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REMARK ON A PAPER

BY IZADI AND BAGHALAGHDAM

ABOUT CUBES AND FIFTH POWERS SUMS

Gaku IOKIBE

Abstract. In this paper, we refine the method introduced by Izadi and
Baghalaghdam to search integer solutions to the Diophantine equation
X

5

1 +X
5

2 +X
5

3 = Y
3

1 +Y
3

2 +Y
3

3 . We show that the Diophantine equation
has infinitely many positive solutions.

1. Introduction

In [2], Izadi and Baghalaghdam consider the Diophantine equation:

(1) a(X ′5
1 +X ′5

2 ) +
n
∑

i=0

aiX
5
i
= b(Y ′3

1 + Y ′3
2 ) +

m
∑

i=0

biY
3
i

where n,m ∈ N ∪ {0}, a, b 6= 0, ai, bi are fixed arbitrary rational numbers.
They use theory of elliptic curves to find nontrivial integer solutions to (1).
In particular, they discuss the equation:

(2) X5
1 +X5

2 +X5
3 = Y 3

1 + Y 3
2 + Y 3

3

and obtain integer solutions, for example:

85 + 65 + 145 = (−110)3 + 1243 + 143,

1281225+(−79524)5+485985 = 3592275803+(−251874598)3+1073529823 .

However, no positive solutions are presented in their paper [2]. In this paper,
we refine their method to find positive solutions to (2).

Consider the Diophantine equation (2). Let:

(3)

{

X1 = t+ x1, X2 = t− x1, X3 = αt,

Y1 = t+ v, Y2 = t− v, Y3 = βt.

Then we get a quartic curve:

(4) C : v2 =
2 + α5

6
t4 +

20x2
1
− 2− β3

6
t2 +

5x4
1

3

with parameters x1, α, β ∈ Q. If we get a rational point (t, v) on C, we
can compute a rational solution to (2) (see [2]).
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54 G. IOKIBE

Once we obtain rational solutions to (2), we can obtain integer solutions
by multiplying an appropriate value to Xi, Yi. In the same way, in order
to obtain solutions in positive integers, it suffices to search positive rational
solutions to equation (2).

2. Additional Requirements for Positive Solutions

Suppose that a positive rational solution (Xi, Yi)1≤i≤3 to (2) is obtained
from a given point (t, v) on the quartic C.

Proposition 2.1. Let α, β, x1 ∈ Q and

F (t) =
2 + α5

6
t4 +

20x21 − 2− β3

6
t2 +

5x41
3

.

A rational point (t, v) on the curve C : v2 = F (t) in (4) produces a positive
rational solution to (2) by (3) if and only if

(5) α, β > 0, 0 ≤ F (t) < t2, t > |x1|
hold.

Proof. If Xi and Yi are positive in the solution in the form (3), we have
t = (X1 +X2)/2 > 0, α = 2X3/(X1 +X2) > 0 and β = 2Y3/(Y1 + Y2) > 0.
For (t, v) ∈ C, one has that 0 ≤ v2 = F (t) < v2 + Y1Y2 = t2. It follows
from x21 < x21 + X1X2 = t2 that t > |x1| for t > 0. Conversely, suppose
the inequalities in (5) hold. Then the given point (t, v) on C satisfies v2 =
F (t) < t2. This and (5) immediately imply Xi, Yi > 0 in (3). �

Proposition 2.2. Under the same assumption as Proposition 2.1, let

(6) a =
2 + α5

6
, b =

20x2
1
− 8− β3

6
, c =

5

3
x41.

Then a, b, c satisfy b2 − 4ac > 0 and b < 0 if and only if there exists a real
number t such that F (t) < t2.

Proof. Let F̃ (t) = F (t)−t2. Since F̃ (0) = 5x4
1
/3 ≥ 0, and in this case a > 0,

it is easy to see that the following conditions are equivalent to each others:
(i) There exists a real number t such that F (t) < t2.

(ii) The equation F̃ (t) = 0 has four distinct solutions.
(iii) The quadratic equation ax2+bx+c = 0 has two distinct non-negative

solutions.
(iv) The discriminant D = b2 − 4ac of the quadratic function f(x) =

ax2 + bx + c is positive, and the axis of the quadratic function −b/2a is
positive, and f(0) ≥ 0.

The condition (iv) holds if and only if “b2 − 4ac > 0 and b < 0”, since
a > 0 and f(0) = c = 5x4

1
/3 ≥ 0. �
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3. Example for X5
1 +X5

2 +X5
3 = Y 3

1 + Y 3
2 + Y 3

3

Let us first search parameters (x1, α, β) such that

0 < α, β, b < 0 < b2 − 4ac

with a, b, c given by (6) and such that the quartic curve C of (4) has at
least one rational point. Note that these are necessary to satisfy conditions
of Proposition 2.1, 2.2. Then, the curve C is birationally equivalent to an
elliptic curve E over Q. If E has positive rank, then C has infinitely many
rational points.

