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CRYSTAL INTERPRETATION OF A FORMULA ON THE
BRANCHING RULE OF TYPES B,, C,, AND D,

ToyvyA HIROSHIMA

ABSTRACT. The branching coefficients of the tensor product of finite-
dimensional irreducible Ug(g)-modules, where g is so(2n + 1,C) (Bp-
type), sp(2n,C) (Cy,-type), and so(2n,C) (D,-type), are expressed in
terms of Littlewood-Richardson (LR) coefficients in the stable region.
We give an interpretation of this relation by Kashiwara’s crystal theory
by providing an explicit surjection from the LR crystal of type C) to
the disjoint union of Cartesian product of LR crystals of A, _i-type and
by proving that LR crystals of types B, and D, are identical to the
corresponding LR crystal of type C,, in the stable region.

1. INTRODUCTION

The generalized Littlewood-Richardson (LR) rule in Kashiwara’s crystal
theory [4, 5] is one of the most remarkable applications of crystals to the
representation theory of quantum groups. Let U,(g) be the quantum group
of classical Lie algebra g and let V,()\) be the finite-dimensional irreducible
U,(g)-module of a dominant integral weight \, where g is s0(2n +1,C) (B,-
type), sp(2n,C) (C),-type), and so(2n,C) (D,-type). Let A be the Young
diagram (partition) corresponding to X. The generalized LR rule asserts
that the multiplicity of V() in the tensor product V,(fi) ® V,(#) is given
by the cardinality of the LR crystal. The multiplicity d/’)V is expressed by
the celebrated LR coefficients as [7, 8]

(1.1) duw = 2 CecclyChe

£,¢n€EPn
in the stable region, i.e., [(u) + I(v) < n, where [(\) denotes the length of A
and P, denotes the set of all Young diagrams with at most n rows. The LR
coefficient itself is also given by the cardinality of the LR crystal of type A.

In this paper, we give an interpretation of Eq. (1.1) in terms of crystals.
More precisely, we construct an explicit surjection from the LR crystal of
Cp-type whose cardinality is the left-hand side of Eq. (1.1) to the disjoint
union of the Cartesian product of LR crystals of A,,_{-type corresponding to
Zs,c,nePn cg‘cc’gn, where the cardinality of the kernel of the surjection gives
the missing Cry,g- We also show that LR crystals of types B, and D,, are
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identical to the corresponding LR crystal of type C,, in the stable region,
which provides the crystal interpretation of Eq. (1.1) in B,, and C), cases. In
the crystal theory, the LR coefficient is interpreted as the cardinality of the
LR crystal. Thus, the formulas are not in the final form from our point of
view and the formulas should be understood as a shadow of the underlying
set-theoretical bijections defined for LR crystals. In this spirit, Kwon [11]
studied the branching rule of classical group by his spinor model [9, 10]
which is a combinatorial model of classical crystals. Our method is different
and we have a surjective map from the LR crystal of type B,,, C,,, and D,
to the disjoint union of the products of two LR crystals of types A such that
each fiber gives the third LR crystal of type A.

This paper is organized as follows. Section 2 is devoted to the background
on crystals that we need in the sequel, which includes the axiomatic defini-
tion of crystals, the construction of crystals of C),-type, and LR crystals of
type C,. In Section 3, we describe the properties of single-column tableaux
of Cp-type (Cp-columns), which includes the summary of known facts as
well as newly obtained results. Section 4 presents the main theorem on C,
case (Theorem 4.1), which involves the maps on tableaux of C,,-type con-
structed based on the operations on C),-columns. This result is divided into
two propositions (Proposition 4.1 and Proposition 4.2), which are proven
in Section 6 and Section 8. In Section 5 and Section 7, the properties of
maps introduced in Section 4 are investigated. In Section 9, we describe
LR crystals of types B,, and D,, and prove that they are identical to the
corresponding LR crystal of type C), in the stable region (Theorem 9.2 and
Theorem 9.4).

2. CRrRYSTALS OF C),-TYPE

2.1. Axioms of crystals. Let us recall the axiomatic definition of a crys-
tal [3]. Let g be a symmetrizable Kac-Moody algebra with P the weight lat-
tice, I the index set for the vertices of the Dynkin diagram of g, A = (a;;)i jer
the Cartan matrix, {«; € P | i € I} the set of simple roots, {«; € P*|i € I}
the set of simple coroots, and (o, ;) = a;; (i,5 € I). Let Uy(g) be the
quantized universal enveloping algebra or quantum group of g. A U,(g)-
crystal is defined as follows.

Definition 2.1. A set B together with the maps wt: B — P and é;, f; : B —
BU{0} is called a (semiregular) Uy(g)-crystal if the following properties are
satisfied (i € I): when we define

g;(b) = max{k >0 ’ é*b e B},
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and .
vi(b) :max{k‘ >0 ‘ fi bEB},
for b € B, then
(1) €05 : B = Z>0 and i (b) = &;(b) + (af, wt(D)),
(2) if ;b #£ 0, then Wt(ézb) = Wt(b)—l—oz7;, €Z(€~1b) = €¢<b)—1, and QOZ(ézb) =
Pi @) +1, 5 5
(3) if fib # 0, then wt(f;b) = wt(b) — oy, i(fib) = &i(b) + 1, and
@i(fib) = ¢i(b) — 1,
(4) for bt/ € B, fib=V < &b =0b.

The maps é; and f; are called Kashiwara operators (i € I) and wt(b) is
called the weight of b. A crystal B can be viewed as an oriented colored
graph with colors i € I when we define b — ¥’ if f;p = (b,b' € B). This
graph is called a crystal graph.

Definition 2.2 (tensor product rule). Let By and By be crystals. The tensor
product By ® Bsy is defined to be the set By X By = {b1 ® ba| by € B1,bs € B}
whose crystal structure is defined by

(1) Wt(bl X bg) = Wt(bl) + Wt(bg),

(2) €i(b1 ® ba) = max {e;(b1),ei(ba) — (@, wt(b1))},
(3) wi(b1 ®ba) = max {pi(b1) + (o, wt(b2)) , i(b2)},
(4) € (b © by) = €ib1 @by (pi(b1) > €i(b2)),

b1 ® €iba  (wi(b1) < gi(b2)),
fib1 ® b (pi(b1) > €i(b2)),
b1 ® fiba  (pi(b1) < €i(b2)).

Definition 2.3. Let By and Bs be crystals. A crystal morphism W : B; — Bs
is a map ¥ : By U{0} — By U {0} such that
(1) (0) =0,
(2) if b € By and V(b) € Ba, then wt (¥ (b)) = wt(b), &; (¥(b)) = €;(b)
and ¢; (V(b)) = ¢i(b) (Vi€ ).
(3) if bV € By, W(b),U(b) € By, and f;b =1, then f;U(b) = U(b) and
V() =V) (Viel).

Definition 2.4. (1) A crystal morphism ¥ : By — Ba is called an
embedding if ¥ induces an injective map from By L1{0} to B LU{0}.
(2) A crystal morphism ¥ : By — By is called an isomorphism if U is

a bijection from By U {0} to By U {0}.

(5) fi(b1 ®@bo) = {

2.2. Crystals associated with finite-dimensional irreducible U,(sp,,, )-
modules. Let us describe crystals associated with finite-dimensional irre-
ducible U, (spy,, )-modules. The symplectic Lie algebra sp(2n,C) = sp,,, is
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the classical Lie algebra of C),-type, where the simple roots are expressed as
a=¢€—€41 (1=1,2,....,n—1),
oy = 26y,
and fundamental weights as
wi=€+e+--+¢ (i=1,2,...,n)
with €; € Z™ being the standard i-th unit vector.
Let A = ajwi + -+ + apwy (a; € Z>p) be a dominant integral weight.
Then A can be written as A = A\jeq + - -+ + A\, €, Where
M =a1+ax+ -+ ap,
Ay =az + -+ ap,

Ap = Q.
Hence we can associate a Young diagram A = (A1,...,\,) to A

Definition 2.5 ([3, 13]). Let A be a Young diagram with at most n rows.
A C),-semistandard tableau of shape A is the semistandard tableau of shape
A\ with letters (entries) taken from the set

Cn=1{1,2,...,n,7,...,1}
equipped with the total order
1<2<---<n<n<---<2<1.

We define €7 .= {1,2,...,n} and ¢\ = {1,2,...,n}. In the sequel,
a letter in €, (resp. ‘5,7(,_)) is called a ") (resp. (fr(b_))—letter and the

usual order < will be used within ‘57§+)—1etters instead of <. We denote
by C,-SST(A) the set of all Cy-semistandard tableaux of shape A\ and set
Cp-SST := Uyep, Cr-SST(N). We use the convention C,-SST(0)) = {0},
where () in the left-hand side is referred to as the Young diagram without
any boxes. For a T' € C,-SST()), we define its weight to be

wt(T) = 3 (ki — ki)ei,
i=1
where k; (resp. k;) is the number of #’s (resp. 7's) appearing in 7.
Definition 2.6 ([3, 13]). T" € C,,-SST(\) is said to be KN-admissible when
the following conditions (C1) and (C2) are satisfied.
(C1) If T has a column of the form
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pP—lal

q—[p

then we have
(¢ — p) + max(a,b) > N,

where N is the length of the column and a(€ ‘KT(LH) is at the p-th box

from the top and b(€ ‘&(L_)) is at the q-th box from the top.
(C2) If T has a pair of adjacent columns having one of the following con-

figurations with p < g <r < s, a; < by, and az < by (a1,b; € Cfrng))-'

p— a al
q— by b
r— by by
s — a9 o

)

then we have
(g —p)+ (s —r) <max(by,be) — min(ay, az).

We denote by C;,-SSTkn () the set of all KN-admissible C),-semistandard
tableaux of shape A and set C,-SSTky := UAePn Cp-SSTrN(N).

Now we can give the definition of a crystal B%2»()\) associated with the
finite-dimensional irreducible U, (spy,)-module V,;"2"()\) associated with a
dominant integral weight . As a set, the crystal B2 ()) is C,,-SSTrn()).
Kashiwara operators are determined by the following crystal graph of the
vector representation B := B*2»(0) of the quantum group U, (sp,,,).

sl 25 L
where wt () = ¢; and wt (E

i=1,2,....,n—1,

N—

= —¢ (i = 1,2,...,n). Explicitly, for

i+1 (7 =1),
flil=ql]  G=i+D,
0 (otherwise),

and )
fuln] =[]

(€; is determined by these and Definition 2.1). The crystal structure of
B2 (\) is realized by the embedding W : B%¥2n ()\) — B®A equipped with
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the tensor product rule (Definition 2.2). This embedding or reading is de-
fined as follows.

Definition 2.7. Suppose T' € C,-SSTkn(A). We read the entries in T each
column from the top to the bottom and from the rightmost column to the
leftmost column. Let the resulting sequence of entries be mi, ma,...,my.
Then we define the following embedding.

U : B ()\) s BOY (T+—>m1®-~-®rn,N).

This reading of T" in Definition 2.7 is called the far-eastern reading and

is denoted by
FE(T) =|ni|® - - @l
Thanks to the KN admissible conditions ((C1) and (C2) in Definition 2.6),
this reading is shown to be the embedding in the sense of Definition 2.4 [3].
One of the most remarkable applications of crystals is the generalized LR

rule described below. Let us give a definition.
Definition 2.8. Let A = (A1, A2,...,\y) be a Young diagram. For a letter
i€ ‘KTEJF) and a letter i € %,&‘), we define

)\[Z] = ()\1,...,)\1' + 1,...,>\n),

and
)\m = ()\1,...,)\1'—1,...,)\”).
In general, for a letter my € €, (k=1,2,...,N), we define

Ama, . ..omg] = Ama, ..., mg_q][my]
(A[mg] = A), which is not necessarily a Young diagram. If A\[mq, ..., mg]
1s a Young diagram for all kK = 1,..., N, we say the sequence of letters
mi,Ma....,my is smooth on X\ or M := {mqy,ma,...,mpn} is smooth on
A, where M is considered as the sequence of letters myi,mo....,my. If the
sequence of letters mi, ms....,my comes from the far-eastern reading of a
tableau T, we write A\[FE(T)] := Almy,...,my]| and if such a sequence is

smooth on A, we say FE(T) is smooth on A.

Theorem 2.1 ([3, 6, 13]). Let i and U be dominant integral weights, and u
and v be the corresponding Young diagrams, respectively. Then we have the
following isomorphism:

(2.1)  B¥2n(n) @ BF2n (v) ~ D B2 (ulmy, my, ..., mn])
TeBP2n (v)

FE(T)=fmio--eny]

where N = |v|. In the right-hand side of Eq. (2.1), we set B®¥2» (u[mq,...,my]) =
() if the sequence of letters my,...,my is not smooth on p.
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Let us denote by df\w the multiplicity of B2~ () in the right-hand side of
Eq. (2.1). Then Eq. (2.1) takes the form

(2.2) B2 () @ BP2 (v) ~ Ag}) B (NP (1,0 € Py).

This corresponds to the decomposition of the tensor product of finite-dimensional
irreducible U, (sp,,, )-modules V}fpzn( ) and V, p2”( ).

(2.3) ViPan (i) @ ViPen () = @ VP ()% (v € Py).

AEPy,
Equation (2.1) or (2.2) is called the generalized LR rule [3, 6, 13]. It follows
from Eqgs. (2.1) and (2.2) that the multiplicity dﬁy is given by the cardinality

of the following set
(2.4)

B;Pan (V)i\b = {T € B¥2(v)

FE(T) = m1|®|ma|® - @ naf (N = |v|)
is smooth on p and p[my,...,my] =X |’

which is called the LR crystal of C),-type.

It is established that the multiplicity d/f\by can be expressed in terms of LR
coefficients. More precisely, we have
(2.5) df;,/ = > cg‘ccéfnc;;g

£§,CnEPn

in the stable region, i.e., I(n) + {(v) < n [7, 8. The LR coefficient cf;,j
is also given by the cardinality of the set (Eq. (2.4)) with B2n()) be-
ing replaced by B (\) the crystal associated with the finite-dimensional
irreducible Uy (sl,)-module V' (A) [3]. This set is called the LR crystal of
A, _1-type. Formally a crystal B ()\) is obtained by eliminating all tableaux
containing (fr(b_) -letters from B2n()\). In this paper, we provide the inter-

pretation of Eq. (2.5) in terms of crystals. For that purpose, we will need
the following definitions.

Definition 2.9. For Young diagrams X\, u, and v, we deﬁne

All entries m T are (5 ) letters.
B(D (1)) = { T € B2 (v) )=[i]|e]i]e--aliv] (N =v) [
is smooth on u and ,u[zl, ciN]=A
and
All entries in T are ‘5 ) letters.
B (v)) :={ T € B (v) ) =[i|e|k]|e- (N wl) -
18 smooth on \ and )\[7,1, cIN] = )
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Note that the set Bﬁﬁ)(y)ﬁ is identical with the LR crystal of type A,_1
whose cardinality is the LR coeflicient cﬁy.

3. C,,-COLUMNS

Let us call a Cp-semistandard tableau with shape (1) a C,-column of
length N. We denote by C,-Col(N) (=C,-SST((1%))) the set of all C,,-
columns of length N and set Cy,-Col := [y, Cn-Col(N). In this section,
we describe the properties of C),-columns.

For a C),-column

m1

MmN

let us write w(C) = mymg---my (m; € 6n,i = 1,2,...,N). A part of
C that consists of consecutive boxes is called a block. A block of C' that
consists of boxes from the p-th position to the ¢-th position is denoted by

ACp,q] (p < q).

p— Mmp

AClp, q|

q — My

If the two-column tableau C1C5 is semistandard, then we write C; < (s,
where C; is the i-th column (¢ = 1,2). Let us denote by C,-Colgn (V)
the set of all Cy-columns (€ C),-Col(/V)) that are KN-admissible and set
Cp-ColkN = Unez.,Cn-Colgn(N). The necessary and sufficient condition
that C' € C,-Col(N) be KN-admissible has been given by the first condition
(C1) in Definition 2.6. Yet another but equivalent condition is given by the
following.

