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ON pg-IDEALS

Tony J. Puthenpurakal

Abstract. Let (A,m) be an excellent normal domain of dimension two.
We define an m-primary ideal I to be a pg-ideal if the Rees algebra A[It]
is a Cohen-Macaulay normal domain. If A has infinite residue field then
it follows from a result of Rees that the product of two pg ideals is pg.
When A contains an algebraically closed field k ∼= A/m then Okuma,
Watanabe and Yoshida proved that A has pg-ideals and furthermore
product of two pg-ideals is a pg ideal. In this article we show that if A is
an excellent normal domain of dimension two containing a field k ∼= A/m
of characteristic zero then also A has pg-ideals.

1. introduction

Zariski’s theory of integrally closed ideals in a two dimensional regular
local ring, (A,m), has been very influential; see [5, Chapter 14] for a modern
exposition. In particular product of two m-primary integrally closed ideals
is integrally closed. If the residue field of A is infinite then every m-primary
integrally closed ideal I is stable i.e., for any minimal reduction Q of I we
have I2 = QI. In particular the Rees algebra R(I) = A[It] is a Cohen-
Macaulay normal domain (this also holds if A/m is finite). Later Lipman
proved that if (A,m) is a two dimensional rational singularity then analogous
results holds, see [6]. However we cannot significantly weaken the hypotheses
on A. In fact Cutkosky [1] proved that if (A,m) is an excellent normal local
domain of dimension two such that A/m is algebraically closed and if for
any m-primary integrally closed ideal I we have I2 is integrally closed then
A is a rational singularity.

Assume (A,m) is an excellent normal domain of dimension two containing
an algebraically closed field k ∼= A/m. For such rings Okuma, Watanabe and
Yoshida in [8] introduced (using geometric techniques) the notion of pg-ideals
as follows: let I be an m-primary ideal in A. The I has a resolution f : X →
Spec(A) with IOX invertible. Then IOX = OX(−Z) for some anti-nef cycle
Z. We denote I by IZ . It can be shown that ℓA(H

1(X,OX (−Z)) ≤ pg(A)
where pg(A) = ℓA(H

1(X,OX ) is the geometric genus of A and Z is an anti-
nef cycle such that OX(−Z) has no fixed component. An integrally closed
m-primary ideal I with ℓA(H

1(X,OX (−Z)) = pg(A) is called a pg-ideal. If
I, J are two m-primary pg ideals then IJ is a pg-ideal. Furthermore I is

Mathematics Subject Classification. Primary 13A30, 13B22; Secondary 13A50, 14B05.
Key words and phrases. pg-ideal, normal Rees rings, Cohen-Macaulay rings, stable

ideals.

167



168 T. J. PUTHENPURAKAL

stable and so the Rees algebra R(I) is a Cohen-Macaulay normal domain.
They also proved that if A is also a rational singularity then any m-primary
integrally closed ideal is a pg-ideal. In a later paper [9] they showed that if
R(I) is a Cohen-Macaulay normal domain then I is a pg-ideal. Motivated
by this result we make the following definition:

Definition 1.1. Let (A,m) be a normal domain of dimension two. An m-
primary ideal I is said to be pg-ideal in A if the Rees algebra R(I) = A[It]
is a normal Cohen-Macaulay domain.

We note that if I is a pg-ideal then all powers of I are integrally closed.
Furthermore if the residue field of A is infinite then I is stable; see [2,
Theorem 1]. From the definition it does not follow that if I, J are pg-ideals
then the product IJ is also a pg ideal. However if A is also analytically
unramified with an infinite residue field then by a result of Rees; product of
two pg ideals is pg, see [10, 2.6]. Also we do not know that whether every
normal domain of dimension two has a pg ideal.

In this paper we first give a considerably simpler proof of Rees’s result in
a special case.

Theorem 1.2. Let (A,m) be an excellent two dimensional normal domain
containing a perfect field k ∼= A/m. If I, J are pg-ideals in A then IJ is also
a pg-ideal in A.

