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CRYSTAL INTERPRETATION OF A FORMULA ON THE

BRANCHING RULE OF TYPES Bn, Cn, AND Dn

Toya Hiroshima

Abstract. The branching coefficients of the tensor product of finite-
dimensional irreducible Uq(g)-modules, where g is so(2n + 1,C) (Bn-
type), sp(2n,C) (Cn-type), and so(2n,C) (Dn-type), are expressed in
terms of Littlewood-Richardson (LR) coefficients in the stable region.
We give an interpretation of this relation by Kashiwara’s crystal theory
by providing an explicit surjection from the LR crystal of type Cn to
the disjoint union of Cartesian product of LR crystals of An−1-type and
by proving that LR crystals of types Bn and Dn are identical to the
corresponding LR crystal of type Cn in the stable region.

1. Introduction

The generalized Littlewood-Richardson (LR) rule in Kashiwara’s crystal
theory [4, 5] is one of the most remarkable applications of crystals to the
representation theory of quantum groups. Let Uq(g) be the quantum group

of classical Lie algebra g and let Vq(λ̃) be the finite-dimensional irreducible

Uq(g)-module of a dominant integral weight λ̃, where g is so(2n+1,C) (Bn-
type), sp(2n,C) (Cn-type), and so(2n,C) (Dn-type). Let λ be the Young

diagram (partition) corresponding to λ̃. The generalized LR rule asserts

that the multiplicity of Vq(λ̃) in the tensor product Vq(µ̃) ⊗ Vq(ν̃) is given

by the cardinality of the LR crystal. The multiplicity dλµν is expressed by
the celebrated LR coefficients as [7, 8]

(1.1) dλµν =
∑

ξ,ζ,η∈Pn

cλξζc
µ
ζηc

ν
ηξ

in the stable region, i.e., l(µ) + l(ν) ≤ n, where l(λ) denotes the length of λ
and Pn denotes the set of all Young diagrams with at most n rows. The LR
coefficient itself is also given by the cardinality of the LR crystal of type A.

In this paper, we give an interpretation of Eq. (1.1) in terms of crystals.
More precisely, we construct an explicit surjection from the LR crystal of
Cn-type whose cardinality is the left-hand side of Eq. (1.1) to the disjoint
union of the Cartesian product of LR crystals of An−1-type corresponding to∑

ξ,ζ,η∈Pn
cλξζc

µ
ζη, where the cardinality of the kernel of the surjection gives

the missing cνηξ . We also show that LR crystals of types Bn and Dn are
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identical to the corresponding LR crystal of type Cn in the stable region,
which provides the crystal interpretation of Eq. (1.1) in Bn and Cn cases. In
the crystal theory, the LR coefficient is interpreted as the cardinality of the
LR crystal. Thus, the formulas are not in the final form from our point of
view and the formulas should be understood as a shadow of the underlying
set-theoretical bijections defined for LR crystals. In this spirit, Kwon [11]
studied the branching rule of classical group by his spinor model [9, 10]
which is a combinatorial model of classical crystals. Our method is different
and we have a surjective map from the LR crystal of type Bn, Cn, and Dn

to the disjoint union of the products of two LR crystals of types A such that
each fiber gives the third LR crystal of type A.

This paper is organized as follows. Section 2 is devoted to the background
on crystals that we need in the sequel, which includes the axiomatic defini-
tion of crystals, the construction of crystals of Cn-type, and LR crystals of
type Cn. In Section 3, we describe the properties of single-column tableaux
of Cn-type (Cn-columns), which includes the summary of known facts as
well as newly obtained results. Section 4 presents the main theorem on Cn

case (Theorem 4.1), which involves the maps on tableaux of Cn-type con-
structed based on the operations on Cn-columns. This result is divided into
two propositions (Proposition 4.1 and Proposition 4.2), which are proven
in Section 6 and Section 8. In Section 5 and Section 7, the properties of
maps introduced in Section 4 are investigated. In Section 9, we describe
LR crystals of types Bn and Dn and prove that they are identical to the
corresponding LR crystal of type Cn in the stable region (Theorem 9.2 and
Theorem 9.4).

2. Crystals of Cn-type

2.1. Axioms of crystals. Let us recall the axiomatic definition of a crys-
tal [3]. Let g be a symmetrizable Kac-Moody algebra with P the weight lat-
tice, I the index set for the vertices of the Dynkin diagram of g, A = (aij)i,j∈I
the Cartan matrix, {αi ∈ P | i ∈ I} the set of simple roots, {α∨

i ∈ P
∗ | i ∈ I}

the set of simple coroots, and 〈α∨
i , αj〉 = aij (i, j ∈ I). Let Uq(g) be the

quantized universal enveloping algebra or quantum group of g. A Uq(g)-
crystal is defined as follows.

Definition 2.1. A set B together with the maps wt : B → P and ẽi, f̃i : B →
B⊔{0} is called a (semiregular) Uq(g)-crystal if the following properties are
satisfied (i ∈ I): when we define

εi(b) = max
{

k ≥ 0
∣
∣
∣ ẽi

kb ∈ B
}

,
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and
ϕi(b) = max

{

k ≥ 0
∣
∣
∣ f̃i

k
b ∈ B

}

,

for b ∈ B, then

(1) εi, ϕi : B → Z≥0 and ϕi(b) = εi(b) + 〈α
∨
i ,wt(b)〉,

(2) if ẽib 6= 0, then wt(ẽib) = wt(b)+αi, εi(ẽib) = εi(b)−1, and ϕi(ẽib) =
ϕi(b) + 1,

(3) if f̃ib 6= 0, then wt(f̃ib) = wt(b) − αi, εi(f̃ib) = εi(b) + 1, and

ϕi(f̃ib) = ϕi(b)− 1,

(4) for b, b′ ∈ B, f̃ib = b′ ⇐⇒ ẽib
′ = b.

The maps ẽi and f̃i are called Kashiwara operators (i ∈ I) and wt(b) is
called the weight of b. A crystal B can be viewed as an oriented colored

graph with colors i ∈ I when we define b
i
−→ b′ if f̃ib = b′ (b, b′ ∈ B). This

graph is called a crystal graph.

Definition 2.2 (tensor product rule). Let B1 and B2 be crystals. The tensor
product B1⊗B2 is defined to be the set B1×B2 = {b1 ⊗ b2| b1 ∈ B1, b2 ∈ B2}
whose crystal structure is defined by

(1) wt(b1 ⊗ b2) = wt(b1) + wt(b2),
(2) εi(b1 ⊗ b2) = max {εi(b1), εi(b2)− 〈α

∨
i ,wt(b1)〉},

(3) ϕi(b1 ⊗ b2) = max {ϕi(b1) + 〈α
∨
i ,wt(b2)〉 , ϕi(b2)},

(4) ẽi(b1 ⊗ b2) =

{

ẽib1 ⊗ b2 (ϕi(b1) ≥ εi(b2)),

b1 ⊗ ẽib2 (ϕi(b1) < εi(b2)),

(5) f̃i(b1 ⊗ b2) =

{

f̃ib1 ⊗ b2 (ϕi(b1) > εi(b2)),

b1 ⊗ f̃ib2 (ϕi(b1) ≤ εi(b2)).

Definition 2.3. Let B1 and B2 be crystals. A crystal morphism Ψ : B1 → B2
is a map Ψ : B1 ⊔ {0} → B2 ⊔ {0} such that

(1) Ψ(0) = 0,
(2) if b ∈ B1 and Ψ(b) ∈ B2, then wt (Ψ(b)) = wt(b), εi (Ψ(b)) = εi(b)

and ϕi (Ψ(b)) = ϕi(b) (∀i ∈ I).
(3) if b, b′ ∈ B1, Ψ(b),Ψ(b′) ∈ B2, and f̃ib = b′, then f̃iΨ(b) = Ψ(b′) and

Ψ(b) = ẽiΨ(b′) (∀i ∈ I).

Definition 2.4. (1) A crystal morphism Ψ : B1 −→ B2 is called an
embedding if Ψ induces an injective map from B1 ⊔{0} to B2 ⊔ {0}.

(2) A crystal morphism Ψ : B1 −→ B2 is called an isomorphism if Ψ is
a bijection from B1 ⊔ {0} to B2 ⊔ {0}.

2.2. Crystals associated with finite-dimensional irreducible Uq(sp2n)-
modules. Let us describe crystals associated with finite-dimensional irre-
ducible Uq(sp2n)-modules. The symplectic Lie algebra sp(2n,C) = sp2n is



90 TOYA HIROSHIMA

the classical Lie algebra of Cn-type, where the simple roots are expressed as

αi = ǫi − ǫi+1 (i = 1, 2, . . . , n− 1),

αn = 2ǫn,

and fundamental weights as

ωi = ǫ1 + ǫ2 + · · ·+ ǫi (i = 1, 2, . . . , n)

with ǫi ∈ Z
n being the standard i-th unit vector.

Let λ̃ = a1ω1 + · · · + anωn (ai ∈ Z≥0) be a dominant integral weight.

Then λ̃ can be written as λ̃ = λ1ǫ1 + · · ·+ λnǫn, where

λ1 = a1 + a2 + · · ·+ an,

λ2 = a2 + · · · + an,

...

λn = an.

Hence we can associate a Young diagram λ = (λ1, . . . , λn) to λ̃.

Definition 2.5 ([3, 13]). Let λ be a Young diagram with at most n rows.
A Cn-semistandard tableau of shape λ is the semistandard tableau of shape
λ with letters (entries) taken from the set

Cn := {1, 2, . . . , n, n̄, . . . , 1̄}

equipped with the total order

1 ≺ 2 ≺ · · · ≺ n ≺ n̄ ≺ · · · ≺ 2̄ ≺ 1̄.

We define C
(+)
n := {1, 2, . . . , n} and C

(−)
n := {1̄, 2̄, . . . , n̄}. In the sequel,

a letter in C
(+)
n (resp. C

(−)
n ) is called a C

(+)
n (resp. C

(−)
n )-letter and the

usual order < will be used within C
(+)
n -letters instead of ≺. We denote

by Cn-SST(λ) the set of all Cn-semistandard tableaux of shape λ and set
Cn-SST := ∪λ∈Pn

Cn-SST(λ). We use the convention Cn-SST(∅) = {∅},
where ∅ in the left-hand side is referred to as the Young diagram without
any boxes. For a T ∈ Cn-SST(λ), we define its weight to be

wt(T ) =
n∑

i=1
(ki − ki)ǫi,

where ki (resp. ki) is the number of i′s (resp. ī′s) appearing in T .

Definition 2.6 ([3, 13]). T ∈ Cn-SST(λ) is said to be KN-admissible when
the following conditions (C1) and (C2) are satisfied.

(C1) If T has a column of the form
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b̄

a

q →

p→

,

then we have

(q − p) + max(a, b) > N,

where N is the length of the column and a(∈ C
(+)
n ) is at the p-th box

from the top and b̄(∈ C
(−)
n ) is at the q-th box from the top.

(C2) If T has a pair of adjacent columns having one of the following con-

figurations with p ≤ q < r ≤ s, a1 ≤ b1, and a2 ≤ b2 (a1, b1 ∈ C
(+)
n ):

a1

a2
b2

b1

b2

b1

a1

a2,s→
r →

q →
p→

,

then we have

(q − p) + (s− r) < max(b1, b2)−min(a1, a2).

We denote by Cn-SSTKN(λ) the set of all KN-admissible Cn-semistandard
tableaux of shape λ and set Cn-SSTKN :=

⋃

λ∈Pn
Cn-SSTKN(λ).

Now we can give the definition of a crystal Bsp2n(λ) associated with the

finite-dimensional irreducible Uq(sp2n)-module V
sp2n
q (λ̃) associated with a

dominant integral weight λ̃. As a set, the crystal Bsp2n(λ) is Cn-SSTKN(λ).
Kashiwara operators are determined by the following crystal graph of the
vector representation B := Bsp2n(�) of the quantum group Uq(sp2n).

1 2 n n̄ 2̄ 1̄✲ ✲ ✲ ✲ ✲ ✲ ✲· · · · · ·1 2 n− 1 n n− 1 2 1
,

where wt
(

i
)

= ǫi and wt
(

ī
)

= −ǫi (i = 1, 2, . . . , n). Explicitly, for

i = 1, 2, . . . , n− 1,

f̃i j =







i+ 1 (j = i),

ī (j = i+ 1),

0 (otherwise),

and

f̃n n = n̄

(ẽi is determined by these and Definition 2.1). The crystal structure of

Bsp2n(λ) is realized by the embedding Ψ : Bsp2n(λ) →֒ B⊗|λ| equipped with
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the tensor product rule (Definition 2.2). This embedding or reading is de-
fined as follows.

Definition 2.7. Suppose T ∈ Cn-SSTKN(λ). We read the entries in T each
column from the top to the bottom and from the rightmost column to the
leftmost column. Let the resulting sequence of entries be m1,m2, . . . ,mN .
Then we define the following embedding.

Ψ : Bsp2n(λ) →֒ B⊗N
(

T 7−→ m1 ⊗ · · · ⊗mN

)

.

This reading of T in Definition 2.7 is called the far-eastern reading and
is denoted by

FE(T ) = m1 ⊗ · · · ⊗mN.

Thanks to the KN admissible conditions ((C1) and (C2) in Definition 2.6),
this reading is shown to be the embedding in the sense of Definition 2.4 [3].

One of the most remarkable applications of crystals is the generalized LR
rule described below. Let us give a definition.

Definition 2.8. Let λ = (λ1, λ2, . . . , λn) be a Young diagram. For a letter

i ∈ C
(+)
n and a letter ī ∈ C

(−)
n , we define

λ[i] := (λ1, . . . , λi + 1, . . . , λn),

and
λ[̄i] := (λ1, . . . , λi − 1, . . . , λn).

In general, for a letter mk ∈ Cn (k = 1, 2, . . . , N), we define

λ[m1, . . . ,mk] := λ[m1, . . . ,mk−1][mk]

(λ[m0] = λ), which is not necessarily a Young diagram. If λ[m1, . . . ,mk]
is a Young diagram for all k = 1, . . . , N , we say the sequence of letters
m1,m2. . . . ,mN is smooth on λ or M := {m1,m2, . . . ,mN} is smooth on
λ, where M is considered as the sequence of letters m1,m2. . . . ,mN . If the
sequence of letters m1,m2. . . . ,mN comes from the far-eastern reading of a
tableau T , we write λ[FE(T )] := λ[m1, . . . ,mN ] and if such a sequence is
smooth on λ, we say FE(T ) is smooth on λ.

Theorem 2.1 ([3, 6, 13]). Let µ̃ and ν̃ be dominant integral weights, and µ
and ν be the corresponding Young diagrams, respectively. Then we have the
following isomorphism:

(2.1) Bsp2n(µ)⊗ Bsp2n(ν) ≃
⊕

T∈Bsp2n (ν)

FE(T )=m1⊗···⊗mN

Bsp2n (µ[m1,m2, . . . ,mN ]) ,

where N = |ν|. In the right-hand side of Eq. (2.1), we set Bsp2n (µ[m1, . . . ,mN ]) =
∅ if the sequence of letters m1, . . . ,mN is not smooth on µ.
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Let us denote by dλµν the multiplicity of Bsp2n(λ) in the right-hand side of
Eq. (2.1). Then Eq. (2.1) takes the form

(2.2) Bsp2n(µ)⊗ Bsp2n(ν) ≃
⊕

λ∈Pn

Bsp2n(λ)⊕dλµν (µ, ν ∈ Pn).

This corresponds to the decomposition of the tensor product of finite-dimensional
irreducible Uq(sp2n)-modules V

sp2n
q (µ̃) and V

sp2n
q (ν̃).

(2.3) V sp2n
q (µ̃)⊗ V sp2n

q (ν̃) ≃
⊕

λ∈Pn

V sp2n
q (λ̃)⊕dλµν (µ, ν ∈ Pn).

Equation (2.1) or (2.2) is called the generalized LR rule [3, 6, 13]. It follows
from Eqs. (2.1) and (2.2) that the multiplicity dλµν is given by the cardinality
of the following set
(2.4)

Bsp2n
n (ν)λµ :=

{

T ∈ Bsp2n(ν)

∣
∣
∣
∣
∣

FE(T ) = m1 ⊗ m2 ⊗ · · · ⊗mN (N = |ν|)

is smooth on µ and µ[m1, . . . ,mN ] = λ

}

,

which is called the LR crystal of Cn-type.
It is established that the multiplicity dλµν can be expressed in terms of LR

coefficients. More precisely, we have

(2.5) dλµν =
∑

ξ,ζ,η∈Pn

cλξζc
µ
ζηc

ν
ηξ

in the stable region, i.e., l(µ) + l(ν) ≤ n [7, 8]. The LR coefficient cλµν
is also given by the cardinality of the set (Eq. (2.4)) with Bsp2n(λ) be-
ing replaced by Bsln(λ) the crystal associated with the finite-dimensional
irreducible Uq(sln)-module V sln

q (λ) [3]. This set is called the LR crystal of

An−1-type. Formally a crystal Bsln(λ) is obtained by eliminating all tableaux

containing C
(−)
n -letters from Bsp2n(λ). In this paper, we provide the inter-

pretation of Eq. (2.5) in terms of crystals. For that purpose, we will need
the following definitions.

Definition 2.9. For Young diagrams λ, µ, and ν, we define

B(+)
n (ν)λµ :=







T ∈ Bsp2n(ν)

∣
∣
∣
∣
∣
∣
∣

All entries in T are C
(+)
n -letters.

FE(T ) = i1 ⊗ i2 ⊗ · · · ⊗ iN (N = |ν|)

is smooth on µ and µ[i1, . . . , iN ] = λ







,

and

B(−)
n (ν)λµ :=







T ∈ Bsp2n(ν)

∣
∣
∣
∣
∣
∣
∣

All entries in T are C
(−)
n -letters.

FE(T ) = i1 ⊗ i2 ⊗ · · · ⊗ iN (N = |ν|)

is smooth on λ and λ[i1, . . . , iN ] = µ







.
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Note that the set B
(+)
n (ν)λµ is identical with the LR crystal of type An−1

whose cardinality is the LR coefficient cλµν .

3. Cn-columns

Let us call a Cn-semistandard tableau with shape (1N ) a Cn-column of
length N . We denote by Cn-Col(N) (=Cn-SST((1

N ))) the set of all Cn-
columns of length N and set Cn-Col :=

⋃

N∈Z>0
Cn-Col(N). In this section,

we describe the properties of Cn-columns.
For a Cn-column

mN

...

m1

C =

,

let us write w(C) = m1m2 · · ·mN (mi ∈ Cn, i = 1, 2, . . . , N). A part of
C that consists of consecutive boxes is called a block. A block of C that
consists of boxes from the p-th position to the q-th position is denoted by
∆C[p, q] (p ≤ q).

q →

p→

mq

...

mp







∆C[p, q]

.

If the two-column tableau C1C2 is semistandard, then we write C1 � C2,
where Ci is the i-th column (i = 1, 2). Let us denote by Cn-ColKN(N)
the set of all Cn-columns (∈ Cn-Col(N)) that are KN-admissible and set
Cn-ColKN := ∪N∈Z>0

Cn-ColKN(N). The necessary and sufficient condition
that C ∈ Cn-Col(N) be KN-admissible has been given by the first condition
(C1) in Definition 2.6. Yet another but equivalent condition is given by the
following.

Definition 3.1. Suppose that C ∈ Cn-Col(N) such that w(C) = i1 · · · iajb · · · j1
where N = a+b, ik ∈ C

(+)
n (k = 1, 2, . . . , a), and jk ∈ C

(−)
n (k = 1, 2, . . . , b).

Set I := {i1, . . . , ia} and J := {j1, . . . , jb}, and define L := I ∩J =
{l1, . . . , lc} with l1 < l2 < · · · < lc. The letters in I , J , and L are called
I -letters, J -letters, and L -letters, respectively. The column C can be

split [1] when there exist C
(+)
n -letters l∗1, . . . , l

∗
c , which are called L ∗-letters,

determined by the following algorithm (if L = ∅, then {l∗1, . . . , l
∗
c} = ∅ and

C can be always split).
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(i) l∗c is the largest C
(+)
n -letter satisfying l∗c < lc and l∗c /∈ I ∪J ,

(ii) for k = c − 1, . . . , 1, l∗k is the largest C
(+)
n -letter satisfying l∗k < lk,

l∗k /∈ I ∪J , and l∗k /∈ {l
∗
k+1, . . . , l

∗
c}.

Throughout this paper, the sets of letters such as I , J , L , and L ∗ =
{l∗1, . . . , l

∗
c} are also considered as the ordered sequences of letters with re-

spect to the order <. Keeping the notation in Definition 3.1, we define I :=
{ia, . . . , i1}, J := {jb, . . . , j1}, L := {lc, . . . , l1}, and L ∗ := {l∗c , . . . , l

∗
1},

which are also considered as the ordered sequence of letters with respect
to the order ≺. The letters in I , J , L , and L ∗ are called I -letters,

J -letters, L -letters, and L ∗-letters, respectively.
The equivalence between the condition (C1) in Definition 2.6 and the

condition in Definition 3.1 is proven in [14].

Theorem 3.1 (C. Lecouvey [12]). A column C ∈ Cn-Col(N) is KN-admissible
if and only if it can be split.

Remark 3.1. According to the algorithm in Definition 3.1, L ∗-letters l∗1, . . . , l
∗
c

can be written as follows.

l∗c =







ip − 1 (∃ip ∈ I \L )

or

jq − 1 (∃jq ∈J ).

For k = 1, 2, . . . , c− 1,

l∗k =







ip − 1 (∃ip ∈ I \L )

or

jq − 1 (∃jq ∈J )

or

l∗k+1 − 1.

We also need the notion of a KN-coadmissible column [12, 14].

Definition 3.2. Let C ∈ Cn-Col(N) be the Cn-column described in Def-
inition 3.1. For each l ∈ L , denote by N∗(l) the number of letters in C
satisfying l � x � l̄. Then the column C is said to be KN-coadmissible if
N∗(l) ≤ n− l + 1 (∀l ∈ L ).

If L = ∅, then C is always KN-coadmissible. Let us denote by Cn-ColKN(N)
the set of all Cn-columns (∈ Cn-Col(N)) that are KN-coadmissible and set
Cn-ColKN := ∪N∈Z>0

Cn-ColKN(N). The following lemma characterizes the
KN-coadmissible Cn-columns. The proof is analogous to that of Lemma
8.3.4. in [3].
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Lemma 3.1. Suppose that C ∈ Cn-ColKN takes the form

b̄

a

q →

p→

,

then we have (q − p) + min(a, b) ≤ n.

Proof. If a = b, the claim is just Definition 3.2. Let us assume that a < b.
Let j be the smallest entry such that j > b and both j and j̄ appear in C.
Assume that j (resp. j̄) lies at the k-th (resp. l-th) position. The column
C has the following configuration, where the left (resp. right) configuration

is the C
(−)
n (resp. C

(+)
n )-letters part (p < k < l < q).

b̄

j̄

B̄

q →

l→

j

a

A

← k

← p

.

Let us consider the following two cases separately:

(a): b ∈ A.
(b): b /∈ A.

Case (a). Suppose that the entry b lies at the p′-th position. The number
of boxes between the box containing a and that containing b is p′ − p − 1
and entries in these boxes are taken from the set {a + 1, . . . , b − 1}(= ∅ if
b = a+1). Since |{a+ 1, . . . , b− 1}| = b−a−1, we have p′−p−1 ≤ b−a−1,
while q − p′ + b ≤ n by the definition of KN-coadmissible columns. Hence,
we have (q − p) + min(a, b) ≤ n.

Case (b). We divide this case further into the following two cases:

(b-1): a < b− 1.
(b-2): a = b− 1.

In case (b-1), A ∩ B = ∅ and A ∪ B ⊆ {a + 1, . . . , b − 1, b + 1, . . . , j − 1}
so that |A| +

∣
∣B̄

∣
∣ = |A ∪B| ≤ j − a − 2. In case (b-2), A ∩ B = ∅ and

A∪B ⊆ {a+2(= b+1), . . . , j−1} so that |A|+
∣
∣B̄

∣
∣ = |A ∪B| ≤ j−a−2. In

both cases, we have (k−p−1)+(q−l−1) ≤ j−a−2, while l−k+j ≤ n by the
definition of KN-coadmissible columns. Hence, we have (q−p)+min(a, b) ≤
n.

If the pair of entries j and j̄ (j > b) does not appear in C, then the
column C has the following configuration.
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b̄

B̄

A

a

q →

p→

,

where A (resp. B̄) is the block filled with C
(+)
n (resp. C

(−)
n )-letters. If b ∈ A,

then we have (q − p) + min(a, b) ≤ n by the previous argument. If b /∈ A,
then A∩B = ∅ and A∪B ⊆ {a+1, . . . , n}\{b} so that |A|+

∣
∣B̄

∣
∣ = |A ∪B| ≤

n−a−1, while |A|+
∣
∣B̄

∣
∣ = q−p−1. Hence, we have (q−p)+min(a, b) ≤ n.

The proof for the case a > b is analogous. �

Let C ∈ Cn-Col(N) be the Cn-column described in Definition 3.1 and
assume that it is KN-admissible. Denote by C∗ the Cn-column obtained by
filling the shape of C, i.e., (1N ) with letters taken from the set (I \L ) ⊔
(J \L ) ⊔L ∗ ⊔L ∗. Then the map

(3.1) φ : C 7→ C∗

is a bijection between Cn-ColKN(N) and Cn-ColKN(N) [12]. The inverse
map φ−1 =: ψ is therefore given by the following algorithm. Suppose C ∈
Cn-ColKN(N) such that w(C) = i1 · · · iajb · · · j1 where N = a + b, ik ∈

C
(+)
n (k = 1, 2, . . . , a), and jk ∈ C

(−)
n (k = 1, 2, . . . , b). Set I := {i1, . . . , ia}

and J := {j1, . . . , jb}, and define L := I ∩J = {l1, . . . , lc} with l1 <
l2 < · · · < lc. As in Definition 3.1, the letters in I , J , and L are called

I -letters, J -letters, and L -letters. Find C
(+)
n -letters l†1, . . . , l

†
c, which are

called L †-letters, by the following procedure (L † = {l†1, . . . , l
†
c}).

(i) l†1 is the smallest C
(+)
n -letter satisfying l†1 > l1 and l†1 /∈ I ∪J ,

(ii) for k = 2, . . . , c, l†k is the smallest C
(+)
n -letter satisfying l†k > lk,

l†k /∈ I ∪J and l†k /∈ {l
†
1, . . . , l

†
k−1}.

Denote by C† the Cn-column obtained by filling the shape of C, i.e., (1N )

with letters taken from the set (I \L ) ⊔ (J \L ) ⊔L † ⊔L †. Then

(3.2) ψ : C 7→ C†.

By construction, both maps φ and ψ are weight-preserving.
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4̄
5̄
7̄
7
6
5
2

→

3̄
4̄
5̄
6
5
3
2

→

1̄
3̄
4̄
6
3
2
1

Figure 3.1. Example of the first kind algorithm for φ.