Definition 3.1. Suppose that C € C,,-Col(N) such that w(C) =iy -+ iqjp - j1
where N = a+0b, iy € %ﬁ) (k=1,2,...,a), and j;, € %,ﬁ_) (k=1,2,...,b).
Set I = {i1,...,iq} and 7 = {j1,..., 5}, and define & = I N _J =
{l,.. .l with [y <lp <--- <l.. The letters in I, 7, and £ are called
S -letters, _Z -letters, and ZL-letters, respectively. The column C can be

split [1] when there exist %75+)—letters l7,..., 15, which are called £*-letters,

determined by the following algorithm (if £ =0, then {I},...,lX} =0 and
C' can be always split).
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(i) I is the largest &) letter satisfying I, <l. and I} ¢ U 7,
(ii) for k =c—1,...,1, [} is the largest %77(,+)—letter satisfying 1, < I,
g SU 7, and [} ¢ {ZZH,...,Z’C"}.
Throughout this paper, the sets of letters such as ., ¢, .7, and Z* =

{l7,...,0%} are also considered as the ordered sequences of letters with re-
spect to the order <. Keeping the notation in Definition 3.1, we define .# :=

{ig,..vin}, = {gps--snt, £ = {le,...,l1}, and Z* = {I,... ]},
which are also considered as the ordered sequence of letters with respect
to the order <. The letters in .#, 7, 2, and Z* are called .#-letters,
7—letters, Z-letters, and L*-letters, respectively.

The equivalence between the condition (C1) in Definition 2.6 and the
condition in Definition 3.1 is proven in [14].

Theorem 3.1 (C. Lecouvey [12]). A column C' € C,-Col(N) is KN-admissible
iof and only if it can be split.

Remark 3.1. According to the algorithm in Definition 3.1, £*-letters 1y, ... [}
can be written as follows.

ip—1 (3ip € S\L)
;= or

jq -1 (qu € /)
(i,—1  (Ji, € #\L)
or

or

We also need the notion of a KN-coadmissible column [12, 14].

Definition 3.2. Let C € C,-Col(N) be the Cy-column described in Def-
inition 3.1. For each | € £, denote by N*(I) the number of letters in C
satisfying | = x = I. Then the column C is said to be KN-coadmissible if
N*l)<n—-1+1(Vle2).

If £ = (), then C is always KN-coadmissible. Let us denote by C,,-Colgx (V)
the set of all Cp-columns (€ C,-Col(N)) that are KN-coadmissible and set
Cn-Colgy := Unez.oCn-Colix (V). The following lemma characterizes the

KN-coadmissible C),-columns. The proof is analogous to that of Lemma
8.3.4. in [3].
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Lemma 3.1. Suppose that C € C,-Colgy takes the form

p—|a]

q—p]

E—

then we have (¢ — p) + min(a,b) < n.

Proof. If a = b, the claim is just Definition 3.2. Let us assume that a < b.
Let j be the smallest entry such that 5 > b and both j and j appear in C.
Assume that j (resp. j) lies at the k-th (resp. [-th) position. The column
C' has the following configuration, where the left (resp. right) configuration

is the €~ (resp. c5,7(,4_))—lette1rs part (p < k <1< q).

[ — <—p

]
A
J

SRS

q— — k

Let us consider the following two cases separately:
(a): be A.
(b): b ¢ A.

Case (a). Suppose that the entry b lies at the p’-th position. The number
of boxes between the box containing a and that containing b is p’ — p — 1
and entries in these boxes are taken from the set {a +1,...,b — 1}(= 0 if
b=a+1). Since [{a+1,...,b—1}| =b—a—1,we have p'—p—1 < b—a—1,
while ¢ — p’ + b < n by the definition of KN-coadmissible columns. Hence,
we have (¢ — p) + min(a,b) < n.

Case (b). We divide this case further into the following two cases:

(b-1): a <b—1.
(b-2): a=b—1.
In case (b-1), ANB=0and AUBC {a+1,...,0—1,b+1,...,5 — 1}
so that [A| + |B| = [AUB| < j —a —2. In case (b-2), AN B = { and
AUB C {a+2(=b+1),...,j—1} so that |A|+|B| = |[AUB| < j—a—2. In
both cases, we have (k—p—1)+(¢—1—1) < j—a—2, while [—k+j < n by the
definition of KN-coadmissible columns. Hence, we have (¢ —p)+min(a, b) <
n.
If the pair of entries j and j (j > b) does not appear in C, then the
column C' has the following configuration.
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D —

EEIENE

where A (resp. B) is the block filled with &) (resp. C57»(L_))—lette]rs. Ifbe A,
then we have (¢ — p) + min(a,b) < n by the previous argument. If b ¢ A,
then ANB =0 and AUB C {a+1,...,n}\{b} so that |A|+|B| = |AU B| <
n—a—1, while |A| + ‘B’ = q—p—1. Hence, we have (¢ — p)+ min(a,b) < n.
The proof for the case a > b is analogous. [

Let C € C,-Col(N) be the Cy,-column described in Definition 3.1 and
assume that it is KN-admissible. Denote by C* the C,,-column obtained by
filling the shape of C, i.e., (1V) with letters taken from the set (.#\.%) U
(Z\Z) U L* U Z*. Then the map

(3.1) ¢:C—C*

is a bijection between C,-Colkn(N) and Cp-Colgpx(N) [12]. The inverse
map ¢~ =: 1 is therefore given by the following algorithm. Suppose C' €
Cpn-Colgx (V) such that w(C) = i1 ---iqjp---J1 where N = a + b, i €

¢ (k=1,2,...,a),and € €\ (k=1,2,...,b). Set I = {i1,...,iq}
and # = {j1,...,/p}, and define & := /N 7 = {l1,...,l.} with [; <
lp < --- <. As in Definition 3.1, the letters in ., ¢, and £ are called

S -letters, Z-letters, and Z-letters. Find %ﬁ)—letters ZJ{, e ,ll, which are
called Z1-letters, by the following procedure (£T = {ZI, L.
(i) lJ{ is the smallest %, "-letter satisfying lJlr > [; and lJlr ¢ IU 7,
(ii) for kK = 2,...,¢, l,i is the smallest (ngJF)—letter satisfying l,i > I,
¢ 70 gandll ¢ (ii,....0_}.
Denote by CT the C),-column obtained by filling the shape of C, i.e., (1)
with letters taken from the set (#\Z) U (_Z\Z) U LT U.#T. Then

(3.2) Y:C O

By construction, both maps ¢ and 1 are weight-preserving.
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‘»-lkl|01|‘\1||\1‘cn|cn‘l\9‘
1
NN
1
‘+—x||oo|‘q>||cn‘c,o|w‘+~‘

F1GURE 3.1. Example of the first kind algorithm for ¢.

Remark 3.2. Z1-letters ZJ{, e ,li can be written as follows.
ip+1 (Fi, e I\ZL)

lJ{: or
jo+1 Gjee ).
Fork=2,...,c,
(i,+1  (Jip € S\L)
or
h=1SJo+1  (Gge 7
or

T
\lk—l + ]..

The actual implementation of the above algorithm to compute ¢(C) for
C € C,-Col is as follows. For k = c¢,c —1,...,1, we delete entries [}, and
I and relocate entries [}, and E in the column to obtain the updated C),-
column. This is called the operation for [, — ;.. Note that the position of
I, (E) may be changed by subsequent operations for i1 — I} {,...,l1 — [].
We refer to this algorithm as the first kind algorithm for ¢. The first kind
algorithm for v is prescribed similarly.

Example 3.1. For a C,,-column with entries {2,5,6,7,7,5,4}, & = {5,7}
and £* = {1,3}. The updating process of the column is shown in Fig. 3.1.

In order to view a C),-column, we also use the filling diagram explained
below. This is basically the circle diagram introduced by Sheats [14] and
is useful to keep track of the change of entries when we update the column
by the above algorithm. It is constructed on 2 x n grid and the pair of the
k-th squares from the left in the top and bottom rows is called the k-th slot.
For example, the initial column in Fig. 3.1, i.e., the C,,-column with entries
{2,5,6,7,7,5,4}, the filling diagram reads
oOle(OfCjle|e|@®
O|0O|C|le|j@|O|@® I
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The slot , , , and E are called (-slot, (4)-slot, (—)-slot, and (+£)-slot,

respectively. If the k-th slot in the filling diagram for a C),-column is ()-slot,
then both entries k£ and k do not appear in the column. If the k-th slot is
(+)-slot (resp. (—)-slot), then the entry k (resp. k) appears in the column,
while the entry k (resp. k) does not appear. If the k-th slot is (#)-slot, then
both entries k and k appear in the column. According to the algorithm for
¢, the filling diagram of the C),-column in Example 3.1 changes as follows.

0.00..._>O.XO..O_>X.XO0.0
O|0|0O|@|@®@|O|@® O|0O|X|®|®|O|O X|o[X|e[Oof[O|O

Y

where the slot — is called (x)-slot. If the k-th slot in the filling diagram for
the updated column is (x)-slot, then a pair of entries I*(= k) and I*(= k)
newly appears and a pair of entries [ and [ disappears in the column, where
| € £ with .Z being the set of .Z-letters in the original column and [* € .£*
with Z* being the set of .Z*-letters in the updated column. We also use
the filling diagram to view the updating process of a C),-column by . In
this case, the role of Z*-letters is replaced by that of .Z-letters.

Lemma 3.2. Suppose that C € C,,-Colgn and let the set of L -letters of C
be {l1,...,1lc}. Let py (resp. py) be the position of I, (resp. I} ) in C (resp.
¢(C)) and qi (resp. ;) be the position of lj;, (resp. I5) in C (resp. ¢(C)).
Suppose that a series of operations for lc — Iz, ... lxy1 — I is finished.
The filling diagram of the updated column has the following configuration.

o] 0 [ ]
o] ( ) [ ]
R A

Then we have p,, — py, = a and q; — q = 3, where a and 8 are the number
of (4)-slots and that of (—)-slots in region (0), respectively.

Proof. Between the [;-th slot and the [;-th slot (region (0)), there are no
(-slots by the choice of [;. Let us assume that the number of (£)-slots
and that of (x)-slots are v and § in the region (x), respectively. When the
relocation of Z*-letters down to [ ; is finished, the position of the box
containing [ is changed from pi to pr + 0 because § Z*-letters appears
above this box. When the relocation of [; is finished, the position of box
containing [} is changed from py + 6 to pp, +6 — (v +v+6) =pp — v — 7.
However, v Z-letters below the box containing [; are transformed to the
corresponding .Z*-letters and are relocated above the box containing [} in
#(C) so that the position of [} in ¢(C) is p; = pr — a. Similarly, we have
q = ak + 5. [
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The following result may be proven in much the same way as in Lemma 3.2

Lemma 3.3. Suppose that C' € C,,-Colgy and let the set of £ -letters of C
be {l1,...,l.}. Let py (resp. p,t) be the position of lj; (resp. Z;L) in C (resp.
W(C)) and qy (resp. q,i) be the position of I, (resp. Z};) in C (resp. (C)).

Suppose that a series of operations for I — ZI, ceylp_1 — ZIJL—1 18 finished.
The filling diagram of the updated column has the following configuration.
[ J o
o (O) o
Ik i

Then we have pi —pr = @ and q — q,i = [, where o and 8 are the number
of (+)-slots and that of (—)-slots in region (0), respectively.

Given C € C,-Colkn, the computation of ¢(C') can also be achieved by
the following algorithm, which we refer to as the algorithm of the second
kind for ¢. Suppose that C' € C,-Colkgn and let the set of Z-letters of C
be {l1,...,l.}. For k = ¢,c—1,...,1, the following procedure is applied.
Firstly, we compute [} for [;. Secondly, we apply the operation (A) followed
by the operation (B) described below. A pair of operations (A) and (B) is
called the operation for I, — [} as in the first kind algorithm.

Operation (A).

Set

{ipt1, - sippry i ={i |, <i<l,ie€C}
and
{Jgrts- - dgrst =40 |l <i <[, j€C}.
The block filled with ipy1, ...,y and Iy is replaced by the block filled with

I and ipiq,...,%p4+,. Similarly, the block filled with I, and jyts, .-, jgt1 i
replaced by the block filled with jgis,...,j4+1 and E

ip+1 l;’; i — E jq+s
: N p+1 and ]q+s N —
lptr . . j(ﬂ-l
Pr = I Iptr Jg+1 U
Operation (B).
Set
{1,y = lem1} = {ipr1s -+ dprr ) O g1+ Jgts )
assuming v > 1 (if v = 0, then this operation is not necessary). We extract
non .Z-letters from {ipy1,...,9p4r} and {jor1, ..., Jgts};

{ip17ip27 e ,’I:pa} = {ip+1, . 7ip+r}\{lt+17 . ,lk_l},
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and

{jquqQa <. 7jq5} = {jq—|—17 cee ajq+s}\{lt—|—1> cee 7lk—1}a
where r = a + v and s = 5+ «. The replaced blocks in the operation (A)
are further replaced by the following blocks.

lt—l—l jqﬁ
lk—1 Ja
Ly and ly;
ipy l—1
ipa E .

That is, .Z (resp. £)-letters in the obtained blocks in the operation (A) are
expelled and relocated just above (resp. below) the box containing I} (resp.
E) Note that these blocks are not semistandard because [_1 > [} and
le_1 < E and that [ (resp. ) in the operation (A) for [, — I} is always lies
at the upper (resp. lower) position of [;_ ; (resp. E) because even when
liyr <lp (vesp. I, <17, ), I (vesp. I}) is relocated just above I}, (resp.
below [; ;) by the operation (B) for [y 11 — [ ;. In particular, py (resp. q)
in the operation (A) is not necessarily the original position of I, (resp. I3) in
C. After the operation (B) for [, — [} is finished, the subsequent operations

for l—1 — Ij_, do not affect the positions of iy, ... ip, (jgs,---+Jq and If)
in the updated column. We define Ay (C) and A (C) as
ly; E
i - :
AR(C) =24 and  AL(C) ===
ipa l;:

When the operation (A) for [; — [} is completed (the operation (B) is not
necessary for [y — [7), the column turns out to be ¢(C) (semistandard).
The second kind algorithm for 1 is prescribed similarly.

Example 3.2. Let C' be the KN-admissible C,-column filled with entries
2,7,8,9,987,5. Then £ = {7,9} and £* = {1,3}. The updating process
for 9 — 9* = 3 is depicted in Fig. 3.2.

From the above procedure, the following result is obvious.

Lemma 3.4. Suppose that C' € C,-Colgn. Ifl(€ L) lies at the p-th position
in C, then the entry in the p-th position in ¢(C) is strictly smaller than [.
Likewise, if (€ £) lies at the q-th position in C, then the entry at the q-th
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N
(4)

e
(B)

(o]~ fwo]oo]~a]ro]
‘oo||cm‘\n|oo ‘ \1|w ‘ 1\3‘

[~ufecov[oo]es[~]ro]

FIGURE 3.2. Example of the second kind algorithm for ¢.

position in ¢(C) is strictly larger than I. Furthermore, let Cy (resp. C_)
be the %,&” (resp. ‘Kyg_))—letters part of C' and C% (resp. C*) be the %5”
(resp. ‘qu_)) part of (C). Then we have C} =X Cy and C_ X C*.

Similarly, we have the following.

Lemma 3.5. Suppose that C € C,,-Colyy. Ifl(€ L) lies at the p-th position
in C, then the entry in the p-th position in ¥(C) is strictly larger than [.
Likewise, if [(€ &) lies at the g-th position in C, then the entry at the q-th
position in Y(C) is strictly smaller than [. Furthermore, let Cy (resp. C_)
be the %ﬁ) (resp. ‘Kyg_))—letters part of C and C’I_ (resp. Ci) be the %”TEJF)

(resp. %&‘)) part of Y(C). Then we have Cy =< C’I_ and CT < C_.

Lemma 3.6. Suppose that C' € C,-Colgkn(N). Let {l1,...,l.} be the set of
Z-letters of C and {I5,...,l%} be the set of the corresponding L -letters .
Let p;. (resp. q;) be the position of i (resp. I}) in ¢(C) . Then we have

G =Pk +1lg 2 N =7
where v =4{le L |; <l <l} (k=cc—1,...,1).