Our main result is regarding existence of pg-ideals. We prove

Theorem 1.3. Let (A,m) be an excellent two dimensional normal domain
containing a field k ∼= A/m of characteristic zero. Then there exists pg ideals
in A.

See Remark 4.1 to see the reason why our technique fails in positive
characteristic.

We now describe in brief the contents of this paper. In section two we
discuss some preliminary results that we need. In section three we describe a
construction and prove Theorem 1.2. In the next section we prove Theorem
1.3.

2. preliminaries

In this section we prove the following preliminary result that we need.
Parts of it are already known.

Lemma 2.1. Let (A,m) be a Noetherian local ring containing a perfect field
k ∼= A/m. Let ℓ be a finite extension of k. Set B = A ⊗k ℓ. Then we have
the following

(1) B is a finite flat A-module.
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(2) B is a Noetherian ring.
(3) B is local with maximal ideal mB and residue field isomorphic to ℓ.
(4) B contains ℓ.
(5) A is Cohen-Macaulay (Gorenstein, regular) if and only if B is Cohen-

Macaulay (Gorenstein, regular).
(6) If A is excellent then so is B.
(7) If A is normal then so is B.
(8) If A is excellent normal and I is an integrally closed ideal in A then IB

is an integrally closed ideal in B.
(9) If ℓ is a Galois extension of k with Galois group G then G acts on B

(via σ(a ⊗ t) = a ⊗ σ(t)). Furthermore if |G| is invertible in k then
BG = A.

Proof. As k is perfect we have that ℓ is a separable extension of k. So by
primitive element theorem we have that ℓ = k(α). Let f(x) be the minimal
poynomial of α. Then B ∼= A[X]/(f(x)). We now prove our assertions.

(1) This is clear.
(2) This follows from (1).
(3) Let n be a maximal ideal in B. Then as B is finite over A we get
n ∩ A = m. So n contains mB. Notice B/mB ∼= k[x]/(f(x)) ∼= ℓ. So mB is
a maximal ideal in B. It follows n = mB. The result follows.
(4) This is clear.
(5) The extension A → B is flat with fiber F ∼= ℓ. The result follows from
Corollary to Theorem 23.3, Theorem 23.4 and Theorem 23.7 in the text [7].
(6) As A is excellent so is A[X]. As B is a quotient of A[X] we get that B
is also excellent.
(7) As A is normal it satisfies R1 and S2. Let P be a prime ideal in A and
let κ(P ) be the residue field of AP . Then note that B⊗A κ(P ) = ℓ⊗k κ(P )
is a finite direct product of fields and so is regular. The result now follows
from Theorem 23.9 in [7].

(8) As A is normal then so is A[t]. Let R = A[It] be the Rees algebra
of A with respect to I. Set R =

⊕
n≥0

In be the Rees-ring of the integral
closure filtration of I. As A is normal and excellent it follows that the
completion Â is also normal. In particular it is reduced. So R is a finite
extension of R. We note that R is the integral closure of R in A[t]. So R is
normal. By graded version of (7) we get that R⊗k ℓ is normal. We note that
R⊗k ℓ =

⊕
n≥0

InB and R⊗k ℓ =
⊕

n≥0
InB. We have graded inclusions

R⊗k ℓ ⊆ R⊗k ℓ ⊆ B[t].

We note that as B is normal we get B[t] is normal. Also R⊗k ℓ is a finite
extension of R⊗k ℓ. It follows that R⊗k ℓ is the integral closure of R⊗k ℓ
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in B[t]. In particular we have InB = InB for n ≥ 1. So for n = 1 we get
IB = IB = IB. Thus IB is integrally closed in B.

(9) It is clear that G acts on B (via the action described) and A ⊆ BG.
Now assume |G| is invertible in k. Let ρℓk, ρ

B
A be the corresponding Reynolds

operators. Let ξ =
∑r

i=1
ai ⊗ ti ∈ BG. Then note

ξ = ρBA(ξ) =

r∑

i=1

(
ai ⊗ ρℓk(ti)

)
=

(
r∑

i=1

aiρ
ℓ
k(ti)

)
⊗ 1 ∈ A.

