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THE d-SMITH SETS OF DIRECT PRODUCTS OF

DIHEDRAL GROUPS

Kohei Seita

Abstract. Let G be a finite group and let V and W be real G-modules.
We call V and W dim-equivalent if for each subgroup H of G, the H-
fixed point sets of V and W have the same dimension. We call V and
W are Smith equivalent if there is a smooth G-action on a homotopy
sphere Σ with exactly two G-fixed points, say a and b, such that the
tangential G-representations at a and b of Σ are respectively isomorphic
to V and W . Moreover, We call V and W are d-Smith equivalent if they
are dim-equivalent and Smith equivalent. The differences of d-Smith
equivalent real G-modules make up a subset, called the d-Smith set, of
the real representation ring RO(G). We call V and W P(G)-matched

if they are isomorphic whenever the actions are restricted to subgroups
with prime power order of G. Let N be a normal subgroup. For a
subset F of G, we say that a real G-module is F-free if the H-fixed
point set of the G-module is trivial for all elements H of F . We study
the d-Smith set by means of the submodule of RO(G) consisting of the
differences of dim-equivalent, P(G)-matched, {N}-free real G-modules.
In particular, we give a rank formula for the submodule in order to see
how the d-Smith set is large.

1. Introduction

Throughout this paper, let G be a finite group and N a normal subgroup
of G. Let S(G),RQ(G), RO(G) and R(G) denote the set of all subgroups, the
rational representation ring, the real representation ring, and the complex
representation ring, respectively, of G. We mean by a real G-module a real
G-representation space of finite dimension. By canonical homomorphisms,
we regard

RQ(G) ⊂ RO(G) ⊂ R(G).

Real G-modules V and W are called dim-equivalent if dimV H = dimWH

holds for any subgroup H of G. Real G-modules V and W are called Smith
equivalent and written V ∼S W if there exists a homotopy sphere Σ with a
smooth G-action such that ΣG = {a, b} (a 6= b), Ta(Σ) ∼= V and Tb(Σ) ∼= W
(as real G-modules). Moreover, real G-modules V and W are called d-Smith
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equivalent and written V ∼dS W if V and W are Smith equivalent and dim-
equivalent. Define the Smith set S(G) and the d-Smith set dS(G) by

S(G) = {[V ]− [W ] ∈ RO(G) | V ∼S W},

dS(G) = {[V ]− [W ] ∈ RO(G) | V ∼dS W}.

In 1960, P. A. Smith [14] asked the next question. If there exists a smooth
G-action on a sphere S such that SG = {a, b}, then are the tangent spaces
Ta(S) and Tb(S) isomorphic? It is an interesting research subject whether
S(G) is 0 or not. Since this problem was proposed, it has been studied by
various researchers. Let Cn, An, and Sn denote a cyclic group of order n,
the alternating group of degree n, and the symmetric group of degree n,
respectively. The following affirmative results are known. M. F. Atiyah–
R. Bott [1] proved S(Cp) = 0 for any prime p. C. U. Sanchez [13] proved
S(Cpk) = 0 for any odd prime p and any integer k ≥ 1. It is known that
S(G) = 0 for each G = An, Sn with n ≤ 5, (cf. [5], [9]). On the other
hand, the following negative results are known. T. Petrie [10, 11, 12] proved
S(G) 6= 0 for abelian groups G having at least 4 noncyclic Sylow subgroups.
S. E. Cappel–J. L. Shaneson [2] proved S(C4k) 6= 0 for any integer k ≥ 2.
X. -M. Ju [4] proved that neither S(A5 × Cn

2 ) nor S(S5 × Cn
2 ) is 0 for any

integer n ≥ 1, where Cn
2 = C2 × · · · × C2 (n-fold). For A ⊂ RO(G) and

F , G ⊂ S(G), we set

AF = {[V ]− [W ] ∈ A | V H = WH = 0 for allH ∈ F},

AG = {[V ]− [W ] ∈ A | resGKV ∼= resGKW for allK ∈ G},

AF
G = (AF )G .

A real G-module V is called F-free if V H = 0 for all H ∈ F . Real G-
modules V and W are called G-matched if resGKV ∼= resGKW for all K ∈ G.
We use the following notation.

E : the trivial group.

C(G) : the set of all cyclic subgroups of G.

P(G) : the set of all subgroups of G of prime power order.