Remark 3.2. L †-letters l†1, . . . , l
†
c can be written as follows.

l†1 =







ip + 1 (∃ip ∈ I \L )

or

jq + 1 (∃jq ∈J ).

For k = 2, . . . , c,

l†k =







ip + 1 (∃ip ∈ I \L )

or

jq + 1 (∃jq ∈J )

or

l†k−1 + 1.

The actual implementation of the above algorithm to compute φ(C) for
C ∈ Cn-Col is as follows. For k = c, c − 1, . . . , 1, we delete entries lk and
lk and relocate entries l∗k and l∗k in the column to obtain the updated Cn-
column. This is called the operation for lk → l∗k. Note that the position of

l∗k(l
∗
k) may be changed by subsequent operations for lk−1 → l∗k−1, . . . , l1 → l∗1.

We refer to this algorithm as the first kind algorithm for φ. The first kind
algorithm for ψ is prescribed similarly.

Example 3.1. For a Cn-column with entries {2, 5, 6, 7, 7̄, 5̄, 4̄}, L = {5, 7}
and L ∗ = {1, 3}. The updating process of the column is shown in Fig. 3.1.

In order to view a Cn-column, we also use the filling diagram explained
below. This is basically the circle diagram introduced by Sheats [14] and
is useful to keep track of the change of entries when we update the column
by the above algorithm. It is constructed on 2× n grid and the pair of the
k-th squares from the left in the top and bottom rows is called the k-th slot.
For example, the initial column in Fig. 3.1, i.e., the Cn-column with entries
{2, 5, 6, 7, 7̄, 5̄, 4̄}, the filling diagram reads

◦
◦
◦
•
◦
◦
•
◦
•
•
◦
•
•
•
.
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The slot
◦

◦

,
•

◦

,
◦

•

, and
•

•

are called ∅-slot, (+)-slot, (−)-slot, and (±)-slot,

respectively. If the k-th slot in the filling diagram for a Cn-column is ∅-slot,
then both entries k and k̄ do not appear in the column. If the k-th slot is
(+)-slot (resp. (−)-slot), then the entry k (resp. k̄) appears in the column,
while the entry k̄ (resp. k) does not appear. If the k-th slot is (±)-slot, then
both entries k and k̄ appear in the column. According to the algorithm for
φ, the filling diagram of the Cn-column in Example 3.1 changes as follows.

◦
◦
◦
•
◦
◦
•
◦
•
•
◦
•
•
• → ◦

◦
◦
•
×
×
•
◦
•
•
◦
•
◦
◦ →

×
×
◦
•
×
×
•
◦
◦
◦
◦
•
◦
◦
,

where the slot
×

×

is called (×)-slot. If the k-th slot in the filling diagram for

the updated column is (×)-slot, then a pair of entries l∗(= k) and l∗(= k̄)
newly appears and a pair of entries l and l̄ disappears in the column, where
l ∈ L with L being the set of L -letters in the original column and l∗ ∈ L ∗

with L ∗ being the set of L ∗-letters in the updated column. We also use
the filling diagram to view the updating process of a Cn-column by ψ. In
this case, the role of L ∗-letters is replaced by that of L †-letters.

Lemma 3.2. Suppose that C ∈ Cn-ColKN and let the set of L -letters of C
be {l1, . . . , lc}. Let pk (resp. p∗k) be the position of lk (resp. l∗k) in C (resp.

φ(C)) and qk (resp. q∗k) be the position of lk (resp. l∗k) in C (resp. φ(C)).
Suppose that a series of operations for lc → l∗c , . . . , lk+1 → l∗k+1 is finished.
The filling diagram of the updated column has the following configuration.

◦

◦

•

•
(0)

l∗k lk .

Then we have pk − p
∗
k = α and q∗k − qk = β, where α and β are the number

of (+)-slots and that of (−)-slots in region (0), respectively.

Proof. Between the l∗k-th slot and the lk-th slot (region (0)), there are no
∅-slots by the choice of l∗k. Let us assume that the number of (±)-slots
and that of (×)-slots are γ and δ in the region (∗), respectively. When the
relocation of L ∗-letters down to l∗k+1 is finished, the position of the box
containing lk is changed from pk to pk + δ because δ L ∗-letters appears
above this box. When the relocation of l∗k is finished, the position of box
containing l∗k is changed from pk + δ to pk + δ − (α + γ + δ) = pk − α − γ.
However, γ L -letters below the box containing l∗k are transformed to the
corresponding L ∗-letters and are relocated above the box containing l∗k in
φ(C) so that the position of l∗k in φ(C) is p∗k = pk − α. Similarly, we have
q∗k = qk + β. �
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The following result may be proven in much the same way as in Lemma 3.2

Lemma 3.3. Suppose that C ∈ Cn-ColKN and let the set of L -letters of C

be {l1, . . . , lc}. Let pk (resp. p†k) be the position of lk (resp. l†k) in C (resp.

ψ(C)) and qk (resp. q†k) be the position of lk (resp. l†k) in C (resp. ψ(C)).

Suppose that a series of operations for l1 → l†1, . . . , lk−1 → l†k−1 is finished.
The filling diagram of the updated column has the following configuration.

•

•

◦

◦
(0)

lk l†k .

Then we have p†k − pk = α and qk − q
†
k = β, where α and β are the number

of (+)-slots and that of (−)-slots in region (0), respectively.

Given C ∈ Cn-ColKN, the computation of φ(C) can also be achieved by
the following algorithm, which we refer to as the algorithm of the second
kind for φ. Suppose that C ∈ Cn-ColKN and let the set of L -letters of C
be {l1, . . . , lc}. For k = c, c − 1, . . . , 1, the following procedure is applied.
Firstly, we compute l∗k for lk. Secondly, we apply the operation (A) followed
by the operation (B) described below. A pair of operations (A) and (B) is
called the operation for lk → l∗k as in the first kind algorithm.

Operation (A).
Set

{ip+1, . . . , ip+r} := {i | l
∗
k < i < lk, i ∈ C}

and
{jq+1, . . . , jq+s} :=

{
j
∣
∣ lk ≺ j̄ ≺ l∗k, j̄ ∈ C

}
.

The block filled with ip+1, . . . , ip+r and lk is replaced by the block filled with

l∗k and ip+1, . . . , ip+r. Similarly, the block filled with lk and jq+s, . . . , jq+1 is

replaced by the block filled with jq+s, . . . , jq+1 and l∗k.

pk → lk

ip+r

...

ip+1

−→

ip+r

...

ip+1

l∗k

and

jq+1

...

jq+s

lkqk →

−→

l∗k

jq+1

...

jq+s

.

Operation (B).
Set

{lt+1, . . . , lt+γ = lk−1} := {ip+1, . . . , ip+r} ∩ {jq+1, . . . , jq+s},

assuming γ ≥ 1 (if γ = 0, then this operation is not necessary). We extract
non L -letters from {ip+1, . . . , ip+r} and {jq+1, . . . , jq+s};

{ip1 , ip2 , . . . , ipα} := {ip+1, . . . , ip+r}\{lt+1, . . . , lk−1},
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and
{jq1 , jq2 , . . . , jqβ} := {jq+1, . . . , jq+s}\{lt+1, . . . , lk−1},

where r = α + γ and s = β + γ. The replaced blocks in the operation (A)
are further replaced by the following blocks.

ipα

...

ip1

l∗k

lk−1

...

lt+1

and

lt+1

...

lk−1

l∗k

jq1

...

jqβ

.

That is, L (resp. L̄ )-letters in the obtained blocks in the operation (A) are
expelled and relocated just above (resp. below) the box containing l∗k (resp.

l∗k). Note that these blocks are not semistandard because lk−1 > l∗k and

lk−1 ≺ l∗k and that lk (resp. lk) in the operation (A) for lk → l∗k is always lies

at the upper (resp. lower) position of l∗k+1 (resp. l∗k+1) because even when

l∗k+1 < lk (resp. lk ≺ l∗k+1), lk (resp. lk) is relocated just above l∗k+1 (resp.

below l∗k+1) by the operation (B) for lk+1 → l∗k+1. In particular, pk (resp. qk)

in the operation (A) is not necessarily the original position of lk (resp. lk) in
C. After the operation (B) for lk → l∗k is finished, the subsequent operations

for lk−1 → l∗k−1 do not affect the positions of ip1 , . . . , ipα (jqβ , . . . , jq1 and l∗k)

in the updated column. We define ∆k(C) and ∆k(C) as

∆k(C) :=

ipα

...

ip1

l∗k

and ∆k(C) :=

l∗k

jq1

...

jqβ

.

When the operation (A) for l1 → l∗1 is completed (the operation (B) is not
necessary for l1 → l∗1), the column turns out to be φ(C) (semistandard).
The second kind algorithm for ψ is prescribed similarly.

Example 3.2. Let C be the KN-admissible Cn-column filled with entries
2,7,8,9,9̄,8̄,7̄,5̄. Then L = {7, 9} and L ∗ = {1, 3}. The updating process
for 9→ 9∗ = 3 is depicted in Fig. 3.2.

From the above procedure, the following result is obvious.

Lemma 3.4. Suppose that C ∈ Cn-ColKN. If l(∈ L ) lies at the p-th position
in C, then the entry in the p-th position in φ(C) is strictly smaller than l.
Likewise, if l(∈ L̄ ) lies at the q-th position in C, then the entry at the q-th
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5̄
7̄
9̄
9
8
7
2

−→
(A)

3̄
5̄
7̄
8
7
3
2

−→
(B)

7̄
3̄
5̄
8
3
7
2

Figure 3.2. Example of the second kind algorithm for φ.

position in φ(C) is strictly larger than l̄. Furthermore, let C+ (resp. C−)

be the C
(+)
n (resp. C

(−)
n )-letters part of C and C∗

+ (resp. C∗
−) be the C

(+)
n

(resp. C
(−)
n ) part of φ(C). Then we have C∗

+ � C+ and C− � C
∗
−.

Similarly, we have the following.

Lemma 3.5. Suppose that C ∈ Cn-ColKN. If l(∈ L ) lies at the p-th position
in C, then the entry in the p-th position in ψ(C) is strictly larger than l.
Likewise, if l(∈ L̄ ) lies at the q-th position in C, then the entry at the q-th
position in ψ(C) is strictly smaller than l̄. Furthermore, let C+ (resp. C−)

be the C
(+)
n (resp. C

(−)
n )-letters part of C and C†

+ (resp. C†
−) be the C

(+)
n

(resp. C
(−)
n ) part of ψ(C). Then we have C+ � C

†
+ and C†

− � C−.

Lemma 3.6. Suppose that C ∈ Cn-ColKN(N). Let {l1, . . . , lc} be the set of
L -letters of C and {l∗1, . . . , l

∗
c} be the set of the corresponding L ∗-letters .

Let p∗k (resp. q∗k) be the position of l∗k (resp. l∗k) in φ(C) . Then we have

q∗k − p
∗
k + l∗k ≥ N − γ

∗
k,

where γ∗k := ♯ {l ∈ L | l∗k < l < lk} (k = c, c− 1, . . . , 1).

Proof. We proceed by induction on k = c, c − 1, . . . , 1. We follow the al-
gorithm of the first kind for φ here. Let pi (resp. qi) be the position of li
(resp. li) in C and p∗i (resp. q∗i ) be the position of l∗i (resp. l∗i ) in φ(C)
(i = 1, 2, . . . , c).

(I). For k = c, the filling diagram of the initial column C has the following
configuration.

◦

◦

•

•

l∗c lc

(0)

.

Region (0) consists of (+)-slots, (−)-slots, and (±)-slots. The (×)-slots and
∅-slots do not exist in this region. Let us assume that the numbers of (+)-
slots and (−)-slots are α and β, respectively. The number of (±)-slots in
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this region is γ∗c . Then we have p∗c = pc−α, q
∗
c = qc+β by Lemma 3.2, and

l∗c = lc− (α+β+γ∗c )−1 so that q∗c −p
∗
c + l

∗
c = qc−pc+ lc−γ

∗
c −1 ≥ N −γ∗c ,

where the last inequality is due to the KN-admissibility, qc−pc+ lc ≥ N+1.
(II). Suppose that L -letters, lc, . . . , lk+1 are transformed to the corre-

sponding L ∗-letters, l∗c , . . . , l
∗
k+1 and relocated in the column (k = c −

1, . . . , 1). If l∗k+1 > lk, then the situation is the same as in (I) so that we
have q∗k − p

∗
k + l∗k ≥ N − γ∗k . If l∗k+1 < lk, then the filling diagram of the

updated column has the following configuration.

(0)
◦

◦

×

×

•

•

•

•

◦

◦

l∗k l∗k+1 lk+1−γ∗
k+1

lk lk+1

· · ·

.

There are no ∅-slots between the l∗k-th slot and the lk+1-th slot but are γ∗k+1
(±)-slots between the l∗k+1-th slot and the lk+1-th slot. Let us assume that
region (0) contains γ0 (±)-slots and that the total number of (+) and that
of (−) between the l∗k-slot and the lk-th slot are α and β, respectively. Then
we have p∗k = pk − α, q

∗
k = qk + β by Lemma 3.2, and l∗k = lk − (α + β +

γ0 + γ∗k+1 − 1) − 1 so that q∗k − p
∗
k + l∗k = qk − pk + lk − (γ0 + γ∗k+1). Since

γ∗k = γ∗k+1 − 1 + γ0, we have q∗k − p
∗
k + l∗k ≥ N − γ

∗
k . From (I) and (II), the

claim follows. �

The following result may be proven in much the same way as in Lemma 3.6.

Lemma 3.7. Suppose that C ∈ Cn-ColKN. Let {l1, . . . , lc} be the set of

L -letters in C and {l†1, . . . , l
†
c} be the set of corresponding L †-letters. Let

p†k (resp. q†k) be the position of l†k (resp. l†k) in ψ(C) . Then we have

q†k − p
†
k + l†k ≤ n+ γ†k + 1,

where γ†k := ♯
{

l ∈ L
∣
∣
∣ lk < l < l†k

}

(k = 1, 2, , . . . , c).

4. Main Theorem I

Let us begin by giving some definitions. For T ∈ Cn-SST (T is not
necessarily KN-admissible), we write T = C1C2 . . . Cnc , where Cx (x =
1, 2, . . . , nc) is the x-th column (from the left) of T .

Definition 4.1. For T = C1C2 · · ·Cnc ∈ Cn-SST, let C
(x)
− (resp. C

(y)
+ )

be the C
(−)
n (resp. C

(+)
n )-letters part of the x-th (resp. y-th) column of T

and let C(x,y) be the Cn-column whose C
(−)
n (resp. C

(+)
n )-letters part is C

(x)
−

(resp. C
(y)
+ ). Let C

(x)∗
− (resp. C

(y)∗
+ ) be the C

(−)
n (resp. C

(+)
n )-letters part

of φ(C(x,y)) assuming that C(x,y) ∈ Cn-ColKN. Replace C
(x)
− (resp. C

(y)
+ ) in
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T by C
(x)∗
− (resp. C

(y)∗
+ ) and denote by T ∗ the resulting tableau. Then we

define

φ(x,y)(T ) :=

{

T ∗ (C(x,y) ∈ Cn-ColKN),

∅ (otherwise),

and φ(x,y)(∅) := ∅. Using these maps, we define Φ(x) := φ(x,nc) ◦ · · · ◦ φ(x,x),

Φ(x) := Φ(x) ◦ · · · ◦Φ(nc) (1 ≤ x ≤ nc), and Φ := Φ(1) = Φ(1) ◦ · · · ◦ Φ(nc).

Provided that Φ is well-defined on T ∈ Cn-SSTKN, i.e., Φ(T ) 6= ∅, Φ
preserves the shape and weight of T by construction.

Definition 4.2. Suppose that T ∈ B
sp2n
n (ν)λµ. Let Φ(T )(+) be the part filled

with C
(+)
n -letters in Cn-semistandard tableau Φ(T ), which is a semistandard

tableau on some Young diagram. On the other hand, let Φ(T )(−) be the

part filled with C
(−)
n -letters in Cn-semistandard tableau Φ(T ), which is a

semistandard tableau on some skew Young diagram (a skew semistandard

tableau). For T, T ′ ∈ B
sp2n
n (ν)λµ we write T ∼ T ′, if Φ(T )(+) = Φ(T ′)(+) and

Rect
(
Φ(T )(−)

)
= Rect

(
Φ(T ′)(−)

)
, where Rect(S) denotes the rectification

of the skew semistandard tableau S [2] with the total order ≺.

Theorem 4.1. For all T ∈ B
sp2n
n (ν)λµ, Φ is well-defined on T , i.e., Φ(T ) 6=

∅. Furthermore, if l(µ) + l(ν) ≤ n, we have the following surjection.

Bsp2n
n (ν)λµ ։

∐

ξ,ζ,η∈Pn

B(+)
n (ξ)λζ ×B(−)

n (η)µζ(4.1)

(

T 7−→
(

Φ(T )(+),Rect(Φ(T )(−))
))

.

Hence, we have

(4.2) Bsp2n
n (ν)λµ/ ∼≃

∐

ξ,ζ,η∈Pn

B(+)
n (ξ)λζ ×B(−)

n (η)µζ .

Remark 4.1.
∣
∣B

sp2n
n (ν)λµ

∣
∣ = dλµν and

∣
∣
∣B

(+)
n (ξ)λζ

∣
∣
∣ = cλξζ. In the stable region,

i.e., l(µ) + l(ν) ≤ n,
∣
∣
∣B

(−)
n (η)µζ

∣
∣
∣ must be cµζη. This is explained as follows.

Let the shape of Φ(T )(−) be ν/ξ and Rect(Φ(T )(−)) ∈ B
(−)
n (η)µζ . The num-

ber of tableaux T satisfying the condition of Definition 4.2 is given by the
cardinality of the set

{skew tableaux S on ν/ξ such that Rect(S) = Rect(Φ(T )(−))},

which is the LR coefficient cνηξ [2] so that
∣
∣
∣B

(−)
n (η)µζ

∣
∣
∣ = cµζη by the branching

rule (1.1).
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Example 4.1. Let λ = (3, 3, 1), µ = (3, 3), and ν = (3, 2, 1, 1), B
sp2n
n (ν)λµ

consists of four elements shown below (dλµν = 4).

3̄
4̄
3
2

4
3 2̄

T1 =

, 3̄
4̄
4
2

2̄
3 3

T2 =

, 4̄
4
3
2

3̄
3 2̄

T3 =

, 4̄
4
2
1

1̄
3 2̄

and T4 =

.

By Φ these elements are mapped to

1̄
2̄
2
1

3
2 2̄

Φ(T1) =

, 1̄
2̄
2
1

2̄
2 3

Φ(T2) =

, 1̄
3
2
1

2̄
2 2̄

Φ(T3) =

,

and

2̄
3
2
1

1̄
2 2̄

Φ(T4) =

,

respectively. In this example, Rect
(
Φ(Ti)

(−)
)
(i = 1, . . . , 4) are the same

and are given by

1̄
2̄ 2̄

so that η = (2, 1) and ζ = µ[2̄, 2̄, 1̄] = (2, 1) for all Ti (i = 1, . . . , 4). Since
the process µ→ µ[2̄, 2̄, 1̄] is

→ → →
,

FE
(
Rect

(
Φ(Ti)

(−)
))

is smooth on µ (i = 1, . . . , 4). We observe that FE
(
Φ(T4)

(−)
)
,

which is not identical to Rect
(
FE

(
Φ(T4)

(−)
))
, is also smooth on µ. This is

not a mere coincidence; it holds in general (Proposition 6.1). We can check
that FE

(
Φ(Ti)

(+)
)
is smooth on ζ and ζ

[
FE

(
Φ(Ti)

(+)
)]

= λ (i = 1, . . . , 4).

Indeed, the process ζ → ζ
[
FE

(
Φ(T1)

(+)
)]

= ζ[2, 3, 1, 2] is

→ → → →

,

that of ζ → ζ
[
FE

(
Φ(T2)

(+)
)]

= ζ[3, 2, 1, 2] is

→ → → →

,

and that of ζ → ζ
[
FE

(
Φ(T3)

(+)
)]

= ζ
[
FE

(
Φ(T4)

(+)
)]

= ζ[2, 1, 2, 3] is
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→ → → →

.

Since Φ(T3)
(+) = Φ(T4)

(+) and Rect
(
Φ(T3)

(−)
)
= Rect

(
Φ(T4)

(−)
)
, we have

T3 ∼ T4.

Theorem 4.1 is the immediate consequence of the following two proposi-
tions, which will be proven in Section 6 and Section 8.

Proposition 4.1. For all T ∈ B
sp2n
n (ν)λµ, Φ(T ) 6= ∅ and

(

Φ(T )(+),Rect
(

Φ(T )(−)
))

∈
∐

ξ,ζ,η∈Pn

B(+)
n (ξ)λζ ×B(−)

n (η)µζ .

Proposition 4.2. Fix ν ∈ Pn. For all (T1, T2) ∈
∐

ξ,ξ,η∈Pn

B
(+)
n (ξ)λζ×B

(−)
n (η)µζ ,

let T be a tableau in Cn-SST(ν) such that T (+) = T1 and Rect(T (−)) = T2,

where T (+) (resp. T (−)) is the part of T filled with C
(+)
n (resp. C

(−)
n )-letters.

If l(µ) + l(ν) ≤ n, then we have Φ−1(T ) ∈ B
sp2n
n (ν)λµ.

Remark 4.2. Keeping the notation in Proposition 4.2, let ξ(η) be the shape
of T1(T2). Then the number of T ’s satisfying the condition in Proposi-

tion 4.2 is given by the LR coefficient cνξ,η [2]. In Example 4.1, c
(3,2,1,1)
(2,2),(2,1) =

c
(3,2,1,1)
(3,1),(2,1)

= 1 and c
(3,2,1,1)
(2,1,1),(2,1)

= 2. Thus, we can recover the branching rule

(Eq. (2.5)).

We denote by Ψ the inverse of Φ; Ψ := Φ−1. This is given explicitly as
follows.

Definition 4.3. For T = C1C2 · · ·Cnc ∈ Cn-SST, let C
(x)
− (resp. C

(y)
+ )

be the C
(−)
n (resp. C

(+)
n )-letters part of the x-th (resp. y-th) column of T

and let C(x,y) be the Cn-column whose C
(−)
n (resp. C

(+)
n )-letters part is C

(x)
−

(resp. C
(y)
+ ). Let C

(x)†
− (resp. C

(y)†
+ ) be the C

(−)
n (resp. C

(+)
n )-letters part of

ψ(C(x,y)) assuming C(x,y) ∈ Cn-ColKN. Replace C
(x)
− (resp. C

(y)
+ ) in T by

C
(x)†
− (resp. C

(y)†
+ ) and denote by T † the resulting tableau. Then we define

ψ(x,y)(T ) :=

{

T † (C(x,y) ∈ Cn-ColKN),

∅ (otherwise),

and ψ(x,y)(∅) := ∅. We define Ψ(x) := ψ(x,x) ◦ · · · ◦ ψ(x,nc), Ψ(x) := Ψ(x) ◦

· · · ◦Ψ(1) (1 ≤ x ≤ nc) and Ψ := Ψ(nc) = Ψ(nc) ◦ · · · ◦Ψ(1).

Provided that Ψ is well-defined on T ∈ Cn-SSTKN, i.e., Ψ(T ) 6= ∅, Ψ
preserves the shape and weight of T by construction.
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Lemma 4.1. Keeping the notation in Definition 4.1, we can rewrite the
map Φ(x) (1 ≤ x ≤ nc − 1) in the form,

(4.3) φ(x,nc)◦
(

φ(x+1,nc) ◦ φ(x,nc−1)
)

◦· · ·◦
(

φ(x+1,x+1) ◦ φ(x,x)
)

◦(Φ(x+1))−1.

Proof. The columns updated by φ(x,nc−i) and those by φ(x+1,j) have no com-
mon columns (i = 1, . . . , nc − x; j = nc − i + 1, . . . , nc). So we can move

maps φ(x,nc−1), φ(x,nc−2), . . . successively to the right of φ(x+1,nc) in (4.3) to
obtain

φ(x,nc) ◦φ(x,nc−1) ◦ · · · ◦φ(x,x) ◦φ(x+1,nc) ◦ · · · ◦φ(x+1,x+1) ◦ (Φ(x+1))−1 = Φ(x).

�

The following result may be proven in much the same way as in Lemma 4.1.

Lemma 4.2. Keeping the notation in Definition 4.3, we can rewrite the
map Ψ(x) (2 ≤ x ≤ nc) in the form,
(

ψ(x−1,x−1) ◦ ψ(x,x)
)

◦ · · · ◦
(

ψ(x−1,nc−1) ◦ ψ(x,nc)
)

◦ ψ(x−1,nc) ◦ (Ψ(x−1))−1.

5. Properties of Φ

In this section, we investigate the properties of the map Φ and show
that Φ is well-defined on Cn-SSTKN and Φ(T ) ∈ Cn-SST(λ) for all T ∈
Cn-SSTKN(λ).

Lemma 5.1. Suppose that T = C1C2 · · ·Cnc ∈ Cn-SSTKN. The map φ(x,y)

is well-defined on

T̃ := φ(x,y−1) ◦ · · · ◦ φ(x,x) ◦Φ(x+1)(T ) (2 ≤ x+ 1 ≤ y ≤ nc).

Here, we assume that T̃ 6= ∅ and that in the updating process of the tableau

from T to T̃ the semistandardness of the C
(+)
n -letters part of the tableau is

preserved.

Proof. Let C
(x)
− (resp. C

(y)
+ ) be the C

(−)
n (resp. C

(+)
n )-letters part of the

x-th (resp. y-th) column of T̃ . Let C(x,y) be the column whose C
(+)
n (resp.

C
(−)
n )-letters part is C

(y)
+ (resp.C

(x)
− ). If C(x,y) is KN-admissible, then we

can apply φ(x,y) to T̃ . Suppose that T̃ has the following configuration.

· · ·
m̄

m

q̃ →

← p̃

x y

.
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Let N+ (resp. N−) be the length of the C
(+)
n (resp. C

(−)
n )-letters part of the

y-th (resp. x-th) column and ∆N(≥ 0) be the difference between the length

of the C
(+)
n -letters part of the x-th column and that of the y-th column.

Then, N+ + N− + ∆N = Nx, where Nx is the length of the x-th column.
In the column C(x,y), m̄ lies at the (q̃ − ∆N)-th position (from the top).

Hence, if (q̃ −∆N)− p̃+m > N+ +N−, i.e., (q̃ − p̃) +m > Nx, then C
(x,y)

is KN-admissible. Let C
(x)′
− be the C

(−)
n -letters part of the x-th column

of T ′ := ψ(x,y−1)(T̃ ) and C
(y−1)′
+ be the C

(+)
n -letters part of the (y − 1)-st

column of T ′. Let C(x,y−1) be the column whose C
(+)
n (resp. C

(−)
n )-letters

part is C
(y−1)′
+ (resp. C

(x)′
− ) and L (x,y−1) be the set of L -letters of C(x,y−1).

We consider the following two cases separately:

(a): m appears in the x-th column of T ′ and m /∈ L (x,y−1).

