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A NOTE ON PRODUCTS IN STABLE HOMOTOPY
GROUPS OF SPHERES VIA THE CLASSICAL ADAMS
SPECTRAL SEQUENCE

Ryo KaTo AND KATSUMI SHIMOMURA

ABSTRACT. In recent years, Liu and his collaborators found many non-
trivial products of generators in the homotopy groups of the sphere
spectrum. In this paper, we show a result which not only implies most
of their results, but also extends a result of theirs.

1. INTRODUCTION

The homotopy groups . (S?) of the sphere spectrum S° form an algebra
with multiplication given by composition. The determination of the struc-
ture of m,(S°) is one of the most important problems in stable homotopy
theory. We study the problem by considering the p-component ,m.(S°) of
the groups at a prime number p. The classical Adams spectral sequence
(ASS) and the Adams-Novikov spectral sequence (ANSS) are typical and
effective tools for calculating pﬁ*(SO). We usually use the ANSS to study
»7+(S°) at an odd prime p, and the ASS at the prime two. In recent years,
Liu and his collaborators advocated that the ASS is sufficiently effective at
p > 2 as well as at p = 2. Indeed, they derived out many results on the
non-triviality of products of generators in ,m.(S?) from the ASS at p > 2 by
use of the May spectral sequence (MSS). Their method is simple as follows:
for a product & € pm—5(SY) of generators, let € be an element of the Fs-
term 45" of the ASS, which detects £. We also consider an element z in

the Ei-term MEf’t’* of the MSS, which converges to £. Then, they proceed
their argument in the following steps:

1) The element z is not a coboundary of the first May differential d} : MEf Lt
M18,t,*
E}"". 1
2) For any r > 2, the domain of the May differential d™ : Mpi—bb*
M 57t7* 1
E."" is zero, and

3) For any r > 2, the domain of the Adams differential d2': AE; AL
AR5 is zero by use of the MSS.

The main theorem of this paper Theorem 1.1 is shown in a similar procedure
(Proposition 4.1 and Corollary 4.2 for 1) and 2), and the proof of Theorem
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1.1 for 3)) for the homotopy groups m.(V(2)) of the second Smith-Toda
spectrum V(2) (¢f. (1.1)). The result is new one, and implies most of
results shown by Liu and his collaborators as a corollary.

From here on, we assume that the prime number p is greater than five.
Let H.(X) denote the mod p reduced homology groups of a spectrum
X represented by the mod p Eilenberg-MacLane spectrum H. The FEs-
term AE;’*(X ) of the ASS converging to the homotopy groups ,7_ (X) of
a spectrum X is the Ext group Ext’;"(Z/p, H.(X)) of the category of A,-
comodules. Here A, = H,(H) denotes the dual of the Steenrod algebra,
which is isomorphic as an algebra to the free algebra P(&; : ¢ > 1) ® E(7; :
i > 0) over generators &;’s and 7;’s. Let V (k) for k > —1 denotes the k-th
Smith-Toda spectrum defined by H.(V(k)) = E(r; : 0 <1 < k). Then, for
k < 3, V(k) is known to exist if and only if p > 2k + 1 (Smith [32], Toda
[33], Ravenel [31]). In particular, if p > 7, then V (k) for £ < 3 are given by
the cofiber sequences

SO L 50 Ly (0) Lm0,
SOV (0) % V(0) 5 V(1) L 2ty (0),
s@eray (1) B v1) 2 v (2) 2 setetly (1) and
Sy (2) 2 v(2) B 1 (3) £y n0PHetatly(9),

in which a is the Adams wvi-periodic map, and 8 and ~ are the vo- and
the wvs-periodic maps given by Smith and Toda, respectively. Hereafter, ¢
denotes the integer 2p — 2, and m.(S°) denotes ,m.(S°). In this paper, we
consider the Greek letter elements of 7,(S°) and 7,(V(0)) defined by

(1.1)

as = ja’i, Bs = jj18%1i and s = jj1jey¥iziri € m.(S°); and
B1 = j1Bi1i € m(V(0)).

We moreover consider some other generators:

Cn € Tprr1)g-3(5");  Jén € T(prip)g-3(S") and  @n € T(pniapiyg-3(SY)
given by Cohen [1], Lin [4] and Liu [19]. Lin and Zheng [7] and Liu [15]
constructed generators A s € Tt sp2tsprs)g—7(S°) for n > 2and 3 < s <
p — 2. We now state our main theorem, which extends the results [20,
Theorems 1.2 and 1.3] of Liu’s. In this paper, n denotes a fixed integer > 4.

