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A NOTE ON PRODUCTS IN STABLE HOMOTOPY

GROUPS OF SPHERES VIA THE CLASSICAL ADAMS

SPECTRAL SEQUENCE

Ryo Kato and Katsumi Shimomura

Abstract. In recent years, Liu and his collaborators found many non-
trivial products of generators in the homotopy groups of the sphere
spectrum. In this paper, we show a result which not only implies most
of their results, but also extends a result of theirs.

1. Introduction

The homotopy groups π∗(S
0) of the sphere spectrum S0 form an algebra

with multiplication given by composition. The determination of the struc-
ture of π∗(S

0) is one of the most important problems in stable homotopy
theory. We study the problem by considering the p-component pπ∗(S

0) of
the groups at a prime number p. The classical Adams spectral sequence
(ASS) and the Adams-Novikov spectral sequence (ANSS) are typical and
effective tools for calculating pπ∗(S

0). We usually use the ANSS to study

pπ∗(S
0) at an odd prime p, and the ASS at the prime two. In recent years,

Liu and his collaborators advocated that the ASS is sufficiently effective at
p > 2 as well as at p = 2. Indeed, they derived out many results on the
non-triviality of products of generators in pπ∗(S

0) from the ASS at p > 2 by
use of the May spectral sequence (MSS). Their method is simple as follows:
for a product ξ ∈ pπt−s(S

0) of generators, let ξ be an element of the E2-

term AEs,t
2 of the ASS, which detects ξ. We also consider an element x in

the E1-term
MEs,t,∗

1 of the MSS, which converges to ξ. Then, they proceed
their argument in the following steps:

1) The element x is not a coboundary of the first May differential dM1 : MEs−1,t,∗
1 →

MEs,t,∗
1 .

2) For any r ≥ 2, the domain of the May differential dMr : MEs−1,t,∗
r →

MEs,t,∗
r is zero, and

3) For any r ≥ 2, the domain of the Adams differential dAr : AEs−r,t−r+1
r →

AEs,t
r is zero by use of the MSS.

The main theorem of this paper Theorem 1.1 is shown in a similar procedure
(Proposition 4.1 and Corollary 4.2 for 1) and 2), and the proof of Theorem
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1.1 for 3)) for the homotopy groups π∗(V (2)) of the second Smith-Toda
spectrum V (2) (cf. (1.1)). The result is new one, and implies most of
results shown by Liu and his collaborators as a corollary.

From here on, we assume that the prime number p is greater than five.
Let H∗(X) denote the mod p reduced homology groups of a spectrum
X represented by the mod p Eilenberg-MacLane spectrum H. The E2-
term AE∗,∗

2 (X) of the ASS converging to the homotopy groups pπ∗
(X) of

a spectrum X is the Ext group Ext∗,∗A∗

(Z/p,H∗(X)) of the category of A∗-
comodules. Here A∗ = H∗(H) denotes the dual of the Steenrod algebra,
which is isomorphic as an algebra to the free algebra P (ξi : i ≥ 1) ⊗ E(τi :
i ≥ 0) over generators ξi’s and τi’s. Let V (k) for k ≥ −1 denotes the k-th
Smith-Toda spectrum defined by H∗(V (k)) = E(τi : 0 ≤ i ≤ k). Then, for
k ≤ 3, V (k) is known to exist if and only if p ≥ 2k + 1 (Smith [32], Toda
[33], Ravenel [31]). In particular, if p ≥ 7, then V (k) for k ≤ 3 are given by
the cofiber sequences

(1.1)

S0 p
−→ S0 i

−→ V (0)
j
−→ ΣS0,

ΣqV (0)
α
−→ V (0)

i1−→ V (1)
j1
−→ Σq+1V (0),

Σ(p+1)qV (1)
β
−→ V (1)

i2−→ V (2)
j2
−→ Σ(p+1)q+1V (1) and

Σ(p2+p+1)qV (2)
γ
−→ V (2)

i3−→ V (3)
j3
−→ Σ(p2+p+1)q+1V (2),

in which α is the Adams v1-periodic map, and β and γ are the v2- and
the v3-periodic maps given by Smith and Toda, respectively. Hereafter, q
denotes the integer 2p − 2, and π∗(S

0) denotes pπ∗(S
0). In this paper, we

consider the Greek letter elements of π∗(S
0) and π∗(V (0)) defined by

(1.2)
αs = jαsi, βs = jj1β

si1i and γs = jj1j2γ
si2i1i ∈ π∗(S

0); and
β′
1 = j1βi1i ∈ π∗(V (0)).

We moreover consider some other generators:

ζn ∈ π(pn+1)q−3(S
0), jξn ∈ π(pn+p)q−3(S

0) and ̟n ∈ π(pn+2p+1)q−3(S
0)

given by Cohen [1], Lin [4] and Liu [19]. Lin and Zheng [7] and Liu [15]
constructed generators λn,s ∈ π(pn+sp2+sp+s)q−7(S

0) for n ≥ 2 and 3 ≤ s <
p − 2. We now state our main theorem, which extends the results [20,
Theorems 1.2 and 1.3] of Liu’s. In this paper, n denotes a fixed integer > 4.