(b): m in the x-th column of T̃ is generated when φ(x,y−1) is applied
to T ′.

Case (a). Suppose that the tableau T ′ has the following configuration.

x y − 1 y

· · ·
m̄

i m

q →

← p

.

By the assumption of (a), m /∈ L (x,y−1) so that i < m (if m ∈ L (x,y−1),

then m̄ in the x-th column of T ′ disappears by φ(x,y−1)). Let us set
{

l ∈ L (x,y−1)
∣
∣
∣ l̄ ≺ m̄ ≺ l∗

}

=: {lr+1, . . . , lr+s = lmax}.

If this set is empty (s = 0), then the position of m̄ does not change when
φ(x,y−1) is applied to T ′. In this case, we have (q − p) + max(i,m) =

(q − p) + m > Nx because C(x,y−1) is KN-admissible (T̃ 6= ∅). This in-

equality still holds when φ(x,y−1) is applied to T ′ so that C(x,y) is KN-
admissible. Now suppose that the above set is not empty (s ≥ 1). We

adopt the second kind algorithm for φ(x,y−1) here. Let us assume that
♯
{
l ∈ L (x,y−1)

∣
∣ l∗max < l < m

}
= t. Since the number of l’s such that

l∗max < l < lmax (l ∈ L (x,y−1)) is s+ t− 1, we have

(5.1) q∗max − p
∗
max + l∗max ≥ Nx − (s+ t− 1)

by Lemma 3.6, where p∗max is the position of l∗max in the (y−1)-st column and

q∗max is the position of l∗max in the x-th column of φ(x,y−1)(T ′) = T̃ . Initially,
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the tableau T ′ has the following configuration, where the left (resp. right)

part is the C
(−)
n (resp. C

(+)
n )-letters one (i < m < lr+1 < . . . < lr+s = lmax).

m̄

lr+1

lmax

x

q → lmax

lr+1

i

y − 1

← p

.

Let us divide this case further into the following two cases:

(a-1): i < l∗max.
(a-2): l∗max < i.

Note that i 6= l∗max because i ∈ C(x,y−1) and l∗max /∈ C
(x,y−1).

Case (a-1). The filling diagram of the C(x,y−1) has the following config-
uration before the operation for lmax → l∗max.

◦

◦

•

◦

•

•
(0)

l∗max m lmax .

Here the number of (±)-slots in region (0) is t. There are no ∅-slots in
this region. Also, there are no (×)-slots in this region. Otherwise, it would

contradict the maximality of lmax in
{
l ∈ L (x,y−1)

∣
∣ l̄ ≺ m̄ ≺ l∗

}
. Let us

assume that the number of (+)-slots and that of (−)-slots in region (0) are
α and β, respectively. Then we have

(5.2) l∗max = m− (α+ β + t)− 1.

When the operation (A) for lmax → l∗max is finished, the (y − 1)-st column
of the updated tableau has the left configuration in the figure below.

lr+s−1

l∗max

ip→
(A)

l∗max

A

...

i

p∗max →

p→
(B)

.
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In the operation (B), s − 1 L (x,y−1)-letters lr+1, . . . , lr+s−1 together with t

L (x,y−1)-letters are relocated just above the box containing l∗max so that the
(y− 1)-st column of the updated tableau has the right configuration, where

A is the block of s+ t− 1 boxes with L (x,y−1)-letters. Therefore, we have

(5.3) p∗max ≥ p+ s+ t.

Note that p∗max does not change under subsequent operations for lr+s−1 →
l∗r+s−1, . . . , l1 → l∗1. The x-th column of the tableau has the left configuration
(A) in the figure below when the operation (A) for lmax → l∗max is finished.
When the entry l∗max appears below m̄, the position of the box containing

m̄ is changed from q to q− 1. Since there are β + t boxes with J (x)-letters

between the box containing m̄ and that containing l∗max, the position of the
box containing l∗max is q + β + t.

l∗max

m̄

q + β + t→

q − 1→

(A) (B)

l∗max

m̄

q∗max →

q − s→

.

When the operation (B) for lmax → l∗max is finished, the x-th column of
the updated tableau has the right configuration (B) in the above figure.

Since s − 1 L (x,y−1)-letters lr+s−1, . . . , lr+1 lying above the box containing
m̄ before the operation (B) for lmax → l∗max are relocated below l∗max, the
position of m̄ is changed from q− 1 to q− 1− (s− 1) = q− s. Likewise, the
position of the box containing l∗max is changed from q + β + t to

(5.4) q∗max = q + β + t− (s+ t− 1) = q + β − s+ 1,

which does not change under subsequent operations for lr+s−1 → l∗r+s−1, . . . , l1 →
l∗1. From Eqs. (5.1), (5.2), and (5.4), we have

(5.5) (q − s)− p∗max +m = q∗max − p
∗
max + l∗max + α+ t ≥ Nx − s+ α+ 1.

Combining Eqs. (5.3) and (5.5), we have (q−s)−p+m ≥ Nx+t+α+1 > Nx.

Here the position of m in the y-th column of T̃ is p and that of m̄ in the
x-th column of T̃ is q − s. Therefore, C(x,y) is KN-admissible.

Case (a-2). Let us assume that i /∈ L (x,y−1). The proof for the case

when i ∈ L (x,y−1) is similar. The filling diagram of the column C(x,y−1) has
the following configuration before the operation for lmax → l∗max.
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◦

◦

◦

•

•

◦

•

•
(2) (1)

l∗max i m lmax .

The total number of (±)-slots in regions (1) and (2) is t. Let us assume
that the number of (±)-slots in region (1) is t1. There are no ∅-slots in both
regions. Also, there are no (×)-slots in both regions as in (a-1). Let us
assume that the number of (+)-slots and that of (−)-slots in region (j) are
αj and βj , respectively (j = 1, 2). Then

(5.6) l∗max = m−
2∑

i=1

(αi + βi)− t− 2.

The updated tableau has the following configuration when the operation (A)
for lmax → l∗max is finished.

l∗max

m̄

x

q +
∑2

i=1 βi + t→

q − 1→

i

l∗max

y − 1

← p+ 1

.

When the operation (B) for lmax → l∗max is finished, the updated tableau
has the following configuration.

l∗max

m̄

x

q∗max →

q − s→

i

l∗max

y − 1

← p+ s+ t1

← p∗max

.

The position of the box containing i in the (y − 1)-st column is changed

from p+ 1 to p+ s+ t1 because s− 1 + t1 L (x,y−1)-letters larger than i are
transformed to the corresponding L (x,y−1)∗-letters and relocated above the
box containing i. The position of the box containing m̄ in the x-th column

is changed from q− 1 to q− s because s− 1 L (x,y−1)-letters smaller than m̄

are transformed to the corresponding L (x,y−1)∗-letters and relocated below
the box containing m̄. The position of the box containing l∗max in the x-th
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column is changed to

(5.7) q∗max = q +

2∑

i=1

βi + t− (s+ t− 1) = (q − s) +
2∑

i=1

βi + 1,

because s − 1 + t L (x,y−1)-letters smaller than l∗max are transformed to

the corresponding L (x,y−1)∗-letters and relocated below the box containing
l∗max. Since α2 I (y−1)-letters exist between the box containing l∗max and
that containing i in the (y − 1)-st column,

(5.8) p∗max + α2 + 1 = p+ s+ t1.

Note that p∗max and q∗max do not change under subsequent operations for
lr+s−1 → l∗r+s−1, . . . , l1 → l∗1. From Eqs. (5.1), (5.6), (5.7), and (5.8), we
have

(q − s)− p+m = q∗max − p
∗
max + l∗max + α1 + s+ t+ t1

≥ Nx + t1 + α1 + 1 > Nx.

Here, the position of the box containing m in the y-th column of T̃ is p and
that of m̄ in the x-th column of T̃ is q−s. Therefore, C(x,y) is KN-admissible.

Case (b). In this case, we can writem = l∗i ∈ L (x,y−1)∗ = {l∗1, l
∗
2, . . . , l

∗
c}.

Let us set {lp+1, . . . , lp+r} :=
{
l ∈ L (x,y−1)

∣
∣ l∗i < l < li

}
(if r = 0, then this

set is considered to be empty). We adopt the first kind algorithm for φ(x,y−1)

here. When the operation for li → l∗i = m is finished, the updated tableau
has the left configuration in the figure below, where A is the block consisting
of s boxes (s ≥ 1).

y − 1 y

m

A
m

p1 →

← p

p ≤ p1 − 1

y − 1 y

A′

m

m

p1 →

← p

.

The right configuration is not allowed, where A′ is the block consisting of
s′ boxes (s′ ≥ 0). This can be seen as follows. Suppose that the entry
in the p1-th box in the (y − 1)-st column of the initial tableau T ′ is j.
When the operation for li+1 → l∗i+1 is finished, l∗i+1, . . . , l

∗
c lie below the

box containing j in the (y − 1)-st column so that the p1-th box in the
(y − 1)-st column still has the entry j. The operation for li → l∗i replaces
the entry j with l∗i = m. This implies that j > l∗i = m by Lemma 3.4,

which contradicts the semistandardness of the C
(+)
n -letters part of T ′ so

that the right configuration cannot happen. When a sequence of operations
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for lp+r → l∗p+r, . . . , lp+1 → l∗p+1 is finished, the position of m = l∗i in the

(y − 1)-st column becomes to be p′ = p1 + r, which does not change under
subsequent operations. Since p ≤ p1 − 1, we have p′ ≥ p + r + 1. On the
other hand, by Lemma 3.6, we have (q − p′) +m ≥ Nx − r, where q is the

position of m̄ = l∗i in the x-th column of T̃ . Combining these, we have that

(q − p) +m > Nx, i.e., C
(x,y) is KN-admissible. �

Lemma 5.2. Suppose that T = C1C2 · · ·Cnc ∈ Cn-SSTKN. Let us set

T̃ = φ(x,y−1) ◦ · · · ◦ φ(x,x) ◦ Φ(x+1)(T ) (2 ≤ x+ 1 ≤ y ≤ nc).

Here, we assume that T̃ 6= ∅ and that in the updating process of the tableau

from T to T̃ the semistandardness of the C
(+)
n -letters part of the tableau is

preserved.

(1). Suppose that T̃ has the following configuration, where the left (resp.

right) part is the C
(−)
n (resp. C

(+)
n )-letters one (p ≤ q < r ≤ s).

x y − 1 y

a2

b̄ a1

bs→

r→

← q

← p

.

Then we have

(q − p) + (s− r) < b−min(a1, a2).

(2). Let J (x) be the set of J -letters in the x-th column and I (y) be the

set of I -letters in the y-th column and set L (x,y) := J (x) ∩I (y).

If ♯
{
l ∈ L (x,y)

∣
∣ l∗ < b < l

}
= δ, then we have

(q − p) + (s− r) < b−min(a1, a2)− δ

in the above configuration in T̃ .

Proof. Note that the tableau T̃ does not have the following configuration.

x y − 1 y

b̄

· · ·
b b ← p′

.

Otherwise, the entry in the p′-th position in the (y − 1)-st column of T ′ :=

ψ(x,y−1)(T̃ ) would be strictly larger than b by Lemma 3.5. This contradicts

the semistandardness of the C (+)-letters part of T ′. Therefore, the case
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when p = q and r = s must be excluded. The case when r = s and p < q
must be also excluded because r = s implies a = b, which contradicts the
semistandardness of T̃ . In particular, a < b.

Let us start by proving (1). Firstly, we set a1 = a2 = a. Let C
(x)
− (resp.

C
(y−1)
+ ) be the C

(−)
n (resp. C

(+)
n )-letters part of the x-th (resp. (y − 1)-st)

column and let C(x,y−1) be the column whose C
(+)
n (resp. C

(−)
n )-letters part

is C
(y−1)
+ (resp. C

(x)
− ). Let I (y−1) be the set of I -letters in the (y − 1)-st

column in T̃ and set L (x,y−1) := J (x) ∩ I (y−1) =: {l1, . . . , lc}. Let lk0 be

the largest L (x,y−1)-letters such that lk0 < b. The entry a can be written as
lk0−k+1 for some k (k = 1, . . . , k0). Let pk (resp. qk) be the position of the

entry lk0−k+1 (resp. lk0−k+1) in the (y− 1)-st (resp. x-th) column in T̃ . We
proceed by induction on k.

(I). Let k = 1. We first consider the case when p1 < q. Suppose that the

tableau T̃ has the following configuration (p1 < q < r < s1, k0 ∈ {1, . . . , c}).

x y − 1 y

lk0

B1

b̄

b′

A1

lk0

bs1 →

r→

← q

← p1

,

where A1 ∩B1 = ∅, i.e., A1 and B1 have no L (x,y−1)-letters. In this config-
uration, lk0 < b′ < b and A1 ∩ B1 = ∅ so that |A1| + |B1| = (q − p1 − 1) +
(s1 − r − 1) ≤ |{lk0 + 1, . . . , b− 1} \{b′}|, i.e., (q − p1) + (s1 − r) ≤ b − lk0 .
Let us assume that

(5.9) (q − p1) + (s1 − r) = b− lk0 .

We claim that T ′ = ψ(x,y−1)(T̃ ) cannot be semistandard under the condition

of Eq. (5.9). We follow the first kind algorithm for ψ(x,y−1) here. The filling

diagram of the initial column C(x,y−1) has the following configuration.

•

•

◦

•

•
(1) (2)

lk0 b′ b .

The b-th slot is either (−) or (±)-slot. Since A1 ∩ B1 = ∅, regions (1) and
(2) have no (±)-slots and the b′-th slot is (+)-slot. Let us assume that the
numbers of (+)-slots, (−)-slots, and ∅-slots in region (i) are αi, βi, and εi,

respectively (i = 1, 2). Then q − p1 = α1 + 1, s1 − r =
∑2

i=1 βi + 1, and

b − lk0 =
∑2

i=1(αi + βi + εi) + 2. Substituting these into Eq. (5.9), we
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have α2 + ε1 + ε2 = 0 so that α2 = ε1 = ε2 = 0. Namely, ∅-slots do not
exist in both regions (1) and (2) and (+)-slots do not exist in region (2).

Set
{
l ∈ L (x,y−1)

∣
∣ l < lk0 < l†

}
=: {lt+1, . . . .lt+γ} (if γ=0, then this set is

considered to be empty). After these L (x,y−1)-letters are transformed to

L (x,y−1)†-letters and are relocated by ψ(x,y−1), the filling diagram of the

updated column has the following configuration. Note that b < l†t+1, . . . , b <

l†t+γ because ε1 = ε2 = 0.

•

•

◦

•

• ×

×

×

×

◦

◦
(1) (2) · · ·

lk0 b′ b l†t+1 l†t+γ l†k0 .

Suppose that the operation for lk0 → l†k0 is finished. Then the relocation of

the γ+1 L (x,y−1)†-letters, l†t+1, . . . , l
†
t+γ , and l

†
k0

changes the initial position

of b′ from q to q − (γ + 1). If b /∈ L (x,y−1), then b /∈ I (y−1) and the
updated tableau has the following configuration, which does not change
under subsequent operations.

b′′ b

b′

y − 1 y

← q

← q − (γ + 1)

.

Any C
(+)
n -letters larger than b′ are larger than b because there do not exist

(+)-slots and (±)-slots in region (2) of the above filling diagram. Therefore,
the entry in the box just below the box containing b′ in the (y − 1)-st
column is larger than b so that b′′ ≥ b + 1 + γ because there are γ boxes
between the box containing b′ and that containing b′′. This contradicts the

semistandardness of the C
(+)
n -letters part of T ′. If b ∈ L (x,y−1), then the

updated tableau has the following configuration.

b′′ b

b
b′

y − 1 y

← q

← q − (γ + 1)

.
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After the operation b → b†, the updated configuration turns out to be the
same as the previous one and the same argument leads to a contradiction.
Hence, we have (q − p1) + (s1 − r) < b− lk0 .

Now let us assume that p1 = q. Suppose that the tableau T̃ has the
following configuration.

x y − 1 y

lk0

B1

b̄ lk0 b

s1 →

r→ ← q

.

In this configuration,
∣
∣B1

∣
∣ = (s1−r−1) ≤ |{lk0 + 1, . . . , b− 1}|, i.e., s1−r ≤

b− lk0 . Let us assume that s1 − r = b− lk0 . This implies that the block B1

is filled with consecutive J (x)-letters, b− 1, . . . , lk0 + 1 (if lk0 +1 = b, then

B1 is empty) so that the filling diagram of the initial column C(x,y−1) has
the following configuration.

•

•

•
(1)

lk0 b .

Region (1) consists of only (−)-slots (lk0 + 1 < b) or is empty (lk0 + 1 = b).

When the operations up to lk0 → l†k0 are finished, the entry at the q-th

position in the (y − 1)-column is larger than b because region (1) has only
(−)-slots. This entry does not change under subsequent operations. This

contradicts the semistandardness of the C
(+)
n -letters part of T ′. Hence, we

have s1 − r < b− lk0 .
(II). We first consider the case when p1 < q. We claim that (q − pk+1) +

(sk+1−r) < b− lk0−k in the following configuration of the tableau T̃ (pk+1 <
pk < q < r < sk < sk+1).



CRYSTAL INTERPRETATION OF A FORMULA ON THE BRANCHING RULE 117

lk0−k

B′

lk0−k+1

b̄

b′

A′

lk0−k+1

lk0−k

bsk+1 →

sk →

r →

← q

← pk

← pk+1

x y − 1 y

under the assumption

(5.10) (q − pk) + (sk − r) < b− lk0−k+1

and b′ ∈ I (y−1)\L (x,y−1). Since A′ ∩B′ = ∅,
∣
∣A′

∣
∣+

∣
∣B′

∣
∣ = (pk − pk+1 − 1) + (sk+1 − sk − 1)

≤

{

|{lk0−k + 1, . . . , lk0−k+1 − 1}| (lk0−k + 2 ≤ lk0−k+1),

0 (lk0−k + 1 = lk0−k+1),

i.e.,

(5.11) (pk − pk+1) + (sk+1 − sk) ≤ lk0−k+1 − lk0−k + 1.

Combining Eqs. (5.10) and (5.11), we have (q−pk+1)+(sk+1−r) ≤ b−lk0−k.
Let us assume that

(5.12) (q − pk+1) + (sk+1 − r) = b− lk0−k.

The filling diagram of the initial column C(x,y−1) has the following configu-
ration.

•

•

•

•

•

•

◦

•

•
(2)

lk0−k lk0−k+1 lk0 b′ b

· · ·

︷ ︸︸ ︷
(1)

.

Region (1) contains k (±)-slots and region (2) contains no (±)-slots. Let
us assume that the numbers of (+)-slots, (−)-slots, and ∅-slots in region (i)
are αi, βi, and εi, respectively (i = 1, 2). Then q − pk+1 = α1 + k + 1,

sk+1 − r = β1 + k + β2 + 1, and b − lk0−k =
∑2

i=1(αi + βi + εi) + k + 2.
Substituting these into Eq. (5.12), we have k = α2+ε1+ε2. Therefore, when
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L (x,y−1)-letters up to lk0 are transformed to the corresponding L (x,y−1)†-
letters, at least k + 1 − (ε1 + ε2) = α2 + 1 of them are larger than b.

Suppose that ♯
{
l ∈ L (x,y−1)

∣
∣ l < b < l†

}
= γ. Then γ ≥ α2 + 1. Suppose

that the operation for lk0 → l†k0 is finished. Then the position of the box

containing b′ in the (y − 1)-st column is changed from q to q − γ′, where
γ′ = ♯

{
l ∈ L (x,y−1)

∣
∣ l < b′ < l†

}
. Since region (2) has ǫ2 ∅-slots and no

(±)-slots, γ′ = γ+ ǫ2. The updated tableau has the following configuration.

b′′

C

b′

bq →

q − γ′ →

y − 1 y

,

where b′′ ≤ b and the position of the box containing b′ does not change under
subsequent operations. Since α2 I (y−1)-letters exists between b′ and b, C
has at most α2 letters. On the other hand, C consists of γ′ − 1 boxes and
γ′ = γ + ε2 ≥ α2 + 1 + ε2 so that γ′ − 1 ≥ α2. This implies γ′ − 1 = α2

and b′′ = b. Now since b′′ = b ∈ L (x,y−1), the entry at the q-th position
in the (y − 1)-st column becomes strictly larger than b after the operation
b′′ → b† by Lemma 3.5 and does not change under subsequent operations.

This contradicts the the semistandardness of the C
(+)
n -letters part of T ′.

Hence, we have (q − pk+1) + (sk+1 − r) < b− lk0−k.
Now let us consider the case when p1 = q. We claim that (q − pk+1) +

(sk+1−r) < b− lk0−k in the following configuration of the tableau T̃ (pk+1 <
pk ≤ q < r < sk < sk+1).

lk0−k

B′

lk0−k+1

b̄

lk0

A′

lk0−k+1

lk0−k

bsk+1 →

sk →

r →

← q

← pk

← pk+1

x y − 1 y

under the assumption

(5.13) (q − pk) + (sk − r) < b− lk0−k+1.
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By the same argument as in the case when p1 < q, we have (q − pk+1) +
(sk+1 − r) ≤ b− lk0−k. Let us assume that

(5.14) (q − pk+1) + (sk+1 − r) = b− lk0−k.

The filling diagram of the initial column C(x,y−1) has the following configu-
ration.

•

•

•

•

•

•

•
(2)

lk0−k lk0−k+1 lk0 b

· · ·

︷ ︸︸ ︷
(1)

.

Region (1) contains k − 1 (±)-slots and region (2) contains no (±)-slots
because of the choice of lk0 . Let us assume that the numbers of (+)-slots,
(−)-slots, and ∅-slots in region (i) are αi, βi, and εi, respectively (i = 1, 2).

Then q−pk+1 = α1+(k−1)+1, sk+1− r =
∑2

i=1 βi+k+1, and b− lk0−k =
∑2

i=1(αi + βi + εi) + k + 1. Substituting these into Eq. (5.14), we have k =

α2 + ε1 + ε2. Therefore, when L (x,y−1)-letters up to lk0−1 are transformed

to the corresponding L (x,y−1)†-letters, at least k − ε1 = α2 + ε2 of them
are larger than lk0 so that γ′ := ♯

{
l ∈ L (x,y−1)

∣
∣ l < lk0 < l†

}
≥ α2 + ε2.

The updated tableau just before the operation lk0 → l†k0 has the following
configuration.

b′

C

lk0

bq →

q − γ′ →

y − 1 y

.

By the argument of the first paragraph of the proof, b /∈ C even if k∗k0 < b

(it is clear b /∈ C if k∗k0 > b) so that C has at most α2 letters because α2

I (y−1) letters exist between lk0 and b. On the other hand, C consists of γ′

boxes and γ′ ≥ α2. This implies γ′ = α2 and C consists of consecutive α2

letters, lk0 + 1, . . . , b− 1, i.e., β2 = ε2 = 0. If b /∈ L (x,y−1), then b /∈ I (y−1)

so that b′ > b. When the operation lk0 → l†k0 is finished, the entry at the

q-th position in the (y − 1)-st column is b′, which does not change under

subsequent operations. This contradicts the semistandardness of the C
(+)
n -

letters part of T ′ because b′ > b. If b ∈ L (x,y−1), then b′ = b. When the

operation lk0 → l†k0 followed by b → b† is finished, the entry at the q-th
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position in the (y− 1)-st column is strictly larger than b by Lemma 3.5 and
does not change under subsequent operations. This is also a contradiction.

From (I) and (II), we have, by induction,

(q − p) + (s− r) < b− a

in the configuration depicted in the statement of Lemma 5.2 with a1 = a2 =
a.

Next, we assume that a1 < a2. The proof for the case when a1 > a2 is
similar. We consider the following two cases separately:

(a): a2 appears in the (y − 1)-st column.
(b): a2 does not appear in the (y − 1)-st column.

Case (a). The tableau T̃ has the following configuration.

x y − 1 y

a2

b̄

a2

a1

bs→

r→

← q

← p′

← p

.

Since p′ − p − 1 ≤ |{a1 + 1, . . . , a2 − 1}|, we have p′ − p ≤ a2 − a1. On the
other hand, (q − p′) + (s− r) < b− a2 so that we have

(q − p) + (s − r) < b− a1 = b−min(a1, a2).

Case (b). Let j be the smallest entry such that a2 < j and j (resp.

j̄) appears in the (y − 1)-st (resp. x-th) column. The tableau T̃ has the
following configuration.

x y − 1 y

a2

B̄

j̄

b̄

j

A

a1

bs→

s′ →

r→

← q

← p′

← p

,

where A ∩B = ∅. Since |A|+
∣
∣B̄

∣
∣ = |A ∪B| ≤ |{a1 + 1, . . . , j − 1}\{a2}| =

j−a2−2, we have p
′−p+s−s′ ≤ j−a1. On the other hand, (q−p′)+(s′−r) <

b− j so that we have

(q − p) + (s − r) < b− a1 = b−min(a1, a2).
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If such an entry j does not exist, the tableau T̃ has the following config-
uration.

x y − 1 y

a2

B̄

b̄

A

a1

bs→

r→

← q

← p

,

where A ∩ B = ∅ and a2 /∈ A. Furthermore, b /∈ A because of the ar-
gument of the first paragraph of the proof. Since |A| +

∣
∣B̄

∣
∣ = |A ∪B| ≤

|{a1 + 1, . . . , b− 1}\{a2}| = b− a1 − 2, we have

(q − p) + (s − r) < b− a1 = b−min(a1, a2).

Now let us prove part (2). We set a1 = a2 = a. The proof for the case

when a1 6= a2 is same as that of (1). Note that φ(x,y) is well-defined by

Lemma 5.1. Let C
(y)
+ be the C (+)-letters part of the y-th column of T̃ and

let C(x,y) be the column whose C (+) (resp. C (−))-letters part is C
(y)
+ (resp.

C
(x)
− ). If b = lc, then δ = 0 and we have nothing to prove. Suppose that

b = lk′
0
(k′0 < c) and

(5.15) qk+1 − p+ s− rk+1 < lk+1 − a− δk+1

holds, where δk+1 = ♯
{
l ∈ L (x,y)

∣
∣ l∗ < lk+1 < l

}
, qk+1 is the position of

lk+1 in the y-th column, and rk+1 is the position of lk+1 in the x-th column in
T̃ (k = c−1, . . . , k′0). Suppose that the operation for lk+1 → l∗k+1 is finished.
The filling diagram of the updated column has the following configuration.