�

3. A construction and proof of Theorem 1.2

Throughout this section (A,m) is a Noetherian local ring containing a
perfect field k ∼= A/m. Also throughout we assume dimA = 2. Fix an
algebraic closure k of k. We investigate properties of A ⊗k k. Some of the
results here are already known. However some of our applications regarding
pg-ideals is new and crucial to prove Theorem 1.2 and Theorem 1.3.

3.1. Let

Ck = {E | E is a finite extension of k in k}.

We note that Ck is a directed system of fields with limE∈Ck E = k. For
E ∈ Ck set AE = A ⊗k E. Then by 2.1 AE is a finite flat extension of A.
Also AE is local with maximal ideal mE = mAE . Clearly {AE}E∈Ck forms

a directed system of local rings and we have limE∈Ck A
E = A ⊗k k. By [4,

Chap. 0. (10.3.13)] it follows that A ⊗k k is a Noetherian local ring (say

with maximal ideal mk). Note that we may consider AE as a subring of
A⊗k k. We have

A⊗k k =
⋃

E∈Ck

AE and m
k =

⋃

E∈Ck

m
E.

It follows that m(A⊗k k) = m
k. It is also clear that A⊗k k contains k and

its residue field is isomorphic to k. The extension A → A ⊗k k is flat with
fiber ∼= k. In particular dimA⊗k k is two.

3.2. Let F ∈ Ck. Set

CF = {E | E ∈ Ck, E ⊇ F}.

Then CF is cofinal in Ck. So we have limE∈CF AE = A⊗k k. Also note that
if E ∈ CF then

AE = A⊗k E = A⊗k F ⊗F E = AF ⊗F E.

It also follows that mE = m
FAE .
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The following result is definitely known to experts. We give a proof for
the convenience of the reader.

Lemma 3.1. If A is excellent then so is A⊗k k

Proof. In the directed system {AE}E∈Ck each map AF → AE (when F ⊆ E)
is etale as AE = AF ⊗F E and E is seperable over F . So by a result of [3,
5.3] it follows that A⊗k k is excellent. �

We now show the main properties of A⊗k k that we need

Theorem 3.2. (with hypotheses as above) Set T = A⊗k k and n = m
k. We

have

(1) A is Cohen-Macaulay (Gorenstein, regular) if and only if T is Cohen-
Macaulay (Gorenstein, regular).

(2) If A is a normal domain if and only if T is a normal domain.
(3) Assume A is an excellent normal domain. Then we have

(a) I is integrally closed in A if and only if IT is integrally closed in T
(b) I is a pg ideal in A if and only if IT is a pg ideal in T .

Proof. (1) The extension A → T is flat local with fiber ring k. The result
follows from Corollary to Theorem 23.3, Theorem 23.4 and Theorem 23.7 in
the text [7].

(2) If A is normal then so is AE for every E ∈ Ck. In particular T =⋃
E∈Ck

AE is a domain. If R is a domain let K(R) denote the fraction field

of R. Clearly K(T ) =
⋃

E∈Ck
K(AE). Let ξ = a/b ∈ K(T ) be integral over

T . Then ξ satisfies a monic polynomial h(x) ∈ T [x]. Choose E ∈ Ck such
that a, b and all coefficients of h are in AE . Then ξ ∈ K(AE) is integral
over AE . As AE is normal we have ξ ∈ AE . So ξ ∈ T . Thus T is normal.
Conversely if T is normal then as the extension A → T is flat we get by
Corollary to Theorem 23.7 in [7] we get that A is normal.

(3)(a) If IT is integrally closed in T then IT ∩A is integrally closed in A.
But A → T is faithfully flat. So IT ∩A = I (note we did not use excellence
of A to prove this). Conversely assume I is integrally closed in A. As A
is excellent and normal, by Lemma 2.1(8), we have that IAE is integrally
closed in AE for every E ∈ Ck. Let ξ ∈ T be integral over IT . Say we have
an equation

ξn + a1ξ
n−1 + · · · an−1ξ + an = 0

with ai ∈ (IT )i = IiT . We may choose F ∈ Ck such that ξ ∈ AT and
ai ∈ IiAF . So ξ is integral over IAF . But IAF is integrally closed. Therefore
ξ ∈ IAF . So ξ ∈ IT . Thus IT is integrally closed.