Let (x1, α, β) = (2, 1, 16). Then the quartic:

C : v2 =
1

2
t4 − 2009

3
t2 +

80

3
,

has a rational point (t, v) = (44, 760). By T = t− 44, we transform C into

C ′ : v2 =
1

2
T 4 + 88T 3 +

15415

3
T 2 +

334312

3
T + 7602

which is birationally equivalent over Q to the cubic elliptic curve (see [5,
Theorem 2.17], [2]):

E : y2 +
41789

285
xy +133760y = x3 − 76876021

324900
x2 − 1155200x+

2460032672

9
,

where:

T =
2 · 760(x + 15415

3
)− 3343122

2·32·760

y
, v = −760 +

T (Tx− 334312

3
)

2 · 760 .

Using the Sage software [3], we find that the cubic curve E is an elliptic
curve which has rank 2 and the generators of E are:

P1 =

(

−1802189

1521
,
5513659679

417430

)

, P2 =

(

−351379

363
,
47356344241

2276010

)

.

We now consider the subset

C0 =
{

(t, v) ∈ C | 0 ≤ F (t) < t2
}

⊂ C

whose points satisfy another condition (5) of Proposition 2.1. The two
quartic equations:

F (t) =
1

2
t4 − 2009

3
t2 +

80

3
= 0, F̃ (t) =

1

2
t4 − 2009

3
t2 +

80

3
− t2 = 0

have respectively solutions:

t = ±1

3

√

6027 ± 3
√
4035601, t = ±2

3

√

1509 ± 3
√
252979.
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Let us take larger solutions as:

a1 =
1

3

√

6027 + 3
√
4035601 ≃ 36.59635926...

a2 =
2

3

√

1509 + 3
√
252979 ≃ 36.62367500...

If a point (t0, v0) on C satisfies a1 ≤ t0 ≤ a2, then (t0, v0) lies on C0. We now
make use of the composition law of points on the elliptic curve E. Since E
has positive rank, we can test infinitely many rational points of E till finding
a point (t0, v0) on C0. We find that the rational point

Q = 2P1 − P2 =
(

304845381192111829037

58470412871306667
,−4767546475726965161322288395890039

4652843756178203561643745770

)

on E corresponds to

(t0, v0) =
(

170815619844155909156204

4664941095250009917983
,−690740884062625663919872925291699877683029096

21761675422152362106175457381859866386788289

)

on C0, and creates a positive rational solution:

X1 =
180145502034655928992170

4664941095250009917983
≃ 38.61688676...

X2 =
161485737653655889320238

4664941095250009917983
≃ 34.61688676...

X3 =
170815619844155909156204

4664941095250009917983
≃ 36.61688676...

Y1 =
106103920658980331397442614601687483092587436

21761675422152362106175457381859866386788289
≃ 4.875723886...

Y2 =
1487585688784231659237188465185087238458645628

21761675422152362106175457381859866386788289
≃ 68.35804964...

Y3 =
2733049917506494546499264

4664941095250009917983
≃ 585.8701882...

Next we shall prove that the Diophantine equation (2) has infinitely many
positive solutions. The real locus of elliptic curve E(R) can be regarded as
a compact topological subspace of complex projective variety E.

Lemma 3.1. If the rank of elliptic curve E over Q is positive, every point
of E(Q) is an accumulation point in E(R).

Proof. Since E(R) is a compact topological group, and E(Q) is an infinite
subgroup of E(R), there is at least one accumulation point of E(Q) in E(R).
The group operations are homeomorphisms from E(R) to itself. Therefore
all points of E(Q) are accumulation points of E(R). �

Theorem 3.2. The Diophantine equation (2) has infinitely many positive
solutions.

Proof. The part of C0 has one rational point (t0, v0) which corresponds to the
above point Q. By Lemma 3.1, the point Q is an accumulation point of E(Q)
in E(R), and (t0, v0) is that of C(Q) in C(R). Thus the part of C0 includes
infinitely many rational points. Since 2 = |x1| < a1 = 36.59635926..., they
correspond to positive rational solutions to (2). �
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4. Example for X5
1 +X5

2 = Y 3
1 + Y 3

2 + Y 3
3

Let α = 0. Then (2) gives another Diophantine equation:

(7) X5
1 +X5

2 = Y 3
1 + Y 3

2 + Y 3
3 .

In the same way, we can obtain a rational or positive rational solutions of
it. For example, let x1 = 10, β = 18. Then the quartic curve:

C : v2 =
1

3
t4 − 639t2 +

50000

3

has a rational point (t, v) = (−5, 30) and can be regarded as an elliptic curve
over Q that has rank 2. It is birationally equivalent to:

E : y2 +
1867

9
xy − 400y = x3 − 3676525

324
x2 − 1200x +

367652500

27
.

From this, we can compute positive rational solutions to (7). For example,
there is a point Q = (x0, y0) on E with

x0 =
9233921838917810856046138588468998730

71226852166762122405616706766475947

corresponding to (t0, v0) on C with

t0 =
7869911761727476320751662986237524106650

180965667579279848488380712753242417827

which creates the following solution to (7):

X1 =
9679568437520274805635470113769948284920

180965667579279848488380712753242417827
,

X2 =
6060255085934677835867855858705099928380

180965667579279848488380712753242417827
,

Y1 =
2102579397586077496858869804126511993988094601307100986270258503567645177035000

32748572842414417658282657731373155447687070419319181813277645661864847401929
,

Y2 =
745788273916000738265027095213285105579870143595196644344754733646843241464100

32748572842414417658282657731373155447687070419319181813277645661864847401929
,

Y3 =
141658411711094573773529933752275433919700

180965667579279848488380712753242417827
.