Podd(G) : the set of all P ∈ S(G) of odd prime power order.

G{p} : the smallest normal subgroupH ≤ G such that |G/H| is a power of p

(p a prime).

L(G) : the set of allH ∈ S(G) such thatH ⊃ G{p} for some prime p.

Gnil : the smallest normal subgroupH ≤ G such thatG/H is nilpotent.

G∩2 : the intersection of all normal subgroupsH of G such that |G/H| ≤ 2.
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It is known that Gnil =
⋂

pG
{p} where p runs over the set of all primes

dividing |G|. Let RO0(G) denote the set of all [V ]− [W ] ∈ RO(G) such that
V and W are dim-equivalent. RO0(G) is a Z-submodule of RO(G). We note

that if Gnil = G{p} for some prime p, then

RQ(G)
L(G)
P(G) = RQ(G)

{G{p}}
P(G) and RO0(G)

L(G)
P(G) = RO0(G)

{G{p}}
P(G) .

A finite group G is called an Oliver group if there never exists a normal
series P EH EG such that P ∈ P(G), H/P is cyclic, and G/H is of prime
power order. For g ∈ G, the real conjugacy class (g)± is defined to be the set
(g)∪(g−1), where (g) = {xgx−1 |x ∈ G}. For H ∈ S(G), let (H)G denote the
G-conjugacy class of H. Let λ(G,N) denote the number of all real conjugacy
classes (gN)± such that g is an element of G not of prime power order, and
let ν(G,N) denote the number of all G/N -conjugacy classes (HN/N)G/N

for all cyclic subgroups H of G not of prime power order.

Theorem 1.1. Let G be a finite group containing an element not of prime

power order. Then, the Z-rank of RQ(G)
{N}
P(G) is equal to ν(G,E)− ν(G,N).

Corollary 1.2. Let G be a finite group containing an element not of prime
power order. Then the inequalities

ν(G,E) − ν(G,Gnil) ≤ rankZRQ(G)
L(G)
P(G) ≤ ν(G,E)− max

p:prime
{ν(G,G{p})}

hold.

Let ROQ(G) (resp. RQ(G)) denote the submodule of RO(G) (resp. R(G))
consisting of x ∈ RO(G) (resp. x ∈ R(G)) such that nx ∈ RQ(G) for some

n ∈ N. Let µ(G,N) denote the Z-rank of RO0(G)
{N}
P(G).

Theorem 1.3. Let G be a finite group containing an element not of prime
power order. Then, µ(G,N) is equal to (λ(G,E) − λ(G,N)) − (ν(G,E) −
ν(G,N)).

We remark that for an arbitrary Oliver group G, the inequality

λ(G,E) − λ(G,Gnil) > ν(G,E)− ν(G,Gnil)

holds if and only if dS(G)
{Gnil}
P(G) is an infinite set.

Corollary 1.4. Let G be a finite group containing an element not of prime
power order. Then the inequalities

µ(G,Gnil) ≤ rankZRO0(G)
L(G)
P(G) ≤ min

p:prime
{µ(G,G{p})}

hold.
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For a natural number u, let D2u denote the dihedral group of order 2u,
i.e.

D2u = 〈x, y | xu, y2, yxyx〉.

Throughout this paper, let m be a natural number with m ≥ 2, and let
p1, p2, . . . , pm be distinct odd primes.

Theorem 1.5. Let G be the group D2u ×D2u with u = p1p2 · · · pm, where

m ≥ 2. Then, dS(G) coincides with RO0(G)
{Gnil}
P(G) and the Z-rank of RO0(G)

{Gnil}
P(G)

is equal to

(

p1p2 · · · pm + 3

2

)2

−

m
∑

i=1

p2i − 9

4
−

m
∑

k=1

3m−k

2

∑

1≤t1<···<tk≤m

k
∏

i=1

(pti−1)−3m−2m+1−1.

Theorem 1.6. Let G be the group Dn
2p1p2

for distinct odd primes p1, p2 and
a natural number n with n ≥ 2. Then, the following holds.

(1) dS(G) coincides with RO0(G)
{Gnil}
P(G) , and the Z-rank of RO0(G)

{Gnil}
P(G)

is equal to λ(G,E) − ν(G,E).

(2) λ(G,E) =

(

p1p2 + 3

2

)n

−

(

p1 + 1

2

)n

−

(

p2 + 1

2

)n

− 2n + 2.