Proof. We proceed by induction on k = ¢,c — 1,...,1. We follow the al-
gorithm of the first kind for ¢ here. Let p; (resp. ¢;) be the position of [;
(resp. [;) in C and p} (resp. g¢}) be the position of I} (resp. [F) in ¢(C)
(i=1,2,...,0).

(I). For k = ¢, the filling diagram of the initial column C' has the following
configuration.

(0)

Region (0) consists of (4)-slots, (—)-slots, and (4)-slots. The (x)-slots and
()-slots do not exist in this region. Let us assume that the numbers of (+)-
slots and (—)-slots are o and 3, respectively. The number of (4)-slots in
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this region is 7. Then we have p} = p. — a, ¢ = q.+ 3 by Lemma 3.2, and
o =lc—(a+B+77)—1Lsothat ¢t —pi+1i =qc—pet+le—7 —1 > N—~f,
where the last inequality is due to the KN-admissibility, g. —p.+ 1. > N +1.

(IT). Suppose that Z-letters, I.,...,lxr1 are transformed to the corre-
sponding Z*-letters, [7,...,l;,; and relocated in the column (k = ¢ —
1,...,1). If [, > I, then the situation is the same as in (I) so that we
have q; — pp + 1, > N — ;. If [, < g, then the filling diagram of the
updated column has the following configuration.

o X ° ° o
(0) ..

o X ° ° o

* *

b lk+1 lk+1_72+1 Lk lk+1

There are no (-slots between the I7-th slot and the I, 1-th slot but are v},
()-slots between the [;;_ ;-th slot and the I} 1-th slot. Let us assume that
region (0) contains vy (£)-slots and that the total number of (+) and that
of (—) between the [}-slot and the [;-th slot are o and 3, respectively. Then
we have p; = pr, — a, g = q + 8 by Lemma 3.2, and [ =l — (o + 3 +

Yo + iy — 1) — 1 so that q; — p + 1} = qx — px + Ik — (70 +7/41). Since
Yy = Vpy1 — 1+ 0, we have g —pj +1;; > N —vj;. From (I) and (IT), the
claim follows. ]

The following result may be proven in much the same way as in Lemma 3.6.

Lemma 3.7. Suppose that C € Cy,-Colgy. Let {l1,...,l.} be the set of
ZL-letters in C and {l{, e ,li} be the set of corresponding £\ -letters. Let

p}; (resp. q;i) be the position of l;g (resp. l};) in Y(C) . Then we have

q,i—pz+l,£§n+7,:+1,

where’y,: ::ﬁ{leg‘lk<l<l£} (k=1,2,,...,¢0).

4. MAIN THEOREM I

Let us begin by giving some definitions. For T' € C,-SST (T is not
necessarily KN-admissible), we write " = C1Cs...C), , where C, (z =
1,2,...,n.) is the z-th column (from the left) of 7'

Definition 4.1. For T = C,Cy---Cy, € Co-SST, let C“ (resp. C¥)
be the %&‘) (resp. ‘Kéﬂ)—lettem part of the x-th (resp. y-th) column of T
and let C'@Y) be the C),-column whose %) (resp. ‘5,§+))-letters part s )
(resp. C’J(ry)). Let O\ (resp. C’J(ry)*) be the €\~ (resp. %Tng))—letters part
of H(CTY)) assuming that C®Y) € C),-Colkn. Replace c@ (resp. C’J(ry)) in
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T by C'(_x)* (resp. C’J(ry)*) and denote by T™* the resulting tableau. Then we
define

$EU (T = T (@Y € C,-Colkn),
0 (otherwise),
and qb(:v,y)(Q) := (). Using these maps, we define qﬂ:: p@ne) o ... o pl@m)
P(x) .— CI)(QU) 0-++0 (I)(nc) (1 <zx< nc), and ® = (1) = (I)(l) 0---0 q)(nc)

Provided that ® is well-defined on T € C,-SSTkn, i.e., ®(T) # 0,
preserves the shape and weight of 1" by construction.

Definition 4.2. Suppose that T € By 2" (V);)l Let ®(T)F) be the part filled
with CK,EJF)—letters in Cy-semistandard tableau ®(T'), which is a semistandard
tableau on some Young diagram. On the other hand, let ®(T)(7) be the

part filled with ‘ég_)—letters in Cp-semistandard tableau ®(T'), which is a
semistandard tableau on some skew Young diagram (a skew semistandard

tableau). For T,T' € BZPQ"(V);\L we write T ~ T', if &(T)H) = &(T")H) and

Rect (®(7)7)) = Rect (@(T’)(_)), where Rect(S) denotes the rectification
of the skew semistandard tableau S [2] with the total order <.

Theorem 4.1. For all T € Bffzn(y)f‘“ ¢ is well-defined on T, i.e., ®(T) #
(). Furthermore, if l(un) + 1(v) < n, we have the following surjection.

(4.1) Bf=n(v)y — [ B2 x B (n)t
§,¢mEPn

(T — (@(T)(+),Rect(<l>(T)(_)))) .
Hence, we have

(4.2) Bi>r(v)y/ ~~  I1 B{P(€)2 x B ().
f,C,T}E'Pn

Remark 4.1. ‘BZPQ" (V)f;| = df‘w and ‘Bﬁr) (f)é‘) = Cg\g- In the stable region,
i.e., Up) +10) < n, By ()t

Let the shape of ®(T)) be v/€ and Rect(®(T)()) € B,(f)(n)’g. The num-
ber of tableaux T' satisfying the condition of Definition 4.2 is given by the

cardinality of the set
{skew tableauxz S on v/& such that Rect(S) = Rect(®(T)(7))},

must be c’gn. This is explained as follows.

which is the LR coefficient cy, (2] so that ‘Bq(l_)(n)‘g’ = c‘gn by the branching
rule (1.1).
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Example 4.1. Let A = (3,3,1), p = (3,3), and v = (3,2,1,1), B,ﬁfzn(y)i‘b

consists of four elements shown below (dl);,j =4).

213]2] 213]3] 2[3]2] 1[3]2]
1314 4|2 1313 _12]1
Tl_i TQ—i Tg—i CWLdT;L—i
s, B, A 4]
By ® these elements are mapped to
1]2]2] 1]2]3] 112]2]
213 212 212
(I)T — = @T = = @T:
(T1) 2 (T2) 2 (T3) 3
DU DU i,
and
1[2]2]
1211
<I>(T4)_i
2]

respectively. In this example, Rect (<I>(Ti)(_)) (i =1,...,4) are the same
and are given by

2]

|r—‘| DI

so that n = (2,1) an

and ¢ = p[2,2,1] = (2,1) for all T; (i = 1,...,4). Since
the process p — u[2,2,1] is

]

R | [T, [

FE (Rect (<I>(TZ-)(_))) is smooth onp (i =1,...,4). We observe that FE ((ID(T4)(_)),
which is not identical to Rect (FE (<I>(T4)(_)>), is also smooth on p. This is

not a mere coincidence; it holds in general (Proposition 6.1). We can check

that FE (<I>(TZ-)(+)) is smooth on ¢ and ¢ [FE (CID(TZ-)(JF))} =A(i=1,...,4).
Indeed, the process { — ( [FE (CIJ(Tl)(JF))} =([2,3,1,2] is

| — — |
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| — [N —

Since ®(T3)H) = &(Ty)H) and Rect (<I>(T3)(_)) = Rect (<I>(T4)(_)), we have
Ty ~ Ty,

Theorem 4.1 is the immediate consequence of the following two proposi-
tions, which will be proven in Section 6 and Section 8.

Proposition 4.1. For all T € BY*"(v)}, ®(T) # 0 and

(@), Rect (2(1) 7)) € [ B} x BO ().
£,(,mEPn

Proposition 4.2. Fizv € P,,. Forall (T1,T5) € ] B7(1+)(§)é><B$L_)(77)?,
§,6n€Pn

let T be a tableau in C,,-SST(v) such that T™H) = Ty and Rect(T()) = Ty,
where T (resp. T ) is the part of T' filled with %ﬁ) (resp. ‘Ké_))—letters.

If l(p) + 1(v) < n, then we have ®~1(T) € By (V)i‘b

Remark 4.2. Keeping the notation in Proposition 4.2, let £(n) be the shape
of T1(1z). Then the number of T’s satisfying the condition in Proposi-

tion 4.2 is given by the LR coefficient ¢, [2]. In Example 4.1, Cg%l(é)l) =
g?)l(;)l) =1 and cgf})l()ﬂ) = 2. Thus, we can recover the branching rule
(Eq. (2.5)).

We denote by ¥ the inverse of ®; ¥ := ®~!. This is given explicitly as
follows.
Definition 4.3. For T' = C1Cy---C,, € C,-SST, let C(_‘T) (resp. C’J(ry))
be the €. (resp. Cégﬂj-letters part of the x-th (resp. y-th) column of T
and let C@Y) be the C,,-column whose %) (resp. %ﬁ))—lettem part s @
(resp. C’J(ry)). Let C\91 (resp. C’J(ry)T) be the €\ (resp. ‘K£+))—letters part of
Y(C@Y) assuming C@Y) € C,-Colgr. Replace ) (resp. C’j_y)) in T by
C'(_x)T (resp. Ciy)T) and denote by TT the resulting tableau. Then we define

Tt (C@Y) € Cp,-Colgg),
0 (otherwise),

PEN(T) 1= {

and zp(x’?ﬂ(@) = 0. We define ¥) := @) o ... o gpl@ne) g) .= ¢) o
oW 1<z <n.) and U = Tlne) = Pe) 6.0 T,

Provided that ¥ is well-defined on T" € C,-SSTgy, i.e., ¥(T) # 0, ¥
preserves the shape and weight of 1" by construction.
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Lemma 4.1. Keeping the notation in Definition 4.1, we can rewrite the
map ®*®) (1 <z <n.—1) in the form,

(43)<ﬂxmao(¢mﬁim@<3¢@W%—U)o”.o<¢@+LwHJoq¢%@)o(¢hﬁln—y

Proof. The columns updated by ¢@"~%) and those by ¢(*+19) have no com-
mon columns (i = 1,...,n. —x;j =n.— i+ 1,...,n.). So we can move
maps @D pEne=2) successively to the right of ¢**+17) in (4.3) to
obtain

¢($,’I’LC) e} ¢(z,nc—1) O-++0 ¢($,$) o) ¢(az+1,nc) O-++0 ¢($+1,£E+1) o) ((D(x+1))_1 — @(I).
[J
The following result may be proven in much the same way as in Lemma 4.1.

Lemma 4.2. Keeping the notation in Definition 4.3, we can rewrite the
map W& (2 < x < n.) in the form,

(¢(m—1,x—1) 5 ¢(m,x)) o0 (w(x—l,nc—n ° w(x,nc)> ° w(x—l,nc) 5 (\I,(x—1))—1.

5. PROPERTIES OF &

In this section, we investigate the properties of the map ® and show
that ® is well-defined on C,-SSTkn and ®(7T) € C,,-SST()\) for all T' €
Cp-SSTgN(A).

Lemma 5.1. Suppose that T'= C1Cy---C,,, € Cp,-SSTkn. The map p@Y)
18 well-defined on

T:=¢@v Vo...0p®® o@@+)(T) (2<z+1<y<n,).

Here, we assume that T # () and that in the updating process of the tableau
from T to T the semistandardness of the (Krgﬂ—letters part of the tableau is

preserved.

Proof. Let c@ (resp. C’(f)) be the %E‘) (resp. ‘Kéﬁ)—letters part of the
z-th (resp. y-th) column of 7. Let C®%) be the column whose ) (resp.
Cé»(b_))—letters part is Csry) (resp.C(_x)). If C(*¥) is KN-admissible, then we
can apply ¢@¥ to T. Suppose that T has the following configuration.

T Y

%ﬁ

q —|m|
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Let Ny (resp. N_) be the length of the & ) (resp. %g_))—letters part of the
y-th (resp. z-th) column and AN (> 0) be the difference between the length

of the %”T(L’L)—letters part of the z-th column and that of the y-th column.
Then, Ny + N_ + AN = N,, where N, is the length of the z-th column.
In the column C@Y), 7 lies at the (§ — AN)-th position (from the top).
Hence, if (§— AN)—p+m > Ny + N_, ie., (§—p)+m > N,, then C=¥)
is KN-admissible. Let C'(_x)l be the Cf,g_)—letters part of the z-th column
of T' := @Y¥=1(T) and C’J(ry_l)/ be the €. -letters part of the (y — 1)-st
column of T”. Let C@¥=1) be the column whose %" (resp. C@(L*))—letters
part is C'J(ry_l)l (resp. C(_I)/) and .Z®¥~1 be the set of .L-letters of C@¥~—1,
We consider the following two cases separately:

(a): M appears in the z-th column of 7" and m ¢ L@y=1),
(b): @ in the 2-th column of T is generated when ¢®¥~1 is applied
to T".

Case (a). Suppose that the tableau 7" has the following configuration.

r y—1ly

7 m|< D

q —|m|

By the assumption of (a), m ¢ L@y=1) g that i < m (if m € Play=1)
then m in the x-th column of T disappears by qﬁ(x’y’l)). Let us set

{1e gty } < m =T} = ol = bnac

If this set is empty (s = 0), then the position of m does not change when
¢@¥=1) is applied to T’. In this case, we have (¢ — p) + max(i,m) =
(¢ — p) + m > N, because C@¥~1 is KN-admissible (T # (). This in-
equality still holds when (b(””’y_l) is applied to T’ so that C@¥ is KN-
admissible. Now suppose that the above set is not empty (s > 1). We
adopt the second kind algorithm for #@¥=1) here. Let us assume that
ﬂ{l e L@y-1) ’l* <l < m} = t. Since the number of I’s such that

max

Uone <1 <lmaz (1€ L@V DY) is s+t — 1, we have
(51) q:naa: _p;):nax + l:naw > NﬂC - (8 +1 - 1)

by Lemma 3.6, where p;,,,,, is the position of [, in the (y—1)-st column and
is the position of I* " in the 2-th column of ¢®¥~1(T") = T. Initially,

max

*
qmax
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the tableau 7" has the following configuration, where the left (resp. right)
part is the %,&‘) (resp. C€7§+))—letters one (i <m <lpp1 < ...<lprs=lnaz)-

T y—1

lmaz T | <P
It lry1
q9—1m lmaz

Let us divide this case further into the following two cases:
(a-1): i< I}

max-*
(a-2): 17,0 < i
Note that i # I, because i € C@Y~1) and 1, ¢ C@v=1,
Case (a-1). The filling diagram of the C®¥~1) has the following config-

uration before the operation for l,,q: — L

mazx*
o o °
o (0) ° °
lnaz m lmaz

Here the number of (+)-slots in region (0) is t. There are no (-slots in
this region. Also, there are no (x)-slots in this region. Otherwise, it would
contradict the maximality of l,,q: in {l e $y-1) ‘ [ <m < l_*} Let us
assume that the number of (+)-slots and that of (—)-slots in region (0) are
a and f, respectively. Then we have

(5.2) Lwe =m — (a+ 5 +1t) — 1.
When the operation (A) for l,,q, — I, is finished, the (y — 1)-st column
of the updated tableau has the left configuration in the figure below.
(4) (B)
p— i p— l
l::nax
A
lrts—1 p:;wx - l;knax
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In the operation (B), s — 1 .Z@Y=V_letters l,41,...,l4s_1 together with ¢
Z@Y=1)_Jetters are relocated just above the box containing I, so that the

(y — 1)-st column of the updated tableau has the right configuration, where
A is the block of s+t — 1 boxes with .Z@¥~Y_letters. Therefore, we have

(5.3) Praz > P+ s+t

Note that p;,,, does not change under subsequent operations for [, 51 —
ris—1>+-+>01 = I7. The z-th column of the tableau has the left configuration
(A) in the figure below when the operation (A) for lyep — [, is finished.