◦

◦

×

×

×

×

•

•

◦

◦

l∗k l∗k+1 l∗k+δk lk lk+1

· · · (0)

,

where δk = ♯
{
l ∈ L (x,y)

∣
∣ l∗ < lk < l

}
= ♯ {lk+1, . . . , lk+δk}. Let us assume

that the numbers of (+)-slots, (−)-slots, and (×)-slots in region (0) are α,
β, and ε, respectively. The (±)-slots and ∅-slots do not exist in this region.
Then qk+1 = qk +α+ 1, rk+1 = rk − β − 1, lk+1 = lk + (α+ β + ε) + 1, and
δk+1 = (δk−1)+ε. Substituting these into Eq.(5.15), we have qk−p+s−rk <
lk−a−δk. Therefore, we have, by induction, (q−p)+(s−r) < b−a−δ in the
configuration depicted in the statement of Lemma 5.2 with a1 = a2 = a. �

Lemma 5.3. Suppose that = C1C2 · · ·Cnc ∈ Cn-SSTKN. Let us set

T̃ := φ(x,y−1) ◦ · · · ◦ φ(x,x) ◦Φ(x+1)(T ) (2 ≤ x+ 1 ≤ y ≤ nc).
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Here, we assume that T̃ 6= ∅ and that in the updating process of the tableau

from T to T̃ the semistandardness of the C
(+)
n -letters part of the tableau is

preserved. Then the C
(+)
n -letters part of φ(x,y)(T̃ ) is semistandard.

Proof. The map φ(x,y) is well-defined by Lemma 5.1. Let Cy−1 be the (y−1)-

st column of T̃ and Cy (resp. C0
y ) be the y-th column of φ(x,y)(T̃ ) (resp.

T̃ ). In what follows, we show that the C
(+)
n -letters part of the two-column

tableau Cy−1Cy in φ(x,y)(T̃ ) is semistandard. If this is true, the claim of

Lemma 5.3 follows because the C
(+)
n -letters part of CyCy+1 in φ(x,y)(T̃ ) is

guaranteed to be seminstandard by Lemma 3.4, where Cy+1 is the (y+1)-st

column of φ(x,y)(T̃ ) (y ≤ nc − 1). Let us denote by I (y) the set of I -

letters in the y-th column of T̃ and by J (x) the set of J -letters in the

x-th column of T̃ and set L (x,y) := J (x) ∩I (y) =: {l1, . . . , lc}. We adopt

the second kind algorithm for φ(x,y) when we treat the y-th column, while
we adopt the first kind one when we treat the x-th column. We claim that

∆Cy−1[p
′
k, q

′
k] � ∆k(C

0
y ) for all k = c, c − 1, . . . , 1 so that C

(+)
n -letters part

of Cy−1Cy is semistandard, where p′k (resp. q′k) is the position of the top
(resp. bottom) box of the block ∆k(C

0
y ), which is defined in the explanation

of the second kind algorithm for φ. The proof is by induction on k. Namely,
we prove

(I). ∆Cy−1[p
′
c, q

′
c] � ∆c(C

0
y ).

(II).∆Cy−1[p
′
k, q

′
k] � ∆k(C

0
y ) under the assumption that ∆Cy−1[p

′
k+1, q

′
k+1] �

∆k+1(C
0
y ) (k = c− 1, . . . , 1).

We first prove (II). Suppose that

{

l ∈ L (x,y−1)
∣
∣
∣ l∗ < lk < l

}

= {lk+1, . . . , lk+δ} .

Let C
(y)
+ (resp. C

(x)
− ) be the C

(+)
n (resp. C

(−)
n )-letters part of the y-th (resp.

x-th) column of T̃ and let C(x,y) be the column whose C
(+)
n (resp. C

(−)
n )-

letters part is C
(y)
+ (resp. C

(x)
− ). Suppose that the operation for lk+1 → l∗k+1

is completed (k ≤ c− 1). Let T̃ ′ be the updated tableau and C(x,y)′ be the
resulting column. Let us assume that ∆Cy−1[p

′
k+1, q

′
k+1] � ∆k+1(C

0
y ). The

filling diagram of the column C(x,y)′ has the following configuration. Here,
we assume r ≥ 1. The proof for the case when r = 0 is similar and much
simpler.
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◦

◦

◦

•

◦

•

◦

•

◦

•

◦

•

•

•
(r) · · · (r − 1) · · · (1) · · · (0)

l∗k i
(y)
r,1 i

(y)
r,αr

i
(y)
2,α2

i
(y)
1,1 i

(y)
1,α1

lk

︷ ︸︸ ︷
αr

︷ ︸︸ ︷
α1

.

Region (s) consists of (−)-slots, (±)-slots, and (×)-slots. Let us assume that
the numbers of (−)-slots, (±)-slots, and (×)-slots in this region are βs, γs,
and δs respectively and that the position of (×)-slots in region (s) are l∗s,1, . . .,

and l∗s,δs (s = 0, 1, . . . , r);
{
l∗k+1, . . . , l

∗
k+δ

}
=

{

l∗0,1, . . . , l
∗
0,δ0

, . . . , l∗r,1, . . . , l
∗
r,δr

}

.

Between two regions (s− 1) and (s), αs (+)-slots lie consecutively.

(s) · · · (s− 1)
◦

•

◦

•

i
(y)
s,1 i

(y)
s,αs .

The updated tableau T̃ ′ has the following configuration. There are no
L (x,y)∗-letters above the box containing lk in the y-th column because we

adopt the second kind algorithm for φ(x,y) in the y-th column, while L (x,y)∗-
letters may exist below the box containing lk in the x-th column.

Cr

lk

lk

A

· · ·

x y

← q′k

.

where A is the stack of the sequence of blocks L
(y)
r , I

(y)
r , . . . , I

(y)
1 , L

(y)
0 in this

order (from top to bottom) and Cr is the stack of the sequence of blocks

J
(x)
0 , J

(x)
1 , . . . , J

(x)
r in this order (from the top). The block I

(y)
s consists of

consecutive αs I (y)\L (x,y)-letters {i
(y)
s,1 , . . . , i

(y)
s,αs}, where

i
(y)
s,αs−t+1 = lk −

s−1∑

i=1

αi −
s−1∑

i=0

τi − t (t = 1, . . . , αs)
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with τi := βi+γi+δi and L
(y)
s is the block of γs L (x,y)-letters (s = 0, 1, . . . , r).

The block J
(x)
s consists of consecutive τs C

(−)
n -letters

{

j
(x)
s,τs , . . . , j

(x)
s,1

}

, where

j
(x)
s,τs−t+1 = lk −

s∑

i=1

αi −
s−1∑

i=0

τi − t (t = 1, . . . , τs; s = 0, . . . , r).

Note that J
(x)
s contains L (x,y)∗-letters, l∗s,1, . . . , and l∗s,δs . Let us assume

that the (y − 1)-st column of T̃ ′ has the following configuration.

Br

i
(y−1)
0

q′k →

,

where Br is the stack of the sequence of blocks I
(y−1)
r , I

(y−1)
r−1 , . . . , I

(y−1)
1 in

this order (from top to bottom) and the position of the bottom box in Br is
q′k (the block Br is not empty because of the assumption of r ≥ 1). The block

I
(y−1)
s consists of αk C

(+)
n -letters {i

(y−1)
s,1 , . . . , i

(y−1)
s,αs } so that

∣
∣
∣I

(y−1)
s

∣
∣
∣ =

∣
∣
∣I

(y)
s

∣
∣
∣

(s = 1, . . . , r).

(i). We claim that i
(y−1)
1,α1

≤ i
(y)
1,α1

= lk − τ0 − 1. If this is not true,

i
(y−1)
1,α1

∈ {lk − τ0, lk − τ0 + 1, . . . , lk} (i
(y−1)
1,α1

≤ lk), i.e., i
(y−1)
1,α1

is in the block

J
(x)
0 or i

(y−1)
1,α1

= lk. Suppose that i
(y−1)
1,α1

= lk− t (t = 0, . . . , τ0). The updated

tableau T̃ ′ has the following configuration.

i
(y−1)
1,α1

lk i
(y−1)
1,α1

lk

s′ →

r′ → p′ → ← q′(= q′k)

x y − 1 y

.

Let pk and qk be the initial position of i
(y−1)
1,α1

in the (y − 1)-st column and

that of lk in the y-th column of T̃ , respectively. We consider the following
two cases separately:

(a): i
(y−1)
1,α1

/∈ L (x,y)∗.

(b): i
(y−1)
1,α1

∈ L (x,y)∗.
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Case (a). The entry i
(y−1)
1,α1

exists initially in the x-th column of T̃ . Let

rk and sk be the initial position of lk and that of i
(y−1)
1,α1

in the x-th column of

T̃ , respectively. Then pk = p′ and qk ≥ q
′ because lk is relocated upward by

the operations for lc → l∗c , . . . , lk+1 → l∗k+1 or still lies at the initial position.

Suppose that δ′ L (x,y)∗-letters appear between the r′-th box and the s′-th
box in the x-th column (δ′ ≤ δ). Then s′ − r′ = sk − rk + δ′ so that

qk − pk + sk − rk ≥ q
′ − p′ + s′ − r′ − δ′ = t− δ′(5.16)

≥ lk − i
(y−1)
1,α1

− δ,

which contradicts the assertion of Lemma 5.2.
Case (b). We can write i

(y−1)
1,α1

= a∗ (a ∈ L (x,y)). Let rk be the initial

position of lk in the x-th column of T̃ . Furthermore, let us suppose that the
initial entry at the sk-th position (sk ≥ rk) in the x-th column of T̃ is b̄ and
that the operation a→ a∗ replaces the entry b̄ by a∗.

b̄

ā

sk →
−→

a∗
b̄
← sk

x x

,

so that b > i
(y−1)
1,α1

. The initial tableau T̃ has the following configuration.

b̄

lk i
(y−1)
1,α1

lksk →

rk → pk →

← qk

x y − 1 y

.

Inequality (5.16) still holds in this case and this contradicts the assertion of
Lemma 5.2.

In both cases, we have i
(y−1)
1,α1

≤ i
(y)
1,α1

= lk − τ0 − 1 and

i
(y−1)
1,α1−t+1 ≤ i

(y)
1,α1−t+1 = lk − τ0 − t (t = 1, . . . , α1).
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(ii). Suppose that

i
(y−1)
s,1 ≤ i

(y)
s,1 = lk −

s∑

i=1

αi −
s−1∑

i=0

τi (s = 1, . . . , r − 1).

This is satisfied for s = 1. Under this assumption, let us show that

i
(y−1)
s+1,αs+1

≤ i
(y)
s+1,αs+1

= lk −
s∑

i=1

αi −
s∑

i=0

τi − 1.

If this is not true,

lk −
s∑

i=1

αi −
s∑

i=0

τi ≤ i
(y−1)
s+1,αs+1

≤ i
(y−1)
s,1 − 1 ≤ lk −

s∑

i=1

αi −
s−1∑

i=0

τi − 1.

Suppose that i
(y−1)
s+1,αs+1

= lk−
∑s

i=1 αi−
∑s−1

i=0 τi−t = j
(x)
s,τs−t+1 (t = 1, . . . , τs).

Then the updated tableau T̃ ′ has the following configuration.

...

Cs−1

lk

s′ →

r′ →

❅
❅❅■

i
(y−1)
s+1,αs+1

Bs

p′ →

← q′(= q′k)lk

x y − 1 y

�
��✒

i
(y−1)
s+1,αs+1

,

where Cs−1 denotes the stack of blocks, J
(x)
0 , . . . , J

(x)
s−1 in this order (from

top to bottom). Similarly, Bs denotes the stack of blocks, I
(y−1)
s , . . . , , I

(y−1)
1

in this order (from top to bottom).

Let pk and qk be the initial position of i
(y−1)
s+1,αs+1

in the (y−1)-st column and

that of lk in the y-th column of T̃ , respectively. We consider the following
two cases separately:

(a): i
(y−1)
s+1,αs+1

/∈ L (x,y)∗.

(b): i
(y−1)
s+1,αs+1

∈ L (x,y)∗.

Case (a). The entry i
(y−1)
s+1,αs+1

exists initially in the x-th column of T̃ . Let

rk and sk be the initial position of lk and that of i
(y−1)
s+1,αs+1

in the x-th column
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of T̃ , respectively. Then pk = p′ and qk ≥ q′. Suppose δ′ L (x,y)∗-letters
appear between the r′-th box and the s′-th box in the x-th column (δ′ ≤ δ).
Then s′−r′ = sk−rk+δ

′ so that qk−pk+sk−rk ≥ q
′−p′+s′−r′−δ′. Here

q′−p′ =
∑s

i=1

∣
∣
∣I

(y−1)
i

∣
∣
∣ =

∑s
i=1 αi and s

′−r′ =
∑s−1

i=0

∣
∣
∣
∣
J
(x)
i

∣
∣
∣
∣
+t =

∑s−1
i=0 τi+t.

Combining these, we have

(5.17) qk − pk + sk − rk ≥
s∑

i=1

αi +

s−1∑

i=0

τi + t− δ = lk − i
(y−1)
s+1,αs+1

− δ.

This contradicts the assertion of Lemma 5.2.
Case (b). We can write i

(y−1)
s+1,αs+1

= a∗ (a ∈ L (x,y)). Let rk be the initial

position of lk in the x-th column of T̃ . Furthermore, let us suppose that the
initial entry at the sk-th position (sk ≥ rk) in the x-th column of T̃ is b̄ and

that the operation a → a∗ replaces the entry b̄ by a∗ so that b > i
(y−1)
s+1,αs+1

.

The initial tableau T̃ has the following configuration.

b̄

lk

lksk →

rk → pk →

← qk

x y − 1 y

�
��✒

i
(y−1)
s+1,αs+1

.

Inequality (5.17) still holds in this case and this contradicts the assertion of
Lemma 5.2.

In both cases, we have i
(y−1)
s+1,t ≤ i

(y)
s+1,t (t = 1, . . . , αs+1).

From (i) and (ii) and by induction, we have

i
(y−1)
r,1 ≤ i

(y)
r,1 = lk −

r∑

i=1

αi −
r−1∑

i=0

τi.

(iii). We claim that i
(y−1)
0 ≤ l∗k. If this is not true, then

lk −
r∑

i=1

αi −
r∑

i=0

τi(= l∗k + 1) ≤ i
(y−1)
0 ≤ i

(y−1)
r,1 − 1 ≤ lk −

r∑

i=1

αi −
r−1∑

i=0

τi − 1.

Suppose i
(y−1)
0 = lk −

∑r
i=1 αi−

∑r−1
i=0 τi− t = j

(x)
r,τr−t+1 (t = 1, . . . , τr), then

the tableau T̃ ′ has the following configuration.
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i
(y−1)
0

...

Cr−1

lk

Br

i
(y−1)
0

lk

s′ →

r′ → p′ →

← q′(= q′k)

x y − 1 y

.

The same argument as in (ii) leads to that this configuration contradicts

the assertion of Lemma 5.2. Hence we have i
(y−1)
0 ≤ l∗k.

(iv). When the operation (B) for lk → l∗k is finished, the updated tableau
has the following configuration. From the p′k-th position to the q′k-th position
in the y-th column is the block ∆k(C

0
y ).

Br

i
(y−1)
0

AI

l∗k ← p′k

← q′k

y − 1 y

,

where AI stands for the stack of the sequence of blocks I
(y)
r , I

(y)
r−1, . . . , I

(y)
r in

this order (from top to bottom). Here, I
(y−1)
i � I

(y)
i (i = 1, . . . , r) so that

Br � AI and i
(y−1)
0 ≤ l∗k. Therefore, we have ∆Cy−1[p

′
k, q

′
k] � ∆k(C

0
y ). The

position of l∗k and those of entries in I
(y)
i (i = 1, . . . , r) do not change under

subsequent operations for lk−1 → l∗k−1, . . . , l1 → l∗1. Thus, the proof of (II)
has been completed.

(v). By the same argument as in (i), (ii), and (iii), it is not hard to
show ∆Cy−1[p

′
c, qc] � ∆k=c(C

0
y ), where p

′
c (resp. qc) is the position of the

top (resp. bottom) box of ∆k=c(C
0
y ). Note that qc is the initial position of

lc in C
0
y . This completes the proof of (I). �

The following result may be proven in much the same way as in Lemma 5.2.

Lemma 5.4. Suppose that T = C1C2 · · ·Cnc ∈ Cn-SSTKN. Let us set

T̃ :=
(

φ(x+1,y) ◦ φ(x,y−1)
)

◦ · · · ◦
(

φ(x+1,x+1) ◦ φ(x,x)
)

◦ (Φ(x+1))−1 ◦ Φ(x+1)(T ) (2 ≤ x+ 1 ≤ y ≤ nc).
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Here, we assume that T̃ 6= ∅ and that in the updating process of the tableau

from T to T̃ the semistandardness of the C
(−)
n -letters part of the tableau is

preserved.

(1). Suppose that the tableau T̃ has the following configuration, where the

left (resp. right) part is the C
(−)
n (resp. C

(+)
n )-letters one (p ≤ q <

r ≤ s).

b̄

a2s→

r →

x x+ 1

b

a1

← q

← p

y

.

Then we have

(q − p) + (s− r) < b−min(a1, a2).

(2). Let J (x) be the set of J -letters in the x-th column and I (y) be the

set of I -letters in the the y-th column and set L (x,y) := J (x)∩I (y).

If ♯
{
l ∈ L (x,y)

∣
∣ l∗ < b < l

}
= δ in φ(x,y)(T̃ ), then we have

(q − p) + (s− r) < b−min(a1, a2)− δ

in the above configuration in T̃ .

Lemma 5.5. Suppose that T = C1C2 · · ·Cnc ∈ Cn-SSTKN. Let us set

T̃ :=
(

φ(x+1,y) ◦ φ(x,y−1)
)

◦· · · ◦
(

φ(x+1,x+1) ◦ φ(x,x)
)

◦(Φ(x+1))−1 ◦Φ(x+1)(T )

(2 ≤ x + 1 ≤ y ≤ nc). Here, we assume that T̃ 6= ∅ and that in the

updating process of the tableau from T to T̃ the semistandardness of the

C
(−)
n -letters part of the tableau is preserved. Then the C

(−)
n -letters part

of φ(x,y)(T̃ ) is semistandard and if y ≤ nc − 1 the C
(−)
n -letters part of

(
φ(x+1,y+1) ◦ φ(x,y)

)
(T̃ ) is also semistandard.

Proof. Let Cx (resp. C0
x) be the x-th column of φ(x,y)(T̃ ) (resp. T̃ ) and

Cx+1 be the (x + 1)-st column of T̃ . In what follows, we show that the

C
(−)
n -letters part of the two-column tableau CxCx+1 is semistandard. If this

is true, the claim of Lemma 5.5 is immediate by Lemma 3.4.
Let us denote by I (y) the set of I -letters in the y-th column of T̃ and

by J (x) the set of J -letters in the x-th column of T̃ and set L (x,y) :=

J (x) ∩I (y) =: {l1, . . . , lc}. We adopt the second kind algorithm for φ(x,y)

when we treat the x-th column, while we adopt the first kind one when
we treat the y-th column. We claim that ∆k(C

0
x) � ∆Cx+1[p

′
k, q

′
k] for all

k = c, c − 1, . . . , 1 so that the C
(−)
n -letters part of CxCx+1 is semistandard,
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where p′k (resp. q′k) is the position of the top (resp. bottom) box of ∆k(C
0
x).

The proof is by induction on k. Namely, we prove
(I). ∆c(C

0
x) � ∆Cx+1[p

′
c, q

′
c].

(II). ∆k(C
0
x) � ∆Cx+1[p

′
k, q

′
k] under the assumption that ∆k+1(C

0
x) �

∆Cx+1[p
′
k+1, q

′
k+1] (k = c− 1, . . . , 1).

We first prove (II). Suppose that
{
l ∈ L (x,y)

∣
∣ l∗ < lk < l

}
=: {lk+1, . . . , lk+δ}.

Let C
(y)
+ (resp. C

(x)
− ) be the C

(+)
n (resp. C

(−)
n )-letters part of the y-th (resp.

x-th) column of T̃ and let C(x,y) be the column whose C
(+)
n (resp. C

(−)
n )-

letters part is C
(y)
+ (resp. C

(x)
− ). Suppose that the operation for lk+1 → l∗k+1

is finished (k ≤ c − 1). Let T̃ ′ be the updated tableau and C(x,y)′ be the
resulting column. Let us assume that ∆k+1(Cx) � ∆Cx+1[p

′
k+1, q

′
k+1]. The

filling diagram of the column C(x,y)′ has the following configuration. Here,
we assume that r ≥ 1. The proof for the case when r = 0 is similar and
much simpler.

◦

◦

•

◦

•

◦

•

◦

•

◦

•

◦

•

•
(r) · · · (r − 1) · · · (1) · · · (0)

l∗k j
(x)
r,1 j

(x)
r,βr

j
(x)
2,β2

j
(x)
1,1 j

(x)
1,β1

lk

︷ ︸︸ ︷
βr

︷ ︸︸ ︷
β1

.

Region (s) contains (+)-slots, (±)-slots, and (×)-slots. Let us assume that
the numbers of (+)-slots, (±)-slots, and (×)-slots in this region are αs,
γs, and δs, respectively and that the position of (×)-slots in region (s) are
l∗s,1, . . ., and l

∗
s,δs

(s = 0, 1, . . . , r);

{
l∗k+1, . . . , l

∗
k+δ

}
=

{
l∗0,1, . . . , l

∗
0,δ0 , . . . , l

∗
r,1, . . . , l

∗
r,δr

}
.

Between two regions (s− 1) and (s), βs (−)-slots lie consecutively.

(s) · · · (s− 1)
•

◦

•

◦

j
(x)
s,β1

j
(x)
s,βs .

The updated tableau T̃ ′ has the following configuration. There are no

L (x,y)∗-letters below the box containing lk in the x-th column because we
adopt the second kind algorithm for φ(x,y) in the x-th column, while L (x,y)∗-
letters may exist above the box containing lk in the y-th column.
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· · ·

C

lkp′k →
lk

Ar

x y

,

where Ar is the stack of the sequence of blocks I
(y)
r , I

(y)
r−1, . . . , I

(y)
0 in this

order (from top to bottom) and C is the stack of the sequence of blocks

L
(x)
0 , J

(x)
1 , . . . , J

(x)
r , L

(x)
r in this order (from top to bottom). The block J

(x)
s

consists of consecutive J (x)\L (x,y)-letters {j
(x)
s,βs

, . . . , j
(x)
s,1 }, where

j
(x)
s,βs−t+1 = lk −

s−1∑

i=1

βi −
s−1∑

i=0

τi − t (t = 1, . . . , βs)

with τi := αi + γi + δi and L
(x)
s is the block of γs L (x,y)-letters (s =

0, 1, . . . , r). The block I
(y)
s consists of consecutive τs C

(+)
n -letters {i

(y)
s,1 , . . . , i

(y)
s,τs},

where

i
(y)
s,τs−t+1 = lk −

s∑

i=1

βi −
s−1∑

i=0

τi − t (t = 1, . . . , τs; s = 0, . . . , r).

Let us assume that the (x+ 1)-st column has the following configuration.

j
(x+1)
0

Br
p′k →

,

where Br is the stack of the sequence of blocks J
(x+1)
1 , J

(x+1)
2 , . . . , J

(x+1)
r

in this order (from top to bottom) and the position of the top box in Br

is p′k (the block Br is not empty because of the assumption of r ≥ 1).

The block J
(x+1)
s consists of βs C

(−)
n -letters

{

j
(x+1)
s,βs

, . . . , j
(x+1)
s,1

}

so that
∣
∣
∣
∣
J
(x+1)
s

∣
∣
∣
∣
=

∣
∣
∣
∣
J
(x)
s

∣
∣
∣
∣
(s = 1, . . . , r).

(i). We claim that j
(x)
1,β1
� j

(x+1)
1,β1

, i.e., j
(x+1)
1,β1

≤ j
(x)
1,β1

= lk − τ0 − 1. If this

is not true, j
(x+1)
1,β1

∈ {lk − τ0, lk − τ0 + 1, . . . , lk} (lk � j
(x+1)
1,β1

), i.e., j
(x+1)
1,β1

is
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in the block I
(y)
0 or j

(x+1)
1,β1

= lk. Suppose j
(x+1)
1,β1

= lk − t (t = 0, 1, . . . , τ0).

The updated tableau T̃ ′ has the following configuration.

lk j
(x+1)
1,β1

lk

j
(x+1)
1,β1

x x+ 1 y

r′(= p′k)→ ← s′

← q′

← p′

.

Let rk and sk be the initial position of lk in the x-th column and that of

j
(x+1)
1,β1

in the (x+1)-st column of T̃ , respectively. We consider the following
two cases separately:

(a): j
(x+1)
1,β1

/∈ L (x,y)∗.

(b): j
(x+1)
1,β1

∈ L (x,y)∗.

Case (a). The entry j
(x+1)
1,β1

exists initially in the y-th column of T̃ . Let

pk and qk be the initial position of j
(x+1)
1,β1

and that of lk in the y-th column of

T̃ , respectively. Then sk = s′ and rk ≤ r′ because lk is relocated downward
by previous operations for lc → l∗c , . . . , lk+1 → l∗k+1 or still lies at the initial

position. Suppose that δ′ L (x,y)∗-letters appear between the p′-th box and
the q′-th box in the y-th column (δ′ ≤ δ). Then q′− p′ = qk− pk+ δ

′ so that

qk − pk + sk − rk ≥ q
′ − p′ + s′ − r′ − δ′ = t− δ′(5.18)

≥ lk − j
(x+1)
1,β1

− δ,

which contradicts the assertion of Lemma 5.4.
Case (b). We can write j

(x+1)
1,β1

= a∗ (a ∈ L (x,y)). Let qk be the initial

position of lk in the y-th column of T̃ . Furthermore, let us suppose that the
initial entry at the pk-th position (pk ≤ qk) in the y-th column of T̃ is b and
that the operation a→ a∗ replaces the entry b by a∗.

a

bpk →

−→
b
a∗← pk

y y

,

so that b > j
(x+1)
1,β1

. The initial tableau T̃ has the following configuration.



CRYSTAL INTERPRETATION OF A FORMULA ON THE BRANCHING RULE 133

lk

j
(x+1)
1,β1

lk

b

x x+ 1 y

sk →

rk →

← qk

← pk

.

Inequality (5.18) still holds in this case and this contradicts the assertion of
Lemma 5.4.

In both cases, we have j
(x+1)
1,β1

≤ j
(x)
1,β1

= lk − τ0 − 1 and

j
(x+1)
1,β1−t+1 ≤ j

(x)
1,β1−t+1 = lk − τ0 − t (t = 1, . . . , β1).

(ii). Suppose that

j
(x+1)
s,1 ≤ j

(x)
s,1 = lk −

s∑

i=1

βi −
s−1∑

i=0

τi (s = 1, . . . , r − 1).

This is satisfied for s = 1. Under these assumptions, let us show that

j
(x+1)
s+1,βs+1

≤ j
(x)
s+1,βs+1

= lk −
s∑

i=1

βi −
s∑

i=0

τi − 1.

If this is not true,

lk −
s∑

i=1

βi −
s∑

i=0

τi ≤ j
(x+1)
s+1,βs+1

≤ j
(x+1)
s,1 − 1 ≤ lk −

s∑

i=1

βi −
s−1∑

i=0

τi − 1.

Suppose j
(x+1)
s+1,βs+1

= lk −
∑s

i=1 βi −
∑s−1

i=0 τi − t = i
(x)
s,τs−t+1 (t = 1, . . . , τs).