(3)(b) Let R(I),R(IT ) be the Rees Algebra of I and IT respectively.
Notice R(IT ) = R(I) ⊗A T = R(I) ⊗k k. The rings R(I) and R(IT ) are
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∗-local. Furthermore the extension R(I) → R(IT ) is flat with fiber k. So
by graded analog of (1) we get that R(I) is Cohen-Macaulay if and only if
R(IT ) is Cohen-Macaulay.

First assume I is a pg ideal in A. Then In is integrally closed in A for
all n ≥ 1. By 3(a) we get that InT is integrally closed in T for all n ≥ 1.
Also as T is normal we get T [t] is normal. As R(IT ) is integrally closed in
T [t] we get that it is a normal domain. Also as R(I) is Cohen-Macaulay, as
discussed earlier we get that R(IT ) is Cohen-Macaulay. So IT is a pg ideal
in T .

Conversely assume that IT is a pg ideal in T . Then (IT )n = InT is
integrally closed for all n ≥ 1. By 3(a) we get that In is integrally closed
for all n ≥ 1. As A is normal, as argued before we get that R(I) is normal.
Also as R(IT ) is Cohen-Macaulay, as discussed earlier we get that R(I) is
Cohen-Macaulay. So I is a pg ideal in A. �

We now give

Proof of Theorem 1.2. Set T = A ⊗k k. Let n be the maximal ideal of T .
We note that T is an excellent normal domain containing k ∼= T/n (see 3.1,
3.1 and 3.2(2)). Let I, J be two pg ideals in A. Then by 3.23(b) we get that
IT, JT are pg ideals in T . By [8, 3.5] we get that (IT )(JT ) = IJT is a pg
ideal in T . So again by 3.23(b) we get that IJ is a pg-ideal in A. �

4. proof of Theorem 1.3

In this section we give

Proof of Theorem 1.3. Set T = A ⊗k k. Let n be the maximal ideal of T .
We note that T is an excellent normal domain containing k ∼= T/n (see 3.1,
3.1 and 3.2(2)). By [8, 4.1] there exists a pg ideal J in T . By 3.1 we have
T =

⋃
E∈Ck

AE . So there exists F ∈ Ck which contains a set of minimal

generators of J . We may further assume (by enlarging) that F is Galois
over k. Thus there exists ideal W in AF with WT = J . By 3.2(3)(b) we
get that W is a pg ideal in AF . Let G be the Galois group of F over k.
Then G acts on AF (via σ(a⊗ f) = a⊗ σ(f)). As k has characteristic zero
we have by 2.1(9) that (AF )G = A. We also note that we have a natural G
action on AF [t] (fixing t) and clearly its invariant ring is A[t]. Let σ ∈ G.
It’s action on AF [t] induces an isomorphism of between the Rees algebra’s
R(W ) and R(σ(W )). So σ(W ) is a pg ideal in AF . By Theorem 1.2 we get
that K =

∏
σ∈G σ(W ) is a pg ideal in AF . Note K is G-invariant. So the

G action of AF [t] restricts to a G-action on R(K). As characteristic k is
zero we get that V = R(K)G is a Cohen-Macaulay normal subring of A[t].
Set V =

⊕
n≥0

Vn. Note V0 = A and Vn = Kn ∩ A are integrally closed
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m-primary ideals of A. Note V is not necessarily standard graded. However
it is well-known that a Veronese subring V <l> of V is standard graded. Note
V <l> is a Cohen-Macaulay normal domain. Observe that V <l> = R(Vl).
Thus Vl is a pg-ideal in A. �

Remark 4.1. Our proof of Theorem 1.3 would go through in positive char-
acteristic would go through if we knew order of G is invertible in k. However
we have no control on G. So our proof does not extend in this case.
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