Theorem 1.1. Let n be an integer greater than four. The following products
of elements of π∗(S

0) and π∗(V (0)) are all non-trivial:

α1̟nγsβ1, jξnα1β2γs ∈ π(pn+sp2+(s+2)p+s)q−9(S
0) for 3 ≤ s < p,

ζnβ1β2γs ∈ π(pn+sp2+(s+2)p+s)q−10(S
0) for 3 ≤ s < p− 2, and

β′
1λn,sβ1 ∈ π(pn+sp2+(s+2)p+s)q−10(V (0)) for 3 ≤ s < p− 2.

The proof is given at the end of the paper.
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Corollary 1.2. Every factor of the elements α1̟nγsβ1, jξnα1β2γs, ζnβ1β2γs
of pπ∗

(S0) and β′
1λn,sβ1 of π∗(V (0)) in the theorem is also non-trivial in the

homotopy groups.

We note that the corollary contains almost of all results of Liu and his
collaborators on the non-triviality of products of elements of π∗(S

0): [2], [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [34], [35], [36] and [37].
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The authors would like to thank the referee for many useful comments.

2. The Adams spectral sequence for π∗(V (2))

Hereafter, P (xi) and E(xi) denote a polynomial and an exterior algebras
on generators xi over Z/p, respectively. Let A∗ denote the dual of the
Steenrod algebra isomorphic to P (ξ1, ξ2, . . . ) ⊗ E(τ0, τ1, . . . ) as a graded
algebra, where deg ξm = 2(pm − 1) and deg τm = 2pm − 1. It is also a Hopf
algebra with the coproduct ∆: A∗ → A∗ ⊗A∗ given by

∆ξm =

m∑

i=0

ξp
i

m−i ⊗ ξi and ∆τm = τm ⊗ 1 +

m∑

i=0

ξp
i

m−i ⊗ τi

(ξ0 = 1). Consider the Adams spectral sequence

AEs,t
2 (V (2)) = Exts,tA∗

(Z/p,H∗(V (2))) ⇒ πt−s(V (2)).

The second Smith-Toda spectrum V (2) satisfies H∗(V (2)) = E(τ0, τ1, τ2) =
A∗�A∗

Z/p for the quotient Hopf algebra A∗ = P (ξ1, ξ2, . . . )⊗E(τ3, τ4, . . . ),
and we have the isomorphisms

AEs,t
2 (V (2)) = Exts,tA∗

(Z/p,H∗(V (2)))

= Exts,tA∗

(Z/p,A∗�A∗

Z/p) = Exts,t
A∗

(Z/p,Z/p)

by the change of rings theorem (cf. [31, A1.3.13]). The Ext group is deter-
mined as the cohomology of the cobar complex C∗

A∗

defined by Cs
A∗

= A∗ ⊗

· · ·⊗A∗ (the s-fold tensor product of A∗) with coboundary ds : C
s
A∗

→ Cs+1
A∗

given by ds(x) = 1⊗x+
∑s

i=1(−1)i∆i(x)+(−1)s+1x⊗1 for ∆i(x1⊗. . .⊗xs) =
x1 ⊗ . . .⊗∆(xi)⊗ . . .⊗ xs. We consider the following generators:

(2.1)
hi = [ξp

i

1 ] ∈ AE1,piq
2 (V (2)) and

bi =
[∑p−1

k=1
1
p

(
p
k

)
ξkp

i

1 ⊗ ξ
(p−k)pi

1

]
∈ AE2,pi+1q

2 (V (2))
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for i ≥ 0, where [x] denotes the cohomology class of a cocycle x of the cobar
complex C∗

A∗

. We also have generators

(2.2)
g0 = 〈h0, h0, h1〉 ∈

AE
2,(p+2)q
2 (V (2)) and

k0 = 〈h0, h1, h1〉 ∈
AE

2,(2p+1)q
2 (V (2))

given by the Massey products. By the juggling theorem of the Massey
products, we have a well known relation:

(2.3) g0h1 = h0k0 ∈
AE

3,2(p+1)q
2 (V (2)).

3. The May spectral sequence

Hereafter, we abbreviate AE∗,∗
2 (V (2)) to AE∗,∗

2 . In this section, we study

the Adams E2-term by the May spectral sequence MEs,t,u
1 ⇒ AEs,t

2 with

ME∗,∗,∗
1 = A⊗H0 ⊗H ⊗B

and differential dMr : MEs,t,u
r → MEs+1,t,u−r

r . Here,

(3.1)
A = P (ai : i ≥ 3), H0 = E(hi,0 : i > 0),

H = E(hi,j : i > 0, j > 0) and B = P (bi,j : i > 0, j ≥ 0)

on the generators

ai ∈
ME1,2pi−1,2i+1

1 ,

hi,j ∈
ME

1,2(pi−1)pj ,2i−1
1 and bi,j ∈

ME
2,2(pi−1)pj+1,p(2i−1)
1 .

We notice that the May E1-term is a graded commutative algebra and the
May differentials are derivations. For each element x ∈ MEs,t,u

1 , we denote
by dim x and deg x the superscripts s and t, respectively. The first May
differential dM1 is given by

(3.2)
dM1 (ai) =

∑
3≤k<i hi−k,kak,

dM1 (hi,j) =
∑

0<k<i hi−k,k+jhk,j and dM1 (bi,j) = 0.

By definition of the May E1-term, the generators h1,i, b1,i, ĝ0 = h2,0h1,0
and k̂0 = h2,0h1,1 are obtained by the elements in (2.1) and (2.2). We also
have a generator γ̂s, see [8, Th. 1.1].