(3)

ν(G,E) =

2
∑

i=1

2

pi − 1

((

pi + 3

2

)n

−

(

pi + 1

2

)n

− 2n + 1

)

+
4

(p1 − 1)(p2 − 1)

(

2

(

p1p2 + 3

2

)n

−

(

p1 + p2 + 2

2

)n

−

(

p1 + 3

2

)n

−

(

p2 + 3

2

)n

+ 2n
)

2. Proof of Theorem 1.1

For g ∈ G, let 〈g〉 denote the cyclic subgroup of G generated by g. For
a G-conjugation invariant subset A of G, let M(G,A) denote the set of
all G-conjugation invariant functions f : A → Q such that f(a) = f(b)
for elements a and b of A satisfying 〈a〉 = 〈b〉. Let M(G,A)P(G) denote

the kernel of resGP(G) : M(G,A) →
∏

P∈P(G)M(P,A). The homomorphism

fixGG/N : M(G,A) → M(G/N,AN/N) is defined by

(

fixGG/N

)

f(aN) =
1

|N |

∑

x∈N

f(ax)
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for f ∈ M(G,A) and a ∈ A. Let M(G,A){N} denote the kernel of fixGG/N :

M(G,A) → M(G/N,AN/N). For C ∈ C(G), we have the associated map
fC : G → Q by

fC(g) =

{

1 (〈g〉 ∈ (C)G)
0 (〈g〉 /∈ (C)G)

for g ∈ G.

Proposition 2.1. For a ∈ G and C ∈ C(G), the value fixGG/NfC(aN) is

positive if and only if the cyclic subgroup 〈aN〉 of G/N is G/N -conjugate to
the cyclic group CN/N .

Proof. We have

|N |fixGG/Nf(aN) =
∑

x∈N

fC(ax)

= |{x ∈ N | 〈ax〉 ∈ (C)G}|

=

∣

∣

∣

∣

∣

∣





⋃

g∈G

gCg−1



 ∩ aN

∣

∣

∣

∣

∣

∣

.

The set
(

⋃

g∈G gCg−1
)

∩ aN is not empty if and only if (C)G ∩ aN is not

empty. (C)G ∩ aN is not empty if and only if C ∩ (aN)G is not empty. The
set C ∩ (aN)G is not empty if and only if C is a cyclic group with gabg−1

as a generator for some b ∈ N and g ∈ G. �

For a G-representation space V , let ρV : G → Aut(V ) be the homomor-
phism associated with V , and let χV denote the character of ρV . For any G-
representation space V , define the homomorphism ρV N : G/N → Aut(V N )
by ρV N (aN) = ρV (a)|V N for a ∈ G. Then, the following fact is obtained
from [9, p. 857].

Lemma 2.2. For g ∈ G, χV N (gN) is equal to

1

|N |

∑

x∈N

χV (gx).

Let Q(G) denote the set of all elements of G of prime power order. By
Lemma 2.2, the diagram

Q⊗Z RQ(G)P(G)

fixGG/N
//

τG
��

Q⊗Z RQ(G/N)

τG/N

��

M(G,G \Q(G))
fixGG/N

// M(G/N, (G \Q(G))N/N)



158 K. SEITA

commutes, where the homomorphisms τG and fixGG/N : Q ⊗Z RQ(G)P(G) →

Q⊗ZRQ(G/N) are defined by τG (
∑

i(ri ⊗ [Vi])) =
∑

i riχVi and fixGG/N (
∑

i(ri ⊗ [Vi])) =
∑

i(ri ⊗ [V N
i ]) for all non-isomorphic irreducible G-representation spaces Vi

and ri ∈ Q, respectively.

Proposition 2.3. The Q-vector space M(G,G)P(G) is canonically identified
with M(G,G \ Q(G)), and the homomorphisms τG and τG/N are isomor-
phisms.

Proof. The map M(G,G)P(G) → M(G,G \Q(G)) which is defined by f 7→
f |G\Q(G) is injective. Additionally, The mapM(G,G\Q(G)) → M(G,G)P(G)

which is defined by

h 7−→ h̄ ; h̄(x) =

{

h(x) (x ∈ G \Q(G))
0 (x ∈ Q(G))

is injective. Hence M(G,G)P(G) = M(G,G \ Q(G)). For real G-modules
V, W , [V ] = [W ] if and only if χV = χW . Therefore, the homomorphisms
τG and τG/N are isomorphisms. �

Let Conj(G, C) denote the set of all G-conjugacy classes of cyclic sub-
groups of G, and let Conj(G, CP ) denote the set of all (C)G ∈ Conj(G, C)
such that C is a cyclic subgroup of prime power order.