Then the tableau T̃ ′ has the following configuration.

x x+ 1 y

lk
Bs

lk

As−1

...

r′(= p′k)→

s′ →

← p′

← q′
❅

❅❅■

j
(x+1)
s+1,βs+1

�
��✒

j
(x+1)
s+1,βs+1

,
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where As−1 denotes the stack of blocks I
(y)
s−1, . . . , I

(y)
0 in this order (from

top to bottom) and Bs denotes the stack of blocks J
(x+1)
1 , . . . , J

(x+1)
s in this

order (from top to bottom). We consider the following two cases separately:

(a): j
(x+1)
s+1,βs+1

/∈ L (x,y)∗.

(b): j
(x+1)
s+1,βs+1

∈ L (x,y)∗.

Case (a). The entry j
(x+1)
s+1,βs+1

exists initially in the y-th column of T̃ .

Let rk and sk be the initial position of lk in the x-th column and that

of j
(x+1)
s+1,βs+1

in the (x + 1)-st column of T̃ , respectively. Let pk and qk be

the initial position of j
(x+1)
s+1,βs+1

and that of lk in the y-th column of T̃ ,

respectively. Then sk = s′ and rk ≤ r′. Suppose that δ′ L (x,y)∗-letters
appear between the p′-th box and the r′-th box in the y-th column (δ′ ≤ δ).
Then q′−p′ = qk−pk+δ

′ so that qk−pk+sk−rk ≥ q
′−p′+s′−r′−δ. Here,

s′−r′ =
∑s

i=1

∣
∣
∣J

(x+1)
i

∣
∣
∣ =

∑s
i=1 βi and q

′−p′ =
∑s−1

i=0

∣
∣
∣I

(y)
i

∣
∣
∣+t =

∑s−1
s=0 τi+t.

Therefore, we have

(5.19) qk − pk + sk − rk ≥
s∑

i=1

βi +
s−1∑

s=0

τi + t− δ = lk − j
(x+1)
s+1,βs+1

− δ.

This contradicts the assertion of Lemma 5.4.
Case (b). We can write j

(x+1)
s+1,βs+1

= a∗ (a ∈ L (x,y)). Let qk be the initial

position of lk in the y-th column of T̃ . Furthermore, let us suppose that the
initial entry at the pk-th position (pk ≤ qk) in the y-th column of T̃ is b and

that the operation a → a∗ replaces the entry b by a∗ so that b > j
(x+1)
s+1,βs+1

.

The initial tableau T̃ has the following configuration.

lk

lk

b

x x+ 1 y

sk →

rk →

← qk

← pk

❅
❅❅■

j
(x+1)
s+1,βs+1 .

Inequality (5.19) still holds in this case and this contradicts the assertion of
Lemma 5.4.
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In both cases, we have j
(x+1)
s+1,t ≤ j

(x)
s+1,t (t = 1, . . . , βs+1). From (i) and (ii)

and by induction, we have

j
(x+1)
r,1 ≤ j

(x)
r,1 = lk −

r∑

i=1

βi −
r−1∑

i=0

τi.

(iii). We claim that l∗k � j
(x+1)
0 (j

(x+1)
0 ≤ l∗k). If this is not true, then

lk −
r∑

i=1

βi −
r∑

i=0

τi(= l∗k + 1) ≤ j
(x+1)
0 ≤ j

(x)
r,1 − 1 ≤ lk −

r∑

i=1

βi −
r−1∑

i=0

τi − 1.

Suppose j
(x+1)
0 = lk −

∑r
i=1 βi −

∑r−1
i=0 τi − t = i

(y)
r,τr−t+1 (t = 1, . . . , τr), the

updated tableau T̃ ′ has the following configuration.

x x+ 1 y

lk

j
(x+1)
0

Br

lk

Ar−1

...

j
(x+1)
0

r′(= p′k)→

← s′

← p′

← q′

.

The same argument as in (ii) leads to a contradiction. Hence we have

j
(x+1)
0 ≤ l∗k.
(iv). When the operation (B) for lk → l∗k is finished, the updated tableau

has the following configuration.

x x+ 1

l∗k

CJ

j
(x+1)
0

Br

q′k →

p′k →

,

where CJ stands for the stack of the sequence of blocks J
(x)
1 , J

(x)
2 , . . . , J

(x)
r

in this order (from top to bottom) Here, J
(x)
i � J

(x+1)
i (i = 1, . . . , r) so

that CJ � Br and l∗k � j
(x+1)
0 . Therefore, ∆k(C

0
x) � ∆Cx+1[p

′
k, q

′
k]. The

position of l∗k and those of entries in J
(x)
i (i = 1, . . . , r) do not change under
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subsequent operations for lk−1 → l∗k−1, . . . , l1 → l∗1. Thus, the proof of (II)
has been completed.

(v). By the same argument as in (i), (ii), and (iii), it is not hard to
show ∆k=c(C

0
x) � ∆Cx+1[pc, q

′
c], where pc (resp. q′c) is the position of the

top (resp. bottom) box of ∆k=c(C
0
x). Note that pc is the initial position of

lc in C
0
x. This completes the proof of (I). �

We can prove the following Lemma 5.6 and Lemma 5.7 in the similar man-
ner of the proof of Lemma 5.3 and Lemma 5.5. The proof of Lemma 5.6 uses
Lemma 5.8 instead of Lemma 5.2 and that of Lemma 5.7 uses Lemma 5.9
instead of Lemma 5.4. Lemma 5.8 and Lemma 5.9 can be also proven by
the similar manner of the proof of Lemma 5.2 (2).

Lemma 5.6. Suppose that T = C1C2 · · ·Cnc ∈ Cn-SSTKN. Let us set

T̃ :=

{

Φ(x+1)(T ) (1 ≤ x ≤ nc − 1),

T (x = nc).

Here, we assume that T̃ 6= ∅ and that in the updating process of the tableau

from T to T̃ the semistandardness of the C
(+)
n -letters part of the tableau is

preserved. Then the C
(+)
n -letters part of φ(x,x)(T̃ ) is semistandard.

Lemma 5.7. Suppose that T = C1C2 · · ·Cnc ∈ Cn-SSTKN. Let us set

T̃ := (Φ(x+1))−1 ◦ Φ(x+1)(T ) (1 ≤ x ≤ nc − 1).

Here, we assume that T̃ 6= ∅ and that in the updating process of the tableau

from T to T̃ the semistandardness of the C
(−)
n -letters part of the tableau is

preserved. Then the C
(−)
n -letters part of φ(x,x)(T̃ ) and that of

(
φ(x+1,x+1) ◦ φ(x,x)

)
(T̃ )

are semistandard.

Lemma 5.8. Suppose that T = C1C2 · · ·Cnc ∈ Cn-SSTKN. Let us set

T̃ :=

{

Φ(x+1)(T ) (1 ≤ x ≤ nc − 1),

T (x = nc).

Here, we assume that Φ(x+1) is well-defined on T when 1 ≤ x ≤ nc − 1.
Suppose that T̃ has the following configuration (p ≤ q < r ≤ s).



CRYSTAL INTERPRETATION OF A FORMULA ON THE BRANCHING RULE 137

p→

← s

← r

← q

x− 1 x

a1

a2

b̄

b

.

Then we have (q − p) + (s − r) < b − min(a1, a2) because the two-column

tableau Cx−1Cx is KN-admissible (Definition 2.6 (C2)). Let J (x)(I (x)) be

the set of J (I )-letters in the x-th column and set L (x,x) := J (x) ∩I (x).

If ♯
{
l ∈ L (x,x)

∣
∣ l∗ < b < l

}
= δ, then we have (q − p) + (s − r) < b −

min(a1, a2)− δ in the above configuration.

Lemma 5.9. Suppose that T = C1C2 · · ·Cnc ∈ Cn-SSTKN. Let us set

T̃ := (Φ(x+1))−1 ◦ Φ(x+1)(T ) (1 ≤ x ≤ nc − 1).

Here, we assume that Φ(x+1) is well-defined on T . Suppose that T̃ has the
following configuration (p ≤ q < r ≤ s).

r→

q →

p→

← s

x x+ 1

b̄

b

a1

a2
.

Then we have (q−p)+(s−r) < b−min(a1, a2) because the two-column tableau

CxCx+1 is KN-admissible. Let J (x)(I (x)) be the set of J (I )-letters in the

x-th column and set L (x,x) := J (x) ∩I (x). If ♯
{
l ∈ L (x,x)

∣
∣ l∗ < b < l

}
=

δ, then we have (q−p)+(s−r) < b−min(a1, a2)−δ in the above configuration.

Lemma 5.10. Suppose that T = C1C2 · · ·Cnc ∈ Cn-SSTKN(λ). Then Φ is
well-defined on T and Φ(T ) ∈ Cn-SST(λ).

Proof. (I). We first prove that Φ is well-defined on T and that the C
(+)
n -

letters part of Φ(T ) is semistandard. The map Φ(nc) = Φ(nc) = φ(nc,nc) is
well-defined on T because the nc-th column of T is KN-admissible and the

C
(+)
n -letters part of Φ(nc)(T ) is semistandard by Lemma 5.6.
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(II). Suppose that Φ(x+1) is well-defined on T , i.e., Φ(x+1)(T ) 6= ∅ and

the C
(+)
n -letters part of Φ(x+1)(T ) is semistandard (x = nc− 1, . . . , 1). This

assumption is satisfied for x = nc−1. (i). The map φ(x,x) is well-defined on

Φ(x+1)(T ) because the x-th column of Φ(x+1)(T ), i.e., the x-th column of T is

KN-admissible and the C
(+)
n -letters part of φ(x,x)◦Φ(x+1)(T ) is semistandard

by Lemma 5.6. (ii). Let us set T̃ = φ(x,y−1) ◦ · · · ◦ φ(x,x) ◦ Φ(x+1)(T )

(x + 1 ≤ y ≤ nc). Suppose that T̃ 6= ∅ and that in the updating process of

the tableau from T to T̃ the semistandardness of the C
(+)
n -letters part of the

tableau is preserved. This assumption is satisfied for y− 1 = x. Then φ(x,y)

is well-defined on T̃ by Lemma 5.1 and the C
(+)
n -letters part of φ(x,y)(T̃ )

is semistandard by Lemma 5.3. From (i) and (ii) and by induction, we

have that Φ(x) = Φ(x) ◦ Φ(x+1) is well-defined on T and the C
(+)
n -letters

part of Φ(x)(T ) is semistandard. From (I) and (II) and by induction, we

conclude that Φ is well-defined on T and that the C
(+)
n -letters part of Φ(T )

is semistandard.
Now let us show that the C

(−)
n -letters part of Φ(T ) is semistandard. Note

that all the maps φ(i,j) (1 ≤ i ≤ j ≤ nc) are well-defined by the above
argument.

(I’). The C
(−)
n -letters part of Φ(nc)(T ) is semistandard by Lemma 3.4.

(II’). Suppose that the C
(−)
n -letters part of Φ(x+1)(T ) and that of (Φ(x+1))−1Φ(x+1)(T )

is semistandard (x = nc − 1, . . . , 1). This assumption is satisfied for x =

nc − 1. (i’). The C
(−)
n -letters part of φ(x,x) ◦ (Φ(x+1))−1 ◦ Φ(x+1)(T ) and

that of (φ(x+1,x+1) ◦ φ(x,x)) ◦ (Φ(x+1))−1 ◦ Φ(x+1)(T ) are semistandard by
Lemma 5.7. (ii’). Let us set

T̃ = (φ(x+1,y) ◦ φ(x,y−1)) ◦ · · · ◦ (φ(x+1,x+1) ◦ φ(x,x)) ◦ (Φ(x+1))−1 ◦ Φ(x+1)(T )

(x + 1 ≤ y ≤ nc). Suppose that T̃ 6= ∅ and that in the updating process

of the tableau from T to T̃ the semistandardness of the C
(−)
n -letters part of

the tableau is preserved. Then the C
(−)
n -letters part of φ(x,y)(T̃ ) and that

of (φ(x+1,y+1) ◦ φ(x,y))(T̃ ) (y ≤ nc − 1) are seminstandard by Lemma 5.5.

From (i’) and (ii’) and by induction, we have that the C
(−)
n -letters part of

Φ(x)(T ) = Φ(x) ◦ Φ(x+1)(T ) is semistandard. From (I’) and (II’) and by

induction, we conclude that the C
(−)
n -letters part of Φ(T ) is semistandard.

Since Φ is well-defined on T so that it preserves the shape of T , we have
that Φ(T ) ∈ Cn-SST(λ) for all T ∈ Cn-SSTKN(λ). �

6. Proof of Proposition 4.1

In this section, we provide the proof of Proposition 4.1.
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Proposition 6.1. LetW be a skew semistandard tableau with entries {1̄, 2̄, . . . , n̄}.
We apply the jeu de taquin to W (starting from any inside corner of W )
to obtain a rectification of W denoted by Rect(W ). The process consists of
several steps of Schützenberger’s sliding. Let us write the whole process as

W = S0 → S1 → · · · → Sm = Rect(W ).

If FE(Sk) is smooth on a Young diagram µ, then FE(Sk+1) is also smooth on
µ (k = 0, 1, . . . ,m−1), where FE(S) is the far-eastern reading of S neglecting
the empty box of S. Therefore, if FE(W ) is smooth on µ, then FE(Rect(W ))
is also smooth on µ. Conversely, suppose that the far-eastern reading of a

semistandard Young tableau T filled with C
(−)
n -letters is smooth on a Young

diagram µ, then the far-eastern readings of any skew semistandard tableaux
whose rectification is T are also smooth on µ.

Proof. Let us show that the smoothness is preserved by the jeu de taquin.

Suppose that Sk consists of nc columns and let the set of letters (C
(−)
n -

letters) in the x-th column be J (x) (1 ≤ x ≤ nc). It suffices to consider the
following case.

j2 j1

j3

J3

J2

J1

· · · · · ·

Sk

−→
j2

j3
j1

J3

J2

J1

· · · · · ·

Sk+1

,

where J1 and J2 are blocks of the (l + 1)-st column of Sk and Sk+1 and J3
is a block of the l-th column of Sk and Sk+1. In this case, we slide the box
containing j3 in the (l+1)-st column into the l-th column horizontally. Note
that

max(J2) ≤ j1 − 1 and min(J3) ≥ j3 + 1.

By the rule of Schützenberger’s sliding, we have j3 ≺ j2 so that j1 ≤ j2 < j3.

Let us set µ′ := µ[J (nc), . . . ,J (l+2), J1]. This is a Young diagram by the
assumption of Proposition 6.1. Let us assume that j1 < j2. The proof for
the case when j1 = j2 is similar. Since j3, j1 is smooth on µ′,

µ′[j3] = (. . . , µ′j1 , µ
′
j1+1, . . . , µ

′
j2
, . . . , µ′j3 − 1, . . .)

and

µ′[j3, j1] = (. . . , µ′j1 − 1, µ′j1+1, . . . , µ
′
j2
, . . . , µ′j3 − 1, . . .)
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are Young diagrams so that µ′j1−1 ≥ µ′j1+1. Since j3, j1, J2, J3 is smooth on

µ′, J2 is smooth on (µ′1, . . . , µ
′
j1−1, µ

′
j1
−1) and J3 is smooth on (µ′j3 −1, . . .)

and therefore on (µ′j3 , . . .). Now

µ′[j1] = (. . . , µ′j1 − 1, µ′j1+1, . . . , µ
′
j2
, . . . , µ′j3 , . . .)

is a Young diagram because µ′j1 − 1 ≥ µ′j1+1. Since J2 is smooth on

(µ′1, . . . , µ
′
j1−1, µ

′
j1
− 1), j1, J2 is smooth on µ′. Since J3 is smooth on

(µ′j3 , . . .), j1, J2, J3 is smooth on µ′. That is, µ′
[
j1
]
, µ′

[
j1, J2

]
, and µ′

[
j1, J2, J3

]

are all Young diagrams.

µ′[j1, J2, J3, j3] = µ′[j3, j1, J2, J3]

= (. . . , µ′j1−1, µ
′
j1
− 1, µ′j1+1, . . . , µ

′
j2
, . . . , µ′j3 − 1, . . .)

and

µ′[j1, J2, J3, j3, j2] = µ′[j3, j1, J2, J3, j2]

= (. . . , µ′j1−1, µ
′
j1
− 1, µ′j1+1, . . . , µ

′
j2
− 1, . . . , µ′j3 − 1, . . .)

are Young diagrams because j3, j1, J2, J3, j2 is smooth on µ′. Hence, j1, J2, J3, j3, j2
is smooth on µ′.

The “converse” part follows from the fact that Schützenberger’s sliding is
reversible. �

Example 6.1. Let µ = (3, 2, 2). The far-eastern reading of the skew semi-
standard tableau

3̄ 1̄
2̄ 1̄

3̄
W =

is smooth on µ as we can see the process µ→ µ[FE(W )] = µ[3̄, 1̄, 2̄, 1̄, 3̄] is

→ → → → →
.

The rectification of W is

1̄
2̄
3̄ 3̄ 1̄

Rect(W ) =

and the far-eastern reading is also smooth on µ as we can see the process
µ→ µ[FE(Rect(W ))] = µ[1̄, 3̄, 3̄, 2̄, 1̄] is

→ → → → →
.

The rectification of
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3̄ 1̄
2̄
3̄ 1̄

W ′ =

is the same as Rect(W ) and FE(W ′) is smooth on µ as we can see the
process µ→ µ[FE(W ′)] = µ[1̄, 3̄, 2̄, 1̄, 3̄] is

→ → → → →
.

Suppose that T ∈ Cn-SSTKN and T consists of nc columns. To compute
Φ(T ), we apply the map of the form φ(�,�) successively to the updated tableau
whose entries are updated by preceding application of the map of the form
φ(�,�). To keep track of the updating stage in Φ(T ), let us introduce new
notation. Initially, the set of I (resp. J )-letters in the x-th column of T

is written as I (x,i) (resp. J (x,i)) with i = 0 (1 ≤ x ≤ nc). Whenever the

map φ(x,y) is applied to the updated tableau whose entries are updated by
preceding application of the map of the form φ(�,�), the counter i in I (y,i) is
increased by one; I (y,i) → I (y,i+1) and the counter j in J (x,j) is increased

by one; J (x,j) → J (x,j+1). At the end, i.e., in Φ(T ), the set of I (resp.

J )-letters in the x-th column is I (x,x) (resp. J (x,nc−x+1)) (1 ≤ x ≤ nc).

The letters in I (x,i) (resp. J (x,i)) are called I (x,i) (resp. J (x,i))-letters

and those in I (x,i) (resp. J (x,i)) are called I (x,i) (resp. J (x,i))-letters.

When a sequence of C
(+)
n -letters I is smooth on a Young diagram λ, we

write λ
[

I−→

]

. Likewise, when a sequence of C
(−)
n -letters J̄ is smooth on a

Young diagram λ, we write λ
[

J̄−→

]

. For example, λ
[

I−→, J̄−→

]

implies that

the sequence of C
(+)
n -letters I is smooth on λ and the sequence of C

(−)
n -

letters J̄ is smooth on the Young diagram λ [I]. We also write λ
[

FE(T )
−−−−→

]

if

FE(T ) is smooth on λ, where T is a semistandard Young or skew tableau.

In this case, we write µ
[

FE(T )
−−−−→

]

= λ, where µ = λ
[

FE(T )
−−−−→

]

and FE(T ) is

given by changing the unbarred (barred) letters to the corresponding barred
(unbarred) letters in FE(T ) and reversing the order of the sequence.

Lemma 6.1. Let λ and µ be Young diagrams. If λ [I] = µ, where I is

the sequence of C
(+)
n -letters i1, i2, . . . , ia (i1 < i2 < . . . < ia), then I is

smooth on λ; λ
[

I−→

]

= µ. Similarly, if λ
[
J̄
]
= µ, where J̄ is the sequence

of C
(−)
n -letters jb, . . . , j2, j1 (jb ≺ . . . ≺ j2 ≺ j1), then J̄ is smooth on λ;

λ
[

J−→

]

= µ.
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Proof. For p = 2, . . . , a, λ [i1, . . . , ip−1] = µ
[
ia, . . . , ip

]
. Here, λ [i1, . . . , ip−1]ip−1 =

µ
[
ia, . . . , ip

]

ip−1
= µip−1 and λ [i1, . . . , ip−1]ip = µ

[
ia, . . . , ip

]

ip
= µip − 1.

Since µ is a Young diagram, i.e., µip−1 ≥ µip , we have λ [i1, . . . , ip−1]ip−1 >

λ [i1, . . . , ip−1]ip . That is, λ [i1, . . . , ip−1] [ip] is a Young diagram. The proof

of the second part is analogous. �

For all T ∈ B
sp2n
n (ν)λµ with ν1 = nc,

(6.1) µ
[

FE(T )
−−−−→

]

= µ

[

I (nc,0)

−−−−→
,J (nc,0)

−−−−−→
, . . . ,I (1,0)

−−−→
,J (1,0)

−−−−→

]

= λ

by definition. Under this condition and the notation introduced above, we
have the following two lemmas (Lemma 6.2 and Lemma 6.3).

Lemma 6.2. (1). Let us define

λ(x−1) :=

{

λ
[

I (1,1), . . . ,I (x−1,x−1),J (1,x−1), . . . ,J (x−1,1)
]

(2 ≤ x ≤ nc),

λ (x = 1).

Then λ(x−1) is a Young diagram on which I (x,1) is smooth (1 ≤ x ≤ nc).
(2). For 2 ≤ x ≤ nc, let us assume that

λ(x−1,i) :=







λ
[

I (1,1), . . . ,I (x−1,x−1),J (1,x−1), . . . ,J (x−i,i)
]

(1 ≤ i ≤ x− 1),

λ
[

I (1,1), . . . ,I (x−1,x−1)
]

(i = x)

are all Young diagrams. Suppose that I (x,i) is smooth on λ(x−1,i). Then we

have that I (x,i+1) is smooth on λ(x−1,i+1) (1 ≤ i ≤ x− 1).

(3). λ
[

I (1,1)
−−−→,I

(2,2)
−−−→, . . . ,I

(nc,nc)
−−−−−→

]

.

Proof. Let us begin by giving the proof of (2). Note that a pair of I (x,i+1)

and J (x−i,i+1) are generated from a pair of I (x,i) and J (x−i,i) by applying

φ(x−i,x) to the updated tableau whose entries are updated by preceding appli-

cation of the map of the form φ(�,�). Let us call such sets I (x,i) and J (x−i,i)

to be updated are paired and write
〈

I (x,i),J (x−i,i)
〉

pair
(0 ≤ i ≤ x−1; 1 ≤

x ≤ nc). Let us set I (x,i) = {i1, i2, . . . , ia}, J (x−i,i) = {j1, j2, . . . , jb},
I (x,i+1) = {i′1, i

′
2, . . . , i

′
a}, J (x−i,i+1) = {j′1, j

′
2, . . . , j

′
b}, L := I (x,i) ∩

J (x−i,i) = {l1, l2, . . . , lc}, and L ∗ := I (x,i+1)∩J (x−i,i+1) = {l∗1, l
∗
2, . . . , l

∗
c}.

Recall that these are ordered sets and are also considered as the sequences

of letters. We write λ̃ = λ(x−1,i)
[

J (x−1,i)
]

= λ(x−1,i+1) for brevity.

(I). Let us consider the following three cases separately:

(a): i′a = l∗c .
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(b): i′a 6= l∗c and ia = lc.
(c): i′a 6= l∗c and ia 6= lc.

Case (a). In this case, L 6= ∅ and lc = ia. Indeed, if lc = ip(∈ I (x,i))
(p < a), then ia /∈ L because ia is larger than lc that is the largest letter

in L . This implies that i′a = ia. However, this also implies l∗c = ia ∈ I (x,i)

due to the assumption of (a), which contradicts the fact that l∗c is not an

I (x,i)-letter. To proceed, let us divide this case further into the following
two cases:

(a-1): All I (x,i)-letters i1, i2, . . . , ia are also J (x−i,i)-letters.

(a-2): There exist non-J (x−i,i)-letters in the sequence of I (x,i)-letters

i1, i2, . . . , ia (That is, there exist letters belonging to I (x,i)\L in the
set {i1, i2, . . . , ia}).

In case (a-1), a = c. Then i′a=c = l∗c . According to the algorithm in
Definition 3.1 or Remark 3.1, we can write l∗c = jr − 1 (∃jr ∈ J (x−i,i)).
In case (a-2), let us choose the largest letter ip (p < a) from the set of

I (x,i)-letters {i1, i2, . . . , ia} such that ip is not a J (x−i,i)-letter (i.e., ip ∈

I (x,i)\L ). Now consider the increasing (just by one) sequence of C
(+)
n -

letters

(6.2) ip + 1, ip + 2, . . . , ia − 1.

By the maximality of ip, any letter belonging to I (x,i)\L cannot appear in

(6.2). If all of the letters in (6.2) are J (x−i,i)-letters, then l∗c < ip so that
i′a = ip, which contradicts the assumption of (a). Consequently, there must

exist some letters that are not I (x,i)-letters nor J (x−i,i)-letters in (6.2).
Denote by ia − q (∃q ≥ 1) the largest letter among them. Since lc = ia,

we have l∗c = ia − q. By the maximality of ia − q, ia − q + 1 is a J (x−i,i)-

letter (when q = 1, ia = lc is a J (x−i,i)-letter). Therefore, we can write

ia − q + 1 = jr (∃jr ∈J (x−i,i)) so that we have l∗c = jr − 1. In both cases

(a-1) and (a-2), we can write i′a = l∗c = jr − 1 (∃jr ∈ J (x−i,i)). Since

i′a = l∗c ∈ I (x,i+1) is the letter generated by φ(x−i,x), i′a /∈J (x−i,i). By the

assumption of (2) of Lemma 6.2, λ̃
[
J (x−i,i)

]
= λ(x−1,i) is a Young diagram

so that

λ̃
[

J (x−i,i)
]

i′a

≥ λ̃
[

J (x−i,i)
]

i′a+1
.

The left-hand side of this inequality is λ̃i′a because i′a /∈J (x−i,i), while the

right-hand side is λ̃i′a+1 + 1 because i′a + 1 = jr ∈ J (x−i,i) and thereby

λ̃i′a > λ̃i′a+1.

Case (b). Firstly, let us show that we can write i′a = ip (∃ip ∈ I (x,i)\L ).

Since i′a /∈ L ∗ so that we can write i′a = ip (∃ip ∈ I (x,i)\L ) because
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i′a ∈ (I (x,i)\L ) ⊔ L ∗. In this case, p ≤ a − 1. Otherwise, i′a = ia = lc,
which is a contradiction. To proceed, let us consider the following three
cases separately:

(b-1): p = a− 1 and i′a = ip=a−1 = ia − 1 = lc − 1.
(b-2): p ≤ a− 1 and ip < ia − 1.
(b-3): p < a− 1 and ip = ia − 1.

In case (b-1), we can write lc = jr (∃jr ∈J (x−i,i)) so that i′a = jr − 1. In
case (b-2), there must exist a sequence of J -letters jq, . . . , jq+m such that
ip < jq+k < ia (k = 0, 1, . . . ,m) and

jq − ip = 1,

jq+k − jq+k−1 = 1 (k = 1, . . . ,m),

ia − jq+m = 1.