Lemma 3.1. In the May E1-term, we have permanent cycles

h1,i, b1,i, ĝ0, k̂0 and γ̂s = as−3
3 h3,0h2,1h1,2

for i ≥ 0 and 3 ≤ s < p, which detect hi, bi, g0, k0 in (2.1) and (2.2),
and γs ∈

AE∗,∗
2 , respectively. Here, γs is an element converging to i2i1iγs ∈

π(sp2+(s−1)p+s−2)q−3(V (2)) for the element γs in (1.2)
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Throughout this paper, the word ‘monomial’ means a (nonzero) product
of algebraic generators of the May E1-term up to sign, that is, a monomial
xy is identified as yx (without sign) for generators x and y. A monomial
x ∈ ME∗,∗,∗

1 is expressed as

(3.3) x =
∏

xi∈G

xi for a subset G ⊂ {ak′ , hl,k, bl,k | k′ ≥ 3, k ≥ 0, l ≥ 1}.

In particular, if G = ∅, then x = 1. A monomial x of ME∗,∗,∗
1 has a factor-

ization

(3.4) x = a(x)h0(x)f(x)for a(x) ∈ A, h0(x) ∈ H0, f(x) ∈ H ⊗B.

Let M denote the set of all monomials of ME∗,∗,∗
1 . We define mappings

c, c′, ck : M → Z for k ≥ 0 so that

c′(ai) = 1, c′(hi,j) = 0, c′(bi,j) = 0,

ck(ai) =

{
1 0 ≤ k < i

0 otherwise
, ck(hi,j) =

{
1 j ≤ k < i+ j

0 otherwise
,

ck(bi,j) =

{
1 j < k ≤ i+ j

0 otherwise

for the generators of ME∗,∗,∗
1 , and for a monomial x =

∏
i xi,

c′(x) =
∑

i

c′(xi), ck(x) =
∑

i

ck(xi)

and

(3.5) c(x) =



∑

k≥0

ck(x)p
k


 q + c′(x).

Under the notation, we see that

(3.6) deg x = c(x).

We note that the part
∑

k≥0 ck(x)p
k of (3.5) is not always the p-adic expan-

sion of c in deg x = cq + c′(x). We notice that

(3.7)
c′(x) = c0(a(x)) = c1(a(x)) = c2(a(x)) = dima(x),

c0(h0(x)) = dimh0(x)

and

(3.8) c0(x) = c0(a(x)h0(x)) = c′(x) + dimh0(x) = dim a(x)h0(x).

Furthermore, we have the following relations on ck(x):

Lemma 3.2. Let x ∈ ME∗,∗,∗
1 be a monomial. Then,
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1) For integers s, t and u with s > t > u, we have cs(x)+cu(x)−ct(x) ≤
dimx.

2) For r ≥ 0, dimh0(x)− r ≤ cr(x).

Proof. 1) For a monomial x =
∏

xi∈G
xi in (3.3), we put Cs(x) = {xi ∈ G |

cs(xi) = 1}. We notice that cs(x) = #Cs(x) and Cs(x) ∩ Cu(x) ⊂ Ct(x).
It follows that cs(x) + cu(x) − ct(x) ≤ cs(x) + cu(x) −#(Cs(x) ∩ Cu(x)) =
#(Cs(x) ∪ Cu(x)) ≤ dimx.

2) We note that dimhi,0 = 1 and cr(hi,0) = 1 if i > r. For a monomial
x =

∏
xi∈G

xi, we have

dimh0(x) = dim
∏

hi,0∈G,i≤r

hi,0 + dim
∏

hi,0∈G,i>r

hi,0 ≤ r + cr(x).

�

We introduce a notation:

(3.9) ci(x) = (ci−1(x), ci−2(x), . . . , c0(x))

for i ≥ 1 and a monomial x.
In the Adams spectral sequence, we write

ξ = (y)∼

if a permanent cycle y of the E2-term detects a homotopy element ξ. This
is well defined up to higher filtration of the ASS. The Greek letter elements
we consider here are

(3.10)
α1 = (h0)

∼ ∈ πq−1(S
0), β1 = (b0)

∼ ∈ πpq−2(S
0),

β2 = (k0)
∼ ∈ π(2p+1)q−2(S

0); and β′
1 = (h1)

∼ ∈ πpq−1(V (0)),

and Cohen’s [1], Lin’s [4] and Liu’s elements [19] :

(3.11)
ζn = (h0bn−1)

∼ ∈ π(pn+1)q−3(S
0) for n ≥ 1,

jξn = (b0hn + h1bn−1)
∼ ∈ π(pn+p)q−3(S

0) for n ≥ 3, and
̟n = (k0hn)

∼ ∈ π(pn+2p+1)q−3(S
0) for n ≥ 3.