Proposition 2.4. Let G be a finite group containing an element not of
prime power order. Then, the Z-rank of RQ(G)P(G) is equal to ν(G,E).

Proof. We have the exact sequence

0 −→ Q⊗Z RQ(G)P(G) −→ Q⊗Z RQ(G)
resG

P(G)
−→

∏

P∈P(G)

Q⊗Z RQ(P ).

Set Conj(G, C) = {(H1)G, (H2)G, . . . , (Ht)G}. For i = 1, 2, . . . , t, define
the map ϕi : Conj(G, C) → Q by ϕi((Hj)G) = δij where δij is the Kro-
necker delta. Since Map(Conj(G, C),Q) and Q ⊗Z RQ(G) are isomorphic
and {ϕi | (Hi)G ∈ Conj(G, C)} is a basis of Map(Conj(G, C),Q), we have
dimQ (Q⊗Z RQ(G)) = |Conj(G, C)|. Since {resGP(G)ϕi|(Hi)G ∈ Conj(G, CP )}

is linearly independent, we have dimQ Im(resGP(G)) = |Conj(G, CP )|. There-

fore,

rankZRQ(G)P(G) = dimQ

(

Q⊗Z RQ(G)P(G)

)

= |Conj(G, C)| − |Conj(G, CP )|

= ν(G,E).

�
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Proposition 2.5. The set {fC | (C)G ∈ Conj(G, C) \ Conj(G, CP )} (resp.
{fD | (D)G/N ∈ Conj(G/N, C)}) is a basis of the Q-vector space M(G,G \
Q(G)) (resp. M(G/N,G/N)).

Proof. For each (C)G ∈ Conj(G, C)\Conj(G, CP ) (resp. (D)G/N ∈ Conj(G/N, C)),
fC (resp. fD) belongs to M(G,G \Q(G)) (resp. M(G/N,G/N)). Since the
set {fC |(C)G ∈ Conj(G, C)\Conj(G, CP )} (resp {fD|(D)G/N ∈ Conj(G/N, C)})
is linear independent and dimQM(G,G\Q(G)) = |Conj(G, C)|−|Conj(G, CP )|
(resp. dimQM(G,G/N) = |Conj(G/N, C)|), we obtain the proposition. �

The next proposition immediately follows from Proposition 2.1.

Proposition 2.6. The Q-dimension of fixGG/N (M(G,G \Q(G))) is equal to

ν(G,N).

Proof of Theorem 1.1. By Proposition 2.3, we have

rankZRQ(G)
{N}
P(G) = dimQ(Q ⊗Z RQ(G)

{N}
P(G)) = dimQM(G,G \Q(G)){N}.

We note that ν(G,E) = |Conj(G, C)| − |Conj(G, CP )|. By Propositions 2.5,

2.6, it holds that rankZRQ(G)
{N}
P(G) = ν(G,E) − ν(G,N). �

3. Proof of Theorem 1.3

Let Γ denote the Galois group Gal(Q(ζ)/Q), where ζ is a primitive |G|-th
root of 1. The group ring Z[Γ] has the exact sequence

0 // IΓ
i

// Z[Γ]
ε

// Z // 0

where ε is the augmentation homomorphism, IΓ is the kernel of ε and i is
the inclusion map. We set ΣΓ =

∑

γ∈Γ γ. We have Z[Γ]Γ = Z · ΣΓ and

ε(ΣΓ) = |Γ|. Thus

Q[Γ] = (Q · IΓ)⊕ (Q · ΣΓ) = (Q · IΓ)⊕Q[Γ]Γ.

The next fact is well known.

Proposition 3.1 ([3, Proposition 9.2.6]). RO(G) is the direct sum of ROQ(G)
and RO0(G).

Since ROQ(G) = RO(G)Γ and RQ(G) = R(G)Γ, it holds that |RO(G)Γ :
RQ(G)| < ∞ and |R(G)Γ : RQ(G)| < ∞.