Otherwise, l∗c cannot be smaller than i′a = ip(∈ I (x,i)\L ). The existence
of such a sequence implies i′a = ip = jq − 1. Case (b-3) must be excluded
because the inequalities ip < · · · < ia−1 < ia are not satisfied. In both cases

(b-1) and (b-2), we can write i′a = jr − 1 (∃jr ∈ J (x−i,i)). Now since

λ̃
[
J (x−i,i)

]
is a Young diagram,

λ̃
[

J (x−i,i)
]

i′a

≥ λ̃
[

J (x−i,i)
]

i′a+1
.

The left-hand side of this inequality is λ̃
[
J (x−i,i)

]

ip
= λ̃ip = λ̃i′a because

ip ∈ I (x,i)\L , i.e., ip /∈ J (x−i,i), while the right-hand side is λ̃i′a+1 + 1

because i′a + 1 = jr ∈J (x−i,i) so that λ̃i′a > λ̃i′a+1.
Case (c). Let us show that i′a = ia. If L = ∅, this is obvious. If L 6= ∅,

the I (x,i)-letter ia is larger than lc that is the largest letter in L so that
the I (x,i)-letter ia is not a J (x−i,i)-letter, which implies i′a = ia. By the

assumption of (2) of Lemma 6.2, I (x,i) is smooth on λ̃
[
J (x−i,i)

]
so that

λ̃
[

J (x−i,i)
]

i′a

> λ̃
[

J (x−i,i)
]

i′a+1
.

The left-hand side of this inequality is λ̃i′a because i′a = ia /∈J (x−i,i), while

the right-hand side is λ̃i′a+1+ δ (δ ∈ {0, 1}). Therefore, we have λ̃i′a > λ̃i′a+1.

In (I), we have verified that λ̃i′a > λ̃i′a+1, that is, λ̃[i′a] is a Young diagram
for all possible cases.

(II). Let us suppose that λ̃∗(k+1) := λ̃[i′a, . . . , i
′
k+1] is a Young diagram

(k + 1 ≤ a). In what follows, we prove λ̃∗(k+1)[i′k] = λ̃∗(k) is also a Young

diagram, i.e., λ̃
∗(k+1)
i′
k

> λ̃
∗(k+1)
i′
k
+1

. Note that J (x−i,i) is smooth on λ̃ by the
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assumption of (2) of Lemma 6.2 and by Lemma 6.1. Let us consider the
following three cases separately:

(a): i′k ∈ I (x,i+1)\L ∗(= I (x,i)\L ).

(b): i′k+1 ∈ I (x,i+1)\L ∗ and i′k ∈ L ∗.
(c): i′k+1 ∈ L ∗ and i′k ∈ L ∗.

Case (a). We can write i′k = ip (∃ip ∈ I (x,i)\L ) and

λ̃
∗(k+1)
i′
k

= λ̃[i′a, . . . , i
′
k+1]ip = λ̃ip ,

where we have used the fact that ip /∈ {i′a, . . . , i
′
k+1} (∵ i′k = ip). In order

to compute λ̃
∗(k+1)
i′
k
+1

= λ̃
∗(k+1)
ip+1 , we divide this case further into the following

three cases:

(a-1): ip + 1 ∈ I (x,i+1).

(a-2): ip + 1 /∈ I (x,i+1) and ip + 1 ∈ L .

(a-3): ip + 1 /∈ I (x,i+1) and ip + 1 /∈ L .

In case (a-1), by noting ip, ip+1 ∈ I (x,i+1), we have i′k+1 = i′k +1 = ip+1.
Then

λ̃
∗(k+1)
i′
k
+1 = λ̃[i′a, . . . , i

′
k+1 = ip + 1]ip+1 = λ̃ip+1 − 1

so that we obtain

λ̃
∗(k+1)
i′
k

= λ̃ip > λ̃ip+1 − 1 = λ̃
∗(k+1)
i′
k
+1

.

In both cases (a-2) and (a-3), λ̃
∗(k+1)
i′
k
+1

= λ̃
∗(k+1)
ip+1 = λ̃ip+1 because ip + 1 /∈

I (x,i+1). Since I (x,i) is smooth on λ̃
[
J (x−i,i)

]
by the assumption of (2),

(6.3) λ̃
[

J (x−i,i), ia, . . . , ip+1

]

ip
> λ̃

[

J (x−i,i), ia, . . . , ip+1

]

ip+1
.

In case (a-2), the left-hand side of Eq. (6.3) is λ̃ip because ip ∈ I (x,i)\L ,

i.e, ip /∈J (x−i,i). The right-hand side is λ̃ip+1 because ip+1 ∈ L (ip + 1 ap-

pears once in {ia, . . . , ip+1} and ip+1 appears once in J (x−i,i)). Therefore,

λ̃ip > λ̃ip+1 so that we have λ̃
∗(k+1)
i′
k

= λ̃ip > λ̃ip+1 = λ̃
∗(k+1)
i′
k
+1 . In case (a-3),

ip +1 /∈ I (x,i) because ip + 1 /∈ (I (x,i)\L )⊔L ∗ and ip + 1 /∈ L . The left-

hand side of Eq. (6.3) is λ̃ip because ip ∈ I (x,i)\L , i.e., ip /∈J (x−i,i), while

the right-hand side is λ̃ip+1+δ (δ ∈ {0, 1}) because ip+1 /∈ I (x,i). Therefore,

λ̃ip > λ̃ip+1 + δ ≥ λ̃ip+1 so that we have λ̃
∗(k+1)
i′
k

= λ̃ip > λ̃ip+1 = λ̃
∗(k+1)
i′
k
+1

.

Case (b). In this case, L ∗ 6= ∅ and we can write i′k = l∗r (∃l∗r ∈ L ∗).
We divide this case further into the following two cases according to the
algorithm in Definition 3.1 or Remark 3.1:

(b-1): l∗r = ip − 1 (∃ip ∈ I (x,i)\L ).
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(b-2): l∗r = jq − 1 (∃jq ∈J (x−i,i)).

Note that the situation that l∗r = l∗r+1 − 1 (r 6= c) cannot happen. Indeed,

if l∗r = l∗r+1 − 1 (r 6= c), then i′k = l∗r+1 − 1. Since l∗r+1 ∈ I (x,i+1), this
implies i′k+1 = l∗r+1, which contradicts the assumption of (b). In case (b-

1), i′k+1 = ip because ip ∈ I (x,i+1) and i′k = ip − 1. Then

λ̃
∗(k+1)
i′
k

= λ̃[i′a, . . . , i
′
k+1 = ip]ip−1 = λ̃ip−1,

and

λ̃
∗(k+1)
i′
k
+1

= λ̃[i′a, . . . , i
′
k+1 = ip]ip = λ̃ip − 1.

From these two equations, we have λ̃
∗(k+1)
i′
k

> λ̃
∗(k+1)
i′
k
+1 . In case (b-2),

λ̃
∗(k+1)
i′
k

= λ̃[i′a, . . . , i
′
k+1]i′k = λ̃i′

k
= λ̃jq−1.

On the other hand,

λ̃
∗(k+1)
i′
k
+1

= λ̃[i′a, . . . , i
′
k+1]i′k+1 = λ̃i′

k
+1 = λ̃jq ,

where we have used the fact that i′k + 1 < i′k+1. This is shown as follows.

If i′k + 1 = i′k+1, then jq = i′k + 1 = i′k+1. This implies that jq is an I (x,i)-

letter that is not a J (x−i,i)-letter due to the assumption of (b), which is a

contradiction. Now since J (x−i,i) is smooth on λ̃, we have

λ̃[j1, . . . , jq−1]jq−1 > λ̃[j1, . . . , jq−1]jq .

By noting jq−1 = l∗r /∈ {j1, . . . , jq−1}, the left-hand side of this inequality is

found to be λ̃jq−1, while the right-hand side is clearly λ̃jq . Hence, we have

λ̃
∗(k+1)
i′
k

> λ̃
∗(k+1)
i′
k
+1 .

Case (c). In this case, L ∗ 6= ∅ and we can write i′k = l∗r and i′k+1 =
l∗r+1 (∃r ∈ {1, . . . , c − 1}). According to the algorithm in Definition 3.1 or
Remark 3.1, let us consider the following three cases separately:

(c-1): l∗r = ip − 1 (∃ip ∈ I (x,i)\L ).

(c-2): l∗r = jq − 1 (∃jq ∈J (x−i,i)).
(c-3): l∗r = l∗r+1 − 1 (r 6= c).

In case (c-1), we have ip ∈ I (x,i+1) and i′k = ip− 1. This implies i′k+1 = ip.

However, this also implies l∗r+1 = ip ∈ I (x,i)\L = I (x,i+1)\L ∗, which is
clearly a contradiction, and thereby this case must be excluded. In case
(c-2),

λ̃
∗(k+1)
i′
k

= λ̃[i′a, . . . , i
′
k+1]i′k = λ̃i′

k
= λ̃jq−1.
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On the other hand,

λ̃
∗(k+1)
i′
k
+1

= λ̃[i′a, . . . , i
′
k+1]i′k+1 = λ̃i′

k
+1 = λ̃jq ,

where we have used the fact that i′k+1 > i′k + 1. This is shown as follows.
If i′k+1 = i′k + 1, then we have l∗r+1 = i′k+1 = i′k + 1 = l∗r + 1 = jq, which

contradicts the fact that l∗r+1 is not a J (x−i,i)-letter. Now since J (x−i,i) is

smooth on λ̃, we have

λ̃[j1, . . . , jq−1]jq−1 > λ̃[j1, . . . , jq−1]jq .

The left-hand side of this inequality is λ̃jq−1 because jq−1 = l∗r /∈ {j1, . . . , jq−1},

while the right-hand side is clearly λ̃jq . Hence, we have λ̃
∗(k+1)
i′
k

> λ̃
∗(k+1)
i′
k
+1

.

In case (c-3), by noting i′k+1 = i′k + 1, we have

λ̃
∗(k+1)
i′
k
+1

= λ̃[i′a, . . . , i
′
k+1]i′k+1 = λ̃i′

k
+1 − 1,

while
λ̃
∗(k+1)
i′
k

= λ̃[i′a, . . . , i
′
k+1]i′k = λ̃i′

k
.

Hence, we have λ̃
∗(k+1)
i′
k

> λ̃
∗(k+1)
i′
k
+1

. In (II), we have verified that λ̃
∗(k+1)
i′
k

>

λ̃
∗(k+1)
i′
k
+1

, that is, λ̃∗(k+1)[i′k] is a Young diagram for all possible cases. From

(I) and (II) and by induction, we have completed the proof of (2) of
Lemma 6.2.

The proof of (1) is as follows. We proceed by induction on x. Since the

sequence of letters J (1,0),I (1,0) is smooth on λ, it is not hard to show that

I (1,1) is smooth on λ by using the same argument as in (2); λ
[
J (1,0)

]
is

a Young diagram on which I (1,0) is smooth by Eq.(6.1) so that I (1,1) is
smooth on λ (x = 1). For 2 ≤ x ≤ nc,

λ(x−1) = λ
[

I (1,1), . . . ,I (x−1,x−1),J (1,x−1), . . . ,J (x−1,1)
]

is written as

(6.4) λ
[

I (1,0), . . . ,I (x−1,0),J (1,0), . . . ,J (x−1,0)
]

.

This is shown as follows. Since
〈

I (1,0),J (1,0)
〉

pair
,

〈

I (2,0),J (2,0)
〉

pair
,
〈

I (2,1), J (1,1)
〉

pair
,

, . . . ,
〈

I (x−1,0),J (x−1,0)
〉

pair
, . . . ,

〈

I (x−1,x−2),J (1,x−2)
〉

pair
,
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we can increase the counter in the paired sets appeared in Eq. (6.4) by one
successively keeping the shape of Eq. (6.4) because the corresponding map

φ(�,�) is weight-preserving. At the end, Eq. (6.4) turns out to be

λ
[

I (1,1), . . . ,I (x−1,x−1),J (1,x−1), . . . ,J (x−1,1)
]

= λ(x−1).

Thus,

λ(x−1) = λ
[

J (1,0),I (1,0), . . . ,J (x−1,0),I (x−1,0)
]

is a Young diagram on which the sequence of letters J (x,0),I (x,0) is smooth

by Eq. (6.1). Hence, we can show that I (x,1) is smooth on λ(x−1) by using
the same argument as in (2).

The proof of (3) is as follows. We proceed by induction on x and i.

(I).We have that I (1,1) is smooth on λ by (1) (x = 1) and λ
[

I (1,1),J (1,1)
]

is a Young diagram by (1) (x = 2).
(II). For 2 ≤ x ≤ nc, let us assume that

λ(x−1,i) =







λ
[

I (1,1), . . . ,I (x−1,x−1),J (1,x−1), . . . ,J (x−i,i)
]

(1 ≤ i ≤ x− 1),

λ
[

I (1,1), . . . ,I (x−1,x−1)
]

(i = x)

are all Young diagrams (for x = 2 this assumption is satisfied by (I)). (i).

By (1), I (x,1) is smooth on λ(x−1) = λ(x−1,1). (ii). For 1 ≤ i ≤ x − 1,

suppose that I (x,i) is smooth on λ(x−1,i) (for i = 1 this is satisfied). Thus,

I (x,i+1) is smooth on λ(x−1,i+1) by the claim of (2). From (i) and (ii) and

by induction, we have that I (x,i) is smooth on λ(x−1,i) (1 ≤ i ≤ x). For
1 ≤ i ≤ x− 1, since

〈

I (x,i),J (x−i,i)
〉

pair
,
〈

I (x,i+1),J (x−i−1,i+1)
〉

pair
,

. . . ,
〈

I (x,x−1),J (1,x−1)
〉

pair
,

we have

λ(x−1,i)
[

I (x,i)
]

= λ
[

I (1,1), . . . ,I (x−1,x−1),I (x,i),J (1,x−1), . . . ,J (x−i,i)
]

= λ
[

I (1,1), . . . ,I (x−1,x−1),I (x,x),J (1,x), . . . ,J (x−i,i+1)
]

= λ(x,i+1) (1 ≤ i ≤ x− 1),

and

λ(x−1,x)
[

I (x,x)
]

= λ
[

I (1,1), . . . ,I (x,x)
]

= λ(x,x+1).



CRYSTAL INTERPRETATION OF A FORMULA ON THE BRANCHING RULE 149

Namely, λ(x,i+1) (1 ≤ i ≤ x) are all Young diagrams. By (1), λ(x,1) = λ(x) is
a Young diagram. That is,

λ(x,i) =







λ
[

I (1,1), . . . ,I (x,x),J (1,x), . . . ,J (x+1−i,i)
]

(1 ≤ i ≤ x),

λ
[

I (1,1), . . . ,I (x,x)
]

(i = x+ 1)

are all Young diagrams. The claim follows from (I) and (II) and by induc-
tion on x. �

Lemma 6.3. (1). Let us define

µ(x+1) :=
{

µ
[

J (nc,1), . . . ,J (x+1,nc−x),I (nc,nc−x), . . . ,I (x+1,1)
]

(1 ≤ x ≤ nc − 1),

µ (x = nc).

Then µ(x+1) is a Young diagram on which J (x,1) is smooth.
(2). For 1 ≤ x ≤ nc − 1, let us assume that

µ(x+1,i) :=

{

µ̃(x+1)
[
I (nc,nc−x), . . . ,I (x+i,i)

]
(1 ≤ i ≤ nc − x),

µ̃(x+1) (i = nc − x+ 1)

are all Young diagrams, where µ̃(x+1) := µ

[

J (nc,1)

−−−−−→
, . . . ,J (x+1,nc−x)

−−−−−−−−→

]

. Sup-

pose that J (x,i) is smooth on µ(x+1,i). Then we have that J (x,i+1) is smooth

on µ(x+1,i+1) (1 ≤ i ≤ nc − x).

(3). µ

[

J (nc,1)

−−−−−→
, . . . ,J (2,nc−1)

−−−−−−→
,J (1,nc)

−−−−−→

]

.

Proof. The proof of (1) of Lemma 6.3 is as follows. Since the sequence of

letters I (nc,0),J (nc,0) is smooth on µ, it is not hard to show that J (nc,1)

is smooth on µ by using the same argument as in Lemma 6.2 (2). For
1 ≤ x ≤ nc − 1,

µ(x+1) = µ
[

J (nc,1), . . . ,J (x+1,nc−x),I (nc,nc−x), . . . ,I (x+1,1)
]

= µ
[

I (nc,0),J (nc,0), . . .I (x+1,0),J (x+1,0)
]

is a Young diagram on which the sequence of letters I (x,0),J (x,0) is smooth

by Eq. (6.1). We can show that J (x,1) is smooth on µ(x+1) by using the
same argument as in Lemma 6.2 (2). The proof of the rest part runs as in
Lemma 6.2 (2) and (3). �

Proof of Proposition 4.1. Let T ∈ B
sp2n
n (ν)λµ and suppose that T consists of

nc columns. By Lemma 5.10, we have Φ(T ) ∈ Cn-SST(ν). By Lemma 6.2
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and Lemma 6.3, we have λ
[

I (1,1)
−−−→, . . . ,I

(nc,nc)
−−−−−→

]

and µ

[

J (nc,1)

−−−−−→
, . . . ,J (1,nc)

−−−−−→

]

.

Let us set ζ := λ
[

I (1,1)
−−−→, . . . ,I

(nc,nc)
−−−−−→

]

, i.e., ζ
[

FE(Φ(T )(+))
−−−−−−−−−→

]

, which is µ by

Eq. (6.1). Here,

ζ
[

J (1,nc), . . . ,J (nc,1)
]

= λ
[

J (1,nc),I (1,1), . . . ,J (nc,1),I (nc,nc)
]

= λ
[

FE (Φ(T ))
]

.

Since Φ is weight-preserving, λ
[

FE (Φ(T ))
]

= λ
[

FE(T )
]

= µ. Combining

these, we have µ

[

J (nc,1)

−−−−−→
, . . . ,J (1,nc)

−−−−−→

]

= ζ, i.e., µ
[

FE(Φ(T )(−))
−−−−−−−−−→

]

= ζ and

therefore µ
[

FE(Rect(Φ(T )(−)))
−−−−−−−−−−−−−−→

]

= ζ by Proposition 6.1. Hence, we have

Φ(T )(+) ∈ B
(+)
n (ξ)λζ and Rect(Φ(T )(−)) ∈ B

(−)
n (η)µζ , where ξ and η are the

shapes of Φ(T )(+) and Rect(Φ(T )(−)), respectively. �

7. Properties of Ψ

Throughout this section, the tableau T is that described in Proposi-
tion 4.2. The purpose of this section is to show that the map Ψ is well-
defined and Ψ(T ) ∈ Cn-SSTKN(ν).

Lemma 7.1. The map ψ(x,nc) is well-defined on

T̃ :=

{

Ψ(x−1)(T ) (2 ≤ x ≤ nc),

T (x = 1).

Here we assume T̃ 6= ∅.

Proof. When x = 1, let ∆q be the offset given by the difference between the

length of the C
(+)
n -letters part of the first column of T and that of the nc-th

column of T . Suppose that the tableau T̃ has the following configuration.

· · ·
q →

← p

1 nc

m̄

m

.

Since m̄ appears in T2 ∈ B
(−)
n (η)µζ , m ≤ l(µ). Furthermore, it is obvious

that (q − ∆q − p) ≤ l(ν). Recall that we assume that l(µ) + l(ν) ≤ n in
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Theorem 4.1. Hence, n−m ≥ l(µ)+ l(ν)−m ≥ (q−∆q− p) so that ψ(x,nc)

is well-defined on T̃ (Definition 3.2).
When 2 ≤ x ≤ nc, let ∆q be the offset given by the difference between the

length of the C
(+)
n -letters part of the x-th column of T and that of the nc-th

column of T̃ . Suppose that the tableau T̃ has the following configuration.

· · ·
q →

← p

x nc

m̄

m

.

Note that the C
(−)
n -letters part of the x-th column is unchanged under ap-

plication of Ψ(x−1) so that m̄ in the x-th column in T̃ lies at the original
position of T , and thereby m ≤ l(µ). Let m′ be the entry at the p-th
position of the nc-th column of the original tableau T . Then m′ ≤ m by
Lemma 3.5 so that min(m,m′) ≤ l(µ). Hence, we have n − min(m,m′) ≥
l(µ) + l(ν)−min(m,m′) ≥ (q −∆q − p). That is, ψ(x,nc) is well-defined on

T̃ . �

Lemma 7.2. The map ψ(x,y) is well-defined on

T̃ := ψ(x,y+1) ◦ · · · ◦ ψ(x,nc) ◦Ψ(x−1)(T ) (1 ≤ x ≤ y ≤ nc).

Here, we assume that T̃ 6= ∅ and that in the updating process of the tableau

from T to T̃ the semistandardness of the C
(+)
n -letters part of the tableau is

preserved.

Proof. Let C
(x)
− (resp. C

(y)
+ ) be the C

(−)
n (resp. C

(+)
n )-letters part of the

x-th (resp. y-th) column of T̃ . Let C(x,y) be the column whose C
(+)
n (resp.

C
(−)
n )-letters part is C

(y)
+ (resp. C

(x)
− ). If C(x,y) is KN-coadmissible, then we

can apply ψ(x,y) to T̃ . Suppose that T̃ has the following configuration.

· · ·
m̄

m

q̃ →

← p̃

x y

.

If (q̃ − ∆q − p̃) + m ≤ n, then C(x,y) is KN-coadmissible, where ∆q(≥ 0)

is the offset given by the difference between the length of the C
(+)
n -letters

part of the x-th column and that of the y-th column of T̃ . Let C
(x)′
− be the
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C
(−)
n -letters part of the x-th column of T ′ := φ(x,y+1)(T̃ ) and C

(y+1)′
+ be the

C
(+)
n -letters part of the (y+1)-st column of T ′. Let C(x,y+1) be the column

whose C
(+)
n (resp. C

(−)
n )-letters part is C

(y+1)′
+ (resp. C

(x)′
− ) and L (x,y+1)

be the set of L -letters of C(x,y+1). We consider the following two cases
separately:

(a): m appears in the x-th column of T ′ and m /∈ L (x,y+1).

(b): m in the x-th column of T̃ is generated when ψ(x,y+1) is applied
to T ′.

Case (a). Suppose that the tableau T ′ has the following configuration.

x y y + 1

· · ·
m̄

m i

q →

← p

.

By the assumption of (a), m /∈ L (x,y+1) so that m < i (if m ∈ L (x,y+1),

then m̄ in the x-th column of T ′ disappear by ψ(x,y+1)). Let us set

{

l ∈ L (x,y+1)
∣
∣
∣ l† ≺ m̄ ≺ l̄

}

=: {lr+1 = lmin, . . . , lr+s}.

If this set is empty (s = 0), then the position of m̄ does not change when

ψ(x,y+1) is applied to T ′. In this case, we, we have (q−∆q−p)+min(m, i) =

(q −∆q − p) +m ≤ n by Lemma 3.1 because C(x,y+1) is KN-coadmissible

(T̃ 6= ∅). This inequality still holds when ψ(x,y+1) is applied to T ′ so that

C(x,y) is KN-coadmissible. Now suppose that the above set is not empty
(s ≥ 1). We adopt the second kind algorithm for ψ(x,y+1) here. Let us

assume that ♯
{

l ∈ L (x,y+1)
∣
∣
∣ m < l < l†min

}

= t. Since the number of l’s

such that lmin < l < l†min is s+ t− 1, we have

(7.1) q†min −∆q − p†min + l†min ≤ n+ (s+ t− 1) + 1

by Lemma 3.7, where p†min is the position of l†min in the (y+1)-st column and

q†min is the position of l†min in the x-th column of ψ(x,y+1)(T ′) = T̃ . Initially,
the tableau T ′ has the following configuration, where the left (resp. right)

part is the C
(−)
n (resp. C

(+)
n )-letters one (lr+1 = lmin < . . . < lr+s < m < i).
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lmin

lr+s

m̄

x

q →

i

lr+s

lmin

y + 1

← p

.

Let us divide this case further into the following two cases:

(a-1): i > l†min.

(a-2): l†min > i.

Note that i 6= l†min because i ∈ C(x,y+1) and l†min /∈ C(x,y+1).

Case (a-1). The filling diagram of the C(x,y+1) has the following config-

uration before the operation for lmin → l†min.

•

•

•

◦

◦

◦
(0)

lmin m l†min .

Here, the number of (±)-slots in region (0) is t. There are no ∅-slots in
this region. Also, there are no (×)-slots in this region. Otherwise, it would

contradict the minimality of lmin in
{

l ∈ L (x,y+1)
∣
∣
∣ l† ≺ m̄ ≺ l̄

}

. Let us

assume that the number of (+)-slots and that of (−)-slots in region (0) are
α and β, respectively. Then we have

(7.2) l†min = m+ (α+ β + t) + 1.

When the operation (A) for lmin → l†min is finished, the (y + 1)-st column
of the updated tableau has the left configuration in the figure below.

i

l†min

lr+2

p→

(A)

i

...

A

l†min

p→

p†min →

(B)

.
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In the operation (B), s − 1 L (x,y+1)-letters, lr+2, . . . , lr+s together with t

L (x,y+1)-letters are relocated just below the box containing l†min so that the
(y+1)-st column of the updated tableau has the right configuration, Hence,
we have

(7.3) p†min ≤ p− s− t.

Note that p†min does not change under subsequent operations for lr+2 →

l†r+2, . . . , lc → l†c. The x-th column of T ′ has the left configuration (A) in

the figure below when the operation (A) for lmin → l†min is finished. When

the entry l†min appears above m̄, the position of the box containing m̄ is

changed from q to q + 1. Since there are β + t boxes with J (x)-letters

between the box containing l†min and that containing m̄, the position of the

box containing l†min is q − β − t.

m̄

l†min

q + 1→

q − β − t→

(A) (B)

m̄

l†min

q + s→

q†min →

.

When the operation (B) for lmin → l†min is finished, the x-th column of the
updated tableau has the right configuration (B) in the above figure. Since

s− 1 L (x,y+1)-letters lr+s, . . . , lr+2 lying above the box containing m̄ before

the operation (B) for lmin → l†min are relocated above l†min, the position of
m̄ is changed from q + 1 to q + 1 + (s − 1) = q + s. Likewise, the position

of the box containing l†min is changed from q − β − t to

(7.4) q†min = q − β − t+ (s + t− 1) = q − β + s− 1,

which does not change under subsequent operations for lr+2 → l†r+2, . . . , lc →

l†c. From Eqs. (7.1), (7.2), and (7.4), we have

(7.5) (q+s)−∆q−p†min+m = q†min−∆q−p†min+ l
†
min−α− t ≤ n+s−α.

Combining Eqs. (7.3) and (7.5), we have (q+s)−∆q−p+m ≤ n−α−t ≤ n.
Here the position of m in the y-th column of T̃ is p and that of m̄ in the
x-th column is q + s. Therefore, C(x,y) is KN-coadmissible.

Case (a-2). Let us assume that i /∈ L (x,y+1). The proof for the case

when i ∈ L (x,y+1)is similar. The filling diagram of the column C(x,y+1) has

the following configuration before the operation for lmin → l†min.
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•

•

•

◦

◦

•

◦

◦
(1) (2)

lmin m i l†min .