Lin and Zheng [7] constructed a generator

λn = 〈ζ ′′n−1i1, α, β
′
1〉 = (bn−1g0)

∼ ∈ π(pn+p+2)q−4(V (1))

(Toda bracket), where ζ ′′n−1 ∈ [V (1), V (1)](pn+1)q−4 satisfies j1ζ
′′
n−1 = ijj1(ζn−1∧

V (1)). Lin and Zheng [7] and Liu [15] showed that the composite λn,s =
jj1j2γ

si2λn satisfying

(3.12) λn,s = (bn−1g0γs)
∼ ∈ π(pn+s(p2+p+1))q−4−s(S

0)

is essential for n ≥ 4 and 3 ≤ s < p− 2.
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For a monomial x ∈ ME∗,∗,∗
1 , we denote by x̃ the set of monomials, each

of these has degree deg x. Hereafter, we consider a monomial

li,j ∈ {hi,j , bi,j−1}.

We see that l̃i,j = h̃i,j = b̃i,j−1. For example,

l̃2,1 = {h2,1, b2,0, h1,2h1,1, h1,1b1,1, h1,2b1,0, b1,1b1,0, h1,1b
p
1,0, b

p+1
1,0 }

and

ã4 = {a4, a3h1,3, a3b1,2, a3h1,2b
p−1
1,1 , a3b

p
1,1}.

Lemma 3.3. For u > 0 and k ≥ 0, we consider a monomial x of ME
s,c(x),∗
1

such that

(3.13) ci(x) =

{
u k ≤ i < n

0 i ≥ n
.

If la,b with k < a+ b < n (resp. ab with k < b < n) is a factor of x, then x

has a factor in l̃n−b,b (resp. ãn).

Proof. Consider an element la,b with k < a+b < n such that x = x0la,b for a
monomial x0. Then, ca+b−ε(x0) = ca+b−ε(x)− ε = u− ε for ε = 0, 1, which
shows that x0 has a factor lι1,a+b for an integer ι1 > 0. Therefore, x has a

factor lι1,a+bla,b ∈ l̃a+ι1,b. Inductively, we see that x has a factorization

lιℓ,sℓlιℓ−1,sℓ−1
· · · lι1,s1la,b for some ℓ > 0 and sj = a+ b+

∑j−1
i=1 ιi,

which is in l̃n−b,b if ιℓ + sℓ = n.
The statement for ãn is verified similarly. �

For sets Sk for 1 ≤ k ≤ ℓ of monomials in the May E1-terms, we consider
a set

S1S2 · · · Sℓ = {x1x2 · · · xℓ | xk ∈ Sk}

of monomials. In particular, we write Se = S · · · S (e factors) if e > 0, and
S0 = ∅ for a set S. We also define

S(d) = {x ∈ S | dimx = d}

and

dimS =

{
0 S = ∅,

min{dim x | x ∈ S} otherwise.

In particular, we have

(3.14) dim l̃en−ι,ι =

{
0 ι = 0 and e > n, or e = 0

2e− 1 otherwise.
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Indeed, if e ≥ 1 and l̃en−i,i 6= ∅, then the dimension of a monomial of the
subset

(3.15) hn−i,i(l̃
(2)
n−i,i)

e−1 ⊂ l̃n−i,i

is 2e− 1 and implies dim l̃en−i,i = 2e− 1 since h2i,j = 0.

Proposition 3.4. Suppose that a monomial x ∈ ME
s,c(x),∗
1 satisfies (3.13)

for integers u > 0 and k ≥ 0. Then,

x = lz for l ∈ ãe0n l̃e1n−ι1,ι1
· · · l̃emn−ιm,ιm

,

in which k ≥ ι1 > ι2 > · · · > ιm ≥ 0 for m ≥ 0, e0 ≥ 0, ei > 0 for each i ≥ 1,∑m
i=0 ei = u = cn−1(x), and z is a monomial which has no factor of the form

lιi−ℓ,ℓ nor aιi. Furthermore, ci(z) = 0 for i ≥ k and cιi−1(z) ≤ cιi(z).

Note that we do not claim the uniqueness of the factorization of the propo-
sition.

Proof. By Lemma 3.3, we have an integer ι0 ≤ k and an element y0 ∈
l̃n−ι0,ι0 ∪ ãn such that x = x0y0. The factor x0 also satisfies (3.13) for k ≥ 0
and u− 1 unless u = 1. Inductively, we obtain a factorization

x = zyu−1yu−2 . . . y0,

for yi ∈ l̃n−ιi,ιi∪ ãn with ιi ≤ k, and z has no factor of the form lιi−ℓ,ℓ nor aιi .

Put l = yu−1 · · · y0, and we may consider l ∈ ãe0n l̃e1n−ι1,ι1
· · · l̃emn−ιm,ιm

and ι1 >

ι2 > · · · > ιm ≥ 0. We also obtain the equality
∑m

j=0 ej = u. The element

z satisfies ci(z) = 0 for i ≥ k, since ci(z) = ci(x) − ci(yu−1yu−2 . . . y0) =
u− u = 0.

We also have cιi−1(z) ≤ cιi(z). Indeed, if cιi−1(z) > cιi(z), then z should

have a factor z′ ∈ l̃ιi−ℓ,ℓ ∪ ãιi , which implies yiz
′ ∈ l̃n−ℓ,ℓ ∪ ãn. Hence we

may replace yi with yiz
′ as a factor of l. �

Now consider the internal degree

(3.16) t0 = (pn + p3 + 2p − 1)q + p− 4.

We put

(3.17) us = deg as3 = (sp2 + sp+ s)q + s for s ≥ 0.