Proposition 3.2. Let N be a normal subgroup of G. Then, Q⊗ZRO(G)
{N}
P(G)

is canonically isomorphic to
(

Q⊗Z RQ(G)
{N}
P(G)

)

⊕
(

Q⊗Z RO0(G)
{N}
P(G)

)

.
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Proof. Let x ∈ RO(G)
{N}
P(G), then

|Γ|x = ΣΓx+
∑

γ∈Γ

(id− γ)x ∈
(

RO(G)
{N}
P(G)

)Γ
+RO0(G)

{N}
P(G).

By Proposition 3.1, we have
(

RO(G)
{N}
P(G)

)Γ
+RO0(G)

{N}
P(G) =

(

RO(G)Γ
){N}

P(G)
+RO0(G)

{N}
P(G)

= ROQ(G)
{N}
P(G) +RO0(G)

{N}
P(G)

= ROQ(G)
{N}
P(G) ⊕ RO0(G)

{N}
P(G).

Since Q⊗Z ROQ(G)
{N}
P(G) = Q⊗Z RQ(G)

{N}
P(G), Q⊗Z RO(G)

{N}
P(G) is contained

in
(

Q⊗Z RQ(G)
{N}
P(G)

)

⊕
(

Q⊗Z RO0(G)
{N}
P(G)

)

.

On the other hand, it is clear that

Q⊗Z RO(G)
{N}
P(G) ⊃

(

Q⊗Z RQ(G)
{N}
P(G)

)

⊕
(

Q⊗Z RO0(G)
{N}
P(G)

)

.

�

Lemma 3.3 ([9, Second Rank Lemma]). The Z-rank of RO(G)
{N}
P(G) is equal

to λ(G,E) − λ(G,N).

Theorem 1.3 immediately follows from Proposition 3.2, Lemma 3.3, and
Theorem 1.1.

4. Proofs of Theorems 1.5 and 1.6

Let m and n are natural numbers. Let p1, p2, . . . , pm be m distinct odd
primes, and let um = p1p2 . . . pm. We note that Dn

2um
is an Oliver group if

m ≥ 2 and n ≥ 2. It is easy to see that

(4.1)

(Dn
2um

){pi} = Dn
2um

(i = 1, 2, . . . , m),

(Dn
2um

)nil = (Dn
2um

){2} ∼= Cn
um

,

Dn
2um

/(Dn
2um

)nil ∼= Cn
2 .

For D2um , the order of element is 1, 2 or pt1pt2 · · · ptk for 1 ≤ t1 < t2 <
· · · < tk ≤ m. Moreover, the numbers of conjugacy classes of elements of

order 2 and pt1pt2 . . . ptk is 1 and
(

∏k
i=1(pti − 1)

)

/2, respectively.

For a group element g, let o(g) be the order of g. For Dn
2um

, let Z be
the set of cyclic subgroups H of Dn

2um
generated by (g1, g2, . . . , gn) such

that o(g1) = · · · = o(gn) = 2 or o(g1) = · · · = o(gn) = pt1pt2 · · · ptk for
1 ≤ t1 < t2 < · · · < tk ≤ m. Then, the number of Dn

2um
-conjugacy classes of
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elements in Z is 1 in former case and
((

∏k
i=1(pti − 1)

)

/2
)n−1

in the latter
case.

For natural numbers a1 and a2, let gcd(a1, a2) denote the greatest common
divisor of a1 and a2.

Fact 4.1. Let G = D2
2um

. For j = 0, 1 and 0 ≤ k ≤ m, let Y j
k be the

subset of C(G) consisting of H = 〈(g1, g2)〉 such that |H| ≡ j mod 2 and
gcd(o(g1), o(g2)) is the product of k primes. Then, |H| is 1 or a prime if and
only if (o(g1), o(g2)) is (1, 1), (1, pi), (pi, 1) or (pi, pi) for some i, or (2, 1), (1, 2)

or (2, 2). Moreover, the number of G-conjugacy classes of elements H in Y j
k

such that |H| is not prime power is as follows.































3m − 2m− 1 if j = 1 and k = 0,

(3m−1 − 1)
∑m

i=1(pi − 1)/2 if j = 1 and k = 1,

3m−k
∑

1≤t1<···<tk≤m

(

∏k
i=1(pti − 1)

)

/2 if j = 1 and k > 1,

2(2m − 1) if j = 0 and k = 0,

0 if j = 0 and k > 0.