When the entry [I% ... appears below m, the position of the box containing

m is changed from ¢ to ¢ — 1. Since there are 8+t boxes with _# (*)-letters
between the box containing m and that containing [* the position of the

_ max?
box containing ¥, . is ¢+ 5+ t.

(4) (B)
g—1—=|m q—s—|m

When the operation (B) for l,qp — [, is finished, the z-th column of

max

the updated tableau has the right configuration (B) in the above figure.

Since s — 1 Z@y=1letters l,4s_1,...,l41 lying above the box containing
m before the operation (B) for l,,q; — [}, are relocated below [* .., the
position of m is changed from ¢ —1to ¢—1—(s—1) = ¢ — s. Likewise, the

position of the box containing [*, ... is changed from q + 3 + t to

max
(5.4) Gz =4+ B+t—(s+t—-1)=q+F—s+1,
which does not change under subsequent operations for I,y s 1 — I7 ,_4,...,l1 —

I7. From Egs. (5.1), (5.2), and (5.4), we have
(55) (q—s) _p;knam—{_m:q:rwm _p:naa:—i_l;@ax—i_a—i_t >Ny —s+a+l

Combining Egs. (5.3) and (5.5), we have (¢—s)—p+m > Ny+t+a+1 > N,.
Here the position of m in the y-th column of T is p and that of m in the
z-th column of 7T is g — s. Therefore, C*¥) is KN-admissible.

Case (a-2). Let us assume that i ¢ Z®¥=1_ The proof for the case
when i € Z@¥=1) is similar. The filling diagram of the column C®¥~1 has

the following configuration before the operation for lyqz — 17,42



CRYSTAL INTERPRETATION OF A FORMULA ON THE BRANCHING RULE 111

o 5 ° 1 o °
= 2 M .
Z;kna:c ( m Imax

The total number of (4)-slots in regions (1) and (2) is t. Let us assume
that the number of (+)-slots in region (1) is t;. There are no (-slots in both
regions. Also, there are no (x)-slots in both regions as in (a-1). Let us
assume that the number of (+)-slots and that of (—)-slots in region (j) are
a; and f;, respectively (j = 1,2). Then

2

(5.6) e =m — > (i +B) —t—2.
=1

The updated tableau has the following configuration when the operation (A)
for 1,4 — 1% is finished.

max
x y—1
qg—1—= m [
q+2f:15i+t—>l;‘;w$ i | < p+1

When the operation (B) for l,,q; — [}, is finished, the updated tableau
has the following configuration.

x y—1
q—35— m l:;w:r — p:(naa:

The position of the box containing i in the (y — 1)-st column is changed
from p+ 1 to p+ s+ t; because s — 1 + t; L@V~ letters larger than ¢ are
transformed to the corresponding %@ ¥~D* letters and relocated above the
box containing i. The position of the box containing m in the z-th column
is changed from ¢ — 1 to ¢ — s because s — 1 .Z(@¥~1)_letters smaller than m
are transformed to the corresponding . (*:¥—1*_letters and relocated below

the box containing m. The position of the box containing [*, .. in the z-th
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column is changed to
2

2
(5.7) Gpaw =4+ Y Bi+t—(s+t=1)=(g—5)+> Bi+1,

=1 =1

because s — 1 + t Z@y—=1) letters smaller than [* . are transformed to

- max
the corresponding .Z(@:¥—1)*_letters and relocated below the box containing
I* . Since ay # WD letters exist between the box containing I*, .. and
that containing 7 in the (y — 1)-st column,

(5.8) Prvax + 2 +1=p+s+1t1.

max

Note that p; .. and ¢ ., do not change under subsequent operations for
lrgs—1 = Uipg_1,---, 11 = If. From Egs. (5.1), (5.6), (5.7), and (5.8), we
have

(q_s)_p—i_m:qaax_p;am+l:<nax+a1+8+t+tl
>N, +t1+a1+1>N,.

Here, the position of the box containing m in the y-th column of T is p and
that of m in the z-th column of T is g—s. Therefore, C@¥) is KN-admissible.

Case (b). In this case, we can write m = [} € f(x vmE = (115 LT
Let us set {lp+1,...,lptr} = {l € ZL@y=1) | Iz <1<} (if r = 0, then this
set is considered to be empty). We adopt the first kind algorithm for HlEy—1)
here. When the operation for I; — [7 = m is finished, the updated tableau
has the left configuration in the figure below, where A is the block consisting
of s boxes (s > 1).

y—1ly y—1y

m|<p p1 —{m)|

ElES

/|
P1 p<p—1 Anﬁ—p

The right configuration is not allowed, where A’ is the block consisting of
s’ boxes (s' > 0). This can be seen as follows. Suppose that the entry
in the pi-th box in the (y — 1)-st column of the initial tableau 7" is j.
When the operation for l;1; — [ ; is finished, I3, ,...,[7 lie below the
box containing j in the (y — 1)-st column so that the p;-th box in the
(y — 1)-st column still has the entry j. The operation for I; — [ replaces
the entry j with [ = m. This implies that j > [ = m by Lemma 3.4,

which contradicts the semistandardness of the (féﬁ—let‘cers part of T” so
that the right configuration cannot happen. When a sequence of operations
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*

for lpyr — Lpyps -
(y — 1)-st column becomes to be p’ = p; + r, which does not change under
subsequent operations. Since p < p; — 1, we have p’ > p+r + 1. On the
other hand, by Lemma 3.6, we have (¢ — p’) + m > N, —r, where ¢ is the
position of m = E in the 2-th column of T. Combining these, we have that
(¢ —p) +m > N,, ie., C@Y is KN-admissible. O

Lemma 5.2. Suppose that T = C1Cs---C,,. € Cp-SSTkN. Let us set
T — ¢(w,y—1) 6.0 ¢(w,a:) o q)(x—i-l)(T) (2 <z+1<y< nc).

-slp+1 — 1514 is finished, the position of m = [7 in the

Here, we assume that T # 0 and that in the updating process of the tableau

from T to T the semistandardness of the %”TSJF)—letters part of the tableau is
preserved.

(1). Suppose that T has the following configuration, where the left (resp.
right) part is the %) (resp. %gﬂ)—letters one (p < qg<r<s).
z y—1ly

| <P

bl a

Then we have
(g —p) + (s —r) <b—min(ay,az).

(2). Let @) be the set of ¢ -letters in the x-th column and F'W) be the
set of 7 -letters in the y-th column and set L\ @Y) = j(x) N7,
If 4 {l e L) } *<b< l} =0, then we have

(¢ —p)+ (s —r) <b—min(ar,az) =0
in the above configuration in T.

Proof. Note that the tableau T does not have the following configuration.
r y—1ly

bl|bl«<p

Otherwise, the entry in the p-th position in the (y — 1)-st column of 7" :=
Y @¥=1(T) would be strictly larger than b by Lemma 3.5. This contradicts
the semistandardness of the () -letters part of T'. Therefore, the case
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when p = ¢ and r = s must be excluded. The case when r = s and p < ¢
must be also excluded because r = s implies a = b, which contradicts the
semistandardness of 1. In particular, a < b.

Let us start by proving (1). Firstly, we set a1 = as = a. Let c® (resp.
C’Sry_l)) be the €~ (resp. (fr(f))—letters part of the z-th (resp. (y — 1)-st)

column and let C*¥~1 be the column whose ‘@EH (resp. CKé_))—letters part

is CS;y_l) (resp. C’(_‘T)). Let .#W~1) be the set of .#-letters in the (y — 1)-st
column in T and set Z@¥=1) .= 7@ 0 g1 = {1, ... I.}. Let Iy, be
the largest .2(®¥~ 1 letters such that I, < b. The entry a can be written as
ligo—k+1 for some k (k =1,...,kp). Let py (resp. qi) be the position of the
entry lp,_p+1 (resp. lpo_g41) in the (y — 1)-st (resp. z-th) column in T'. We
proceed by induction on k.

(I). Let k = 1. We first consider the case when p; < g. Suppose that the
tableau T has the following configuration (p1<qg<r<si,ky€{l,...,c}).

x y—1ly
r—|p] Il [ P1
B Ay
$1 kg Vb4

where A1 N By =0, i.e., A1 and By have no L@y=1)_Jetters. In this config-
uration, g, < b’ < b and A1 N By = 0 so that |A1|+ |B1|=(¢—p1 — 1)+
(s1—r—1) < |{lg, +1,....,0 =1} \{b'}], i.e., (g—p1) + (51— 1) < b—lp,.
Let us assume that

(5.9) (q—=p1)+(s1—r) =b—li.

We claim that 77 = ¢®¥~1)(T) cannot be semistandard under the condition

of Eq. (5.9). We follow the first kind algorithm for ¢(*¥~—1) here. The filling
diagram of the initial column C®¥~1) has the following configuration.

RN NEIN
Lo b

The b-th slot is either (—) or (£)-slot. Since A; N By = (), regions (1) and
(2) have no (£)-slots and the ¥’-th slot is (4)-slot. Let us assume that the
numbers of (+)-slots, (—)-slots, and (-slots in region (i) are «;, 5, and &;,
respectively (i = 1,2). Then ¢ —py = a1 + 1, s — 1 = Z?:l B; + 1, and
b—ly, = Z?Zl(ozi + B; + €i) + 2. Substituting these into Eq. (5.9), we
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have ap + €1 + €9 = 0 so that ag = €1 = g9 = 0. Namely, (-slots do not
exist in both regions (1) and (2) and (+)-slots do not exist in region (2).
Set {l € ZL@y=1) | | <lpy <1} = {lig1,... Lisy} (if =0, then this set is
considered to be empty). After these .Z@¥~ D letters are transformed to
L@y=Df_Jetters and are relocated by ¢@¥~—1  the filling diagram of the
updated column has the following configuration. Note that b < l;f 41,0 <

T o
l,H_7 because €1 = g9 = 0.

o o X X o
W @ v IR -
ko b’ b ltT+1 l;tr—&-’y l/io

Suppose that the operation for I, — Z};O is finished. Then the relocation of
the v+ 1 Z@v—Df_Jetters, ZIH, . ,ZLW, and l};o changes the initial position

of o from q to g — (y +1). Ifb ¢ L@¥=D then b ¢ .#U~1) and the
updated tableau has the following configuration, which does not change
under subsequent operations.

y—1ly

b —q—(y+1)

b// b (—q

Any ‘57§+)—1etters larger than b’ are larger than b because there do not exist
(4)-slots and (+)-slots in region (2) of the above filling diagram. Therefore,
the entry in the box just below the box containing b in the (y — 1)-st
column is larger than b so that b’ > b+ 1 + ~ because there are v boxes
between the box containing b’ and that containing b”. This contradicts the

semistandardness of the %T(LJF)-letters part of T'. If b € Z@¥=1 then the
updated tableau has the following configuration.

y—1ly

V] | «—qg—(+1)
b

b// b (—q
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After the operation b — b, the updated configuration turns out to be the
same as the previous one and the same argument leads to a contradiction.
Hence, we have (¢ —p1) + (s1 — 1) < b — lk,-

Now let us assume that p; = ¢. Suppose that the tableau T has the
following configuration.

x y—1ly
7‘—>z kol b | 4
B
S1 %E

In this configuration, |B| = (s1—r—1) < [{ly, +1,...,b—1}|,ie, s1—r <
b — lx,. Let us assume that s; —r = b — l,. This implies that the block B
is filled with consecutive /(m)—letters, b—1,..., 0l + 1 (if [y, +1 = b, then
Bj is empty) so that the filling diagram of the initial column C (@y=1) hag
the following configuration.

Region (1) consists of only (—)-slots (lg, + 1 < b) or is empty (I, + 1 =10).
When the operations up to lp, — l};o are finished, the entry at the ¢-th
position in the (y — 1)-column is larger than b because region (1) has only
(—)-slots. This entry does not change under subsequent operations. This
contradicts the semistandardness of the C€7§+)—1e‘utel“s part of T”. Hence, we
have s1 — 7 < b — lj,.

(IT). We first consider the case when p; < q. We claim that (¢ — pg41) +
(Sg+1—7) < b—lk,—k in the following configuration of the tableau T (Pra1 <
P < q <71 <Sp<Skpi1)-
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T y—1 y
r— b lo—k < Pk+1
A/
Sk = |lkg—k+1
= lko—k+1 — Pk
Sk+1 — lko—k b b| <4

under the assumption
(5.10) (¢ —pr) + (sk = 1) <b—lgg—kt1
and b/ € # W=D\ £Ey=D Since A' N B’ = (),

|A/‘ + |§| = (pk: — Pk+1 — 1) + (Sk—i—l — S — 1)

< |{lk‘ofk + 17 s 7lk‘ofk+1 - 1}| (lk’ofk +2 < lkokarl))
10 (lko—k +1= lko—k+1)7
i.e.,
(5.11) (Pt — Pet1) + (Se1 — Sk) < lg—kt1 — lkp—r + 1.

Combining Eqgs. (5.10) and (5.11), we have (¢—px+1)+ (Sk+1—7) < b—ljy—k-
Let us assume that

(5.12) (¢ = Pry1) + (841 —7) = b — Lk

The filling diagram of the initial column C®¥~1 has the following configu-
ration.

(1)
[ ] [ ] [ ] [ J
[ ] [ ] o [ ] O (2) [ ]
leo—t  lho—k+t1 Ui b

Region (1) contains k (4)-slots and region (2) contains no (£)-slots. Let
us assume that the numbers of (+)-slots, (—)-slots, and ()-slots in region ()
are «;, (;, and ¢;, respectively (i = 1,2). Then ¢ — ppi1 = a1 + k + 1,
Sgr1— 1 = P11+ k+ B2+ 1, and b_lk:o—kz = Z?Zl(ai+ﬁi+ai)+k+2.
Substituting these into Eq. (5.12), we have k = as+¢£1+¢e5. Therefore, when
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L@y=1) Jetters up to lk, are transformed to the corresponding . (@y—1)f.
letters, at least kK + 1 — (e1 + €2) = ag + 1 of them are larger than b.
Suppose that ti{l e Lyl | l<b< lT} = . Then v > as + 1. Suppose
that the operation for lp, — l,io is finished. Then the position of the box
containing b’ in the (y — 1)-st column is changed from ¢ to ¢ — 7/, where
v =t{le Z@y=1) 1<V < I"}. Since region (2) has ez @-slots and no
(£)-slots, v/ = v+ €2. The updated takl)leau has the following configuration.
y—1y

¢ = |t/

C
q—) b//b

Y

where b < b and the position of the box containing b’ does not change under
subsequent operations. Since as £~ letters exists between ¥ and b, C
has at most as letters. On the other hand, C consists of v/ — 1 boxes and
v =~+e9y > as+1+ey s0that ¥/ —1 > ay. This implies 7/ — 1 = a9
and ¥’ = b. Now since v/ = b € L@V=1_ the entry at the ¢g-th position
in the (y — 1)-st column becomes strictly larger than b after the operation
¥ — b by Lemma 3.5 and does not change under subsequent operations.
This contradicts the the semistandardness of the Cfrﬁ)—letters part of T".
Hence, we have (¢ — pgy1) + (Sg+1 —7) < b — lgg—k-

Now let us consider the case when p; = q. We claim that (¢ — pgy1) +
(Sg+1—7) < b—lk,—k in the following configuration of the tableau T (Pra1 <
Pr<q <71 <5< Spy1)

T y—1 y
r— b lko—k < Pk+1
A/
Sk =7 |lgg—kt1
= lko—k+1 < P
Sk+1 =7 | lgo—k ™ b| <4

under the assumption

(5.13) (@ —pk) + (s —7) <b—lky—kt1-
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By the same argument as in the case when p; < ¢, we have (¢ — pry1) +
(sg+1 — 1) < b—lk,—k- Let us assume that
(5.14) (¢ = pr41) + (Sk+1 — 1) = b — lgg—-

The filling diagram of the initial column C@¥~1) has the following configu-
ration.