The total number of (±)-slots in regions (1) and (2) is t. Let us assume
that the number of (±)-slots in region (1) is t1. There are no ∅-slots in both
regions. Also, there are no (×)-slots in both regions as in (a-1). Let us
assume that the number of (+)-slots and that of (−)-slots in region (j) are
αj and βj , respectively (j = 1, 2). Then

(7.6) l†min = m+
2∑

i=1

(αi + βi) + t+ 2.

The updated tableau has the following configuration when the operation (A)

for lmin → l†min is finished.

m̄

l†min

x

q + 1→

q −
∑2

i=1 βi − t→

l†min

i

y + 1

← p− 1

.

When the operation (B) for lmin → l†min is finished, the updated tableau has
the following configuration.

m̄

l†min

x

q + s→

q†min →

l†min

i

y + 1

← p†min

← p− s− t1

,

where

(7.7) q†min = q −
2∑

i=1

βi − t+ (s+ t− 1) = (q + s)−
2∑

i=1

βi − 1.

Since α2 I (y+1)-letters exist between the box containing i and that contain-

ing l†min,

(7.8) p†min − α2 − 1 = p− s− t1.
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Note that p†min and q†min do not change under subsequent operations for

lr+2 → l∗r+2, . . . , lc → l†c. From Eqs. (7.1), (7.6), (7.7), and (7.8), we have

(q + s)−∆q − p+m = q†min −∆q − p†min + l†min − α1 − s− t− t1

≤ n− α1 − t1 ≤ n.

Here, the position of the box containing m in the y-th column of T̃ is p
and that of m̄ in the x-th column of T̃ is q + s. Therefore, C(x,y) is KN-
coadmissible.

Case (b). In this case, we can write m = l†i ∈ L (x,y+1)† = {l†1, l
†
2, . . . , l

†
c}.

Let us set {lp+1, . . . , lp+r} :=
{

l ∈ L (x,y+1)
∣
∣
∣ li < l < l†i

}

(if r = 0, then this

set is considered to be empty). We adopt the first kind algorithm for ψ(x,y+1)

here. When the operation for li → l†i = m is finished, the updated tableau
has the left configuration in the figure below, where A is the block consisting
of s boxes (s ≥ 1).

y y + 1

m A

m

p→

← p1

p ≥ p1 + 1

y y + 1

A′m

m

p→

← p1

.

The right configuration is not allowed, where A′ is the block consisting of
s′ boxes (s′ ≥ 0). This can be seen as follows. Suppose that the entry
in the p1-th box in the (y + 1)-st column is j in the initial tableau T ′.

When the operations for li−1 → l†i−1 is finished, l†1, . . . , l
†
i−1 lie above the

box containing j in the (y + 1)-st column so that the p1-th box in the

(y + 1)-st column still has the entry j. The operation for li → l†i replaces

the entry j with l†i = m. This implies that j < l†i = m by Lemma 3.5,

which contradicts the semistandardness of the C
(+)
n -letters part of T ′ so

that the right configuration cannot happen. When a sequence of operations

for lp+1 → l†p+1, . . . , lp+r → l†p+r is finished, the position of m = l†i in the

(y + 1)-st column becomes to be p′ = p1 − r, which does not change under
subsequent operations. Since p ≥ p1 + 1, we have p′ ≤ p − r − 1. On the
other hand, by Lemma 3.7, we have (q −∆q − p′) +m ≤ n + r + 1, where

q is the position of m̄ = l†i in the x-th column. Combining these, we have

that (q −∆q − p) +m ≤ n, i.e., C(x,y) is KN-coadmissible. �

The following four lemmas may be proven in the similar manner of the
proof of Lemma 5.2 (Lemma 5.4), Lemma 5.3, and Lemma 5.5.
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Lemma 7.3. Let us set

T̃ := ψ(x,y+1) ◦ · · · ◦ ψ(x,nc) ◦Ψ(x−1)(T ) (1 ≤ x ≤ y ≤ nc − 1).

Here, we assume that T̃ 6= ∅ and that in the updating process of the tableau

from T to T̃ the semistandardness of the C
(+)
n -letters part of the tableau is

preserved (Ψ(0)(T ) = T ).

(1). Suppose that T̃ has the following configuration, where the left (resp.

right) part is the C
(−)
n (resp. C

(+)
n )-letters one (p ≤ q < r ≤ s).

x y y + 1

ā

b2 a

b1s→

r→

← q

← p

.

Then we have

(q − p) + (s − r) < max(b1, b2)− a.

(2). Let J (x) be the set of J -letters in the x-th column and I (y) be the

set of I -letters in the y-th column and set L (x,y) := J (x) ∩I (y).

If ♯
{
l ∈ L (x,y)

∣
∣ l < a < l†

}
= δ in ψ(x,y)(T̃ ), then we have

(q − p) + (s− r) < max(b1, b2)− a− δ

in the above configuration in T̃ .

Lemma 7.4. Let us set

T̃ :=
(

ψ(x−1,y) ◦ ψ(x,y+1)
)

◦ · · · ◦
(

ψ(x−1,nc−1) ◦ ψ(x,nc)
)

◦ ψ(x−1,nc)

◦ (Ψ(x−1))−1 ◦Ψ(x−1)(T ) (2 ≤ x ≤ y + 1 ≤ nc).

Here, we assume that T̃ 6= ∅ and that in the updating process of the tableau

from T to T̃ the semistandardness of the C
(−)
n -letters part of the tableau is

preserved.

(1). Suppose that the tableau T̃ has the following configuration, where the

left (resp. right) part is the C
(−)
n (resp. C

(+)
n )-letters one (p ≤ q <

r ≤ s).

b2

ās→

r →

x− 1 x

b1

a

← q

← p

y

.
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Then we have

(q − p) + (s − r) < max(b1, b2)− a.

(2). Let J (x) be the set of J -letters in the x-th column and I (y) be the

I -letters part of the y-th column and set L (x,y) := J (x) ∩I (y). If

♯
{
l ∈ L (x,y)

∣
∣ l < a < l†

}
= δ in ψ(x,y)(T̃ ), then we have

(q − p) + (s− r) < max(b1, b2)− a− δ

in the above configuration in T̃ .

Lemma 7.5. Let us set

T̃ := ψ(x,y+1) ◦ · · · ◦ ψ(x,nc) ◦Ψ(x−1)(T ) (1 ≤ x ≤ y ≤ nc − 1).

Here, we assume that T̃ 6= ∅ and that in the updating process of the tableau

from T to T̃ the semistandardness of the C
(+)
n -letters part of the tableau is

preserved (Ψ(0)(T ) = T ). Then the C
(+)
n -letters part of ψ(x,y)(T̃ ) is semis-

tandard.

Lemma 7.6. Let us set

T̃ :=
(

ψ(x−1,y) ◦ ψ(x,y+1)
)

◦ · · · ◦
(

ψ(x−1,nc−1) ◦ ψ(x,nc)
)

◦ ψ(x−1,nc)

◦ (Ψ(x−1))−1 ◦Ψ(x−1)(T ) (2 ≤ x ≤ y ≤ nc − 1).

Here, we assume that T̃ 6= ∅ and that in the updating process of the tableau

from T to T̃ the semistandardness of the C
(−)
n -letters part of the tableau is

preserved. Then the C
(−)
n -letters part of ψ(x,y)(T̃ ) and that of

(
ψ(x−1,y−1) ◦ ψ(x,y)

)
(T̃ )

are semistandard.

The following two lemmas (Lemma 7.7 and Lemma 7.8), which may be
proven in the similar manner of the proof of Lemma 5.2 and Lemma 5.4,
guarantee that Ψ(T ) satisfies the KN-admissible condition on adjacent columns
(Definition 2.6 (C2)).

Lemma 7.7. Let us set

T̃ = ψ(x,x) ◦ · · · ◦ ψ(x,nc) ◦Ψ(x−1)(T ) (2 ≤ x ≤ nc).

Here, we assume that T̃ 6= ∅ and that in the updating process of the tableau

from T to T̃ the semistandardness of the C
(+)
n -letters part of the tableau is

preserved. Suppose that T̃ has the following configuration, where the left

(resp. right) part is the C
(−)
n (resp. C

(+)
n )-letters one (p ≤ q < r ≤ s).
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x x− 1 x

ā

b̄ a

bs→

r →

← q

← p

.

Then we have (q − p) + (s− r) < b− a.

Lemma 7.8. Let us set

T̃ :=
(

ψ(x−1,x−1) ◦ ψ(x,x)
)

◦ · · · ◦
(

ψ(x−1,nc−1) ◦ ψ(x,nc)
)

◦ ψ(x−1,nc)

◦ (Ψ(x−1))−1 ◦Ψ(x−1)(T ) (2 ≤ x ≤ nc),

Here, we assume that T̃ 6= ∅ and that in the updating process of the tableau

from T to T̃ the semistandardness of the C
(−)
n -letters part of the tableau is

preserved. Suppose that the tableau T̃ has the following configuration, where

the left (resp. right) part is the C
(−)
n (resp. C

(+)
n )-letters one (p ≤ q < r ≤

s).

b̄

ās→

r →

x− 1 x

b

a

← q

← p

x− 1

.

Then we have (q − p) + (s− r) < b− a.

Lemma 7.9. Suppose that Ψ(x−1) is well-defined on T and Ψ(x−1)(T ) is

semistandard (2 ≤ x ≤ nc). Then Ψ(x) is well-defined on T and Ψ(x)(T ) is
semistandard. Therefore, Ψ is well-defined on T by induction and Ψ(T ) ∈
Cn-SSTKN(ν).

Proof. The proof is analogous to that of Lemma 5.10. Each column of
Ψ(T ) satisfies the KN-admissible condition (Definition 2.6 (C1)) because

ψ(x,x) = (φ(x,x))−1 is well-defined (1 ≤ x ≤ nc) and any pair of adjacent
columns in Ψ(T ) satisfies the KN-admissible condition (Definition 2.6 (C2))
by Lemma 7.7 and Lemma 7.8. Since Ψ is well-defined on T so that it
preserves the shape of T , we have that Ψ(T ) ∈ Cn-SSTKN(ν). �

8. Proof of Proposition 4.2

In this section, we provide the proof of Proposition 4.2. Let T ∈ Cn-SST(ν)
be the tableau described in Proposition 4.2 with nc columns. We use the
same notation as in Section 6 to keep track of the updating stage in Ψ(T ).
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Initially, the set of I (resp. J )-letters in the x-th column of T is written

as I (x,i) (resp. J (x,i)) with i = 0 (1 ≤ x ≤ nc). Whenever the map ψ(x,y)

is applied to the updated tableau whose entries are updated by preceding
application of the map of the form ψ(�,�), the counter i in J (x,i) is increased

by one; J (x,i) →J (x,i+1) and the counter j in I (y,j) is increased by one;

I (y,j) → I (y,j+1). At the end, i.e., in Ψ(T ) the set of I (resp. J )-letters

in the x-th column is I (x,x) (resp. J (x,nc−x+1)) (1 ≤ x ≤ nc). The letters

in I (x,i) (resp. J (x,i)) are called I (x,i) (resp. J (x,i))-letters and those in

I (x,i) (resp. J (x,i)) are called I (x,i) (resp. J (x,i))-letters as in Section 6.

For all (T1, T2) ∈ B
(+)
n (ξ)λζ ×B

(−)
n (η)µζ , ζ

[

FE(T1)
−−−−→

]

= λ by definition, i.e.,

(8.1) ζ
[

I (nc,0)
−−−−→, . . . ,I

(1,0)
−−−→

]

= λ.

Furthermore, µ
[

FE(T2)
−−−−→

]

= ζ by definition and therefore µ
[

FE(T (−))
−−−−−−→

]

= ζ

by Proposition 6.1, i.e.,

(8.2) µ

[

J (nc,0)

−−−−−→
, . . . ,J (1,0)

−−−−→

]

= ζ.

Under these conditions and the notation introduced above, we have the
following lemma.

Lemma 8.1. (1). Let us define

µ(i)′ :=

{

µ
[

J (nc,0), . . . ,J (i+1,0)
]

(0 ≤ i ≤ nc − 1),

µ (i = nc).

Then we have I (nc,i) is smooth on µ(i)′ (1 ≤ i ≤ nc).
(2). Let us define

µ̃(x) :=

{

µ
[

I (nc,nc),J (nc,1), . . . ,I (x+1,x+1),J (x+1,nc−x)
]

(1 ≤ x ≤ nc − 1),

µ (x = nc)

and µ(x) := µ̃(x)
[
I (x,x)

]
. For 2 ≤ x ≤ nc, let us assume that µ(x) and

µ(x,i) := µ(x)
[

J (x,nc−x+1), . . . ,J (i,nc−x+1)
]

(1 ≤ i ≤ x)

are all Young diagrams. Suppose that I (x−1,i−1) is smooth on µ(x,i). Then
we have that I (x−1,i) is smooth on µ(x,i+1) (1 ≤ i ≤ x− 1).

(3). µ

[

I (nc,nc)

−−−−−→
,J (nc,1)

−−−−−→
, . . . ,I (1,1)

−−−→
,J (1,nc)

−−−−−→

]

= λ.

Proof. Let us begin by giving the proof of (2). Note that the pair of I (x−1,i)

and J (i,nc−x+2) is generated from the pair of I (x−1,i−1) and J (i,nc−x+1)
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by applying ψ(i,x−1) to the updated tableau whose entries are updated by
preceding application of the map of the form ψ(�,�). Let us call such sets

I (x−1,i−1) and J (i,nc−x+1) to be updated are paired and write
〈

I (x−1,i−1),J (i,nc−x+1)
〉

pair

(1 ≤ i ≤ x − 1; 2 ≤ x ≤ nc + 1) as in Section 6. Let us set I (x−1,i−1) =
{i1, i2, . . . , ia}, J (i,nc−x+1) = {j1, j2, . . . , jb}, I (x−1,i) = {i′1, i

′
2, . . . , i

′
a},

J (i,nc−x+2) = {j′1, j
′
2, . . . , j

′
b}, L := I (x−1,i−1)∩J (i,nc−x+1) = {l1, l2, . . . , lc},

and L † := I (x−1,i) ∩J (i,nc−x+2) = {l†1, l
†
2, . . . , l

†
c}. Recall that these are

ordered sets and are also considered as the sequences of letters. We write
µ̃ = µ(x,i)

[
J (i,nc−x+1)

]
= µ(x,i+1) for brevity.

(I). Let us consider the following three cases separately:

(a): i′1 = l†1.

(b): i′1 6= l†1 and i1 = l1.

(c): i′1 6= l†1 and i1 6= l1.

Case (a). In this case, L † 6= ∅ and i1 = l1. Indeed, if l1 = ip (p > 1),
then i1 /∈ L because i1 is smaller than l1 that is the smallest letter in
L . This implies i′1 = i1. However, this also implies l†1 = i1 ∈ I (x−1,i−1)

due to the assumption of (a), which contradicts the fact that l†1 is not

an I (x−1,i−1)-letter. To proceed, let us divide this case further into the
following two cases:

(a-1): All I (x−1,i−1)-letters i1, i2, . . . , ia are also J (i,nc−x+1)-letters.

(a-2): There exist non-J (i,nc−x+1)-letters in the sequence of I (x−1,i−1)-
letters i1, i2, . . . , ia (That is, there exist some letters belonging to

I (x−1,i−1)\L in {i1, i2, . . . , ia}).

In case (a-1), we have i′1 = l†1. According to the Remark 3.2, we can write

l†1 = jr + 1 (∃jr ∈ J (i,nc−x+1)). In case (a-2), let us choose the smallest

letter ip (p > 1) from the set of I (x−1,i−1)-letters i1, i2, . . . , ia such that

ip is not a J (i,nc−x+1)-letter (i.e., ip ∈ I (x−1,i−1)\L ). Now consider the

increasing (just by one) sequence of C
(+)
n -letters

(8.3) i1 + 1, i1 + 2, . . . , ip − 1

By the minimality of ip, any letter belonging to I (x−1,i−1)\L cannot appear

in (8.3). If all of the letters in (8.3) are J (i,nc−x+1)-letters, then l†1 > ip
so that i′1 = ip, which contradicts the assumption of (a). Consequently,

there must exist some letters that are not I (x−1,i−1)-letters nor J (i,nc−x+1)-
letters in the sequence (8.3). Denote by i1 + q (∃q ≥ 1) the smallest letter

among them. Since l1 = i1, we have l
†
1 = i1+ q. By the minimality of i1+ q,
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i1+q−1 is a J (i,nc−x+1)-letter (when q = 1, i1 = l1 is a J (i,nc−x+1)-letter).

Hence, we can write i1 + q − 1 = jr (∃jr ∈ J (i,nc−x+1)) so that i′1 = l†1 =

jr + 1. Since i′1 = l†1 ∈ I (x−1,i) is the letter generated by ψ(i,x−1), i′1 /∈

J (i,nc−x+1). By the assumption of (2) of Lemma 8.1, µ̃
[

J (i,nc−x+1)
]

=

µ(x,i) is a Young diagram so that

µ̃
[

J (i,nc−x+1)
]

i′
1
−1
≥ µ̃

[

J (i,nc−x+1)
]

i′
1

.

The left-hand side of this inequality is µ̃i′
1
−1 − 1 because i′1 − 1 = jr ∈

J (i,n−x+1), while the right-hand side is µ̃i′
1
because i′1 /∈ J (i,nc−x+1) and

thereby µ̃i′
1
−1 > µ̃i′

1
.

Case (b). Firstly, let us show that we can write i′1 = ip (∃ip ∈ I (x−1,i−1)\L ).

Since i′1 /∈ L † we can write i′1 = ip (∃ip ∈ I (x−1,i−1)\L ), because i′1 ∈

(I (x−1,i−1)\L ) ⊔L †. In this case, p ≥ 2. Otherwise i′1 = i1 = l1, which
is a contradiction. To proceed, let us consider the following three cases
separately:

(b-1): p = 2 and i′1 = ip=2 = i1 + 1 = l1 + 1.
(b-2): p ≥ 2 and ip > i1 + 1.
(b-3): p > 2 and ip = i1 + 1.

In case (b-1), we can write l1 = jr (∃jr ∈J (i,nc−x+1)) and i′1 = jr + 1. In

case (b-2), there must exist a sequence of J (i,nc−x+1)-letters jq, . . . , jq+m

such that i1 < jq+k < ip (k = 0, 1, . . . ,m) and

jq − i1 = 1,

jq+k − jq+k−1 = 1 (k = 1, . . . ,m),

ip − jq+m = 1.

Otherwise, l†1 cannot be larger than i
′
1 = ip(∈ I (x−1,i−1)\L ). The existence

of such a sequence implies i′1 = ip = jq+m+1. Case (b-3) must be excluded
because the inequalities i1 < i2 < · · · < ip do not hold. In both cases (b-

1) and (b-2), we can write i′1 = jr + 1 (∃jr ∈ J (i,nc−x+1)). Now since

µ̃
[

J (i,nc−x+1)
]

is a Young diagram,

µ̃
[

J (i,nc−x+1)
]

i′
1
−1
≥ µ̃

[

J (i,nc−x+1)
]

i′
1

.

The left-hand side of this inequality is µ̃i′
1
−1 − 1 because i′1 − 1 = jr ∈

J (i,nc−x+1), while the right-hand side is µ̃ip = µ̃i′
1
because ip ∈ I (x−1,i−1)\L ,

i.e., ip /∈J (i,nc−x+1) so that µ̃i′
1
−1 > µ̃i′

1
.
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Case (c). Let us show that i′1 = i1. If L = ∅, this is obvious. If L 6= ∅,
the I (x−1,i−1)-letter i1 is smaller than l1 that is the smallest letter in L
so that the I (x−1,i−1)-letter i1 is not a J (i,nc−x+1)-letter, which implies

i′1 = i1. By the assumption of (2) of Lemma 8.1, I (x−1,i−1) is smooth on

µ(x,i) = µ̃
[

J (i,nc−x+1)
]

so that

µ̃
[

J (i,nc−x+1)
]

i1−1
> µ̃

[

J (i,nc−x+1)
]

i1
.

The left-hand side of this inequality is µ̃i1−1−δ (δ ∈ {0, 1}), while the right-
hand side is µ̃i1 because i1 /∈J (i,nc−x). Therefore, we have µ̃i′

1
−1 = µ̃i1−1 >

µ̃i1 = µ̃i′
1
. In (I), we have verified that µ̃i′

1
−1 > µ̃i′

1
, that is, µ̃[i′1] is a Young

diagram for all possible cases.
(II). Let us suppose that µ̃†(k−1) = µ̃[i′1, . . . , i

′
k−1] is a Young diagram

(k − 1 ≥ 1). We prove that µ̃†(k−1)[i′k] is also a Young diagram. Note that

J (i,nc−x+1) is smooth on µ̃ by Lemma 6.1. Let us consider the following
three cases separately:

(a): i′k ∈ I (x−1,i)\L †(= I (x−1,i−1)\L ).

(b): i′k−1 ∈ I (x−1,i)\L † and i′k ∈ L †.

(c): i′k−1 ∈ L † and i′k ∈ L †.

Case (a). We can write i′k = ip (∃ip ∈ I\L) and

µ̃
†(k−1)
i′
k

= µ̃[i′1, . . . , i
′
k−1]i′k = µ̃ip .

In order to compute µ̃
†(k−1)
ip−1 = µ̃[i′1, . . . , i

′
k−1]ip−1, we divide this case further

into the following three cases:

(a-1): ip − 1 ∈ I (x−1,i).

(a-2): ip − 1 /∈ I (x−1,i) and ip − 1 ∈ L .

(a-3): ip − 1 /∈ I (x−1,i) and ip − 1 /∈ L .

In case (a-1), we have i′k−1 = ip − 1 because i′k = ip. Then

µ̃
†(k−1)
i′
k
−1

= µ̃[i′1, . . . , i
′
k−1 = ip − 1]ip−1 = µ̃ip−1 + 1

so that we obtain

µ̃
†(k−1)
i′
k
−1 = µ̃ip−1 + 1 > µ̃ip = µ

†(k−1)
i′
k

.

In both cases (a-2) and (a-3), we have µ̃
†(k−1)
i′
k
−1 = µ̃ip−1 because ip − 1 /∈

I (x−1,i). By the assumption of (2) of Lemma 8.1, I (x−1,i−1) is smooth on

µ(x,i) = µ̃
[

J (i,nc−x+1)
]

,

(8.4) µ̃
[

J (i,nc−x+1), i1, . . . , ip−1

]

ip−1
> µ̃

[

J (i,nc−x+1), i1, . . . , ip−1

]

ip
.
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In case (a-2), the left-hand side of Eq.(8.4) is µ̃ip−1 because ip−1 ∈ L (ip−1

appears once in {i1, . . . , ip−1} and ip − 1 appears once in J (i,nc−x+1)). The

right-hand side is µ̃ip because ip ∈ I (x−1,i−1)\L , i.e., ip /∈ J (i,nc−x+1).

Therefore, we have µ̃ip−1 > µ̃ip so that µ̃
†(k−1)
i′
k
−1 = µ̃ip−1 > µ̃ip = µ̃

†(k−1)
i′
k

. In

case (a-3), ip − 1 /∈ I (x−1,i−1) because ip − 1 /∈ (I (x−1,i−1)\L ) ⊔L † and
ip−1 /∈ L . The left-hand side of Eq. (8.4) is µ̃ip−1−δ (δ ∈ {0, 1}), while the

right-hand side is µ̃ip−1 because ip ∈ I (x−1,i−1)\L , i.e., ip /∈ J (i,nc−x+1).

Therefore, µ̃ip−1 − δ > µ̃ip so that µ̃
†(k−1)
i′
k
−1 = µ̃ip−1 > µ̃ip = µ̃

†(k−1)
i′
k

.

Case (b). In this case, L † 6= ∅ and we can write i′k = l†r (∃l
†
r ∈ L †). We

divide this case further into the following two cases according to Remark 3.2:

(b-1): l†r = ip + 1 (∃ip ∈ I (x−1,i−1)\L ).

(b-2): l†r = jq + 1 (∃jq ∈J (i,nc−x+1)).

The situation that l†r = l†r−1+1 (r 6= 1) cannot happen. Indeed, if l†r = l†r−1+

1 (r 6= 1), then i′k = l†r−1+1. Since l†r−1 ∈ I (x−1,i), this implies i′k−1 = l†r−1,
which contradicts the assumption of (b). In case (b-1), i′k−1 = ip because

ip ∈ I (x−1,i−1) and i′k = ip + 1. Then

µ̃
†(k−1)
i′
k

= µ̃[i′1, . . . , i
′
k−1 = ip]ip+1 = µ̃ip+1,

and

µ̃
†(k−1)
i′
k
−1

= µ̃[i′1, . . . , i
′
k−1 = ip]ip = µ̃ip + 1.

From these two equations, we have µ̃
†(k−1)
i′
k
−1

> µ̃
†(k−1)
i′
k

. In case (b-2),

µ̃
†(k−1)
i′
k

= µ̃[i′1, . . . , i
′
k−1]i′k = µ̃i′

k
= µ̃jq+1.

On the other hand,

µ̃
†(k−1)
i′
k
−1

= µ̃[i′1, . . . , i
′
k−1]i′k−1 = µ̃i′

k
−1 = µ̃jq ,

where we have used the fact that i′k − 1 > i′k−1. This is shown as follows.
If i′k − 1 = i′k−1, then we have jq = i′k − 1 = i′k−1. This implies that jq is

an I (x−1,i−1)-letter but is not a J (i,nc−x+1)-letter due to the assumption

of (b), which is a contradiction. Now since J (i,nc−x+1) is smooth on µ̃, we
have

µ̃[jb, . . . , jq+1]jq > µ̃[jb, . . . , jq+1]jq+1.

By noting that jq +1 = l†r /∈ {jb, . . . , jq+1}, the right-hand side of the above
inequality is found to be µ̃jq+1, while the left-hand side is clearly µ̃jq . Hence,

µ̃
†(k−1)
i′
k
−1

> µ̃
†(k−1)
i′
k

.
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Case (c). In this case, L † 6= ∅ and we can write i′k−1 = l†r−1 and

i′k = l†r (∃r ∈ {2, . . . , c}). According to the algorithm described above
Eq. (3.2) or Remark 3.2, let us consider the following three cases separately:

(c-1): l†r = ip + 1 (∃ip ∈ I (x−1,i−1)\L ).

(c-2): l†r = jq + 1 (∃jq ∈J (i,nc−x+1)).

(c-3): l†r = l†r−1 + 1 (r 6= 1).

In case (c-1), i′k−1 = ip because ip ∈ I (x−1,i) and i′k = ip + 1. Then

l†r−1 = ip ∈ I (x−1,i−1)\L = I (x−1,i)\L †, which derives a contradiction,
and thereby case (c-1) must be excluded. In case (c-2),

µ̃
†(k−1)
i′
k

= µ̃[i′1, . . . , i
′
k−1]i′k = µ̃i′

k
= µ̃jq+1.