Fact 4.2. Let a, b, c, d and e be non-negative integers such that a + b +
c + d + e = n. For G = Dn

2u2
, let X be the set of cyclic subgroups H of G

generated by (g1, g2, . . . , gn) such that o(g1) = · · · = o(ga) = 1, o(ga+1) =
· · · = o(ga+b) = p1, o(ga+b+1) = · · · = o(ga+b+c) = p2, o(ga+b+c+1) = · · · =
o(ga+b+c+d) = p1p2 and o(ga+b+c+d+1) = · · · = o(gn) = 2. Then, |H| is 1
or a prime if and only if c = d = e = 0, b = d = e = 0 or b = c = d = 0.
Moreover, the number of G-conjugacy classes of elements in X under certain
conditions are as follows.


















((p1 − 1)/2)b−1 H with b > 0, c = d = 0, e > 0,

((p2 − 1)/2)c−1 H with c > 0, b = d = 0, e > 0,

((p1 − 1)/2)b−1((p2 − 1)/2)c−1 H with b > 0, c > 0, d = 0,

((p1 − 1)/2)b((p2 − 1)/2)c((p1 − 1)(p2 − 1)/2)d−1 H with d > 0.

Proposition 4.3. Let G = Dn
2um

for m ≥ 2. Then λ(G,E) is equal to

(

p1p2 · · · pm + 3

2

)n

−

m
∑

i=1

(

pi + 1

2

)n

+m− 2n.

Proof. We note that (g)± = (g) holds for any element g of G. It suffices
to calculate the number of conjugacy classes (g) of g ∈ G which is not of
prime power order. By the facts of the number of conjugacy classes (g) with
g ∈ D2um of the beginning of this section, the number of conjugacy classes
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of elements of D2um is

2 +
∑

1≤t1<···<tk≤m

1

2

k
∏

i=1

(pti − 1) = 2 +
1

2

(

m
∏

i=1

((pi − 1) + 1)− 1

)

which is equal to (p1p2 · · · pm+3)/2, and hence G has ((p1p2 · · · pm+3)/2)n

conjugacy classes. Moreover, since the numbers of conjugacy classes of ele-
ments of orders pi and 2 in D2um are (pi − 1)/2 and 1, respectively, those
for G are

m
∑

k=1

nCk

(

pi − 1

2

)k

=

(

pi − 1

2
+ 1

)n

− 1 =

(

pi + 1

2

)n

− 1

and
∑n

k=1 nCk = 2n − 1, respectively, where nCk is the binomial coefficient.
Therefore, we obtain

λ(G,E) =

(

p1p2 · · · pm + 3

2

)n

−
m
∑

i=1

((

pi + 1

2

)n

− 1

)

− (2n − 1)− 1

=

(

p1p2 · · · pm + 3

2

)n

−

m
∑

i=1

(

pi + 1

2

)n

+m− 2n.

�

Theorem 1.6 (2) is obtained immediately from Proposition 4.3.

For a real G-module V , let V L(G) denote the submodule
∑

L∈L(G) V
L and

let VL(G) denote the orthogonal complement of V L(G) in V , with respect to
a G-invariant inner-product on V .

The next lemma follows from [7, Theorem 6.7].

Lemma 4.4. Let G be an Oliver group. If x = [V ] − [W ] is an element

of RO0(G)
L(G)
P(G), then there exists an L(G)-free real G-module U such that

V ⊕U⊕R[G]⊕m
L(G) and W⊕U⊕R[G]⊕m

L(G) are Smith equivalent for any m ∈ N,

and therefore x belongs to dS(G).

SinceS(G) ⊂ RO(G)Podd(G) by C. U. Sanchez [13] andS(G) ⊂ RO(G){G
∩2}

by M. Morimoto–Y. Qi [8], we have S(G) ⊂ RO(G)
{G∩2}
Podd(G). By [6, Section

1, p.3684], we get S(G) ⊂ RO(G)P∗(G) where P∗(G) is the subset of P(G)
consisting of P such that |P | is odd or |P | ≤ 4 if 2 divides |P |. Therefore
we have

S(G) ⊂ RO(G)
{G∩2}
P∗(G) and dS(G) ⊂ RO0(G)

{G∩2}
P∗(G).

The next fact follows from Lemma 4.4.
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Proposition 4.5. If G is an Oliver group, then

RO0(G)
L(G)
P(G) ⊂ dS(G) ⊂ RO0(G)

{G∩2}
P∗(G).