[ ] [ ] [ ] 2
[ ] [ ] o [ ] ( ) [ ]
leo—k  lkg—k+1 Uk

Region (1) contains k — 1 (4)-slots and region (2) contains no (4)-slots
because of the choice of li,. Let us assume that the numbers of (+)-slots,
(—)-slots, and (-slots in region (i) are «y, [3;, and g;, respectively (i = 1,2).
Then ¢ —pry1 = a1+ (k—1)+1, s —7 =2 Bi+k+1,and b— Iy, =
52 (ai + Bi +€i) + k + 1. Substituting these into Eq. (5.14), we have k =
a9 + €1 + 9. Therefore, when L@y=1)_Jetters up to ly,—1 are transformed
to the corresponding f(w’y_lﬁ—letters, at least k — 1 = a9 + €9 of them
are larger than lj, so that ' := jj{l e Ll@y=1) ‘ [ <ly, < ZT} > a9 + £9.
The updated tableau just before the operation [, — l,io has the following

configuration.
& y—1ly

¢—7 = Ik

=)

C
q— b
b

By the argument of the first paragraph of the proof, b ¢ C even if kp, <b
(it is clear b ¢ C if k> b) so that C has at most as letters because ay

#W=1) letters exist between Iy, and b. On the other hand, C' consists of '
boxes and 7' > ag. This implies v/ = as and C consists of consecutive as
letters, Iy, +1,...,b—1,ie., fo=e3 =0. Ifb¢ L@¥=D then b ¢ £~V
so that & > b. When the operation I, — l,io is finished, the entry at the
g-th position in the (y — 1)-st column is b/, which does not change under

subsequent operations. This contradicts the semistandardness of the %,E” -
letters part of T” because b’ > b. If b € @YD then ¥ = b. When the
operation I, — l,:,o followed by b — bl is finished, the entry at the g-th
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position in the (y — 1)-st column is strictly larger than b by Lemma 3.5 and
does not change under subsequent operations. This is also a contradiction.
From (I) and (IT), we have, by induction,

(g—p)+(s—1)<b—a

in the configuration depicted in the statement of Lemma 5.2 with a1 = as =
a.
Next, we assume that a; < as. The proof for the case when a1 > as is
similar. We consider the following two cases separately:
(a): ay appears in the (y — 1)-st column.
(b): as does not appear in the (y — 1)-st column.

Case (a). The tableau T has the following configuration.

T y—1y
r—b] | | p
az| | pf
s —|ag b g

Since p —p—1<|{a1 +1,...,a2 — 1}|, we have p’ — p < as — a;. On the
other hand, (¢ —p) + (s — ) < b — ay so that we have
(¢ —p)+(s—7) <b—a1 =b—min(ar,a).
Case (b). Let j be the smallest entry such that as < j and j (resp.

j) appears in the (y — 1)-st (resp. z-th) column. The tableau T has the
following configuration.

T y—1ly
roBl @ |er
s =7 i

B J| =P
s —ag b4

Y

where AN B = (. Since |A| + |B| = |[AUB| < [{a1 +1,...,j — 1}\{az}| =
j—as—2, we have p' —p+s—s’ < j—aj. On the other hand, (¢—p')+(s'—7r) <
b — 7 so that we have

(g—p)+(s—1) <b—a; =b—min(ay,az).
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If such an entry j does not exist, the tableau T has the following config-
uration.

x y—1ly
r—>z @ D
B A
s —[ag R

Y

where AN B = ) and as ¢ A. Furthermore, b ¢ A because of the ar-
gument of the first paragraph of the proof. Since |A| 4+ |B| = [AUB| <
{a1 +1,...,0—1}\{a2}| = b —a; — 2, we have

(g—p)+(s—r)<b—a; =b—min(ay, az).

Now let us prove part (2). We set a3 = ag = a. The proof for the case
when a; # ay is same as that of (1). Note that ¢(®*¥) is well-defined by
Lemma 5.1. Let C'J(ry) be the €(H)-letters part of the y-th column of 7" and
let C®¥) be the column whose €) (resp. €())-letters part is Ciy) (resp.
C(_x)). If b =1, then 6 = 0 and we have nothing to prove. Suppose that
b=l (ky <c) and
(5.15) Qi1 — P+ S —1Tkr1 <lgy1 —a— g4

holds, where 011 = jj{l e #@y) } I <lpgi1 < Z}, qr+1 is the position of
l).41 in the y-th column, and 7y is the position of [ in the z-th column in
Tk=c—1,... ,kg). Suppose that the operation for [y 11 — [}, is finished.
The filling diagram of the updated column has the following configuration.

o) X X [ ) o
.. (0)

o X X [ J o

* * *

Ik et k405, Ly, lg41

9

where §;, = ﬁ{l SRASE) } <l < l} = §{lk+1,.- -, lkts, }- Let us assume
that the numbers of (+)-slots, (—)-slots, and (x)-slots in region (0) are «,
B, and ¢, respectively. The (+)-slots and ()-slots do not exist in this region.
Then g1 =g +a+ 1, rpp1 =1 —B—1, lgp1 =g + (a+ B +¢) +1, and
dk+1 = (0x—1)+e. Substituting these into Eq.(5.15), we have g —p+s—1j <
Il —a—0k. Therefore, we have, by induction, (¢—p)+(s—7r) < b—a—J in the
configuration depicted in the statement of Lemma 5.2 with a1 = a2 =a. 0O

Lemma 5.3. Suppose that = C1Cs---C,, € Cp-SSTkN. Let us set
T :=¢E¥Do...0¢% o PE+(T) 2<z+1<y<n).
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Here, we assume that T # () and that in the updating process of the tableau
from T to T the semistandardness of the ‘ﬁ,ﬁ)—letters part of the tableau is
preserved. Then the ‘5,§+)-letter5 part of oY) (T) is semistandard.

Proof. The map ¢(®¥) is well-defined by Lemma 5.1. Let C,_1 be the (y—1)-
st column of T and Cy (resp. C}) be the y-th column of ¢@Y)(T) (resp.

T ). In what follows, we show that the %,gﬂ—letters part of the two-column
tableau Cy,_1C, in ¢(@¥)(T) is semistandard. If this is true, the claim of
Lemma 5.3 follows because the %, -letters part of C,Cyy1 in oY) (T) is
guaranteed to be seminstandard by Lemma 3.4, where Cy 4 is the (y+1)-st
column of ¢(*¥(T) (y < n.— 1). Let us denote by #® the set of .#-
letters in the y-th column of 7' and by I (#) the set of F -letters in the
z-th column of T and set L&) .= /(f”) NsW = {li,...,l.}. We adopt
the second kind algorithm for ¢(®¥ when we treat the y-th column, while
we adopt the first kind one when we treat the z-th column. We claim that
ACy_1[p, q,] = Ak(Cg) forall k =c,c—1,...,1 so that %ﬂgﬂ—letters part
of Cy_1Cy is semistandard, where p) (resp. g;.) is the position of the top
(resp. bottom) box of the block Ay(Cy), which is defined in the explanation
of the second kind algorithm for ¢. The proof is by induction on k. Namely,
we prove

(I)' ACy—l[plm QQ] = AC(CS)

(IT). ACy—1[p}, q5] = Ak(C’g) under the assumption that ACy _1[p} 1, ¢}, 1] =X
Ap1(C)) (k=c—1,...,1).

We first prove (IT). Suppose that

{l e L@v-b

I < lk < l} - {lk+17---;lk+6}-

Let C’J(ry) (resp. Cix)) be the %,ﬁ“ (resp. %é_))—letters part of the y-th (resp.
z-th) column of T and let C®¥) be the column whose &\ (resp. ‘5,5_))—

letters part is Cj;y) (resp. C’(_x)). Suppose that the operation for Iy 41 — [},

is completed (k < ¢ — 1). Let T" be the updated tableau and C®¥) be the
resulting column. Let us assume that ACy_1[p}_ 1, ¢} ] = Apg1(CY). The
filling diagram of the column C®¥) has the following configuration. Here,
we assume r > 1. The proof for the case when r = 0 is similar and much
simpler.
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078 a1
e e Y N
(@] [ ] [ ] 1 [ ) 1 [ ] [ ] 0 [ ]
) B =D e 1 (D) e )
li i) i, ish, A it b

Region (s) consists of (—)-slots, (£)-slots, and (x)-slots. Let us assume that
the numbers of (—)-slots, (£)-slots, and (x)-slots in this region are Ss, s,

and s respectively and that the position of (x)-slots in region (s) are Leir-o

* _ . * * _ * * * *
and 75, (s = 0,1, ); g s lsh = {0 B o G B, b

Between two regions (s — 1) and (s), as (+)-slots lie consecutively.

[ ) [ J 1
(5) o b (s 1)
iy il

The updated tableau T’ has the following configuration. There are no
L@¥)*_Jetters above the box containing I, in the y-th column because we
adopt the second kind algorithm for ¢(¥) in the y-th column, while .2 (@)*-
letters may exist below the box containing I, in the z-th column.

x )
P A
1 |

c.

where A is the stack of the sequence of blocks Lﬁy), Iﬁm, . | fy), Léy) in this
order (from top to bottom) and C, is the stack of the sequence of blocks

Jéx), Jl(x), e Jﬁx) in this order (from the top). The block I S(y) consists of

consecutive ag &) \-Z (@.9)_Jetters {zgyl), e ,ig%’(ls}, where

s5—1 s—1
igﬁ%—tﬂ = Ik —Z%‘ - ZTZ' —t (t=1,...,a5)
i=1 i=0
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with 7; := B;+v;+6; and Lgy) is the block of v, L@Y) Jetters (s=0,1,...,7).

The block Jéx) consists of consecutive 7 Cfé_)—letters { jéfT)s, .y Jeq ¢, Where

s s—1
ji@rtH —lk—Zai—ZTi—t (t=1,...,75;5=0,...,7).
=1 =0

Note that Js* J®© contains £\& L@y letters, I*
that the (y — 1)-st column of 7" has the following configuration.

*k
s1s---» and ZS’(;S. Let us assume

(y—1)
Q

q, B

Y

where B, is the stack of the sequence of blocks I(y 1), Iﬁy 11), e ,Ify_l) in

this order (from top to bottom) and the position of the bottom box in B, is
q;, (the block B, is not empty because of the assumption of r > 1). The block

Igy_l) consists of oy, %gﬂ-letters {igl_l), ZS s )} so that I(y 1)’ I(y)‘

(s=1,....7).

(i). We claim that zgyal) < Zgy(ll
(y—1)

i, €k—T0.lk —T0+1,. l}((y 1)<l), zgy Y is in the block
J(x) or zg o - = [;,. Suppose that z(y - =lp—t(t=0,...,79). The updated

tableau T has the following conﬁguration.

l, — 19— 1. If this is not true,

x y—1y
| T p =iy || < d(=q)
/ 1
¢ D

Let p,. and ¢ be the initial position of z(y U in the (y — 1)-st column and

that of I, in the y-th column of T respectlvely. We consider the following
two cases separately:

(a): i) ¢ Lwr,
(b): zlya”eg(xay)*.
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Case (a). The entry ig{’;ll) exists initially in the z-th column of T'. Let

r, and sy be the initial position of I, and that of igygll) in the x-th column of

T, respectively. Then p, = p’ and g > ¢ because [, is relocated upward by
the operations for l. — I7, ..., lg41 — [, or still lies at the initial position.

Suppose that & Z@v)*_letters appear between the r’-th box and the s'-th
box in the z-th column (¢’ < d). Then s’ — r’ = s, — 1, + &’ so that

(5.16) G —Ppt+sp—re>q¢ —p+s -1 -8 =t-¢
(y—1)
Zlk_zl%al _57

which contradicts the assertion of Lemma 5.2.

Case (b). We can write i%;ll) = a* (a € L@Y). Let ry, be the initial
position of I, in the z-th column of T. Furthermore, let us suppose that the
initial entry at the sg-th position (s > r1) in the z-th column of T is b and
that the operation a — a* replaces the entry b by a*.

A a
a
—  |b
Sk =D A Sk

Y

so that b > z'%a_ll). The initial tableau 7" has the following configuration.

T y—1y
e =Ty pr =iV
Sk =1} I | < QK

Inequality (5.16) still holds in this case and this contradicts the assertion of
Lemma 5.2.

In both cases, we have 1) < i)

Zl,O{l 1,0[1 — Zk - 7_0 - 1 aIld

(y—1 .
Z%/alzt‘Fl S Z:(lz,/gq—t—}—l :lk_TO_t (t: 1,...,0[1),
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(ii). Suppose that

S s—1
zg%’ll)gz;fl) lk—Zai—ZTi (s=1,...,r—1).
i=1 i=0

This is satisfied for s = 1. Under this assumption, let us show that

S S

(y—1) (y) —

ot Lasss < bottaey = b — Zai — Zﬂ; — 1.
1= =

If this is not true,

lk—ZoaL ZTzSZsHaSH—gyl 1<lk—z:ozZ ZTl—l

Suppose that nggé o =l—>0 ozi—z;:& Ti—t = j§ r)s—t+1 t=1,...,75).
Then the updated tableau 7" has the following configuration.

T y—1ly
| P
Cs-t i Biled=d)
s = x
D ,

where Cs_1 denotes the stack of blocks, Jém),. , g (@ )1 in this order (from

top to bottom). Similarly, By denotes the stack of blocks, Iéy 1), ey, Il(y_l)

in this order (from top to bottom).
(y—1)

s+1,0541
that of [, in the y-th column of T, respectively. We consider the following
two cases separately:

(a): i (y—1) ¢ play)x

5+1 Ols—i—l

(b) S+1 a s+1 < g(x7y)*

Case (a). The entry zgrlo)é .

Let p;. and g; be the initial position of i in the (y—1)-st column and

exists initially in the z-th column of T. Let
(y—1)

r, and sy be the initial position of I, and that of i DN in the z-th column
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of T, respectively. Then p; = p/ and ¢, > ¢. Suppose & L&V* letters
appear between the 7’-th box and the s'-th box in the x-th column (¢’ < ).
Then s’ —r' = s, —r, + 06 sothat g, —pp+sx—11 > ¢ —p'+5 —r'— . Here
¢ —1f = Tina 197 = iy avand o =1 = i3 [Tt = S e,

Combining these, we have

s—1
1
(5.17) qk—pk—i—sk—rk>E o; + E Tz+t—5_lk_7/gj_1(ls+1_5'
i=1 1=0

This contradicts the assertion of Lemma 5.2.
Case (b). We can write i = a* (a € £®Y)). Let r;, be the initial

s+1,a541
position of I, in the z-th column of 7. Furthermore, let us suppose that the

initial entry at the sg-th position (sj, > 73) in the 2-th column of 7" is b and

(y—1)

that the operation a — a* replaces the entry b by a* so that b > DN

The initial tableau T has the following configuration.

x y—1y
Tk = |1}, Pk —

= (y—1
Sk — b 23-10)154_1 lk eqk

Inequality (5.17) still holds in this case and this contradicts the assertion of
Lemma 5.2.

In both cases, we have zgljrllt) < zgl (=1, as11).

From (i) and (ii) and by induction, we have

(y )<z(y)—lk ZO‘Z ZTZ

(iii). We claim that ’L(y V< l;.. If this is not true, then

lk—Zaz Sn= i+ < il ”—1<lk—Zaz Zn—l

1=0

Suppose Z( D= =l =D =y 017'Z —t= ]ﬁxT)T_tH (t=1,...,7), then
the tableau 1" has the following configuration.
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z y—1 y
= I p— i(()y_l)
Cr U [« d(= )
s — Z.((‘y—l)

The same argument as in (ii) leads to that this configuration contradicts

the assertion of Lemma 5.2. Hence we have igy_l) <.

(iv). When the operation (B) for i, — [} is finished, the updated tableau
has the following configuration. From the p)-th position to the g;-th position
in the y-th column is the block A (Cy).

y—1y

i((]y—l) I |« ),

B, |A
T ]<_q;€

Y

where A; stands for the stack of the sequence of blocks I,gy), Iﬁli)l, e ,I,gy) in
this order (from top to bottom). Here, v < 1@ (it =1,...,r) so that

(2 (2

B, < Ar and i(()y_l) < I}. Therefore, we have ACy_1[p}, q;] = Ax(CY). The

position of [} and those of entries in Ii(y) (¢=1,...,r) do not change under
subsequent operations for 1 — I;_,...,li — []. Thus, the proof of (II)
has been completed.

