maximal pro-l abelian quotient of every open subgroup of
G is trivial.

(3) An arbitrary [or, alternatively, some] pro-l Sylow subgroup of
G is trivial.

(iii) M. Raynaud proved that, in the situation of Corollary 2.8, the profi-
nite group π1(X) is not pro-prime-to-p [cf. [5], Corollaire 4.3.2]. Let
us observe that it follows from the observation of (ii) that Corol-
lary 2.8 may be regarded as a refinement of this result by Raynaud.
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