The case of β = 0 will be discussed briefly in 5.2 below.

5. Parameters (x1, α, β) from Trivial Solutions

5.1. There are several trivial solutions; for example:

15 + 15 + 15 = 13 + 13 + 13.

We call solutions to (2) which consist of 0, ±1 trivial. We are going to check
some of them to search integer (or positive) solutions.

A solution to (2) may decide parameter. For example, when Xi = Yi = 1
(i = 1, 2, 3), we get (x1, α, β) = (0, 1, 1). Then:

C : v2 =
1

2
t4 − 1

2
t2
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has a singular point (t, v) = (0, 0)and can be parametrized by one parame-
ter. Let us divide both sides of C by t4 and substitute s, w for 1/t, v/t2

respectively. Then:

C ′ : w2 =
1

2
− 1

2
s2

has a rational point (s,w) = (1, 0). Hence we can parametrize rational
points on C ′ and integer solutions to (2). That is to say we have:

(

2k2 + 1

2k2 − 1

)5

+

(

2k2 + 1

2k2 − 1

)5

+

(

2k2 + 1

2k2 − 1

)5

=

(

4k4 − 4k3 − 2k − 1

(2k2 − 1)2

)3

+

(

4k4 + 4k3 + 2k − 1

(2k2 − 1)2

)3

+

(

2k2 + 1

2k2 − 1

)3

where k ∈ Q. We can see that large enough k give positive solutions to (2).
For example:

(

9

7

)5

+

(

9

7

)5

+

(

9

7

)5

=

(

27

49

)3

+

(

99

49

)3

+

(

9

7

)3

where k = 2. Since X1 = X2 = X3 = Y3, this solution also gives positive
solution to another Diophantine equation 3X5 = Y 3

1 + Y 3
2 +X3. Moreover

it satisfies X1 +X2 +X3 = Y1 + Y2 + Y3 because α = β.

5.2. From another trivial solution:

15 + 05 + 05 = 13 + 03 + 03,

we can derive parameters (x1, α, β) = (1
2
, 0, 0). Then:

C : v2 =
1

3
t4 +

1

2
t2 +

5

48

is an elliptic curve defined over Q with rational point (t, v) = (1
2
, 1
2
). It is

birationally equivalent to:

E : y2 +
4

3
xy +

2

3
y = x3 +

5

9
x2 − 1

3
x− 5

27

over Q and has rank 1. Hence we can apply the method of Section 3 to
compute positive solutions to

(8) X5
1 +X5

2 = Y 3
1 + Y 3

2

as a special case of (2) with X1,X2, Y1, Y2 > 0, X3 = Y3 = 0 (where α =
β = 0 in (3)). For example, a point

Q =
(

10017045137918654785

165672066306928896
, 29224609136538294659462738431

67433225470590933809197056

)

on E corresponding to the point

(t0, v0) =
(

2806052350871126431439

4379016004568066987998
, 5797926783162005502807971914786692611082209
9587890584131638439948667971418559938024002

)
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on C creates the positive solution to (8):

X1 =
2497780176577579962719

2189508002284033493999
, X2 =

308272174293546468720

2189508002284033493999
,

Y1 =
5970900430111130674379700360675596051258385

4793945292065819219974333985709279969012001
,

Y2 =
172973646949125171571728445888903440176176

4793945292065819219974333985709279969012001
.

5.3. There exists one more parameter with β = 0, (x1, α, β) = (0, 0, 0),
which is derived from the trivial solution:

15 + 15 + 05 = 13 + 13 + 03.

Then the rational points on:

C : v2 =
1

3
t4 − 1

3
t2

can be parametrized. Thus we have:
(

3k2 + 1

3k2 − 1

)5

+

(

3k2 + 1

3k2 − 1

)5

=

(

9k4 − 6k3 − 2k − 1

(3k2 − 1)2

)3

+

(

9k4 + 6k3 + 2k − 1

(3k2 − 1)2

)3

,

where k ∈ Q. For example, substituting 2 for k, we have:
(

13

11

)5

+

(

13

11

)5

+ 05 =

(

91

121

)3

+

(

195

121

)3

+ 03.

The solutions which are obtained in these ways give solutions to another
Diophantine equation 2X5 = Y 3

1 + Y 3
2 .

5.4. It is not simple to find parameters (x1, α, β) that produce elliptic
curves for non-trivial solutions (Xi, Yi)1≤i≤3. In particular, the author could
not find a good parameter for β = 0, α 6= 0:

Question 5.1. Find (a good method for) positive solutions to:

X5
1 +X5

2 +X5
3 = Y 3

1 + Y 3
2 .

Acknowledgement: The author would like to thank the referee for many
valuable suggestions to improve this article.
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