(v). By the same argument as in (i), (ii), and (iii), it is not hard to
show ACy_1[pl., qc] = Ap=c(CY), where pl, (resp. q.) is the position of the
top (resp. bottom) box of Ak:c(C’S). Note that g. is the initial position of
I in C)). This completes the proof of (I). O]

The following result may be proven in much the same way as in Lemma 5.2.

Lemma 5.4. Suppose that T = C1Cs---C,, € Cp-SSTkN. Let us set
T (¢<m+1,y> o ¢<w,y—1>) oo (¢<m+1,m+1> o ¢(z,m>)

o (PEFN Lo pl+)(T) 2<z+1<y<n).
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Here, we assume that T # () and that in the updating process of the tableau

from T to T the semistandardness of the ‘ﬁ,g_)—letters part of the tableau is
preserved.

(1). Suppose that the tableau T has the following configuration, where the

left (resp. right) part is the CK,SL_) (resp. CfygjL))—lettem one (p < q<
r <s).

Then we have
(¢ —p)+ (s —7) <b—min(ar, az).

(2). Let _#@) be the set of # -letters in the x-th column and FW) be the
set of 7 -letters in the the y-th column and set L@Y) = /(x)ﬂﬂ(y).
Ifg{le 2@V | 1* <b<l} =6 in @Y (T), then we have

(g —p)+ (s —7) < b—min(as,az) —
in the above configuration in T.

Lemma 5.5. Suppose that T = C1Cs---C,, € Cp-SSTkN. Let us set
T (¢<x+1,y> o ¢<w,y—1>) 0 0 (¢<x+1,x+1> o ¢(w,w)) o (@)~ o pl+1)(T)

2 <xz+1<y < n.). Here, we assume that T #+ 0 and that in the
updating process of the tableau from T to T the semistandardness of the
‘Ké_)—letters part of the tableau is preserved. Then the %g_)—letters part
of YT is semistandard and if y < ne — 1 the %\ -letters part of
(p@+1vtD) o p@W) (T) is also semistandard.

Proof. Let C, (resp. C9) be the z-th column of ¢@®¥)(T) (resp. T) and
Cr41 be the (z + 1)-st column of T. In what follows, we show that the
(fr(b_)—letters part of the two-column tableau C,C, 1 is semistandard. If this
is true, the claim of Lemma 5.5 is immediate by Lemma 3.4.

Let us denote by .# ¥ the set of #-letters in the y-th column of 7" and
by ¢ () the set of J-letters in the z-th column of T and set L@Y) .=
/(ZE) NsW =:{1;,...,1.}. We adopt the second kind algorithm for ¢(*¥)
when we treat the z-th column, while we adopt the first kind one when
we treat the y-th column. We claim that Ag(CQ) = AC,11[p},q,] for all

k=c,c—1,...,1 so that the C&g_)—letters part of C,C,1 is semistandard,
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where p/. (resp. ¢},) is the position of the top (resp. bottom) box of A(CY).
The proof is by induction on k. Namely, we prove

(I)' A—C(C:(c)) = AC:c—H[plm Qé]

(IT). Ak(CY) < ACy41[p}, ¢}, under the assumption that Ay 1(CY) <
ACyi1[p) 1o dyy] (k=c—1,...,1).

We first prove (II). Suppose that {I € ZL@y) | 1<l <} = {lpgas - loro )
Let CJ(ry) (resp. C(_m)) be the €, (resp. ‘gé_))—letters part of the y-th (resp.
z-th) column of T and let C@¥) be the column whose & ) (resp. %E_))—
letters part is C’f) (resp. C’(_gg)). Suppose that the operation for Iy 11 — I} 4
is finished (k < ¢ —1). Let 7" be the updated tableau and C®¥) be the
resulting column. Let us assume that Agy1(Cr) =X ACz41[p) 415 @pq)- The
filling diagram of the column C'®¥) has the following configuration. Here,
we assume that r > 1. The proof for the case when r = 0 is similar and
much simpler.

57" 51
P, ——N—
o o o 1 o 1 o o 0 L
- (r) — - (r—1) - - (1) — - (0) -
T A Jap G g b

Region (s) contains (+)-slots, (4)-slots, and (x)-slots. Let us assume that
the numbers of (4)-slots, (£)-slots, and (x)-slots in this region are as,
Vs, and dg, respectively and that the position of (x)-slots in region (s) are
I* . and [ 5 (s=0,1,...,7);

ENERE

{lz+1,...,lz+5} — {lal""’la(SO’""l:,l’"" :,57«}'

Between two regions (s — 1) and (s), Bs (—)-slots lie consecutively.

@) O 1
() 1 B 5o

() ()

]S,Bl JS,BS

The updated tableau 7" has the following configuration. There are no

L@y)* Jetters below the box containing [, in the z-th column because we
adopt the second kind algorithm for ¢(*¥) in the z-th column, while .Z(*¥)*.
letters may exist above the box containing [ in the y-th column.
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z Y

=
1
| A F

)

where A, is the stack of the sequence of blocks Iﬁy),lﬁy_)l, A @) in this
order (from top to bottom) and C' is the stack of the sequence of blocks

Lém), Jlx), I L) i this order (from top to bottom) The block J\*)
consists of consecutive ¢ @)\ Z(@:¥) Jetters { jéxﬁ)s, o s, 1)} where

jg’mgs_t+1 lk_ZBz_ZTz_t (tzlavﬁs)

with 7, = «a; + v + ¢; and Lgx) is the block of v, .Z(@¥)-letters (s =

0,1,...,7). The block I W) consists of consecutive 75 €\ -letters {zgyl), . zgyT)S}
where

zgyTs_tH—lk—Zﬁl ZTl—t =1,...,75;5=0,...,7).

Let us assume that the (a: + 1)—St column has the following configuration.

/
— —
Dy B,

(xz+1)
0]

Y

where B, is the stack of the sequence of blocks Jl(xﬂ), J2(x+1), U A

yJr

in this order (from top to bottom) and the position of the top box in B,
is pj. (the block B, is not empty because of the assumption of r > 1).

The block J&™ consists of Bs &) Jetters {jgﬂtl) j(xﬂ)} so that

,...7871

J(37+1) J(x)

(s=1,...,71).

(i). We claim that j%xﬁ) jfxgrl) ie. ]ﬁxgl) < ]ﬁxg =l — 10 — 1. If this
(z+1)

is not true, ji 5 € {ly —70,ls — 70+ 1,..., I} (I = J(xﬁﬂ))v Le. J?ﬂtl)
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in the block I(()y) or jfﬁtl) = lp. Suppose jﬁ;l) =lp—t({t=0,1,...,70).
The updated tableau 7" has the following configuration.

r x+1 Yy
p— (zF1
74/(: p;{) — |1 j1(9c/j;1) PR jix;— ) — 9
e |«

Let r, and s; be the initial position of I, in the z-th column and that of

jixﬁt Y in the (x 4 1)-st column of T, respectively. We consider the following

two cases separately:
(z+1 x,Y)*
(2): dyls, L
(b): ;& € gl

]-5/81
(z+1)
561

Case (a). The entry j; exists initially in the y-th column of T'. Let

pr and g be the initial position of jixg Y and that of [ in the y-th column of

T , respectively. Then s, = s’ and r, < ' because [, is relocated downward
by previous operations for l. — I, ..., k41 — [ or still lies at the initial

position. Suppose that ¢ Z@¥)* Jetters appear between the p/-th box and
the ¢’-th box in the y-th column (& < §). Then ¢ —p’ = qi — pr + ¢’ so that

(5.18) QG —pp+sp—re>q —p +s -1 -6 =t-¢
(z+1)
Z k=i —0

which contradicts the assertion of Lemma 5.4.

Case (b). We can write jfxﬁtl) = a* (a € L@Y). Let g be the initial
position of l; in the y-th column of T. Furthermore, let us suppose that the
initial entry at the pg-th position (px < ¢x) in the y-th column of T is b and
that the operation a — a* replaces the entry b by a*.

Y )
Pk b [ Pk
b
| —
@]

Y

so that b > jixﬂt Y. The initial tableau T has the following configuration.
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r x+1 Y
Tk =1, b |< Dk
sk G I | <

Inequality (5.18) still holds in this case and this contradicts the assertion of
Lemma 5.4.
In both cases, we have j§ ; ) < jixﬁ) lp — 10— 1 and

Nyt STig e =bk—10—t (t=1,...,5).

(ii). Suppose that

(x+1)<jsx =1 _Zﬁl ZTZ =1,...,7—1).

This is satisfied for s = 1. Under these assumptions, let us show that

(z+1) ()
Js41,Be41 = j8+1,55+1 by — ZBZ ZTZ -1

If this is not true,

lk—Z@ Zn<g§$&+1_§ﬁ“> 1<lk—Zﬁz Zn—l

+
Suppose jg_HB) L= e — > iy Bi — ZZ 0Ti —t = ng)s_tH (t=1,...,7s).
Then the tableau 7" has the following configuration.

rx—+1 (]
r(=p.) = |1, —p
( k) k B. p
(z+1)
8/ % ..75_|_1 BS+1 AS_]_
(z+1) /
8+1,ﬁ5+1 lk N q
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where A,_1 denotes the stack of blocks [ 2 A ()

NS in this order (from

(z+1) (z+1)

top to bottom) and By denotes the stack of blocks J; in this
order (from top to bottom). We consider the follovvmg tvvo cases separately:

(a): jUHY ¢ gl

s+1 Bs+1
(b): Jiﬁlﬁ)sﬂ c Py
(z+1)

Case (a). The entry j ;4 ., exists initially in the y-th column of T.

Let r, and s, be the initial position of I in the z-th column and that

of é J: B) in the (x + 1)-st column of T, respectively. Let pj and ¢ be

éf{lﬁ) , and that of [, in the y-th column of T,

respectively. Then s, = s’ and 7, < /. Suppose that § Z@V* letters
appear between the p’-th box and the r’-th box in the y-th column (§’ < 9).
Then ¢ —p' = qi. —pr+0' so that qp —pr+s,—711 > ¢ —p'+5 —r'—§. Here,

§' 1! = Yoy [ = S grand o —p = S0 |10 4t = gk,
Therefore, we have

the initial position of j

s—1
(5.19) qk—pk+sk—rk>2& Sntt—o=04 -0~
=1 s=0

This contradicts the assertion of Lemma 5.4.
Case (b). We can write j£+1ﬁ) L =a"(ac€ Z@9)). Let g, be the initial

position of [; in the y-th column of T. Furthermore, let us suppose that the

initial entry at the pj-th position (py < gi) in the y-th column of 7" is b and
that the operation a — a* replaces the entry b by a* so that b > jéfilgsﬂ.

The initial tableau T has the following configuration.

rx+1 Y
Tk = |1, b |< Pk
Sk — I | < QK
Ty

Inequality (5.19) still holds in this case and this contradicts the assertion of
Lemma 5.4.
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In both cases, we have ]éf{? < ]§+)1t (t=1,...,08s41). From (i) and (ii)

and by induction, we have

(z+1

I < lk—Z@ Zn

(iif). We claim that I} < j(x—H) (j(()xﬂ) < [}). If this is not true, then
r r—1
li —Zﬁz Z =G+ <Y< 1<y Y g -y n-t
i=0 i=1 i=0

Suppose ]( z+1) =l — Zz 1 Bi — ZZ 0Ti—t= 7(~y7)r—t+1 (t=1,...,7), the
updated tableau 7" has the following configuration.

r rz+1 Y

r(=0k) = || o] e !
B,

1o

Iy |« ¢

The same argument as in (ii) leads to a contradiction. Hence we have
(z+1) < ¥
Jo = e

iv). When the operation (B) for [}, — [} is finished, the updated tableau
k
has the following configuration.

/ E .(()x+1)

Y

where C; stands for the stack of the sequence of blocks Jl(m), Jz(x), cee J,Sx)
in this order (from top to bottom) Here, Ji(x) < Ji(xﬂ) (i =1,...,7) so
that C; < B, and [} < (x+ ). Therefore, Ag(CY) = ACy11[p},q,]. The

position of l,’; and those of entries in Ji(x) (t=1,...,7) do not change under
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subsequent operations for Iy — {7 _,,...,l; = [j. Thus, the proof of (IT)
has been completed.

(v). By the same argument as in (i), (ii), and (iii), it is not hard to
show Ap—.(CY) < AC,11[pe, ¢.], where p. (resp. ¢.) is the position of the
top (resp. bottom) box of Ap—.(C?). Note that p. is the initial position of
I in CY. This completes the proof of (I). O

We can prove the following Lemma 5.6 and Lemma 5.7 in the similar man-
ner of the proof of Lemma 5.3 and Lemma 5.5. The proof of Lemma 5.6 uses
Lemma 5.8 instead of Lemma 5.2 and that of Lemma 5.7 uses Lemma 5.9
instead of Lemma 5.4. Lemma 5.8 and Lemma 5.9 can be also proven by
the similar manner of the proof of Lemma 5.2 (2).

Lemma 5.6. Suppose that T = C1Cs---C,,. € Cp-SSTkN. Let us set

T (x = ne).

. {cb(wﬂ)(T) 1<z <n—1),

Here, we assume that T # () and that in the updating process of the tableau
from T to T the semistandardness of the ‘€,§+)-lett6rs part of the tableau s
preserved. Then the Cfrgﬂ-letters part of ¢\&¥)(T) is semistandard.

Lemma 5.7. Suppose that T = C1Cs---C),, € Cp,-SSTkn. Let us set
T := (@@ N1 o @E+)(T) (1 <z <n.—1).

Here, we assume that T # () and that in the updating process of the tableau

from T to T the semistandardness of the ‘f,g_)—letters part of the tableau is
preserved. Then the %\ -letters part of @) (T) and that of ((b(mﬂ’mﬂ) o qb(x’x)) (1)
are semistandard.

Lemma 5.8. Suppose that T' = C1Cs---C,,. € Cp-SSTkN. Let us set

. {@(xﬂ)(T) (1<z<n.—1),
T (x = ne).

Here, we assume that o @+1) s well-defined on T when 1 < z < n, — 1.
Suppose that T has the following configuration (p < q<r <s).
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r—1x

p — 1]
b a
bl
ag| < s

Then we have (¢ — p) + (s —r) < b — min(ay,as) because the two-column
tableau Cy_1Cy is KN-admissible (Definition 2.6 (C2)). Let #®) (7)) be
the set of # (I )-letters in the x-th column and set L@ .= @ n g@),
If4{le 2@ | 1* <b<l} = &, then we have (g —p) + (s — 1) < b —
min(a,ag) — 9 in the above configuration.

Lemma 5.9. Suppose that T = C1Cs---C),, € Cp,-SSTkn. Let us set
T:= (@) Lo @E+)(T) 1<z <n.—1).

Here, we assume that ®@+1) is well-defined on T. Suppose that T has the
following configuration (p < q <r < s).
rzx+1

p —a]
q—{b]
r—{p]

as|<— S8

Then we have (q—p)+(s—r) < b—min(ay, as) because the two-column tableau
C.Cyy1 is KN-admissible. Let ¢ ®) (7)) be the set of # (F )-letters in the
z-th column and set L**) .= /(m) Ns@ . If {l e gm) | " <b< l} =
J, then we have (q—p)+(s—r) < b—min(ay, az)—0 in the above configuration.

Lemma 5.10. Suppose that T' = C1Cs---C,,, € Cp,-SSTrn(N). Then ® is
well-defined on T and ®(T') € C,-SST()).