(1.2)

Theorem 1.1. Let n be an integer greater than four. The following products
of elements of T.(S°) and 7,(V(0)) are all non-trivial:

Q1@nYsP1, Jén1P2s € 7T(pn+3p2+(3+2)p+s)q_9(SO) for 3 < s <p,
CnB1B27s € w(pn+sp2+(s+2)p+s)q_10(SO) for3<s<p-—2, and
/BiAn;s/Bl € W(p”+sp2+(s+2)p+s)q—10(V(O)) for3<s<p-—-2.

The proof is given at the end of the paper.
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Corollary 1.2. Every factor of the elements aywy,vVs51, jé€na1B2Ys, CnB1827s
of pm,(S°) and Bi n 551 of T(V(0)) in the theorem is also non-trivial in the
homotopy groups.

We note that the corollary contains almost of all results of Liu and his
collaborators on the non-triviality of products of elements of 7. (S°): [2], [8],
(9, [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [34], [35], [36] and [37].
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2. THE ADAMS SPECTRAL SEQUENCE FOR 7. (V' (2))

Hereafter, P(z;) and E(z;) denote a polynomial and an exterior algebras
on generators z; over Z/p, respectively. Let A, denote the dual of the
Steenrod algebra isomorphic to P(&1,&s,...) ® E(19,71,...) as a graded
algebra, where deg &, = 2(p"™ — 1) and deg 7,,, = 2p" — 1. It is also a Hopf
algebra with the coproduct A: A, — A, ® A, given by

m . m )
A=) & ®& and Ary=7,01+) & @
= 1=0

(& = 1). Consider the Adams spectral sequence
By (V(2) = Exty (Z/p, H{(V(2))) = m—s(V(2)).

The second Smith-Toda spectrum V'(2) satisfies H.(V(2)) = E(70,71,72) =
A4 Z/p for the quotient Hopf algebra A. = P(&1,82,... )@ E(73,74,...),
and we have the isomorphisms

AES'(V(2)) = ExtA (Z/p, H*(V(2)))
= Ext} (Z/p, A0z Z/p) = Ext (Z/p,Z/p)

by the change of rings theorem (cf. [31, A1.3.13]). The Ext group is deter-
mined as the cohomology of the cobar complex CZ  defined by Ci =A.®

--® A, (the s-fold tensor product of A,) with coboundary dy : C’S — C’sle

given by ds(z) = 1@z+Y 5 1 (—=1)'As(x)+(—1)*Tlz®1 for Ai(m@ ®$S) =
1 ®...0 A(x;) ®...® xs. We consider the following generators:

hi = [ €4EIUV(2)) and

B o e o P e s v (e)
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for ¢ > 0, where [z] denotes the cohomology class of a cocycle x of the cobar
complex C* . We also have generators

(2.2 g = (ho ho,hi) € By PPV (2)) and
' ko = (ho,hy,hy) € AEZPPTI((2))

given by the Massey products. By the juggling theorem of the Massey
products, we have a well known relation:

(2.3) goh1 = hoko € AES’Q@H)(](V@))-

3. THE MAY SPECTRAL SEQUENCE

Hereafter, we abbreviate “Ey"(V(2)) to 4E5 ™. In this section, we study
the Adams Fs-term by the May spectral sequence MEf’t’u = AEg’t with

Mp** = A® Hy® H® B
and differential d : Mpstu _y MpstLbu=r fo.e

A:P(ai:z’23), H():E(hi’oli>0),

GL  H—B(h,:i>0,j>0) and B=Plb,:i>0,j>0)

on the generators

1,2p"—1,2i+1
azeME17p 7Z+7

b /26— i i+1 .
hij € ME11,2(1? Dp?2i=1 4 bij € ME%’2(]) D+ p(2i-1)
We notice that the May Ej-term is a graded commutative algebra and the

May differentials are derivations. For each element x € MEf’t’u, we denote

by dim z and deg x the superscripts s and ¢, respectively. The first May
differential d} is given by

(32) o diw(a'l) - 23§k<2‘ hi—k:,k:ak7 u
By definition of the May Ei-term, the generators hq;, b1i, go = h2ohi,0

and Eo = hg,oh1,1 are obtained by the elements in (2.1) and (2.2). We also
have a generator 7, see [8, Th. 1.1].

Lemma 3.1. In the May E:-term, we have permanent cycles
hiiy bii, Go, ko and As=ai *hzohaihiz

for i > 0 and 3 < s < p, which detect h;, b;, go, ko in (2.1) and (2.2),
and 74 € AE;’*, respectively. Here, 7y, is an element converging to i2i117ys €
T (sp?+(s—)p+s—2)g—3(V (2)) for the element s in (1.2)
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Throughout this paper, the word ‘monomial’ means a (nonzero) product
of algebraic generators of the May FEi-term up to sign, that is, a monomial
xy is identified as yx (without sign) for generators z and y. A monomial
x € ME]™" is expressed as

(3.3) z== H x; for a subset G C {aw, hi i, by | K>3 k>0,1>1}.
T, €G

* ok, %

In particular, if G = (), then x = 1. A monomial z of MEl’
ization

(3.4) x = a(x)ho(x) f(x)for a(x) € A, ho(z) € Hy, f(x) € H® B.

Let M denote the set of all monomials of MEI"*’*. We define mappings
e, e M — 7 for k> 0 so that

d(a;) = 1, d(hij)=0, (bi;) =0,
1 0<k<i

cr(a;) = c(hij) = {

0 otherwise

has a factor-

1 j<k<i+y
0 otherwise

1 j<k<i+j

ck(biy) = .
k( Z’]) 0 otherwise

MET?*a*

for the generators of , and for a monomial x =[], z;,

d(x) = ZC’(%’% k() = ch(xi)

and

(3.5) c(@) = | D er(@)p" | ¢+ ().

k>0
Under the notation, we see that
(3.6) degz = c(x).

We note that the part ;- ck (z)p” of (3.5) is not always the p-adic expan-
sion of ¢ in degx = c¢q + (). We notice that

d(x) = co(a(x)) = er(a(z)) = ca(a(z)) = dima(z),

(3.7) co(ho(z)) = dim ho(z)

and
(3.8) co(x) = cola(z)ho(x)) = (x) + dim ho(x) = dim a(z)ho(z).
Furthermore, we have the following relations on ¢ (x):

Lemma 3.2. Let x € MET™ be a monomial. Then,
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1) For integers s, t and u with s >t > u, we have cs(x)+cy(z) —cp(x) <
dimz.
2) Forr >0, dimho(z) —r < ¢ ().

Proof. 1) For a monomial z =[], cq2; in (3.3), we put Cs(z) = {z;
cs(x;) = 1}. We notice that cs(x) = #Cs(z) and Cs(z) N Cy(z) C
It follows that cs(x) + cu(z) — cr(x) < cs5(x) + cu(x) — #(Cs(x) N Cy(x ))
#(Cs(z) UCy(x)) < dima.

2) We note that dimh; o = 1 and ¢,(h;o) = 1 if ¢ > r. For a monomial
z = [[,.cq i, we have

dim hy(z) = dim H hio + dim H hio <7+ cp(x).

hi0€G,i<r hi0€G,i>r

We introduce a notation:

(3.9) ci(z) = (¢i—1(x), ci—2(x), ..., co(x))

for 2 > 1 and a monomial x.
In the Adams spectral sequence, we write

§=(y)~

if a permanent cycle y of the Fo-term detects a homotopy element &. This
is well defined up to higher filtration of the ASS. The Greek letter elements
we consider here are

= (ho)™ € mg-1(S8"),  B1 = (bo)™ € Tpg—2(5?),
B2 = (ko)™ € mapr1)g—2(5°); and  B] = (7)™ € mpe—1(V(0)),
and Cohen’s [1], Lin’s [4] and Liu’s elements [19] :
Cn = (hobn—1)~ € T(pn+1)g— 3(50) for n > 1,
(3.11) Jén = (bohp + h1bp—1)~ € 7T(pn+p)q 3(SY) for n >3, and
wn = (kohn)™ € Tpniopt1)g— 53(SY) for n > 3.

(3.10)

Lin and Zheng [7] constructed a generator

An = <C7lz/—1i1aavﬁi> = (bn—lgO)N € 71'(p”urjrﬂrQ)q—ll(V<1))
(Toda bracket ), where ¢ 1 € [V(1), V(1)](pn11)q—a satisfies j1¢;, 1 = jj1(Cn1A
V(1)). Lin and Zheng [7] and Liu [15] showed that the composite A, s =
Ji1g2v%ia Ay satisfying
(312) )\n,s = (bn—IQOTS)N S 7T(p”+s(p2+p+l))qf4—s(so)
is essential forn >4 and 3 < s <p—2.
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For a monomial z € ME]"™" we denote by 7 the set of monomials, each
of these has degree deg x. Hereafter, we consider a monomial

lij € {hij, bij—1}.
We see that Tw = Ew = gi,j_l. For example,
o 1
lo1 = {h21,b20,h12h1,1,h1,101,1, h1 201 0, bl,lbl,Oahl,lbzl)’()a b% }

and
=~ -1
a4 = {a4,a3h173,a3b172,a3h172b11’71 ,agbzf’l}.

Lemma 3.3. For u >0 and k > 0, we consider a monomial x of MEf’C(QE)’*
such that
u k<i<n
3.13 cilz) = - .
( ) (@) {O 1>n

If lop with k < a+b<n (resp. ap with k <b <n) is a factor of x, then
has a factor in an_b,b (resp. ap).

Proof. Consider an element [, ;, with k < a+b < n such that x = x¢l, for a
monomial zg. Then, ¢, yp—c(20) = coyp—c(r) — = u — e for e = 0,1, which
shows that xg has a factor [, 444 for an integer ¢; > 0. Therefore, x has a
factor 1,, qyplap € l~a+L17b. Inductively, we see that = has a factorization

i—1
Lysilip_ v 5oy - liusilap forsome £>0and s; =a+b+ > 7" v,
which is in l,,_pp if ¢ + 50 = n.

The statement for a,, is verified similarly. O

For sets Sy, for 1 < k < £ of monomials in the May F;-terms, we consider
a set

Sng---Sg:{xle---xﬂxkeSk}

of monomials. In particular, we write S® = S---S (e factors) if e > 0, and
SO = () for a set S. We also define

S@ = {zeS|dimz=d}

&ms—{o S=0,

min{dimx | z € S} otherwise.

and

In particular, we have

(3.14) dim ¢

n—ti,t

)0 t=0ande>n, ore=0
)2 —1 otherwise.
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~

Indeed, if e > 1 and I _;; # 0, then the dimension of a monomial of the
subset
(315) hn—i,i(’l\ff_)i’i)e_l C Z;l—’i,i

is 2e — 1 and implies (h_mTfL_ZZ = 2e¢ — 1 since h?,j =0.

Proposition 3.4. Suppose that a monomial x € MEf’C(x)’* satisfies (3.13)
for integers uw > 0 and k > 0. Then,

— ~€0Aé1 . ’Vem
r=Iz forleally, , UL .,

m whichk > 11 >13> > 1, >0 form>0,ey>0,e >0 foreachi > 1,
Yoirgei =u=cy_1(x), and z is a monomial which has no factor of the form
l,,—0¢ nor a,,. Furthermore, c;(z) =0 fori >k and c,,—1(2) < ¢, (2).

Note that we do not claim the uniqueness of the factorization of the propo-
sition.

Proof. By Lemma 3.3, we have an integer (¢ < k and an element yy €
ln—10,10 U Gp, such that z = zyp. The factor g also satisfies (3.13) for & > 0
and v — 1 unless u = 1. Inductively, we obtain a factorization

T = 2Yu—1Yu—2 - - - Y0,

for y; € an_LMi Uay, with ¢; < k, and z has no factor of the form {,, 4, nor a,,.
Put | = yu—1--- Yo, and we may consider [ € 5%0721—“,“ . -flvfl”jbmbm and ¢ >
Ly > -+ > 1, > 0. We also obtain the equality Z;”:O ej = u. The element
z satisfies ¢;(z) = 0 for i > k, since ¢;(z) = () — ¢;(Yu—1Yu—2---Y0) =
u—u=0.

We also have ¢,,_1(z) < ¢,,(2). Indeed, if ¢,,_1(2) > ¢,;(2), then z should
have a factor 2/ € ,vai_w U a,,, which implies y;2’ € ’lvn_w U a,. Hence we
may replace vy; with y;2’ as a factor of . [

Now consider the internal degree

(3.16) to=p"+p>+2p—1)g+p—4.
We put
(3.17) us = degal = (sp®> + sp+s)g+s for s > 0.

Lemma 3.5. Consider a monomial x of the May E1-term MEf+5+5_S_T’tO_us_r+1’*

withe € {0,1}, 0<s<p—4, andr > 1. Then c,y1(x) in (3.9) is

(3.18) C?H_l(s):(1,0,...,0,p—1—8,p—|—1—8,p—1—8) or
. Crlz—l—l(S):(O?p_17"'7p_17p7p_1_3;p+1_37p—1—8).



A NOTE ON PRODUCTS IN HOMOTOPY GROUPS 115

Proof. We first note that
(3.19) dimr <p+5—s<2p—1—35
by p > 7. We also note that

degx = tog—us—7r+1
(3.20) = P"+p*—sp’+(2—-8)p—1—-8)q+p—3—s5—7
= (w0 cx(z)p*)q + ¢ (x)

by (3.5) and (3.6). Consider the factorization (3.4). By (3.7), we obtain
dima(z) = () =p—3 — s —r mod ¢q. The inequality

qg+p—3—s—r>p+5+e—s—r=dmz
implies
(3.21) dima(z) =d(x) =p—3—s—r.
Notice that co(z) = —1 — s mod p by (3.20), 0 < ¢p(z) < dimz and cp(x) =
dim a(x) 4+ dim ho(z) by (3.8), and we obtain
(3.22) co(x)=p—1—s and dimho(x)=2+r.
It follows that
(3.23) dim f(z) =6 +¢—r.

Since ¢1(z) = 1—s mod p by (3.20), and 2 < r+1 = dim ho(z) —1 < ¢1(2)
by (3.22) and Lemma 3.2 2), we deduce
cafz)=p+1l-—s

under the condition (3.19), and so

co(x)=p—1—s and c3(z) =0 mod p.

We also see that ¢,(z) =1 or =0. If ¢,,(z) = 1, then ¢;(x) =0for 3 <i<n
by degree reason. Therefore, we have ¢, 41(z) = c), (s) in this case.

Suppose that ¢, (x) = 0. Then, we have an integer j with 3 < j < n such
that

0 3<i<y
ci(r) = {p i=j
p—1 j<i<n
If j # 3, then Lemma 3.2 1) shows that p+5+¢ —s—1r > ¢j(z) + c1(x) —
cs(x) = 2p + 1 — s, which contradicts to (3.19). Thus, j = 3 and we have
Cri1(2) = ¢y (s). N
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Lemma 3.6. Let x be a monomial such that cpi1(x) = ¢ 1(s) in (3.18).
Then,

x =1z forl € aply® 550" 1 117,

where e, ez, e and ey are non-negative integers such that
(3.24) etest+e+e=p—1,

eo < n, e3 € {s,s+ 1} and e; € {0,1,2}. The factor z satisfies ¢;(z) = 0
fori >3, d(z) <3,

(3.25) cy(2) =(l,e3 —s,2+e3—s,e3+e; —s)
44w+e—d(z) —dimz

and dim z > 3. Furthermore, s +1r < < 3, where

w denotes the number of i’s with e; # 0.

Proof. Consider a factorization
r=Iz
in Proposition 3.4. Since the integer k in Lemma 3.3 is four in our case,

l e 5272‘1474723_373722_272721_17172?0 fore>0ande; >0 (0<i<4), and
ci(z) =0 fori>4.

We may assume that eg < n. Indeed, if eg > n, then ZNZ?O = (). Furthermore,

the fact ¢,—1(x) = p — 1 implies e + Z?:o e; =p— 1, and so
cy(z) = (1 +ey,eq4 +e€3— 58,24+ 2?22 e; — 8, 2?:1 e; — 3)

since ¢, () = (p —-1,...,p—1, Z?:o ei,Zg’zo €, Z?:o e e1 + eo,eo). No-
tice that c3(z) > 0 = c4(2) and c¢1(z) > co(z). Then, the last statement
in Proposition 3.4 implies e, = 0 and e; = 0. Thus, we obtain (3.24) and
(3.25). By (3.25), c1(2) = 2+ ca(2) > 2. If ¢1(2) > 3, then dimz > 3.
If ¢;1(2) = 2, then ca(z) = 0. Therefore, z has a factor 13 € 71,3 and two
factors whose coefficient ¢ is one, and so dim z > 3.

Proposition 3.4 implies that 2 > e; by (3.25) if e; # 0, and that 0 <
ca(z) =e3 —s <c3(z) =11if e3 #0. We also see ca(z) = —s > 0 if e3 = 0.
These show e; € {0,1,2}, and e3 € {s,s + 1}. Now, d(z) = c1(a(z)) <
c1(z) <3 by (3.7) and (3.25).

Note that eg < n. By (3.14), we compute

dim z

v

e+2(es+e1+ey) —w+dimz
e+2(p—1—e)—w+dimz (by (3.24))
2p—1)—(p—3—s—r—dima(z)) —w+dimz

(by /(x) = e+ dima(z) and (3.21) ).
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Since dimx = p+5+e—s—1r, w < 3 and dimz > 3, we obtain the last
inequality. [

4. PROOF OF THE MAIN THEOREM

In this section, we also abbreviate 4E;™(V(2)) to AEy". Put mg(z) =

Then ms(h,) € AE§+67(p"+sp2+(8+2)p+s)q+s

Ty,goh1bo for x € 4By and

n 2
ms(bn—1) € AE§+7’(p Fep (AP Hs)ats e notice that
(4.1) the elements mg(h,) and ms(b,—1) are permanent cycles,

since

(4.2) dgiri (arwonysP1) = (ms(hy))™ and dgi1i (GufB1B27s) = (Mms(bp—1))" .
Indeed, we have
ms(hn) = hn¥s90h1bo = bokohnho¥, = (bohy + hibp—1)koho7, and
Mms(bp—1) = bp_1¥,90h1b0 = hobp—1boko7s = h1bn—1907bo
by (2.3), and also (3.10), (3.11) and (3.12) imply
igini(1wnYsB1) = (hokohn7sbo)™
= (—(bohn + h1bn—1)hoko7,)"~
—igili(jfnoalﬁg%) and
i2i14(CaB1B27Ys) = (hobn—1boko¥s)™

(h1bp—1907sbo)~
= i291(B1An,s51)

(4.3)

in m,(V(2)). In particular,

i2i11 (a1 pYsB1) = —i2111 (j€n 01 B2Ys)
and
i21% (CnB1B27s) = i2i1 (B An,s51)

up to Adams filtration. In this section, we show that the elements in (4.2)
are non-trivial.

Proposition 4.1. The elements my—1(hy) and my—1(bp—1) of the Adams
Es-term are non-trivial.

Proof. Let y. € AEET*™ denote my,_y(hy) if € = 0, and my_1(by_1) if
e = 1. We also take an element 7. in MEPT2TS0* \which detects y.. If
ye = 0, then there exists 7, € MEPT90* such that dM (z.) = 7. for some
r. We denote by z. € MEPTTS0* 4 monomial appearing in a term of a

representative of T.. By Lemma 3.5 at (s,r) = (0,1), the n-tuple c,4+1(x:)
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is ¢).1(0) or ¢;,(0) in (3.18). Since to = p — 4 mod (g) by (3.16), we see
d(xze) = p — 4. Therefore,

~p 4ll nl 1l3 0 Cn+1( ) = c%+1(0)7
Te € _4 ) 1
I 3l1 1ln 1,0 Cn+1( ) = Cn—i-l(o)-

Since dim 2. = p+4-+¢ and dim (a3 T2, 03 0) = p+5 = dim ( Tsl2,B_, 0),

we have e = 1. It follows that there is no monomial for z¢, and so YEY +3tox

0. Therefore, 7, survives to yo = mp_1(hy,).
We consider the case € = 1. If cpy1(z1) = ¢} ;(0), then

21 € a1 gh1ba ohn o (5 )
by (315) Put Wi 5 = hn—l—i,ihi,ohn—l—j,jhj,O- Then, we see that (2512_)170)2 =
{wi;:1<i<j<n-—2} It follows that the monomial x; is of the form
T4, = a2_4h1,3h1 101 ohn oW, j- Since n > 4, we have

A (z1;7) = —4ab " aghy,—g 401 3h1.101 0P ow; j + -+ # 0.

The images dl (x1,,5) are linearly independent, since so are w; ;’s. There-
fore, any linear combination of z1; ;’s doesn’t survive to the May Es-term.
For the case c,11(z1) = ¢, (0), we have

w1 € ai *hinhi1bohs O(Z( )’

by (315) Since (Zgﬁ%y == {h170h270h172h2’1},

_ p—4
x1 = as hinhi1b1,0h30h10h2001 2k 1,

which converges to 7,_1hibokohy, in the Adams FEr-term by Lemma 3.1.

Therefore dM (z1) = 0 for r > 1, and so MET>* = 0 for r > 2.
By the above argument, for r > 2, we obtain d.(x) = 0 for any x €

Mpp+5to*  Hence y1 = mp—1(by—1) survives to the Adams E»-term. O

Corollary 4.2. The elements mg(h,) for 3 < s < p and mg(by,_1) for
3<s<p-—2in the Es-terms are non-zero.

Proof. Since ag € ME;‘ % survives to AE; * the multiplication by a3 induces
a homomorphism

(4.4) (a3)«: Ey* — 4By

Since a *~'3, =7,_1 in the May Ej-term by Lemma 3.1, we have (a3)2 >~ (7,) =

¥p—1, and hence (a3)?™*" Y(ms(hn)) = mp_1(hy). Proposition 4.1 implies the
non-triviality of the first element.
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Since Lemma 3.1 also implies (a3)?™* " (bn_1907,) = bn—-1907p—1, We ob-
tain the non-triviality of the second elements similarly by Proposition 4.1.

O]

Remark. In the May spectral sequence converging to AE; *(8Y), the geneator
as in the Ej-term is not permanent, and therefore the map (4.4) is not
defined. This is a reason why we consider the second Smith-Toda spectrum
V(2) in this paper.

Proof of Theorem 1.1. 1t suffices to show that

(4.5)

for e € {0,1}, » > 2 and s’ > e. Indeed, if it holds, then the elements
mp—1—s'(hpn) and my,_;_g(by—1) in (4.1) we concern are not in the image of
the Adams differential

(4.6) d;q: AE713+5+6—5’—r,t0—u5/—r+1 _ AE£+5+5_3I¢0_“5’

and the theorem follows from (4.2) and Corollary 4.2. We show (4.5) by
verifying

AE]29+5+£—5’—r,t0—uS/ —r+1 _ 0

Y

ME§+5+E—S’—r,to—uS/ —r+1,% —0.

For a monomial = € ME]f+5+€7slir’t°7uS'7”1’* with » > 2, if c3(z) = 0,
then dim ho(x) < 3 by Lemma 3.2 2), which contradicts to (3.22). It follows
that cpi1(z) = ¢y 1(s’) by Lemma 3.5, and so s’ + 7 < 2 by Lemma 3.6.
This implies

(s',r) = (0,2).
Therefore, (4.5) holds except for this case.

We will show ME§+3’t°_1’* = 0. By Lemma 3.6, a monomial x in

is factorized into

to—1
ME{)—’_37 0 ¥

x=Ilz
for [ € 6%2723_373721_171&?0 and a monomial z with c4(z) = (1, e3,2+e3,e3+e€1),
es € {0,1} and e; € {0, 1,2}. We notice that we can tell the least dimension

of z from c4(z). Since e = p —5— ¢ (2) by (3.7) and (3.16), we have

(4.7) est+elt+ep=p—1—e=4+(2)
by (3.24). These give rise to a table:
(63761) (an) (071) (072> (LO) (171) (1a2)
c4(2) (1,0,2,0) | (1,0,2,1) | (1,0,2,2) | (1,1,3,1) | (1,1,3,2) | (1,1,3,3)
dimz > 3 3 4 3 3 4
w 1 2 2 2 3 3

Here, w is the integer given in Lemma 3.6. We also see that w — ¢/(z) —
dimz € {0,1} by the inequality of Lemma 3.6, and hence w — dimz > 0.
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The table shows us that the inequation holds only when (es,e;) = (1,1),
dim z = 3 and ¢/(z) = 0. Then the monomial z is of the form

zj = al " °hy_3 3hn—11hn0hn—j jhjohaoh2oh1 1
for 7 > 5. Since
A (x;) = =502 Saghn_s.4hn_33hn—11hnohn_j ihjohaohaohiy + - # 0,

the images d}!(z;) are linearly independent. Thus, (4.5) also holds in this
case. O]
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