Since dS(G) ⊂ RO0(G){G
∩2}, the following fact is obtained from Propo-

sition 4.5.

Proposition 4.6. Let G be an Oliver group such that G∩2 = Gnil. Then,

dS(G)P(G) coincides with RO0(G)
{Gnil}
P(G) .

Proposition 4.7. Let G be as in Proposition 4.6. If Gnil is of odd order,

then dS(G) coincides with RO0(G)
{Gnil}
P(G) .

Proof. Since P(G) = P∗(G), we get it immediately from Propositions 4.5,
4.6. �

It is easy to see the next fact.

Proposition 4.8. Let G be a finite group and let N be a normal subgroup
of G. If G/N is isomorphic to Cn

2 for some natural number n, then λ(G,N)
is equal to ν(G,N).

By Corollary 1.2, (4.1), and Propositions 4.7, 4.8, the next proposition
immediately follows.

Proposition 4.9. Let G = Dn
2um

. If m, n ≥ 2, then dS(G) coincides with

RO0(G)
{Gnil}
P(G) , and the Z-rank of RO0(G)

{Gnil}
P(G) is equal to λ(G,E)−ν(G,E).

Theorem 1.6 (1) is obtained immediately from Proposition 4.9.

Proof of Theorem 1.6 (3). Let G = Dn
2u2

. In Sections 1 and 2, we defined
Conj(G, C) and Conj(G, CP ). For i = 1, 2, let Xi denote the set of all
G-conjugacy classes (H)G of subgroups H of G with H ∼= C2pi . Let X3

(resp. X4) denote the set of all G-conjugacy classes (H)G of cyclic subgroups
H = 〈(g1, g2, . . . , gn)〉 of G such that p1p2 | |H| and o(gi) 6= p1p2 for all i
(resp. o(gi) = p1p2 for some i). Let B1, B2, B3 and B4 be the sets

B1 = {(a, b, e) | a ∈ N ∪ {0}, b, e ∈ N, a+ b+ e = n},

B2 = {(a, c, e) | a ∈ N ∪ {0}, c, e ∈ N, a+ c+ e = n},

B3 = {(a, b, c, e) | a, e ∈ N ∪ {0}, b, c ∈ N, a+ b+ c+ e = n}, and

B4 = {(a, b, c, d, e) | d ∈ N, a, b, c, e ∈ N ∪ {0}, a+ b+ c+ d+ e = n},
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respectively. By Fact 4.2 and the multinomial theorem, we obtain that

|X1| =
∑

(a,b,e)∈B1

n!

a!b!e!

(

p1 − 1

2

)b−1

=
2

p1 − 1

((

p1 + 3

2

)n

−

(

p1 + 1

2

)n

− 2n + 1

)

,

|X2| =
∑

(a,c,e)∈B2

n!

a!c!e!

(

p2 − 1

2

)c−1

=
2

p2 − 1

((

p2 + 3

2

)n

−

(

p2 + 1

2

)n

− 2n + 1

)

,

|X3| =
∑

(a,b,c,e)∈B3

n!

a!b!c!e!

(

p1 − 1

2

)b−1(p2 − 1

2

)c−1

=
4

(p1 − 1)(p2 − 1)

((

p1 + p2 + 2

2

)n

−

(

p1 + 3

2

)n

−

(

p2 + 3

2

)n

+ 2n
)

,

|X4| =
∑

(a,b,c,d,e)∈B4

n!

a!b!c!d!e!

(

p1 − 1

2

)b(p2 − 1

2

)c((p1 − 1)(p2 − 1)

2

)d−1

=
2

(p1 − 1)(p2 − 1)

((

p1p2 + 3

2

)n

−

(

p1 + p2 + 2

2

)n)

.

Since ν(G,E) = |X1|+ |X2|+ |X3|+ |X4|, Theorem 1.6 (3) is obtained. �

Proof of Theorem 1.5. Let G = D2
2um

. By Fact 4.1, we obtain that

ν(G,E) =
m
∑

k=1

3m−k

2

∑

1≤t1<···<tk≤m

k
∏

i=1

(pti − 1)−
m
∑

i=1

pi + 5

2
+ 3m + 2m+1 − 3.

Therefore, Theorem 1.5 immediately follows from Propositions 4.3, 4.9. �
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