Proof. (I). We first prove that ® is well-defined on 7" and that the &\

letters part of ®(T) is semistandard. The map ®c) = d(e) = pnene) ig
well-defined on T because the n.-th column of T is KN-admissible and the
%) letters part of ®("e)(T) is semistandard by Lemma 5.6.
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(IT). Suppose that ®@+1) is well-defined on T, i.e., ®@+1)(T) £ () and
the €\ -letters part of ®@+1)(T) is semistandard (z = ne —1,...,1). This
assumption is satisfied for z = n.— 1. (i). The map ¢®®) is well-defined on
®(=+1)(T) because the z-th column of ®=+1)(T), i.e., the z-th column of T is
KN-admissible and the %&H—letters part of ¢(@%) o®(z+1)(T) is semistandard
by Lemma 5.6. (ii). Let us set T = ¢@v=1 o ... 0 p@2) o Gla+1)(T)
(x+1 <y <mn.). Suppose that T' # () and that in the updating process of

the tableau from T to T the semistandardness of the ‘éng)—letters part of the
tableau is preserved. This assumption is satisfied for y — 1 = 2. Then ¢(®@¥)
is well-defined on T by Lemma 5.1 and the &) letters part of ¢(@¥)(T)
is semistandard by Lemma 5.3. From (i) and (ii) and by induction, we
have that ®@) = ®@) o @+1) is well-defined on T and the €\ )-letters
part of ®@)(T) is semistandard. From (I) and (II) and by induction, we
conclude that @ is well-defined on T and that the %, ™-letters part of ®(T)
is semistandard.

Now let us show that the ‘fé_)—letters part of ®(7") is semistandard. Note
that all the maps qﬁ(i’j) (1 <i < j < n.) are well-defined by the above
argument.

(I’). The &) letters part of ®()(T) is semistandard by Lemma 3.4.

(ID). Suppose that the €, )-letters part of @@ 1 (T') and that of (®@+D)~ 1@+ (T)
is semistandard (x = n, — 1,...,1). This assumption is satisfied for z =

ne — 1. (i?). The €. -letters part of ¢@®) o (®@+1)=1 6 §E+1)(T) and

that of (¢@TLo+D) o p(@2)) o (D)=L o H@+1)(T) are semistandard by
Lemma 5.7. (ii’). Let us set

T _ (¢(x+1,y) o gZ)(ac,y—l)) 0.---0 (¢(x+1,x—|—1) o ¢(a:,x)) o ((I)(:E+1))—1 o Plz+1) (T)

(x+1 <y < mn.). Suppose that T # @ and that in the updating process
of the tableau from T to T the semistandardness of the %g_)—letters part of
the tableau is preserved. Then the %) letters part of ¢(®¥)(T) and that
of (¢ Lyt o p@W)(T) (y < n. — 1) are seminstandard by Lemma 5.5.
From (i’) and (ii’) and by induction, we have that the %) letters part of
®@)(T) = @ o d@+1)(T) is semistandard. From (I’) and (II’) and by
induction, we conclude that the &\ ) letters part of ®(7") is semistandard.

Since @ is well-defined on 7" so that it preserves the shape of 7', we have

that ®(T) € C-SST()) for all T € Cp-SSTrn (). O

6. PROOF OF PROPOSITION 4.1

In this section, we provide the proof of Proposition 4.1.
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Proposition 6.1. Let W be a skew semistandard tableau with entries {1,2, ...

We apply the jeu de taquin to W (starting from any inside corner of W)
to obtain a rectification of W denoted by Rect(W'). The process consists of
several steps of Schitzenberger’s sliding. Let us write the whole process as

W =5Sy— 5 —-— S, =Rect(W).

IfFE(Sk) is smooth on a Young diagram p, then FE(Sgy1) is also smooth on
p(k=0,1,...,m—1), where FE(S) is the far-eastern reading of S neglecting
the empty box of S. Therefore, if FE(W) is smooth on i, then FE(Rect(W))
1s also smooth on . Conversely, suppose that the far-eastern reading of a
semastandard Young tableau T filled with %é_)-letters 15 smooth on a Young
diagram (i, then the far-eastern readings of any skew semistandard tableaux
whose rectification is T are also smooth on .

Proof. Let us show that the smoothness is preserved by the jeu de taquin.
Suppose that S consists of n. columns and let the set of letters (%,&‘)-

letters) in the z-th column be ¢ (z) (1 <z < ng). It suffices to consider the
following case.

Sk Sk+1
J3lJq J3lJq
12101 72171

J) J)

— —

where J; and .J; are blocks of the (I 4 1)-st column of Sy and Sy, and J3
is a block oi the [-th column of Sy and Sk4;. In this case, we slide the box
containing j3 in the (I+1)-st column into the [-th column horizontally. Note
that

max(Jo) <j; —1 and min(J3) > j3 + 1.
By the rule of Schiitzenberger’s sliding, we have j3 < j2 so that j; < jo < js3.
Let us set p/ := p[ # ™) ..., #0+2) J]. This is a Young diagram by the
assumption of Proposition 6.1. Let us assume that j; < j2. The proof for
the case when j; = jo is similar. Since j3,j1 is smooth on u/,

/’Ll[j_?)] :("'7”}1?”91—}—17"'7”}27"'7[’1/;3 _17"'>

and

’u/[jg’jl] :(""'ug'l _1’/“4'1—1-17"'7/1;27'--)”3’3_17-~~)

A},
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are Young diagrams so that p/;, —1> pfs .. Since js, j1, Jo, J3 is smooth on
', Jo is smooth on (uf, ... W, 1, 5 — 1) and J3 is smooth on (W, —1,...)
and therefore on (7, ...). Now

ILLII:-]_]-] :("'7IL;1 _17”91+17"'7“;27"'?”937"')
is a Young diagram because :“;'1 -1 > :“;'1 41- Since Jo is smooth on
(s gy, — 1), J1,Jo is smooth on 4. Since J3 is smooth on
(u}3,...),ﬁ, Jo, J3 is smooth on pi/. Thatis, p' [j1], ¢/ [j1, J2], and i’ [j1, Ja, J5]
are all Young diagrams.

:u/[j_lv 727 J_37 .]_3] = :u/[j_?nj_la 727 J_B]
/ / / / /
— (...,,Ll/jl_l,/,l,jl _17“j1+17""ﬂj2""7ﬂj3_17"')

1, J2, I3, 43, Jo] = W3, g1, J2, J3, jo)

I
—~
=

ol
=
|
—_
=
<.~
=

|

—_
=

ol

=

+
—
=

<.~

[}

|

—_
=
ol
w

|

—_
~—

are Young diagrams because j3, ji1, J2, J3, j2 is smooth on 1’. Hence, ji, Jo, J3, j3, Jo
is smooth on p'.

The “converse” part follows from the fact that Schiitzenberger’s sliding is
reversible. [

Example 6.1. Let p = (3,2,2). The far-eastern reading of the skew semi-
standard tableau

= C»J\|

W =

=Nl

3
is smooth on 1 as we can see the process p — p[FEW)] = u[3,1,2,1,3] is

| | |
— — =[] —=[]—

The rectification of W is

Rect(W) =

‘»—||L\3| ol

and the far-eastern reading is also smooth on p as we can see the process

p— p[FERect(W))] = pl[l,3,3,2,1] is

| |
— — — — —

The rectification of
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1]

DI R

process 1 — u[FE(W')] = ul[l,3,2,1,3] is

-B-E-F-A-8

is the same as Rect(W) and FE(W') is smooth on p as we can see the
]

Suppose that T' € C,,-SSTkn and T consists of n. columns. To compute
®(T), we apply the map of the form ) successively to the updated tableau
whose entries are updated by preceding application of the map of the form
#+). To keep track of the updating stage in ®(T), let us introduce new
notation. Initially, the set of .# (resp. _#)-letters in the z-th column of T
is written as .# @ (resp. # @) withi =0 (1 < z < n.). Whenever the
map ¢*¥) is applied to the updated tableau whose entries are updated by
preceding application of the map of the form ¢, the counter i in # ¥ is
increased by one; .# W9 — #@i+1) and the counter j in I (2.3) is increased
by one; #®@J) — g @i+ At the end, i.e., in ®(T), the set of . (resp.
_Z)-letters in the z-th column is .# (%) (resp. g @ne=o+1)) (1 < 2 < n,).
The letters in # (@9 (resp. # @) are called .#(®9) (resp. _# @) letters
and those in # (@) (resp. #(#7)) are called .# (@) (resp. # (@1))-letters.

When a sequence of CK,NEJF)—let’l:ers I is smooth on a Young diagram \, we

write A [ A] Likewise, when a sequence of %g_)—letters J is smooth on a
Young diagram A\, we write A\ [ JJ For example, A [ A, i)] implies that
the sequence of Sﬁng)—letters I is smooth on A and the sequence of %&‘)-

letters J is smooth on the Young diagram X [I]. We also write [FE(T )} if

FE(T) is smooth on A\, where T is a semistandard Young or skew tableau.

In this case, we write [FE(TH — )\, where g = A [FE(TZ] and FE(T) is
given by changing the unbarred (barred) letters to the corresponding barred
(unbarred) letters in FE(T') and reversing the order of the sequence.

Lemma 6.1. Let A\ and p be Young diagrams. If A[I] = u, where I is

the sequence of Cégﬂ-letters 11,12, - y0q (11 < 12 < ... < ig), then I is
smooth on \; A [A] = p. Similarly, if A [ﬂ = 1, where J is the sequence

of ‘@g_)—letters Gby--5d2,91 (Jb < -+ =< Jo =< j1), then J is smooth on \;

V3] -
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Proof. Forp=2,...,a, \i1,...,ip—1] = p [ﬁ, . ,g}. Here, A [iq, ... 7ip—1]z'p—1 =
% [E, ce ’g}ip—l = ,uz-p_l and A [’il, Ce ’ip_l]ip = U [a, Ce ,gL.p = ,uip — 1.
Since p is a Young diagram, i.e., p;,—1 > p;,, we have Al[iy, ... 7ip—1]ip—1 >
Alig,. .. aip—l]ip- That is, A[i1,...,9p—1][ip] is a Young diagram. The proof
of the second part is analogous. [

For all T € By*" (V)il with v1 = ng,

(6.1) u [FE(TQ] _ [ﬂncﬁf, S0 g0, /(1703} — )

by definition. Under this condition and the notation introduced above, we
have the following two lemmas (Lemma 6.2 and Lemma 6.3).

Lemma 6.2. (1). Let us define

N1 A {j(l,l), o 7j(x—1,a:—1)7 /(1,:1:—1), e /(x—l,l)] (2 <z < nc),
A (x =1).

Then A\*=Y is a Young diagram on which @) is smooth (1 <z < n,).
(2). For 2 < x < ng, let us assume that

A ﬂlvl),...,ﬂw—l,x—n,/@aw—l),...,j(w—i’i)] (1<i<z-1),

)\(:E—l,i) — - -
A /(171%...,%(%1@1)] (i = )

(z—1,3) ]

are all Young diagrams. Suppose that 7 (@1 is smooth on \ Then we

have that . ®i+1) is smooth on AF—14HD (1 <4 < g — 1).
(3). A[Z00, 773, Foen).

Proof. Let us begin by giving the proof of (2). Note that a pair of .# (@,i+1)
and _# (*=4+1) are generated from a pair of .# (@4 and _¢ (*=%) by applying
»@=5%) 0 the updated tableau whose entries are updated by preceding appli-
cation of the map of the form ¢+). Let us call such sets . (#:9) and j(x_i’i)

to be updated are paired and write <J(‘W’), /(x_i’i)> 0<i<z-1;1<

pair
X S nc)- Let us set ](mﬂ) = {ilaiQa"'aia}v /(cc—i,i) = {j17j27"'7jb}7
T = {if iy, g}, gD = (g g, £ = S0 0
@) =Ly 1Y, and ZF = g @it g@miatl) — g s
Recall that these are ordered sets and are also considered as the sequences
of letters. We write A = \(@—1.) [/(x—U)] = AL+ for brevity.
(I). Let us consider the following three cases separately:

(a): i, =1}
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(b): i, # 1} and i, = ..

(c): i, # 1} and i # ..

Case (a). In this case, .Z # 0) and I. = i,. Indeed, if [, = i,(€ & (@)
(p < a), then i, ¢ £ because i, is larger than [. that is the largest letter
in .. This implies that i/, = i,. However, this also implies [} =i, € & (1)
due to the assumption of (a), which contradicts the fact that [} is not an
7 @1 Jetter. To proceed, let us divide this case further into the following
two cases:

(a-1): All @1 Jetters iy, i, ..., i, are also /(x_i’i)—letters.

(a-2): There exist non-_# (*~%9)_letters in the sequence of .# (*)-letters
i1,12,...,1q (That is, there exist letters belonging to 7 (@) \-Z in the
set {il,ig, RN ,ia}).

In case (a-1), a = ¢. Then i,_, = I}. According to the algorithm in
Definition 3.1 or Remark 3.1, we can write I = j, — 1 (3j, € #@%)),
In case (a-2), let us choose the largest letter i, (p < a) from the set of
J @) Jetters {iq,i2,...,iq} such that i, is not a _# @ ") letter (i.e., i, €
J@)\ £). Now consider the increasing (just by one) sequence of ).
letters

(6.2) ip+ 1y +2,... 0 — L.

(z,8

By the maximality of i,, any letter belonging to .# )\2 cannot appear in
(6.2). If all of the letters in (6.2) are # @~ letters, then I < 4, so that
iy, = ip, which contradicts the assumption of (a). Consequently, there must
exist some letters that are not .#@%-letters nor _# (=% letters in (6.2).
Denote by i, — ¢ (3g > 1) the largest letter among them. Since I, = i4,
we have [} = i, — ¢. By the maximality of i, — ¢, i, —q+1is a /(x_i’i)—
letter (when q = 1, i, = [l is a /(Z’”—i’i)-letter). Therefore, we can write
o —q+1=j, (3jr € /(x_i’i)) so that we have [ = j, — 1. In both cases
(a-1) and (a-2), we can write i/, = I* = j, — 1 (3j, € @ )). Since
il, = I € @) ig the letter generated by ¢(*=47) i’ ¢ ¢@=%i) By the
assumption of (2) of Lemma 6.2, A [ 7 @=0] = \@=L0) i5 a Young diagram
so that
r—i,i T—i,i
)\[/( )L;LZA[%( )Lgﬂ'

The left-hand side of this inequality is 5\% because i, ¢ # @59 while the
right-hand side is 5% 41+ 1 because i, + 1 = j, € 7 (=4%) and thereby
it > Air 41

Case (b). Firstly, let us show that we can write i/, = i, (3i, € Z(@)\.Z).
Since i/ ¢ .£* so that we can write i', = i, (3i, € S®)\.Z) because
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it e (F@N\ L)Y U .L*. In this case, p < a — 1. Otherwise, i\ = iq = I,
which is a contradiction. To proceed, let us consider the following three
cases separately:

(b-1): p=a—1land i, =ip—gq_1 =0 —1=1—1
(b-2): p<a—1andi, <i,— 1.
(b-3): p<a—1andi,=1i,— 1.

In case (b-1), we can write I, = j, (3j, € # @) so that i/, = j, — 1. In

case (b-2), there must exist a sequence of _#Z-letters jg, ..., jq+m such that
ip < gtk <iq (k=0,1,...,m) and
Jg —tp = 1,

jq—l—k_jq—l—k—lzl (kj:lw"vm)v

i — jom = 1.

Otherwise, I} cannot be smaller than i/, = i,(€ #@)\.#). The existence
of such a sequence implies i/, = i, = j, — 1. Case (b-3) must be excluded
because the inequalities 7, < --- < i,_1 < i, are not satisfied. In both cases
(b-1) and (b-2), we can write i/, = j, — 1 (3j, € #Z@ %)), Now since
A [/(x_i’i)} is a Young diagram,

X [/(az—i,i)] > X [/(az—i,i)}

/ y/
i i, +1

The left-hand side of this inequality is A [ I (x_i’i)] = 5\Z~p = 5% because

tp
ip € I@IN\ L e, ip ¢ /(m_i’i), while the right-hand side is S%H +1
because i, + 1 = j, € /(x_i’i) so that 5\% > S%H.
Case (c). Let us show that i, = i,. If £ = (), this is obvious. If .Z # 0,
the .# (@) letter i, is larger than . that is the largest letter in .Z so that
the .# (@) letter 4, is not a /(g’_i’i)-letter, which implies i/, = i,. By the

assumption of (2) of Lemma 6.2, .# @) is smooth on A [/(x_i’i)} so that

r—1,i —1,i
A[/( )Lg>)\[j( )Lﬁfl-l.