On the other hand,

µ̃
†(k−1)
i′
k
−1

= µ̃[i′1, . . . , i
′
k−1]i′k−1 = µ̃i′

k
−1 = µ̃jq ,

where we have used the fact that i′k−1 < i′k − 1. This is shown as follows.

If i′k−1 = i′k − 1, then, l†r−1 = i′k−1 = i′k − 1 = jq, which contradicts the fact

that l†r−1 is not a J (i,nc−x+1)-letter. Now since J (i,nc−x+1) is smooth on
µ̃, we have

µ̃[jb, . . . , jq+1]jq > µ̃[jb, . . . , jq+1]jq+1.

By noting jq + 1 = l†r /∈ {jb, . . . , jq+1}, the right-hand side of the above
inequality is seen to be µ̃jq+1, while the left-hand side is clearly µ̃jq . Hence,

we have µ̃
†(k−1)
i′
k
−1

> µ̃
†(k−1)
i′
k

. In case (c-3), since i′k − 1 = i′k−1(= l†r−1),

µ̃
†(k−1)
i′
k
−1

= µ̃[i′1, . . . , i
′
k−1 = l†r−1]l†r−1

= µ̃i′
k
−1 + 1,

while

µ̃
†(k−1)
i′
k

= µ̃[i′1, . . . , i
′
k−1]i′k = µ̃i′

k
.

Hence, we have µ̃
†(k−1)
i′
k
−1 > µ̃

†(k−1)
i′
k

. In (II), we have verified that µ̃
†(k−1)
i′
k
−1 >

µ̃
†(k−1)
i′
k

, that is, µ̃†(k−1)[i′k] is a Young diagram for all possible cases. From (I)

and (II) and by induction, we have completed the proof of (2) of Lemma 8.1.
The proof of (1) is as follows. We proceed by induction on i. Since

µ(0)′ = µ
[

J (nc,0), . . . ,J (1,0)
]

= ζ and I (nc,0) is smooth on ζ by Eqs. (8.1)

and (8.2), we have that I (nc,0) is smooth on µ(0)′. For i = 0, . . . , nc − 1,

suppose that I (nc,i) is smooth on µ(i)′. This is satisfied for i = 0. Then we
have that I (nc,i+1) is smooth on µ(i+1)′ by the same argument as in (2).

The proof of (3) is as follows. We proceed by induction on x and i.
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(I).We have µ
[

J (nc,0), . . . ,J (1,0)
] [

I (nc,0)
−−−−→

]

, . . . , µ
[

J (nc,0)
] [

I (nc,nc−1)
−−−−−−−→

]

,

and µ
[

I (nc,nc)
−−−−−→

]

= µ(nc) are all Young diagrams by the claim of (1). For

1 ≤ i ≤ nc,
〈

I (nc,i−1),J (i,0)
〉

pair
,
〈

I (nc,i),J (i+1,0)
〉

pair
, . . . ,

〈

I (nc,nc−1),J (nc,0)
〉

pair
,

so that we have

µ
[

J (nc,0), . . . ,J (i,0)
] [

I (nc,i−1)
]

= µ
[

J (nc,1), . . . ,J (i,1)
] [

I (nc,nc)
]

= µ(nc)
[

J (nc,1), . . . ,J (i,1)
]

.

Hence,

µ(nc,i) = µ(nc)
[

J (nc,1), . . . ,J (i,1)
]

(1 ≤ i ≤ nc)

are all Young diagrams and the smoothness of J (nc,1), . . . ,J (i,1) on µ(nc)

follows from Lemma 6.1.
(II). For x = nc, . . . , 2, let us assume that µ(x) and

µ(x,i) = µ(x)
[

J (x,nc−x+1)

−−−−−−−−→
, . . . ,J (i,nc−x+1)

−−−−−−−−→

]

(1 ≤ i ≤ x)

are all Young diagrams, where µ(x) is defined in (2). For x = nc this is
satisfied by (I). (i). For i = 1,

µ(x,1) =µ(x)
[

J (x,nc−x+1), . . . ,J (1,nc−x+1)
]

=µ
[

I (nc,nc), . . . ,I (x,x)
] [

J (nc,1), . . . ,J (x,nc−x+1)
]

[

J (x−1,nc−x+1), . . . ,J (1,nc−x+1)
]

.

The right-hand side of this equation is written as

µ
[

J (nc,0), . . . ,J (1,0)
] [

I (nc,0), . . . ,I (x,0)
]

= ζ
[

I (nc,0)
−−−−→, . . . ,I

(x,0)
−−−−→

]

(∵ (8.2))

because

〈

I (nc,0),J (1,0)
〉

pair
, . . . ,

〈

I (nc,nc−1),J (nc,0)
〉

pair
,

. . .
〈

I (x,0),J (1,nc−x)
〉

pair
, . . . ,

〈

I (x,x−1),J (x,nc−x)
〉

pair
.
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Thus, we have that I (x−1,0) is smooth on µ(x,1) by Eq. (8.1). (ii). For

i = 1, . . . , x − 1, suppose that I (x−1,i−1) is smooth on µ(x,i) (for i = 1 this

is satisfied). Then we have that I (x−1,i) is smooth on µ(x,i+1) by the same
argument as in (2). From (i) and (ii) and by induction on i, we have that

µ(x,1)
[

I (x−1,0)
−−−−−→

]

, . . . , µ(x,x)
[

I (x−1,x−1)
−−−−−−−→

]

are all Young diagrams. Here,

µ(x,i)
[

I (x−1,i−1)
]

(8.5)

=µ
[

I (nc,nc),J (nc,1), . . . ,I (x,x),J (x,nc−x+1)
]

[

J (x−1,nc−x+1), . . . ,J (i,nc−x+1)
] [

I (x−1,i−1)
]

(1 ≤ i ≤ x− 1).

and µ(x,x)
[
I (x−1,x−1)

]
= µ(x−1) so that

µ(x−1) = µ(x,x)
[

I (x−1,x−1)
−−−−−−−→

]

= µ(x)
[

J (x,nc−x+1)

−−−−−−−−→
,I (x−1,x−1)

−−−−−−−→

]

by Lemma 6.1 and by the assumption of (II). Since

〈

I (x−1,i−1),J (i,nc−x+1)
〉

pair
,
〈

I (x−1,i),J (i+1,nc−x+1)
〉

pair
,

. . . ,
〈

I (x−1,x−2),J (x−1,nc−x+1)
〉

pair
(1 ≤ i ≤ x− 1),

the right-hand side of Eq. (8.5) is written as

µ
[

I (nc,nc),J (nc,1), . . . ,I (x,x),J (x,nc−x+1)
]

[

J (x−1,nc−x+2), . . . ,J (i,nc−x+2)
] [

I (x−1,x−1)
]

=µ(x−1)
[

J (x−1,nc−x+2), . . . ,J (i,nc−x+2)
]

.

Hence,

µ(x−1) = µ(x)
[

J (x,nc−x+1)

−−−−−−−−→
,I (x−1,x−1)

−−−−−−−→

]

and

µ(x−1,i) = µ(x−1)

[

J (x−1,nc−x+2)

−−−−−−−−−−→
, . . . ,J (i,nc−x+2)

−−−−−−−−→

]

(1 ≤ i ≤ x− 1)

are all Young diagrams. The smoothness of J (x,nc−x+2), . . . ,J (i,nc−x+2)

on µ(x−1) follows from Lemma 6.1. From (I) and (II) and by induction
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on x, we have µ(1)
[

J (1,nc)

−−−−−→

]

= µ

[

I (nc,nc)

−−−−−→
,J (nc,1)

−−−−−→
, . . . ,I (1,1)

−−−→
,J (1,nc)

−−−−−→

]

=

µ [FE (Ψ(T ))]. Since Ψ is weight-preserving,

µ [FE (Ψ(T ))] = µ [FE(T )] =µ
[

I (nc,0),J (nc,0), . . . ,I (1,0),J (1,0)
]

=ζ
[

I (nc,0), . . . ,I (1,0)
]

= λ.

The last line is due to Eqs. (8.1) and (8.2). This completes the proof. �

Proof of Proposition 4.2. Let T be the tableau described in Proposition 4.2.
Suppose that T consists of nc columns. By Lemma 7.9, we have Ψ(T ) ∈

Cn-SSTKN(ν). By Lemma 8.1, we have µ

[

I (nc,nc)

−−−−−→
,J (nc,1)

−−−−−→
, . . . ,I (1,1)

−−−→
J (1,nc)

−−−−−→

]

=

λ. This completes the proof. �

9. Main Theorem II

In this section, we will show that LR crystals of Cn-type B
sp2n
n (ν)λµ defined

by Eq. (2.4) are identical to LR crystals of typeBn orDn Bg
n(ν)λµ (g = so2n+1

or so2n) in the stable region, l(µ) + l(ν) ≤ n (Theorems 9.2 and 9.4). Here
soN = so(N,C) (N = 2n + 1 or 2n) is the special orthogonal Lie algebra.
Consequently, Theorem 4.1 with sp2n being replaced by so2n+1 or so2n holds
and it provides the crystal interpretation of the branching rule (Eq. (2.5)).

9.1. LR crystals of Bn-type. The odd special orthogonal Lie algebra
so(2n + 1,C) = so2n+1 is the classical Lie algebra of Bn-type. Using the
standard unit vectors ǫi ∈ Z

n (i = 1, 2, . . . , n), the simple roots are ex-
presses as

αi = ǫi − ǫi+1 (i = 1, 2, . . . , n− 1),

αn = ǫn,

and the fundamental weights as

ωi = ǫ1 + ǫ2 + · · · + ǫi (i = 1, 2, . . . , n − 1),

ωn =
1

2
(ǫ1 + ǫ2 + · · ·+ ǫn).
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Let λ̃ = a1ω1 + · · · + anωn (ai ∈ Z≥0) be a dominant integral weight.

Then λ̃ can be written as λ̃ = λ1ǫ1 + · · ·+ λnǫn, where

λ1 = a1 + a2 + · · · + an−1 +
1

2
an,

λ2 = a2 + · · ·+ an−1 +
1

2
an,

...

λn =
1

2
an.

Here, we do not need to consider the spin representation for the finite-
dimensional irreducible Uq(so2n+1)-module V

so2n+1
q (ωn) as explained later so

that 1
2an ∈ Z≥0. Hence we can associate a Young diagram λ = (λ1, . . . , λn)

to λ̃ and simplify the original definition of Bn-tableaux [13]. Throughout this
section, Bn-tableaux are referred to as Bn-tableaux without spin columns
associated with the spin representations.

Definition 9.1 ([3, 13]). (1) Let λ be a Young diagram with at most n
rows. A Bn-tableau of shape λ is a tableau obtained by filling the
boxes in λ with entries from the set

{1, 2, . . . , n, 0, n, . . . , 1}

equipped with the total order

1 ≺ 2 ≺ · · · ≺ n ≺ 0 ≺ n ≺ · · · ≺ 1.

(2) A Bn-tableau is said to be semistandard if
(a) the entries in each rows are weakly increasing, but zeros cannot

be repeated;
(b) the entries in each column are strictly increasing, but zeros can

be repeated.

We denote by Bn-SST(λ) the set of all semistandard Bn-tableaux of shape
λ. For a tableau T ∈ Bn-SST(λ), we define its weight to be

wt(T ) :=
n∑

i=1

(ki − ki)ǫi,

where ki (resp. ki) is the number of i’s (resp. ī’s) appearing in T .

Definition 9.2 ([3, 13]). A tableau T ∈ Bn-SST(λ) is said to be KN-
admissible when the following conditions are satisfied.

(B1) If T has a column of the form



170 TOYA HIROSHIMA

ī

i

q →

p→

,

then we have (q − p) + i > N , where N is the length of the column.
(B2) If T has a pair of adjacent columns having one of the following con-

figurations with p ≤ q < r ≤ s and a ≤ b < n:

ā
b̄

b
a

ā
b̄

b
a

,s→
r →

q →
p→

,

then we have (q − p) + (s − r) < b− a.
(B3) If T has a pair of adjacent columns having one of the following con-

figurations with p ≤ q < r = q + 1 ≤ s and a < n:

a

ā

n̄
n

a

ā

0
n

a

ā

0
0

a

ā

n̄
0

, , ,s→

r →
q →

p→

,

n̄
n

a

ā

0
n

a

ā

0
0

a

ā

n̄
0

a

ā, , ,s→

r →
q →

p→

,

then we have (q − p) + (s − r) = s− p− 1 < n− a.
(B4) The tableau T cannot have a pair of adjacent columns having one of

the following configurations with p < s:

n

n̄

n

0

0

0

0

n̄, , ,s→

p→

.

We denote by Bn-SSTKN(λ) the set of all KN-admissible semistandard
Bn-tableau (without spin columns) of shape λ.

A crystal Bso2n+1(λ) associated with the finite-dimensional irreducible

Uq(so2n+1)-module V
so2n+1
q (λ) of a dominant integral weight λ̃ is defined in

the same way as in Section 2.2. As a set, Bso2n+1(λ) is Bn-SSTKN(λ). The
crystal structure of Bso2n+1(λ) is given by the crystal graph of Bso2n+1(�),



CRYSTAL INTERPRETATION OF A FORMULA ON THE BRANCHING RULE 171

the tensor product rule, and the far-eastern reading of T ∈ Bso2n+1(λ). The
crystal graph of Bso2n+1(�) is given by as follows:

1 2 n 0 n̄ 2̄ 1̄✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲· · · · · ·1 2 n− 1 n n n− 1 2 1
,

where wt
(

i
)

= ǫi, wt
(

0
)

= ǫi, and wt
(

ī
)

= −ǫi (i = 1, 2, . . . , n).

In Bn case, Definition 2.8 is still valid, but the following rule has to be
added [13]. For a Young diagram λ = (λ1, . . . , λn) ∈ Pn,

(9.1) λ[0] :=

{

λ (λn > 0),

(λ1, . . . , λn−1,−∞) (λn = 0).

The generalized LR rule of Bn-type is given by:

Theorem 9.1 ([3, 6, 13]). Let µ̃ =
∑n

i=1 µiǫi and ν̃ =
∑n

i=1 νiǫi be dominant
integral weights, and µ = (µ1, µ2, . . . , µn) and ν = (ν1, ν2, . . . , νn) be the
corresponding Young diagrams, respectively. Then we have the following
isomorphism:
(9.2)
Bso2n+1(µ)⊗ Bso2n+1(ν) ≃

⊕

T∈Bso2n+1 (ν)

FE(T )=m1⊗···⊗mN

Bso2n+1 (µ[m1,m2, . . . ,mN ]) ,

where N = |ν|. In the right-hand side of Eq. (9.2), we set Bso2n+1 (µ[m1, . . . ,mN ]) =
∅ if the sequence of letters m1, . . . ,mN is not smooth on µ.

Let us denote by dλµν the number of Bso2n+1(λ) appearing in the right-

hand side of Eq. (9.2). Then the multiplicity dλµν is given by the cardinality
of the following set:

Bso2n+1

n (ν)λµ :=
{

T ∈ Bso2n+1(ν)
∣
∣
∣ µ

[

FE(T )
−−−−→

]

= λ
}

.

In the stable region, i.e., l(µ)+ l(ν) ≤ n, a tableau T ∈ B
so2n+1
n (ν)λµ dose not

contain zeros. This is shown as follows. We can assume that l(µ) = n − k
and l(ν) ≤ k (k = 1, 2, . . . , n − 1) so that µn = νn = 0 and µ and ν (and
therefore λ) do not contain spin columns. Suppose that in the far-eastern
reading of T ∈ B

so2n+1
n (ν)λµ, 0 appears firstly in the i-th box;

FE(T ) = m1 ⊗ · · · ⊗mi = 0⊗ · · · .

Since the sequence of lettersm1, . . . ,mi = 0 is smooth on µ, l (µ[m1, . . . ,mi−1]) =
n. Otherwise, µ[m1, . . . ,mi−1][0] would not be a Young diagram by the rule
of Eq. (9.1). Hence, k letters n− k + 1, . . . , n must appear in the sequence
of letters m1, . . . ,mi−1 in this order. This implies l(ν) ≥ k+1 because k+1
letters n − k + 1, . . . , n, 0 in T appear at different rows due to the semis-
tandardness of T . This contradicts the assumption that l(ν) ≤ k. Thus, T



172 TOYA HIROSHIMA

has no zeros. Therefore, conditions (B1), (B2), and (B3) in Definition 9.2
can be replaced by conditions (C1) and (C2) in Definition 2.6 (with λ being
replaced by ν) as long as tableaux in B

so2n+1
n (ν)λµ are considered in the stable

region. Condition (B4) in Definition 9.2 is replaced by:

(B4’) A tableau T ∈ Bn-SSTKN(ν) cannot have a pair of adjacent columns
having the following configuration with p < s:

n

n̄

n

s→

p→

.

This is contained in condition (C2) in Definition 2.6 (with λ being replaced
by ν).

Combining these, we obtain:

Theorem 9.2. Fix λ, µ, ν ∈ Pn. If l(µ)+l(ν) ≤ n, then we have B
so2n+1
n (ν)λµ =

B
sp2n
n (ν)λµ.

9.2. LR crystals of Dn-type. The even special orthogonal Lie algebra
so(2n,C) = so2n is the classical Lie algebra of Dn-type. Using the standard
unit vectors ǫi ∈ Z

n (i = 1, 2, . . . , n), the simple roots are expressed as

αi = ǫi − ǫi+1 (i = 1, 2, . . . , n− 1),

αn = ǫn−1 + ǫn,

and the fundamental weights as

ωi = ǫ1 + ǫ2 + · · · + ǫi (i = 1, 2, . . . , n − 2),

ωn−1 =
1

2
(ǫ1 + · · ·+ ǫn−1 − ǫn),

ωn =
1

2
(ǫ1 + · · ·+ ǫn−1 + ǫn).

Let λ̃ = a1ω1 + · · · + anωn (ai ∈ Z≥0) be a dominant integral weight.

Then λ̃ can be written as λ̃ = λ1ǫ1 + · · ·+ λnǫn, where

λ1 = a1 + a2 + · · ·+ an−2 +
1

2
(an−1 + an),

λ2 = a2 + · · ·+ an−2 +
1

2
(an−1 + an),

...

λn−1 =
1

2
(an−1 + an),

λn =
1

2
(an − an−1).
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Here we do not consider the spin representations for the finite-dimensional
irreducible Uq(so2n)-modules V so2n

q (ωn−1) and V so2n
q (ωn) as in Section 9.1

so that λn−1, |λn| ∈ Z≥0. Hence we can associate a Young diagram λ =

(λ1, . . . , λn−1, |λn|) to λ̃ and simplify the original definition ofDn-tableaux [13].
Throughout this section, Dn-tableaux are referred to as Dn-tableaux with-
out spin columns associated with the spin representations.

Definition 9.3 ([3, 13]). (1) Let λ be a Young diagram with at most n
rows. A Dn-tableau of shape λ is a tableau obtained by filling the
boxes in λ with entries from the set

{1, 2, . . . , n, n, . . . , 1}

equipped with the linear order

1 ≺ 2 ≺ · · · ≺ n− 1 ≺
n
n̄
≺ n− 1 ≺ · · · ≺ 1,

where the order between n and n̄ is not defined.
(2) A Dn-tableau is said to be semistandard if

(a) the entries in each rows are weakly increasing, and n and n̄ do
not appear simultaneously;

(b) the entries in each column are strictly increasing, and n and n̄
can appear successively.

For a Dn-tableau T , we write

T = T±
T 0

,

where T± = T+ if an ≤ an−1, T
± = T− if an ≥ an−1, l(T

±) = n and
l(T 0) ≤ n − 1. We denote by Dn-SST(λ) the set of all semistandard Dn-
tableaux of shape λ. For a tableau T ∈ Dn-SST(λ), we define its weight to
be

wt(T ) :=

n∑

i=1

(ki − ki)ǫi,

where ki (resp. ki) is the number of i’s (resp. ī’s) appearing in T .

Definition 9.4 ([3, 13]). A tableau T ∈ Dn-SST(λ) is said to be KN-
admissible when the following conditions are satisfied.

(D1) If T has a column of the form
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ī

i

q →

p→

,

then we have (q − p) + i > N , where N is the length of the column.
(D2) If T+ has a column whose k-th entry is n (resp. n̄), then n − k is

even (resp. odd).
(D3) If T− has a column whose k-th entry is n (resp. n̄), then n − k is

odd (resp. even).
(D4) If T has a pair of adjacent columns having one of the following con-

figurations with p ≤ q < r ≤ s and a ≤ b < n:

ā
b̄

b
a

ā
b̄

b
a

,s→
r →

q →
p→

,

then we have (q − p) + (s − r) < b− a.
(D5) If T has a pair of adjacent columns having one of the following con-

figurations with p ≤ q < r = q + 1 ≤ s and a < n:

a

ā

n̄
n

a

ā

n
n̄

n̄
n

a

ā

n
n̄

a

ā, , ,s→

r →
q →

p→

,

then we have (q − p) + (s − r) = s− p− 1 < n− a.
(D6) The tableau T cannot have a pair of adjacent columns having one of

the following configurations with p < s:

n

n

n

n̄

n̄

n

n̄

n̄, , ,s→

p→

.

(D7) If T has a pair of adjacent columns having one of the following con-
figurations with p ≤ q < r ≤ s and a < n;

n̄

a

ā

n

n

a

ā

n̄

n

a

ā

n

n̄

a

ā

n̄

, ,

r − q + 1 = odd, r − q + 1 = even,
s→
r→

q →
p→
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then we have s− p < n− a.

We denote by Dn-SSTKN(λ) the set of all KN-admissible semistandard
Dn-tableau (without spin columns) of shape λ.

A crystal Bso2n(λ) associated with the finite-dimensional irreducible Uq(so2n)-

module V so2n
q (λ̃) of a dominant integral weight λ̃ is defined in the same way

as in Section 2.2. As a set, Bso2n(λ) is Bn-SSTKN(λ). The crystal structure
of Bso2n(λ) is given by the crystal graph of Bso2n(�), the tensor product rule,
and the far-eastern reading of T ∈ Bso2n(λ). The crystal graph of Bso2n(�)
is given by as follows:

1 2 n− 1

n̄

n

n− 1 2̄ 1̄✲ ✲ ✲

❅
❅❅❘

�
��✒

�
��✒

❅
❅❅❘

✲ ✲ ✲· · · · · ·
1 2 n− 2

n

n− 1

n− 1

n

n− 2 2 1

,

where wt
(

i
)

= ǫi and wt
(

ī
)

= −ǫi (i = 1, 2, . . . , n).

Even in Dn case, Definition 2.8 is valid and the generalized LR rule of
Dn-type is given by:

Theorem 9.3 ([3, 6, 13]). Let µ̃ =
∑n

i=1 µiǫi and ν̃ =
∑n

i=1 νiǫi be dominant
integral weights, and µ = (µ1, . . . , µn−1, |µn|) and ν = (ν1, . . . , νn−1, |νn|) be
the corresponding Young diagrams, respectively. Then we have the following
isomorphism:

(9.3) Bso2n(µ)⊗ Bso2n(ν) ≃
⊕

T∈Bso2n (ν)

FE(T )=m1⊗···⊗mN

Bso2n (µ[m1,m2, . . . ,mN ]) ,

where N = |ν|. In the right-hand side of Eq. (9.3), we set Bso2n (µ[m1, . . . ,mN ]) =
∅ if the sequence of letters m1, . . . ,mN is not smooth on µ.

Let us denote by dλµν the number of Bso2n(λ) appearing in the right-hand

side of Eq (9.3). Then the multiplicity dλµν is given by the cardinality of the
following set:

Bso2n
n (ν)λµ :=

{

T ∈ Bso2n(ν)
∣
∣
∣ µ

[

FE(T )
−−−−→

]

= λ
}

.

Suppose that the far-eastern reading of T ∈ Bso2n
n (ν)λµ is

FE(T ) = m1 ⊗m2 · · · ⊗mN.

If l(µ) + l(ν) ≤ n, then the following additional rule is imposed on the
sequence of entries, m1,m2, . . . ,mn, in order to guarantee the smoothness
of FE(T ) on µ: To each n (resp. n̄) in this sequence, we assign + (resp. −)
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and cancel out all (+,−)-pairs. Then, the resulting sequence must not have
−’s.

To verify this rule, it is sufficient to show that n must appear before n̄ in
FE(T ) (if n̄’s exist in T ). This is shown as follows. If l(µ) = n, then ν = ∅.
Excluding this trivial case, we can assume that l(µ) ≤ n − 1. Suppose that
in the far-eastern reading of T ∈ Bso2n

n (ν)λµ, n̄ appears firstly in the i-th box;

(9.4) FE(T ) = m1 ⊗ · · · ⊗mi = n̄⊗ · · · .

Since the sequence of lettersm1, . . . ,mi = n̄ is smooth on µ, l (µ[m1, . . . ,mi−1]) =
n. However, this cannot occur because the sequence of letters m1, . . . ,mi−1

does not contain n and l(µ) ≤ n− 1. The same is true for B
sp2n
n (ν)λµ in the

stable region, l(µ) + l(ν) ≤ n. In particular, a tableau T ∈ Bso2n
n (ν)λµ does

not have vertical dominoes
n̄

n
. Thus, conditions (D1), (D2), (D3), (D4), and

(D5) in Definition 9.4 can be replaced by conditions (C1) and (C2) in Defi-
nition 2.6 (with λ being replaced by ν) as long as tableaux in Bsp2n

n (ν)λµ are
considered in the stable region. Condition (D6) in Definition 9.4 is replaced
by:

(D6’) A tableau T ∈ Dn-SSTKN(ν) cannot have a pair of adjacent columns
having the following configurations with p < s:

n

n̄

n

s→

p→

.

This is contained in (C2) in Definition 2.6 (with λ being replaced by ν).
Condition (D7) in Definition 9.4 is replaced by:

(D7’) If T ∈ Dn-SSTKN(ν) has a pair of adjacent columns having one of
the following configurations with p ≤ q < r ≤ s and a < n;

n̄

a

ā

n

n

a

ā

n

r − q + 1 = odd, r − q + 1 = even,
s→
r→

q →
p→ (A) (B)

then we have s− p < n− a.

This is due to the fact that FE(T ) of Eq.(9.4) is not allowed.
Suppose that T ∈ Dn-SSTKN(ν) has configuration (A) above.
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n̄

A

b1

a

ā

n

s→

r→

q →

p→

.

Since r − q + 1 is odd, A has at least one box. Let b2 be the entry at the
(q + 1)-st position in the left column (a ≤ b1 < b2 ≤ n). Then,

(q − p) + (s− r) < s− p < n− a = max(b1, n)− a,

and

(q + 1− p) + (s− r) ≤ s− p < n− a = max(b2, n)− a.

Thus, the condition for the right configuration of (C2) in Definition 2.6 is
satisfied irrespective of whether q − p is odd or even. Similarly, the con-
figuration (B) leads to the condition for the left configuration of (C2) in
Definition 2.6

Combining these, we obtain:

Theorem 9.4. Fix λ, µ, ν ∈ Pn. If l(µ)+l(ν) ≤ n, then we have Bso2n
n (ν)λµ =

B
sp2n
n (ν)λµ.
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