Lemma 3.5. Consider a monomial x of the May E1-term
MEp+5+ε−s−r,t0−us−r+1,∗

1
with ε ∈ {0, 1}, 0 ≤ s ≤ p− 4, and r ≥ 1. Then cn+1(x) in (3.9) is

(3.18)
c0n+1(s) = (1, 0, . . . , 0, p − 1− s, p+ 1− s, p− 1− s) or

c1n+1(s) = (0, p − 1, . . . , p− 1, p, p − 1− s, p+ 1− s, p− 1− s).
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Proof. We first note that

(3.19) dimx ≤ p+ 5− s < 2p − 1− s

by p ≥ 7. We also note that

(3.20)

deg x = t0 − us − r + 1
= (pn + p3 − sp2 + (2− s)p− 1− s)q + p− 3− s− r
= (

∑
k≥0 ck(x)p

k)q + c′(x)

by (3.5) and (3.6). Consider the factorization (3.4). By (3.7), we obtain
dim a(x) = c′(x) ≡ p− 3− s− r mod q. The inequality

q + p− 3− s− r > p+ 5 + ε− s− r = dimx

implies

(3.21) dima(x) = c′(x) = p− 3− s− r.

Notice that c0(x) ≡ −1− s mod p by (3.20), 0 ≤ c0(x) ≤ dimx and c0(x) =
dim a(x) + dimh0(x) by (3.8), and we obtain

(3.22) c0(x) = p− 1− s and dimh0(x) = 2 + r.

It follows that

(3.23) dim f(x) = 6 + ε− r.

Since c1(x) ≡ 1−s mod p by (3.20), and 2 ≤ r+1 = dimh0(x)−1 ≤ c1(x)
by (3.22) and Lemma 3.2 2), we deduce

c1(x) = p+ 1− s

under the condition (3.19), and so

c2(x) = p− 1− s and c3(x) ≡ 0 mod p.

We also see that cn(x) = 1 or = 0. If cn(x) = 1, then ci(x) = 0 for 3 ≤ i < n
by degree reason. Therefore, we have cn+1(x) = c0n+1(s) in this case.

Suppose that cn(x) = 0. Then, we have an integer j with 3 ≤ j < n such
that

ci(x) =





0 3 ≤ i < j

p i = j

p− 1 j < i < n

.

If j 6= 3, then Lemma 3.2 1) shows that p+ 5 + ε− s− r ≥ cj(x) + c1(x)−
c3(x) = 2p + 1 − s, which contradicts to (3.19). Thus, j = 3 and we have
cn+1(x) = c1n+1(s). �
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Lemma 3.6. Let x be a monomial such that cn+1(x) = c1n+1(s) in (3.18).
Then,

x = lz for l ∈ ãen l̃
e3
n−3,3l̃

e1
n−1,1l̃

e0
n,0,

where e, e3, e1 and e0 are non-negative integers such that

(3.24) e+ e3 + e1 + e0 = p− 1,

e0 ≤ n, e3 ∈ {s, s + 1} and e1 ∈ {0, 1, 2}. The factor z satisfies ci(z) = 0
for i > 3, c′(z) ≤ 3,

(3.25) c4(z) = (1, e3 − s, 2 + e3 − s, e3 + e1 − s)

and dim z ≥ 3. Furthermore, s + r ≤
4 + w + ε− c′(z)− dim z

2
< 3, where

w denotes the number of i’s with ei 6= 0.

Proof. Consider a factorization

x = lz

in Proposition 3.4. Since the integer k in Lemma 3.3 is four in our case,

l ∈ ãen l̃
e4
n−4,4l̃

e3
n−3,3l̃

e2
n−2,2l̃

e1
n−1,1l̃

e0
n,0 for e ≥ 0 and ei ≥ 0 (0 ≤ i ≤ 4) , and

ci(z) = 0 for i ≥ 4.

We may assume that e0 ≤ n. Indeed, if e0 > n, then l̃e0n,0 = ∅. Furthermore,

the fact cn−1(x) = p− 1 implies e+
∑4

i=0 ei = p− 1, and so

c4(z) =
(
1 + e4, e4 + e3 − s, 2 +

∑4
i=2 ei − s,

∑4
i=1 ei − s

)

since cn(l) =
(
p− 1, . . . , p− 1,

∑4
i=0 ei,

∑3
i=0 ei,

∑2
i=0 ei, e1 + e0, e0

)
. No-

tice that c3(z) > 0 = c4(z) and c1(z) > c2(z). Then, the last statement
in Proposition 3.4 implies e4 = 0 and e2 = 0. Thus, we obtain (3.24) and
(3.25). By (3.25), c1(z) = 2 + c2(z) ≥ 2. If c1(z) ≥ 3, then dim z ≥ 3.

If c1(z) = 2, then c2(z) = 0. Therefore, z has a factor l1,3 ∈ l̃1,3 and two
factors whose coefficient c1 is one, and so dim z ≥ 3.

Proposition 3.4 implies that 2 ≥ e1 by (3.25) if e1 6= 0, and that 0 ≤
c2(z) = e3 − s ≤ c3(z) = 1 if e3 6= 0. We also see c2(z) = −s ≥ 0 if e3 = 0.
These show e1 ∈ {0, 1, 2}, and e3 ∈ {s, s + 1}. Now, c′(z) = c1(a(z)) ≤
c1(z) ≤ 3 by (3.7) and (3.25).

Note that e0 ≤ n. By (3.14), we compute

dimx ≥ e+ 2(e3 + e1 + e0)− w + dim z
= e+ 2(p− 1− e)− w + dim z (by (3.24) )
= 2(p − 1)− (p− 3− s− r − dima(z)) − w + dim z

(by c′(x) = e+ dim a(z) and (3.21) ).
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Since dimx = p + 5 + ε − s − r, w ≤ 3 and dim z ≥ 3, we obtain the last
inequality. �

4. Proof of the main theorem

In this section, we also abbreviate AE∗,∗
2 (V (2)) to AE∗,∗

2 . Put ms(x) =

xγsg0h1b0 for x ∈ AE∗,∗
2 . Then ms(hn) ∈ AE

s+6,(pn+sp2+(s+2)p+s)q+s
2 and

ms(bn−1) ∈
AE

s+7,(pn+sp2+(s+2)p+s)q+s
2 . We notice that

(4.1) the elements ms(hn) and ms(bn−1) are permanent cycles,

since

(4.2) i2i1i (α1̟nγsβ1) = (ms(hn))
∼ and i2i1i (ζnβ1β2γs) = (ms(bn−1))

∼ .

Indeed, we have

ms(hn) = hnγsg0h1b0 = b0k0hnh0γs = (b0hn + h1bn−1)k0h0γs and
ms(bn−1) = bn−1γsg0h1b0 = h0bn−1b0k0γs = h1bn−1g0γsb0

by (2.3), and also (3.10), (3.11) and (3.12) imply

(4.3)

i2i1i(α1̟nγsβ1) = (h0k0hnγsb0)
∼

= (−(b0hn + h1bn−1)h0k0γs)
∼

= −i2i1i(jξnα1β2γs) and
i2i1i(ζnβ1β2γs) = (h0bn−1b0k0γs)

∼

= (h1bn−1g0γsb0)
∼

= i2i1(β
′
1λn,sβ1)

in π∗(V (2)). In particular,

i2i1i (α1̟nγsβ1) = −i2i1i (jξnα1β2γs)

and

i2i1i (ζnβ1β2γs) = i2i1
(
β′
1λn,sβ1

)

up to Adams filtration. In this section, we show that the elements in (4.2)
are non-trivial.

Proposition 4.1. The elements mp−1(hn) and mp−1(bn−1) of the Adams
E2-term are non-trivial.

Proof. Let yε ∈ AEp+5+ε,t0
2 denote mp−1(hn) if ε = 0, and mp−1(bn−1) if

ε = 1. We also take an element yε in MEp+5+ε,t0,∗
1 , which detects yε. If

yε = 0, then there exists xε ∈
MEp+4+ε,t0,∗

r such that dMr (xε) = yε for some

r. We denote by xε ∈ MEp+4+ε,t0,∗
1 a monomial appearing in a term of a

representative of xε. By Lemma 3.5 at (s, r) = (0, 1), the n-tuple cn+1(xε)
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is c0n+1(0) or c
1
n+1(0) in (3.18). Since t0 ≡ p− 4 mod (q) by (3.16), we see

c′(xε) = p− 4. Therefore,

xε ∈

{
ãp−4
3 l̃1,n l̃

2
1,1l̃

3
3,0 cn+1(xε) = c0n+1(0),

ãp−4
n l̃1,3l̃

2
1,1 l̃

3
n−1,0 cn+1(xε) = c1n+1(0).

Since dimxε = p+4+ε and dim
(
ãp−4
3 l̃1,n l̃

2
1,1l̃

3
3,0

)
= p+5 = dim

(
ãp−4
n l̃1,3 l̃

2
1,1l̃

3
n−1,0

)
,

we have ε = 1. It follows that there is no monomial for x0, and so MEp+3,t0,∗
1 =

0. Therefore, y0 survives to y0 = mp−1(hn).
We consider the case ε = 1. If cn+1(x1) = c1n+1(0), then

x1 ∈ ap−4
n h1,3h1,1b1,0hn,0(l̃

(2)
n−1,0)

2

by (3.15). Put wi,j = hn−1−i,ihi,0hn−1−j,jhj,0. Then, we see that (l̃
(2)
n−1,0)

2 =

{wi,j : 1 ≤ i < j ≤ n − 2}. It follows that the monomial x1 is of the form

x1,i,j = ap−4
n h1,3h1,1b1,0hn,0wi,j . Since n > 4, we have

dM1 (x1,i,j) = −4ap−5
n a4hn−4,4h1,3h1,1b1,0hn,0wi,j + · · · 6= 0.

The images dM1 (x1,i,j) are linearly independent, since so are wi,j’s. There-
fore, any linear combination of x1,i,j’s doesn’t survive to the May E2-term.

For the case cn+1(x1) = c0n+1(0), we have

x1 ∈ ap−4
3 h1,nh1,1b1,0h3,0(l̃

(2)
3,0)

2

by (3.15). Since (l̃
(2)
3,0)

2 = {h1,0h2,0h1,2h2,1},

x1 = ap−4
3 h1,nh1,1b1,0h3,0h1,0h2,0h1,2h2,1,

which converges to γp−1h1b0k0hn in the Adams E2-term by Lemma 3.1.

Therefore dMr (x1) = 0 for r ≥ 1, and so MEs+5,t0,∗
r = 0 for r ≥ 2.

By the above argument, for r ≥ 2, we obtain dr(x) = 0 for any x ∈
MEp+5,t0,∗

r . Hence y1 = mp−1(bn−1) survives to the Adams E2-term. �

Corollary 4.2. The elements ms(hn) for 3 ≤ s < p and ms(bn−1) for
3 ≤ s < p− 2 in the E2-terms are non-zero.

Proof. Since a3 ∈ ME∗,∗,∗
1 survives to AE∗,∗

2 , the multiplication by a3 induces
a homomorphism

(4.4) (a3)∗ :
AE∗,∗

2 → AE∗,∗
2 .

Since ap−s−1
3 γ̂s = γ̂p−1 in the May E1-term by Lemma 3.1, we have (a3)

p−s−1
∗ (γs) =

γp−1, and hence (a3)
p−s−1
∗ (ms(hn)) = mp−1(hn). Proposition 4.1 implies the

non-triviality of the first element.
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Since Lemma 3.1 also implies (a3)
p−s−1
∗ (bn−1g0γs) = bn−1g0γp−1, we ob-

tain the non-triviality of the second elements similarly by Proposition 4.1.
�

Remark. In the May spectral sequence converging to AE∗,∗
2 (S0), the geneator

a3 in the E1-term is not permanent, and therefore the map (4.4) is not
defined. This is a reason why we consider the second Smith-Toda spectrum
V (2) in this paper.

Proof of Theorem 1.1. It suffices to show that

(4.5) AE
p+5+ε−s′−r,t0−us′−r+1
2 = 0

for ε ∈ {0, 1}, r ≥ 2 and s′ ≥ ε. Indeed, if it holds, then the elements
mp−1−s′(hn) and mp−1−s′(bn−1) in (4.1) we concern are not in the image of
the Adams differential

(4.6) dAr : AE
p+5+ε−s′−r,t0−us′−r+1
r → AE

p+5+ε−s′,t0−us′

r ,

and the theorem follows from (4.2) and Corollary 4.2. We show (4.5) by
verifying

ME
p+5+ε−s′−r,t0−us′−r+1,∗
2 = 0.

For a monomial x ∈ ME
p+5+ε−s′−r,t0−us′−r+1,∗
1 with r ≥ 2, if c3(x) = 0,

then dimh0(x) ≤ 3 by Lemma 3.2 2), which contradicts to (3.22). It follows
that cn+1(x) = c1n+1(s

′) by Lemma 3.5, and so s′ + r ≤ 2 by Lemma 3.6.
This implies

(s′, r) = (0, 2).

Therefore, (4.5) holds except for this case.

We will show MEp+3,t0−1,∗
2 = 0. By Lemma 3.6, a monomial x in MEp+3,t0−1,∗

1
is factorized into

x = lz

for l ∈ ãen l̃
e3
n−3,3 l̃

e1
n−1,1l̃

e0
n,0 and a monomial z with c4(z) = (1, e3, 2+e3, e3+e1),

e3 ∈ {0, 1} and e1 ∈ {0, 1, 2}. We notice that we can tell the least dimension
of z from c4(z). Since e = p− 5− c′(z) by (3.7) and (3.16), we have

(4.7) e3 + e1 + e0 = p− 1− e = 4 + c′(z)

by (3.24). These give rise to a table:

(e3, e1) (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)
c4(z) (1, 0, 2, 0) (1, 0, 2, 1) (1, 0, 2, 2) (1, 1, 3, 1) (1, 1, 3, 2) (1, 1, 3, 3)
dim z ≥ 3 3 4 3 3 4

w 1 2 2 2 3 3

Here, w is the integer given in Lemma 3.6. We also see that w − c′(z) −
dim z ∈ {0, 1} by the inequality of Lemma 3.6, and hence w − dim z ≥ 0.
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The table shows us that the inequation holds only when (e3, e1) = (1, 1),
dim z = 3 and c′(z) = 0. Then the monomial x is of the form

xj = ap−5
n hn−3,3hn−1,1hn,0hn−j,jhj,0h4,0h2,0h1,1

for j ≥ 5. Since

dM1 (xj) = −5ap−6
n a4hn−4,4hn−3,3hn−1,1hn,0hn−j,jhj,0h4,0h2,0h1,1 + · · · 6= 0,

the images dM1 (xj) are linearly independent. Thus, (4.5) also holds in this
case. �

References

[1] R. L. Cohen, Odd primary infinite families in stable homotopy theory, Mem. Amer.
Math. Soc. 30 (1981), no. 242.

[2] J. Hong, X. Liu, and D. Zheng, On a family involving R. L. Cohen’s ζ-element (II),
Sci. Chin. Math. 58 (2014), 1–8.

[3] C.-N. Lee, Detection of some elements in the stable homotopy groups of spheres, Math.
Z. 222 (1996), 231–245.

[4] J. Lin, A new family of filtration three in the stable homotopy of spheres, Hiroshima
Math. J. 31 (2001), 477–492.

[5] J. Lin, New Families in the Stable Homotopy of Spheres Revisited, Acta Mathematica
Sinica, English Series 18 (2002), 95–106.

[6] J. Lin, Two new families in the stable homotopy groups of sphere and Moore spectrum,
Chinese Ann. Math. Ser. B 27 (2006), 311–328.

[7] J. Lin and Q. Zheng, A new family of filtration seven in the stable homotopy of spheres,
Hiroshima Math. J. 28 (1998), 183– 205.

[8] X. Liu, A nontrivial product in the stable homotopy groups of spheres, Sci. China Ser.
A Math. 47 (2004), 831–841.

[9] X. Liu, A new family of filtration s+6 in the stable homotopy groups of spheres, Acta
Math. Sci. Ser. B. 26 (2006), 193–201.

[10] X. Liu, Non-triviality of some compositions α1β1γs in the stable homotopy of spheres,
Adv. Math. (China) 35 (2006), 733–738.

[11] X. Liu, Non-trivial of two homotopy elements in π∗(S), J. Korean Math. Soc. 43
(2006), 783–801.

[12] X. Liu, A new infinite family α1β2γs in π∗(S), JP J. Geom. Topol. 7 (2007), 51–63.
[13] X. Liu, Non-triviality of an element α1β1βs in the stable homotopy of spheres, Acta

Math. Sci. Ser. A. Chin. Ed. 27 (2007), 208–214.
[14] X. Liu, A nontrivial product of filtration s + 5 in the stable homotopy of spheres,

Acta Math. Sin. (Engl. Ser.) 23 (2007), 385–392.
[15] X. Liu, Some notes on the May spectral sequence (Chinese). Acta Math. Sci. Ser. A.

Chin. Ed. 27 (2007), 802–810.
[16] X. Liu, A nontrivial product in the stable homotopy groups of spheres, Sci. China

Ser. A. 47 (2007). 831–841.
[17] X. Liu, On the convergence of products γsh1hn in the Adams spectral sequence, Acta

Math. Sin. (Engl. Ser.) 23 (2007), 1025–1032.
[18] X. Liu, Detection of a new non-trivial family in the stable homotopy of spheresπ∗(S),

Tamkang J. Math. 39 (2008), 75–83.



A NOTE ON PRODUCTS IN HOMOTOPY GROUPS 121

[19] X. Liu, Detection of some elements in the stable homotopy groups of spheres, Chin.
Ann. Math. Ser. B 29 (2008), 291–316.

[20] X. Liu, On the ̟n-related elements in the stable homotopy group of spheres, Arch.
Math. (Basel) 91 (2008), 471–480.

[21] X. Liu, Some infinite elements in the Adams spectral sequence for the sphere spec-
trum, J. Math. Kyoto Univ. 48 (2008), 617–629.

[22] X. Liu, On R. L. Cohen’s ζ-element, Algebr. Geom. Topol. 11 (2011). 1709–1735.
[23] X. Liu, A composite map in the stable homotopy groups of spheres. Forum Math. 25

(2013), 241–253.
[24] X. Liu and S. Jiang, Convergence of the products b0g0γs in Adams spectral sequence,

Adv. Math. (Chin.) 38 (2009). 319–326.
[25] X. Liu and W. Li, A product involving the β-family in stable homotopy theory, Bull.

Malays. Math. Sci. Soc. (2) 33 (2010), 411–420.
[26] X. Liu and K. Ma, A new family in the homotopy groups of spheres, Bull. Iranian

Math. Soc. 38 (2012), 313–322.
[27] X. Liu and X. Wang, The convergence of γs(b0hn−h1bn−1), Chinese Ann. Math. Ser.

B. 27 (2006), 329–340.
[28] X. Liu and H. Zhao, On two non-trivial products in the stable homotopy groups of

spheres, Bol. Soc. Mat. Mexicana 13 (2007), 367–380.
[29] X. Liu, H. Zhao and Y. Jin, A non-trivial product of filtration s + 6 in the stable

homotopy groups of spheres. Acta Math. Sci. Ser. B. Engl. Ed. 29 (2009), 276–284.
[30] X. Liu and D. Zheng, On a family involving R. L. Cohen’s ζ-element. Topol. Appl.

160 (2013), 394–405.
[31] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, AMS

Chelsea Publishing, Providence, 2004.
[32] L. Smith, On realizing complex bordism modules, Amer. J. Math. 92 (1970), 793-856.
[33] H. Toda, On spectra realizing exterior parts of the Steenrod algebra, Topology, 10

(1971), 53–65.

[34] X. Wang and Q. Zheng, The convergence of α̃
(n)
s h0hk, Sci. China (ser. A), 41 (1998),

622–628.
[35] H. Zhao, X. Liu and Y. Jin, A non-trivial product of filtration s + 6 in the stable

homotopy groups of spheres, Acta Math. Sci. Ser. B Engl. Ed. 29 (2009), 276–284.
[36] L. Zhong and X. Liu, On homotopy element α1β1β2γs, Chin. Ann. Math., Ser. A 34

(2013), 487–498.
[37] L. Zhong and Y. Wang, Detection of a nontrivial product in the stable homotopy

groups of spheres, Algebr. Geom. Topol. 13 (2013), 3009–3029.

Ryo Kato

Faculty of Fundamental Science

National Institute of Technology, Niihama College

Niihama, 792-8580, Japan

e-mail address: ryo kato 1128@yahoo.co.jp



122 R. KATO AND K. SHIMOMURA

Katsumi Shimomura

Department of Mathematics

Faculty of Science and Technology

Kochi University

Kochi, 780-8520, Japan

e-mail address: katsumi@kochi-u.ac.jp

(Received March 15, 2019 )
(Accepted July 21, 2019 )