The left-hand side of this inequality is 5% because i, =i, ¢ ¢ (@=19) " wwhile
the right-hand side is S%H +6 (6 € {0,1}). Therefore, we have 5% > S\%H.
In (I), we have verified that :\ia > 5% 1, that is, A[7] is a Young diagram
for all possible cases.

(IT). Let us suppose that \*F+1D .= X[iZ ... ,E] is a Young diagram
(k+1 < a). In what follows, we prove \**+1) [it] = M%) is also a Young

diagram, i.e., X:,(kﬂ) > 5\:,({?11). Note that /(x_i’i) is smooth on A by the
k k
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assumption of (2) of Lemma 6.2 and by Lemma 6.1. Let us consider the
following three cases separately:

(a): 1) € I @it @ (= 7@\ £,
(b): i, € @\ Z* and i} € L.
(c): i}, € Z" and i}, € L~
Case (a). We can write i, = i, (i, € £ @)\ £) and
k= tp (T

k+1 - - X
A = A T = A
where we have used the fact that i, ¢ {i},... 4} (. i, = 1ip). In order
to compute D (k1) _ )\*(kﬂ), we divide this case further into the following

ih+1 T Tliptl
three cases:

(a-1): iy +1 € F@iFD,

(a-2): iy +1¢ 7@H) and i, +1 € Z.

(a-3): iy, +1¢ 7@H) and i, +1 ¢ Z.
Inhcase (a-1), by noting iy, i, +1 € @D we have ¢}, =i}, +1 =i, +1.
Then

Y = A -

so that we obtain

-l . N
gy = dp + 11 = A1 — 1

1x(k+1) % X i x(k+1)
A’;c = )\ip > )\ip—|—1 —1= Ai%—l—l .

In both cases (a-2) and (a-3), S\Z(T;l) = S\ZET{D = \i,+1 because i, + 1 ¢

7 @i+1)  Since # (@) is smooth on A [/(x_i’i)} by the assumption of (2),

(6.3) X /@—i’i),a,...,m] > A [/(1‘ i) zam] .

p iptl1
In case (a-2), the left-hand side of Eq. (6.3) is S\ip because i, € @\ 2,
i.e,ip ¢ # @ ). Theright-hand side is \; 1 because i,+1 € & (i, + 1 ap-
pears once in {iq,...,ip+1} and i, + 1 appears once in _# (@=%9)) " Therefore,

Xi, > Ai,+1 50 that we have )\ H(H) = Nip > Nip1 = A /l_f;l)

ip+1 ¢ 7@ because ip+1 gé (7= 2)\3) U.Z* and iy, +1 ¢ Z. The left-
hand side of Eq. (6.3) is )\ because i, € SN\ L ie., i, ¢ / »=i%) while
the right-hand side is AZ +1—|—5 (6 € {0,1}) because i, +1 ¢ .7 @) Therefore

)‘ > )\z y1+0 2> AZ +1 so that we have )\*(kﬂ) = )\ > )\lp L= )‘*’(l:l)'

Case (b). In this case, .£* # () and we can erte i, =L (Ell* € 7).
We divide this case further into the following two cases according to the
algorithm in Definition 3.1 or Remark 3.1:

(b-1): I* =i, — 1 (Ji, € @)\ Z).

In case (a-3),
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(b-2): I} = j,— 1 (Fj, € 7).
Note that the situation that [ = [* +1 1 (r # ¢) cannot happen.. Indeed,
if I¥ = 7’5+1 1 (r # c), then i}, = I’y — 1. Since I},; € #@*D this
implies 4}, = [7, |, which contradicts the assumption of (b). In case (b-
1), i, = ip because i, € @) and @} =i, — 1. Then

and

7 7] =\ —
e iy = dpli, = Ay — L

From these two equations, we have )\*(kH) > )\*(kH) In case (b-2),

Yk k+1
1x(k+1) Y17 7 Y %
)\l;c = )\[’LZL, .. ’Zk:—i-l]i;g = )\Z;c — >\jq—1
On the other hand,
T x(k+1) N T Y
>‘i§€+1 = Al sl 41 = >‘Z’ +1= Ajg»

where we have used the fact that i}, + 1 < 4;_ ;. This is shown as follows.

Ifip, +1= Zk+17 then j, = zk +1= Zk+1 This implies that j, is an I (@)

letter that is not a /(‘” “1)_letter due to the assumption of (b), which is a
contradiction. Now since _# (z=%4) is smooth on A, we have

)‘[jla s 7jq—1]jq—1 > )‘[jla s 7jq—1]jq

By noting j,—1 =105 ¢ {j1,...,jq—1}, the left-hand side of this inequality is
found to be Aj; 1, while the right-hand side is clearly A; . Hence, we have

Tx(k+1) *(k—l—l)
A > 0

Case (c). In this case, £* # ) and we can write i, = [y and i, =
v (3re{l,...,c—1}). According to the algorithm in Definition 3.1 or
Remark 3.1, let us consider the following three cases separately:

(c-1): I¥ =iy —1 (Fip € @I\ 2).

(c-2): I = jy—1 (Fj € gli).

(c-3): lr=10; 1 —1 (r#c).
In case (c-1), we have i, € #@1 and 4} =i, — 1. This implies By1 = Tp-
However, this also implies I}, = i) € J@N\ ¢ = @D\ £* which is
clearly a contradiction, and thereby this case must be excluded. In case
(C'2)7
1*(k+1 N YR Ny 3
N = X = Ay = Aot

bk
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On the other hand,

-/ . N . g .
k+1 ’Zk+1]i§€+1 - >‘z‘;€+1 = Njg»

where we have used the fact that ij_, > i} + 1. This is shown as follows.
If 4., = 4, + 1, then we have [, | = i§€+1“: i+ 1=04+1=j, which
contradicts the fact that 7, is not a _¢# (@=51)_Jetter. Now since ¢ @51 ig
smooth on )\, we have

5‘[.717 o 7.jq—1]jq—1 > S‘[jla o 7jq—1]jq

The left-hand side of this inequality is S\jq_l because j,—1 =17 ¢ {j1,...,Jq-1}>
while the right-hand side is clearly 5\jq. Hence, we have if,(kﬂ) > 5\:,([_6;{1)
k

In case (c-3), by noting ij ; = i} + 1, we have

*(k+1 T 3
A k(+1 )= A[ a@2+1]i;+1 = )‘i§€+1 -1
while (E41)
I *(k+ N 7 X
)\Z;C = )\[Zfl,...,’b;c_i_l]i;c = AZ;C

Hence, we have 5\*(]{“) 5\:,(];?11). In (IT), we have verified that X:,(kH) >
k k

)\*(lr;l) that is, )\*(k+1)[ '] is a Young diagram for all possible cases. From
k

(I) and (IT) and by induction, we have completed the proof of (2) of
Lemma 6.2.

The proof of (1) is as follows. We proceed by induction on x. Since the
sequence of letters _# (1:0) _#(1.0) is smooth on ), it is not hard to show that
#(11) is smooth on A\ by using the same argument as in (2); A [/(1’0)} is
a Young diagram on which .#(1.0) is smooth by Eq.(6.1) so that .#(1.1) is
smooth on A (z =1). For 2 <z <n,,

A@E=D — [j(l,l)’“.’j(ac—l,m—l)’ /(l,x—l),m’/(w—lﬂ)}

is written as

(6.4) Y {ju,o)? N .’j(aj—l,O)’ /(1,0)’ L f(a:—l,O)] .

This is shown as follows. Since

(709,.709)
(700, 7e0)

g e ey

<m’ /(x—1,0)>

pair

, <W, J(1’1)>

pair pair

(T, gDl

pair pair
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we can increase the counter in the paired sets appeared in Eq. (6.4) by one
successively keeping the shape of Eq. (6.4) because the corresponding map
¢ is weight-preserving. At the end, Eq. (6.4) turns out to be

A\ j(l,l)’.._7%(:5—1,:1:—1)’/(1@—1),“.7%("5_1’1)] _ \@-D),

Thus,
A@E=1) — /(1,0)’j(1,0)’_“7/(:17—1,0)7%(3:—1,0)}

is a Young diagram on which the sequence of letters _# (,0)_#(2,0) is smooth

by Eq. (6.1). Hence, we can show that .#@1) is smooth on A®~1) by using
the same argument as in (2).
The proof of (3) is as follows. We proceed by induction on z and i.

(I). We have that .# (1.1 is smooth on A by (1) (x = 1) and X [J(lvl), BACY

is a Young diagram by (1) (z = 2).
(IT). For 2 < z < ng, let us assume that

ANAOD, A G, gl i) (1 <i<e -

)\(1:—1,2') —
A J(Ll),...,ﬂw—m—w] (i = )

are all Young diagrams (for x = 2 this assumption is satisfied by (I)). (i).
By (1), #@D is smooth on A®~D = A\@=LD (i), For 1 <i < x — 1,
suppose that .# (@) is smooth on A®~1%) (for 4 = 1 this is satisfied). Thus,
S @i+1) is smooth on A1t by the claim of (2). From (i) and (ii) and
by induction, we have that .# @) is smooth on A#~19 (1 < i < ). For
1 <i<x—1,since

<W7 j(a:—i,i)>

’ <m7 /(:}:—i—l,i+1)>

)
pair

..,<W7 /(17w—1)>

pair

L)
pair
we have

A@=1,9) {W] Y [ D, ... FeTa) Fai), gla=l) /@c—z‘,z‘)}

—\ [](1,1),_._7f(x—1,:r—1)’j(z,x)’/(1,:0)7.”,/(ﬂc—i,i—l—l)]
=A@ <i<az 1),

and

\(z—1,7) [W] — )\ [j(1,1)7 - _,j(x,:c)] _ \(@a+1)
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Namely, A& (1 < i < z) are all Young diagrams. By (1), (&Y = A(®) ig
a Young diagram. That is,

L) gan gz (a:—l—l—i,i)] <<
@) _ | I o, I , 7 4 (1<i<ux),
Nz (i=z+1)
are all Young diagrams. The claim follows from (I) and (IT) and by induc-
tion on x. O
Lemma 6.3. (1). Let us define
pFHD =
{M [/(nc,l)’ SRR /(m—l—l,nc—x), j(nc,nc—m)’ ) j(x—i_l’l)] (1 <x<ne— 1))
L (x = ne).
Then p*+Y) s a Young diagram on which Z@1) s smooth.
(2). For 1 <z <n.—1, let us assume that
M(m—i—l,i) — /2(904—1) [f(nc,nc—x), ey J(mﬂ',i)} (1<i<n.—ux),
SRy (i=nc.—x+1)
are all Young diagrams, where f®+t1) .= l/(”wl), ey Fatlne—z) | Gyp.
L z

pose that _# @) js smooth on p(*+49). Then we have that _# @i+1) js smooth
on pEtLt) 1 < <n,—x).

(3) L lj(nc71)’ e /(ch—lz’ j(l,ncg‘| )

Proof. The proof of (1) of Lemma 6.3 is as follows. Since the sequence of

letters & ("e0) 7 (nc.0) is smooth on p, it is not hard to show that g (ne1)
is smooth on g by using the same argument as in Lemma 6.2 (2). For
1<x<n.—1,

e e I R e T L]

= [j(nc,O)’ /(nc,o)’ o f(a:+1,0)’ f(x—i—l,o)}

is a Young diagram on which the sequence of letters .# (@0 Z @0) is smooth

by Eq. (6.1). We can show that _#®1 is smooth on @+ by using the
same argument as in Lemma 6.2 (2). The proof of the rest part runs as in
Lemma 6.2 (2) and (3). O]

Proof of Proposition 4.1. Let T € Bffzn(u)f; and suppose that T consists of

ne columns. By Lemma 5.10, we have ®(T") € C,,-SST(r). By Lemma 6.2
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4

mﬁhmmﬁ&meAPm%“wa%ﬂw@%/W@ww/@W}

Let us set ¢ := \ {,ﬂ(lvlz, - J("c’”CQ], ie., {FE(CD(T)(JF) }, which is p by
Eq. (6.1). Here,

{[f 1nc) j(nc } — [/(an)’m,“.’/(nc,l)’m}
=\ [FE (@(T))] .
Since ® is weight-preserving, A FE (@(T))} = A [FE(T)] = p. Combining
(nca]-) (an) = 1 (_) =
these, we have p l/ oo I ] (,i.e, {FE((I)(T) )] ¢ and

- ’
therefore p [FE(Rect(CI)(T)(_)D = (¢ by Proposition 6.1. Hence, we have

(T ¢ B (5) and Rect(®(T)(7)) e B%_)(n)’g, where £ and 7 are the
shapes of ®(T)™) and Rect(®(T)(7)), respectively. O]

7. PROPERTIES OF U

Throughout this section, the tableau T is that described in Proposi-
tion 4.2. The purpose of this section is to show that the map ¥ is well-
defined and ¥(T") € C,,-SSTkn (V).

Lemma 7.1. The map ¥\ %) is well-defined on

f:{@@”ﬂv<2<x<m»
T (x =1).

Here we assume T # 0.

Proof. When z = 1, let Aq be the offset given by the difference between the

length of the C19”,§+)-letters part of the first column of 7" and that of the n.-th
column of T'. Suppose that the tableau 7" has the following configuration.

Since m appears in Th € B%_)( )i ¢» m < l(u). Furthermore, it is obvious
that (¢ — Ag — p) < I(v). Recall that we assume that I(u) + I[(v) < n in
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Theorem 4.1. Hence, n—m > I(u) +1(v) —m > (¢ — Agq — p) so that Pp(@me)
is well-defined on 7' (Definition 3.2).
When 2 < z < n,, let Aq be the offset given by the difference between the

length of the %ﬁ)—letters part of the z-th column of 7" and that of the n.-th
column of T'. Suppose that the tableau 71" has the following configuration.

Note that the ‘g,g_)—letters part of the z-th column is unchanged under ap-

plication of U(=1) so that m in the z-th column in T lies at the original
position of T, and thereby m < I(u). Let m’ be the entry at the p-th
position of the n.-th column of the original tableau T. Then m’ < m by
Lemma 3.5 so that min(m,m’) < I(u). Hence, we have n — min(m,m’) >
() 4 1(v) — min(m,m’) > (¢ — Aq — p). That is, (®") is well-defined on

T. O
Lemma 7.2. The map &Y is well-defined on
T =@Vt oo p@ne) o We—1)(T) (1 <z <y<n).

Here, we assume that T # () and that in the updating process of the tableau

from T to T the semistandardness of the %TSJF)—letters part of the tableau is
preserved.

Proof. Let ct (resp. C'J(ry)) be the €.~ (resp. ‘57§+))-1etters part of the
z-th (resp. y-th) column of 7. Let C®%) be the column whose A (resp.

%g_))—letters part is C’J(ry) (resp. C’(_x)). If C®¥) is KN-coadmissible, then we
can apply (@Y to T. Suppose that T has the following configuration.

T Y

Fﬁ

If (§ — Ag — p) +m < n, then C@¥) is KN-coadmissible, where Ag(> 0)
is the offset given by the difference between the length of the ‘an(fr)—letters
part of the z-th column and that of the y-th column of T'. Let Cix)/ be the

q — |m)|
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%\ Jetters part of the 2-th column of 7" := ¢(®¥*1(T) and C'J(ryﬂ)’ be the
CKrgjL)—letters part of the (y + 1)-st column of 7”. Let C@¥*1 be the column
whose €\ (resp. %g_))-letters part is C’J(ryﬂ)/ (resp. C(_$)/) and .Z@v+1)
be the set of Z-letters of C*¥+1) We consider the following two cases
separately:

(a): m appears in the z-th column of 7" and m ¢ L@yt
(b): M in the z-th column of T is generated when @) g applied
to T".

Case (a). Suppose that the tableau 7" has the following configuration.

x yy+1

mlq | P

q —|m

By the assumption of (a), m ¢ Z@¥+D so that m < i (if m € L@y,
then m in the z-th column of T” disappear by w(’”’yﬂ)). