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RECTANGULAR HALL-LITTLEWOOD SYMMETRIC

FUNCTIONS AND A SPECIFIC SPIN CHARACTER

Kazuya aokage

Abstract. We derive the Schur function identities coming from the
tensor products of the spin representations of the symmetric group Sn.
We deal with the tensor products of the basic spin representation V (n)

and any spin representation V λ (λ ∈ SP (n)). The characteristic map
of the tensor product ζn ⊗ ζλ is described by Stembridge[4] for the case
of odd n. We consider the case n is even.

1. Introduction

The aim of this paper is to prove a some identities between the Hall-
Littlewood symmetric functions and the Schur functions.The Hall-Littlewood
symmetric function Pλ(x; t) was defined by Philip Hall by using the Hall
algebra which comes from group theory. The Hall-Littlewood symmetric
function associated to the partition λ of n is defined by

(1.1) Pλ(x; t) =
∏

i≥0

mi∏

j=1

1− t

1− tj

∑

w∈Sn

w(xλ1
1 · · · xλn

n

∏

i<j

xi − txj

xi − xj
).

When t = −1, the Hall-Littlewood symmetric function coincides with that
introduced by Schur in the theory of projective representations of the sym-
metric group.

A partition λ is any non-increasing sequence of non-negative integers λ =
(λ1, λ2, . . .) containing only finitely many non-zero terms. The number of
parts is the length of λ, denoted by ℓ(λ). And let P (n) be the set of all
partitions of n, SP (n) be the set of partitions of n into distinct parts, and
let OP (n) be the set of partitions of n with odd parts. Furthermore the set
of hook partition is denoted by the following.

Definition 1.1.

HP (n) = {(k, 1n−k) ∈ P (n) : 1 ≤ k ≤ n},

HOP (n) = {(k, 1n−k) ∈ P (n) : 1 ≤ k ≤ n, k : odd}.

Mathematics Subject Classification. 20C30, 20C25, 05E05.
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representation.
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In this paper, we deal with symmetric functions of variables x = (x1, x2, ...).
Let pr(x) = xr1 + xr2 + . . . be the power sum symmetric function for r ≥ 1.
The Schur function is defined as follows :

sλ(x) =
∑

λ∈P (n)

χλ(ρ)z
−1
ρ pρ(x).

Here the integer χλ(ρ) is the irreducible character of λ of the symmetric
group Sn, evaluated at the conjugacy class ρ, and zρ denotes the order of
centralizer of an element in the conjugacy class ρ.

Theorem 1.2 is our main results.

Theorem 1.2.

If n is even, then
(i) ∑

µ∈HP (n)\HOP (n)

sµ(x) =
∑

ℓ(λ)≤2

(−1)λ2Pλ(x;−1)

(ii) ∑

µ∈HOP (n)

sµ(x) =
∑

ℓ(λ)=2

(−1)λ2+1Pλ(x;−1).

Theorem 1.2 arises from the second inner tensor product of the basic spin

representation for the Schur covering groups S̃n and S̃
′

n[1]. When n is odd,
irreducible decomposition for the second tensor product of the Schur cov-

ering groups S̃n has been obtained by Stembridge[4]. He showed that the
characteristic map ch(ζn⊗ζλ) equals the Hall-Littlewood symmetric function
:

ch(ζn ⊗ ζλ) = Pλ(x,−1),

where ζλ is the irreducible spin character of the group S̃n. From the basic

properties of the spin representation of the covering groups S̃n and S̃
′

n, we
notice that, if n is even and λ 6= (n),

ch(ζn ⊗ ζλ) = ch(φn ⊗ φλ) = Pλ(x,−1).

where φλ is the irreducible spin character of S̃′

n. In [1], we deals with irre-

ducible decomposition for the second tensor product of S̃n and S̃
′

n when n

is even and λ = (n).

Theorem 1.3 ([1]). If n = 2k is even, then

V (n)
⊗

2 ≃
{⊕

λ∈HP (n)\HOP (n) S
λ (k : even)⊕

λ∈HOP (n) S
λ (k : odd),
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W (n)
⊗

2 ≃
{⊕

λ∈HOP (n) S
λ (k : even)⊕

λ∈HP (n)\HOP (n) S
λ (k : odd).

Our aim of the present paper is to determine the image of the characteris-
tic map for Theorem 1.3. The paper is organized as follows. In Section 2, we
quickly review the second tensor product of the basic spin representations.
Section 3 is devoted to the proof of Theorem 1.2.

Our argument asserts that Hall-littlewood function for rectangular parti-
tion with length 2 includes spin character ζn(n)(see Cor 3.8).

2. Quick review of the second tensor product for the basic

spin representations.

We present some results described by Schur[3]. Let G be a finite group,
and V be a vector space over C. A mapping ρ : G → GL(V ) is called a
projective representstion of G over C, if there exists a mapping α : G×G →
C× such that the following properties hold :

(1). ρ(1G) = idV , (2). ρ(x)ρ(y) = α(x, y)ρ(xy).

Simply, it is called an α-representation. When α(x, y) = 1, for any x, y ∈ G,
it is the linear representations of G.

Schur showed that each projective representations of G are linearized by

a linear representation of G̃. These groups are called Schur covering groups
of G.

First we recall two groups. Let S̃n be the group generated by elements
t1, t2, · · · , tn−1, z subject to the relations :

· z2 = 1,

· t2j = z (1 ≤ j ≤ n− 1),

· tj+1tjtj+1 = tjtj+1tj (1 ≤ j ≤ n− 2),

· titj = ztjti (|i− j| > 1).

Let S̃′

n be the group generated by elements s1, s2, · · · , sn−1, z subject to the
relations :

· z2 = 1,

· s2j = 1 (1 ≤ j ≤ n− 1),

· sj+1sjsj+1 = sjsj+1sj (1 ≤ j ≤ n− 2),

· sisj = zsjsi (|i − j| > 1).

These groups are non-isomorphic for n 6= 6. It is known that S̃n and S̃
′

n are
equivalent to Schur covering groups of Sn (n ≥ 4). They are the only Schur
covering groups of Sn.
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We consider tensor products of the projective representations. Let ρ1 :
G −→ GL(V ), α-representation, and ρ2 : G −→ GL(W ), β-representation.
Then the map ρ1⊗ρ2 : G −→ GL(V⊗W ) defined by αβ(x, y) = α(x, y)β(x, y)
is αβ-representation. In the case of Sn, it is known that scalars α(x, y) are
either α(x, y) = 1 (∀x, y ∈ Sn) or α(x, y) = ±1 (∀x, y ∈ Sn). The projective
representations with non-trivial scalar maps α are called the spin represen-
tations. Therefore, the tensor products in even (respectively, odd) numbers
for spin representations are linear representations of Sn (respectively, spin
representations). Especially, we deal with the basic spin representations
which are the smallest faithful spin representations. The character values of

the basic spin representations for the groups S̃n are given by the following
theorem.

Theorem 2.1 ([3]).
(1) If n is odd, we have

ζn(λ) =

{
2

ℓ(λ)−1
2 if λ ∈ OP (n)

0 otherwise,

(2) If n = 2k is even, we have

ζ±n (λ) =





2
ℓ(λ)−2

2 if λ ∈ OP (n)

±ik
√
k if λ = (n)

0 otherwise.

The basic spin character of S̃′

n is given by the following theorem.

Theorem 2.2 ([1]).
(1) If n is odd, we have

φn(λ) =

{
in−ℓ(λ)2

ℓ(λ)−1
2 if λ ∈ OP (n)

0 otherwise,

(2) If n = 2k is even, we have

φ±
n (λ) =





in−ℓ(λ)2
ℓ(λ)−2

2 if λ ∈ OP (n)

±ik−1
√
k if λ = (n)

0 otherwise.

In case n is even, from the Theorem 2.1 and 2.2, the Schur covering groups

S̃n and S̃
′

n have two basic spin representations respectively. We write V (n)+,

(W (n)+) for the representation space with character ζ+n , (φ
+
n ). We apply a
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similar definition to the minus case. Clearly,

V (n)+
⊗2

≃ V (n)−
⊗2

,W (n)+
⊗2

≃ W (n)−
⊗2

as C[Sn]−modules.

Simply, we write V (n)⊗2
, (W (n)⊗2

).
Theorem 1.3 implies the irreducible decomposition as C[Sn]-molules. Here

we write Specht module corresponding to partition λ as Sλ, and write its
character as χλ.

Let us now briefly explain what this characteristic map ch is. Let Rn

be identified with the Q span of irreducible characters χλ for all partitions
λ ∈ P (n). We put

R =
⊕

n≥0

Rn.

We define the characteristic map ch : R −→ Λ = Q[pr(x), r ≥ 1] as follows
: ch(χλ) =

∑
µ∈P (n) z

−1
µ χλ(µ)pµ(x). Then the map ch gives isomorphism of

these graded algebras. It is well known as Frobenius formula that ch(χλ) =
sλ(x). We will find ch(ζn

⊗2) and ch(φn
⊗2) by calculating the right side of

the Theorem 1.3.

3. Schur identity

The Kostka-Foulkes polynomial Kλµ(t) is defined by

sλ(x) =
∑

µ∈P (n)

Kλµ(t)Pµ(x; t).

It is known that the Kostka-Foukes polynomial Kλµ(t) satisfies the proper-
ties :

(3.1) (1). Kλµ(t) = 0, unless λ ≥ µ. (2). Kλλ(t) = 1.

For example, when n = 4 and n = 5, the matrices (Kλµ(−1))
λ,µ∈P (n) are

given below[5].

n = 4 n = 5

4 31 22 212 14

4 1 -1 1 -1 1
31 0 1 -1 0 -1
22 0 0 1 -1 2
212 0 0 0 1 -1
14 0 0 0 0 1

,

5 41 32 312 221 213 15

5 1 -1 1 -1 1 1 1
41 0 1 -1 0 0 -1 0
32 0 0 1 -1 0 1 1
312 0 0 0 1 -1 -1 -2
221 0 0 0 0 1 0 1
213 0 0 0 0 0 1 0
15 0 0 0 0 0 0 1

.
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For λ ∈ P (n), we write

Pλ(x;−1) =
∑

µ∈P (n)

aλµsµ(x),

where (aλµ)λ,µ∈P (n) := (Kλµ(−1))−1
λ,µ∈P (n). For λ ∈ SP (n), The coefficients

aλµ are called the Stembridge coefficients, and are written as gλµ.

Example 3.1. If λ = (k2), we have

(1). P22(x;−1) = −s14(x) + s212(x) + s22(x)

(2). P32(x;−1) = s16(x)− s214(x) + s23(x) + s313(x) + s321 + s32(x)

(3). P42(x;−1) = −s18(x) + s216(x) + s24(x)− s315(x) + s3221(x)

−s322(x) + s414(x) + s4212(x) + s431(x) + s42(x).

To prepare a proof of the theorem 1.2, we need to calculate the summation
for all the hook partitions :

∑

λ∈HP (n)

Kλµ(−1).

The following theorem is due to Bryan and Jing [2].

Theorem 3.2 ([2]). For λ = (n− k, 1k), µ 6 λ,

Kλµ(t) = tn(µ)−kℓ(µ)+
k(k+1)

2

[
ℓ(µ)− 1

k

]
,

where

n(µ) :=

ℓ(µ)∑

i=1

(i− 1)µi.

The symbol
[ ]

is q-binomial form at q = t. The algebraic formula for the
Kostka-Foukes polynomials is given by use of relations between vertex op-
erators realizing Hall-Littlewood symmetric functions and Schur functions.
From Theorem 3.2, we have

∑

λ∈HP (n)

Kλµ(t) =
∑

λ∈HP (n)

tn(µ)−kℓ(µ)+
k(k+1)

2

[
ℓ(µ)− 1

k

]

= tn(µ)
ℓ(µ)−1∑

k=0

t−kℓ(µ)+
k(k+1)

2

[
ℓ(µ)− 1

k

]
.

Here we recall q-binomial theorem :

(3.2)
N∏

j=1

(1 + zqj) =
N∑

k=0

q
k(k+1)

2

[
N

k

]
zk.
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Here if N < k, we put

[
N

k

]
= 0.

Put z = t−ℓ(µ) and q = t in (3.2). Immediately we have

N∏

j=1

(1 + t−ℓ(µ)tj) =

N∑

k=0

t
k(k+1)

2 t−ℓ(µ)k

[
N

k

]
.

Hence

∑

λ∈HP (n)

Kλµ(t) = tn(µ)
ℓ(µ)−1∏

j=1

(1 + t−ℓ(µ)+j).

Under the specialization t = −1, when ℓ(µ) ≥ 2, we have

∑

λ∈HP (n)

Kλµ(−1) = (−1)n(µ)
ℓ(µ)−1∏

j=1

(1 + (−1)−ℓ(µ)+j) = 0.

Clearly, if ℓ(µ) = 1, we have µ = (n). From (3.1), we have the following.

Proposition 3.3.

∑

λ∈HP (n)

Kλµ(−1) =

{
1 if ℓ(µ) = 1

0 otherwise.

The left side of Theorem 1.2 is∑

λ∈HP (n)\HOP (n)

sλ(x) =
∑

λ∈HP (n)\HOP (n)

∑

µ∈P (n)

Kλµ(−1)Pµ(x;−1)

=
∑

µ∈P (n)

∑

λ∈HP (n)\HOP (n)

Kλµ(−1)Pµ(x;−1),

∑

λ∈HOP (n)

sλ(x) =
∑

λ∈HOP (n)

∑

µ∈P (n)

Kλµ(−1)Pµ(x;−1)

=
∑

µ∈P (n)

∑

λ∈HOP (n)

Kλµ(−1)Pµ(x;−1).

Therefore, we have only to calculate
∑

λ∈HP (n)\HOP (n)

Kλµ(t) and
∑

λ∈HOP (n)

Kλµ(t).

We divide the set of hook partitions into two sets.

(3.3)
∑

λ∈HP (n)

Kλµ(t) =
∑

λ∈HP (n)\HOP (n)

Kλµ(t) +
∑

λ∈HOP (n)

Kλµ(t).
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For each sum of the right side of (3.3), we have the following results.

∑

λ∈HP (n)\HOP (n)

Kλµ(t) =





(n : even)

tn(µ)
∑n−2

k≥0, even t
−kℓ(µ)+

k(k+1)
2

[
ℓ(µ)− 1

k

]

(n : odd)

tn(µ)
∑n−2

k≥1, odd t
−kℓ(µ)+

k(k+1)
2

[
ℓ(µ)− 1

k

]
.

Likewise

∑

λ∈HOP (n)

Kλµ(t) =





(n : even)

tn(µ)
∑n−1

k≥1, odd t
−kℓ(µ)+ k(k+1)

2

[
ℓ(µ)− 1

k

]

(n : odd)

tn(µ)
∑n−1

k≥0, even t
−kℓ(µ)+

k(k+1)
2

[
ℓ(µ)− 1

k

]
.

Now we apply the specialization t = −1, and write down :
∑

λ∈HP (n)\HOP (n)

Kλµ(−1)

=





(n : even)

(−1)n(µ){
[
ℓ(µ)− 1

0

]
−

[
ℓ(µ)− 1

2

]
+

[
ℓ(µ)− 1

4

]
+ . . .

+(−1)
(n−2)(n−1)

2

[
ℓ(µ)− 1

n− 2

]
}

(n : odd)

(−1)n(µ)+ℓ(µ){−
[
ℓ(µ)− 1

1

]
+

[
ℓ(µ)− 1

3

]
−

[
ℓ(µ)− 1

5

]
+ . . .

+(−1)
(n−2)(n−1)

2

[
ℓ(µ)− 1

n− 2

]
}.
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∑

λ∈HOP (n)

Kλµ(−1)

=





(n : even)

(−1)n(µ)+ℓ(µ){−
[
ℓ(µ)− 1

1

]
+

[
ℓ(µ)− 1

3

]
−
[
ℓ(µ)− 1

5

]
+ . . .

+(−1)
(n−1)n

2

[
ℓ(µ)− 1

n− 1

]
}

(n : odd)

(−1)n(µ){
[
ℓ(µ)− 1

0

]
−
[
ℓ(µ)− 1

2

]
+

[
ℓ(µ)− 1

4

]
+ . . .

+(−1)
(n−1)n

2

[
ℓ(µ)− 1

n− 1

]
}.

For the partitions µ such that ℓ(µ) ≤ 2, we show the following.

Proposition 3.4.

(1) If ℓ(µ) = 1 (i.e. µ = (n)), we have

∑

λ∈HP (n)\HOP (n)

Kλµ(−1) =

{
1 if n : even

0 if n : odd,

∑

λ∈HOP (n)

Kλµ(−1) =

{
0 if n : even

1 if n : odd.

(2) If ℓ(µ) = 2 and µ = (n− i, i), (i ≥ 1), we have

∑

λ∈HP (n)\HOP (n)

Kλµ(−1) =

{
(−1)i if n : even

(−1)i+1 if n : odd,

∑

λ∈HOP (n)

Kλµ(−1) =

{
(−1)i+1 if n : even

(−1)i if n : odd.

Proof. (1). If µ = (n), from (3.1) we have

∑

λ∈HOP (n)

Kλµ(−1) =

{
0 if n : even

1 if n : odd.



142 KAZUYA AOKAGE

Hence, Proposition 3.3 and (3.3) assert the required result.

(2). By assumption, we have

n(µ) = i.

When n is even, we have

∑

λ∈HP (n)\HOP (n)

Kλµ(−1) = (−1)i
[
1
0

]
= (−1)i,

∑

λ∈HOP (n)

Kλµ(−1) = (−1)i+2(−
[
1
1

]
) = (−1)i+1.

When n is odd, we have

∑

λ∈HP (n)\HOP (n)

Kλµ(−1) = (−1)i+2(−
[
1
1

]
) = (−1)i+1,

∑

λ∈HOP (n)

Kλµ(−1) = (−1)i
[
1
0

]
= (−1)i.

�

Next we investigate µ such that ℓ(µ) ≥ 3. Here we recall q-binomial
relation

[
N + k

k

]
=

[
N + k

N

]
.

Proposition 3.5. If ℓ(µ) is odd ≥ 3, we have

∑

λ∈HOP (n)

Kλµ(−1) =
∑

λ∈HP (n)\HOP (n)

Kλµ(−1) = 0.



RECTANGULAR HALL-LITTLEWOOD SYMMETRIC FUNCTIONS 143

Proof. Let n be even. (i). If ℓ(µ) = 2m+ 1 and m is even, we have
∑

λ∈HOP (n)

Kλµ(−1)

= (−1)n(µ){
[
ℓ(µ)− 1

1

]
−

[
ℓ(µ)− 1

3

]
+

[
ℓ(µ)− 1

5

]
+ . . .−

[
ℓ(µ)− 1
ℓ(µ)− 2

]
}

= (−1)n(µ){
[
ℓ(µ)− 1

1

]
−

[
ℓ(µ)− 1

3

]
+

[
ℓ(µ)− 1

5

]
+ . . .−

[
ℓ(µ)− 1

1

]
}

= (−1)n(µ){
[
ℓ(µ)− 1

1

]
−

[
ℓ(µ)− 1

1

]
+

[
ℓ(µ)− 1

3

]
−

[
ℓ(µ)− 1

3

]
+ . . .

+

[
ℓ(µ)− 1
ℓ(µ)−3

2

]
−

[
ℓ(µ)− 1
ℓ(µ)−3

2

]
}

= 0.

From (3.3), we have
∑

λ∈HP (n)\HOP (n)

Kλµ(−1) = 0.

(ii). If ℓ(µ) = 2m+ 1 and m is odd, we have
∑

λ∈HP (n)\HOP (n)

Kλµ(−1)

= (−1)n(µ){
[
ℓ(µ)− 1

0

]
−

[
ℓ(µ)− 1

2

]
+

[
ℓ(µ)− 1

4

]
+ . . .−

[
ℓ(µ)− 1
ℓ(µ)− 1

]
}

= (−1)n(µ){
[
ℓ(µ)− 1

0

]
−

[
ℓ(µ)− 1

2

]
+

[
ℓ(µ)− 1

4

]
+ . . .−

[
ℓ(µ)− 1

0

]
}

= (−1)n(µ){
[
ℓ(µ)− 1

0

]
−

[
ℓ(µ)− 1

0

]
+

[
ℓ(µ)− 1

2

]
−

[
ℓ(µ)− 1

2

]
+ . . .

+

[
ℓ(µ)− 1
ℓ(µ)−3

2

]
−

[
ℓ(µ)− 1
ℓ(µ)−3

2

]
}

= 0.

Likewise from (3.3), it follows that
∑

λ∈HOP (n)

Kλµ(−1) = 0.

When n is odd, it suffices to exchange
∑

λ∈HOP (n) and
∑

λ∈HP (n)\HOP (n).
�
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Finally, we show the following.

Proposition 3.6.

If ℓ(µ) is even ≥ 4, we have
∑

λ∈HOP (n)

Kλµ(−1) =
∑

λ∈HP (n)\HOP (n)

Kλµ(−1) = 0.

Proof.
Let n be even. (i). If ℓ(µ) = 2k and k is even, we have

∑

λ∈HP (n)\HOP (n)

Kλµ(−1)

= (−1)n(µ)(

[
ℓ(µ)− 1

0

]
−

[
ℓ(µ)− 1

2

]
+

[
ℓ(µ)− 1

4

]
+ . . . −

[
ℓ(µ)− 1
ℓ(µ)− 2

]
)

= (−1)n(µ)(

[
ℓ(µ)− 1

0

]
−

[
ℓ(µ)− 1

2

]
+

[
ℓ(µ)− 1

4

]
+ . . . −

[
ℓ(µ)− 1

1

]
)

= (−1)n(µ)(

[
ℓ(µ)− 1

0

]
−

[
ℓ(µ)− 1

1

]
−

[
ℓ(µ)− 1

2

]
+

[
ℓ(µ)− 1

3

]
+ . . .

+

[
ℓ(µ)− 1
ℓ(µ)−2

2

]
).

Also
∑

λ∈HOP (n)

Kλµ(−1)

= (−1)n(µ)(−
[
ℓ(µ)− 1

1

]
+

[
ℓ(µ)− 1

3

]
−

[
ℓ(µ)− 1

5

]
+ . . .+

[
ℓ(µ)− 1
ℓ(µ)− 1

]
)

= (−1)n(µ)(−
[
ℓ(µ)− 1

1

]
+

[
ℓ(µ)− 1

3

]
−

[
ℓ(µ)− 1

5

]
+ . . .+

[
ℓ(µ)− 1

0

]
)

= (−1)n(µ)(

[
ℓ(µ)− 1

0

]
−

[
ℓ(µ)− 1

1

]
−

[
ℓ(µ)− 1

2

]
+

[
ℓ(µ)− 1

3

]
+ . . .

+

[
ℓ(µ)− 1
ℓ(µ)−2

2

]
).

Hence

∑

λ∈HP (n)

Kλµ(−1) = 2(−1)n(µ)(

[
ℓ(µ)− 1

0

]
−

[
ℓ(µ)− 1

1

]
−

[
ℓ(µ)− 1

2

]

+

[
ℓ(µ)− 1

3

]
+ . . .+

[
ℓ(µ)− 1
ℓ(µ)−2

2

]
).
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From Proposition 3.3

∑

λ∈HP (n)\HOP (n)

Kλµ(−1) =
∑

λ∈HOP (n)

Kλµ(−1) = 0.

(i). If ℓ(µ) = 2k and k is odd, we have

∑

λ∈HP (n)\HOP (n)

Kλµ(−1)

= (−1)n(µ)(

[
ℓ(µ)− 1

0

]
−

[
ℓ(µ)− 1

2

]
+

[
ℓ(µ)− 1

4

]
+ . . . +

[
ℓ(µ)− 1
ℓ(µ)− 2

]
)

= (−1)n(µ)(

[
ℓ(µ)− 1

0

]
−

[
ℓ(µ)− 1

2

]
+

[
ℓ(µ)− 1

4

]
+ . . . +

[
ℓ(µ)− 1

1

]
)

= (−1)n(µ)(

[
ℓ(µ)− 1

0

]
+

[
ℓ(µ)− 1

1

]
−

[
ℓ(µ)− 1

2

]
−

[
ℓ(µ)− 1

3

]
+ . . .

+

[
ℓ(µ)− 1
ℓ(µ)−2

2

]
).

Also
∑

λ∈HOP (n)

Kλµ(−1)

= (−1)n(µ)(−
[
ℓ(µ)− 1

1

]
+

[
ℓ(µ)− 1

3

]
−

[
ℓ(µ)− 1

5

]
+ . . . −

[
ℓ(µ)− 1
ℓ(µ)− 1

]
)

= (−1)n(µ)(−
[
ℓ(µ)− 1

1

]
+

[
ℓ(µ)− 1

3

]
−

[
ℓ(µ)− 1

5

]
+ . . . −

[
ℓ(µ)− 1

0

]
)

= (−1)n(µ)(−
[
ℓ(µ)− 1

0

]
−

[
ℓ(µ)− 1

1

]
+

[
ℓ(µ)− 1

2

]
+

[
ℓ(µ)− 1

3

]
+ . . .

−
[
ℓ(µ)− 1
ℓ(µ)−2

2

]
).

Hence ∑

λ∈HP (n)\HOP (n)

Kλµ(−1) = −
∑

λ∈HOP (n)

Kλµ(−1).

Also by multiplying both sides of (3.2) by z we have

z

N∏

j=1

(1 + zqj) =
N∑

k=0

q
k(k+1)

2

[
N

k

]
zk+1.



146 KAZUYA AOKAGE

If we put q = −1, z = −1, and N = ℓ(µ)− 1, we have

0 = −
ℓ(µ)−1∏

j=1

(1 + (−1)j+1) =

ℓ(µ)−1∑

k=0

(−1)
(k+1)(k+2)

2

[
ℓ(µ)− 1

k

]

=

[
ℓ(µ)− 1

0

]
+

[
ℓ(µ)− 1

1

]
−

[
ℓ(µ)− 1

2

]
−

[
ℓ(µ)− 1

3

]

+

[
ℓ(µ)− 1

4

]
+

[
ℓ(µ)− 1

5

]
+ . . .+

[
ℓ(µ)− 1
ℓ(µ)− 2

]
+

[
ℓ(µ)− 1
ℓ(µ)− 1

]

=

[
ℓ(µ)− 1

0

]
+

[
ℓ(µ)− 1

1

]
−

[
ℓ(µ)− 1

2

]
−

[
ℓ(µ)− 1

3

]

+

[
ℓ(µ)− 1

4

]
+

[
ℓ(µ)− 1

5

]
+ . . .+

[
ℓ(µ)− 1

1

]
+

[
ℓ(µ)− 1

0

]

= 2(

[
ℓ(µ)− 1

0

]
+

[
ℓ(µ)− 1

1

]
−

[
ℓ(µ)− 1

2

]
−

[
ℓ(µ)− 1

3

]
+ . . .+

[
ℓ(µ)− 1
ℓ(µ)−2

2

]
).

Hence
∑

λ∈HP (n)\HOP (n)

Kλµ(−1) = 0 and
∑

λ∈HOP (n)

Kλµ(−1) = 0.

The same reason as before holds when n is odd. �

Proof of Theorem 1.1.
When n is even, we have the following equation (3.4) :

∑

λ∈HP (n)\HOP (n)

sλ(x)(3.4)

=
∑

λ∈HP (n)\HOP (n)

∑

µ∈P (n)

Kλµ(−1)Pµ(x;−1)

=
∑

µ∈P (n)

∑

λ∈HP (n)\HOP (n)

Kλµ(−1)Pµ(x;−1)

=
∑

λ∈HP (n)\HOP (n)

Kλn(−1)Pn(x;−1)

+
∑

ℓ(µ)=2

∑

λ∈HP (n)\HOP (n)

Kλµ(−1)Pµ(x;−1)

+
∑

ℓ(µ)≥3

∑

λ∈HP (n)\HOP (n)

Kλµ(−1)Pµ(x;−1).
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From Proposition 3.4, 3.5 and 3.6, we have

(3.4) = Pn(x;−1) +
∑

ℓ(µ)=2

(−1)µiPµ(x;−1)

=
∑

ℓ(µ)≤2

(−1)µiPµ(x;−1).

Likewise ∑

λ∈HOP (n)

sλ(x)

=
∑

λ∈HOP (n)

Kλn(−1)Pn(x;−1) +
∑

ℓ(µ)=2

∑

λ∈HOP (n)

Kλµ(−1)Pµ(x;−1)

+
∑

ℓ(µ)≥3

∑

λ∈HOP (n)

Kλµ(−1)Pµ(x;−1)

=
∑

ℓ(µ)=2

(−1)µi+1Pµ(x;−1).

�

In parallel when n is odd, from Proposition 3.4, 3.5 and 3.6, we have the
following.

Remark 3.7.

If n is odd, we have
(i) ∑

µ∈HP (n)\HOP (n)

sµ(x) =
∑

ℓ(λ)=2

(−1)λ2+1Pλ(x;−1)

(ii) ∑

µ∈HOP (n)

s(x) =
∑

ℓ(λ)≤2

(−1)λ2Pλ(x;−1).

These formulas do not correspond to the representation of the second
tensor.

The symmetric function Qλ(x;−1) is introduced in Schur’s paper[3] on
projective representations. For λ ∈ SP (n)

Qλ(x;−1) =
∑

ρ∈OP (n)

2
ℓ(λ)+ℓ(ρ)+ǫ(λ)

2 zρ
−1ζλ(ρ)pρ(x),

ǫ(λ) :=

{
1 if ℓ(λ) + ℓ(ρ) : odd

0 if ℓ(λ) + ℓ(ρ) : even.
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And it is known that Qλ(x;−1) = 2ℓ(λ)Pλ(x;−1), if λ ∈ SP (n). Spin charac-
ters with conjagacy class consisting of odd partitions appear in the terms of
Schur’s Qλ(x;−1) function. In other words, otherwise they do not appear.
Corollary 3.8 assert that we can find the spin character ζn(n) in the term of
Hall-Littlewood function for a rectangular partition of length 2.

Corollary 3.8. If n = 2k is even, we have

ζn(n) =
√

〈Pk2(x;−1), pn〉t=0 = ik
√
k.

Proof. From Theorem 1.2, we have

Pn(x;−1) + 2

k∑

i≥1

(−1)iP(n−i,i) =
∑

λ∈HP (n)

(−1)leg(λ)sλ(x).

By using the Murnaghan-Nakayama’s recursion formulas for λ ∈ HP (n), we
immediately have

pn(x) =
∑

λ∈P (n)

χλ(n)sλ(x)

=
∑

λ∈HP (n)

(−1)leg(λ)sλ(x).

The formula below will gives expansions for the power sum symmetric func-
tions :

pn(x) = Pn(x;−1) + 2

k∑

i≥1

(−1)iP(n−i,i)(x;−1).

By using the Schur’s Q-functions, we have

pn(x) =
1

2

k−1∑

i≥0

(−1)iQ(n−i,i)(x;−1) + (−1)k2Pk2(x;−1).

Pk2(x;−1) =
1

4

k−1∑

i≥0

(−1)i+k+1Q(n−i,i)(x;−1) + (−1)k
1

2
pn(x).

Hence

Pk2(x;−1) =
k−1∑

i≥0

(−1)i+k+1
∑

ρ∈OP (n)

2
ℓ(ρ)−2

2 zρ
−1ζ(n−i,i)(ρ)pρ(x)(3.5)

+(−1)k
1

2
pn(x).

We define inner product on Λ [5]

〈pλ(x), pµ(x)〉t=0 := zλδλµ.
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From (3.5), we have

〈Pk2(x;−1), pn(x)〉t=0 = (−1)k
1

2
zn = (−1)k

n

2
= (−1)kk.

�

Example 3.9.

(1). P22(x;−1) =
1

6
p14(x)−

2

3
p31(x) +

1

2
p4(x)

(2). P32(x;−1) =
2

45
p16(x)−

2

9
p313(x) +

5

18
p32(x) +

2

5
p51(x)−

1

2
p6(x)

(3). P42(x;−1) =
1

126
p18(x)−

2

45
p315(x) +

2

9
p3212(x)−

2

5
p53(x)

−2

7
p71(x) +

1

2
p8(x).

Next we introduce some relations about the coefficients ak2µ. First,

Pλ(x;−1) =
∑

µ∈P (n)

aλµsµ(x) =
∑

µ∈P (n)

aλµ
∑

τ∈P (n)

zτ
−1χµ(τ)pτ (x)

=
∑

τ∈P (n)

(
∑

µ∈P (n)

aλµχµ(τ))zτ
−1pτ (x).

For λ ∈ SP (n),

Qλ(x) = 2ℓ(λ)
∑

τ∈P (n)

(
∑

µ∈P (n)

aλµχµ(τ))zτ
−1pτ (x).

We have

∑

µ∈P (n)

aλµχµ(τ) =

{
2

−ℓ(λ)+ℓ(τ)+ǫ

2 ζλ(τ) if τ ∈ OP (n)

0 otherwise.

Likewise, for λ = (k2) we have

Corollary 3.10. If n = 2k is even, we have

∑

µ∈P (n)

ak2µχµ(τ) =





2
ℓ(µ)−2

2
∑k−1

i≥0 (−1)i+k+1ζ(n−i,i)(τ) if τ ∈ OP (n)

(−1)kk if τ = (n)

0 otherwise.
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Second, we calculate the number Kk2µ(−1).

Pλ(x;−1) =
∑

τ∈P (n)

〈Pλ(x;−1), pτ (x)〉t=0zτ
−1pτ (x)

=
∑

τ∈P (n)

〈Pλ(x;−1), pτ (x)〉t=0zτ
−1

∑

µ∈P (n)

χµ(τ)sµ(x)

=
∑

µ∈P (n)

(
∑

τ∈P (n)

〈Pλ(x;−1), pτ (x)〉t=0zτ
−1χµ(τ))sµ(x).(3.6)

When λ = (k2), we have

〈Pk2(x;−1), pτ (x)〉t=0

=

k−1∑

i≥0

(−1)i+k+12
ℓ(τ)−2

2 ζ(n−i,i)(τ) + (−1)k
1

2
〈pn(x), pτ (x)〉t=0.

Hence ∑

τ∈P (n)

〈Pk2(x;−1), pτ (x)〉t=0zτ
−1χµ(τ)

=
∑

τ∈P (n)

(

k−1∑

i≥0

(−1)i+k+12
ℓ(τ)−2

2 ζ(n−i,i)(τ)

+(−1)k
1

2
〈pn(x), pτ (x)〉t=0)zτ

−1χµ(τ)

=
∑

τ∈OP (n)

(
k−1∑

i≥0

(−1)i+k+12
ℓ(τ)−2

2 ζ(n−i,i)(τ))z
−1
τ χµ(τ) + (−1)k

1

2
χµ(n).

From (3.6), we have

Pk2(x;−1)

=
∑

µ∈P (n)

(
∑

τ∈OP (n)

(
k−1∑

i≥0

(−1)i+k+12
ℓ(τ)−2

2 ζ(n−i,i)(τ)z
−1
τ χµ(τ))

+(−1)k
1

2
χµ(n))sµ(x).

Corollary 3.11. For µ ∈ P (n) and n = 2k, we have

Kk2µ(−1) = (−1)k
1

2
χµ(n) +

∑

τ∈OP (n)

k−1∑

i≥0

(−1)i+k+12
ℓ(τ)−2

2 z−1
τ ζ(n−i,i)(τ)χµ(τ).

Finally, from example 3.1 we suggest the following conjecture.
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Conjecture 3.12. For µ ∈ HP (n),

ak2µ =

{
0 if leg(µ) < k

(−1)k+leg(µ) if leg(µ) ≥ k.
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[3] I. Schur, Über die Darstellung der symmetrischen und der alternierenden Gruppe durch
gebrochene lineare Snbstitutionen, J. Reine Angew. Math. 139 (1911) 155-250.

[4] J. R. Stembridge, Shifted tableaux and the projective representations of symmetric
groups, Adv. in Math. 74 (1989) 87-134.

[5] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd. ed, Oxford Univ
Press, 1995.

Department of Mathematics, National Institute of Technology, Ariake

College, Fukuoka, 836-8585 Japan.

e-mail address: aokage@ariake-nct.ac.jp

(Received June 22, 2019 )
(Accepted September 2, 2019 )


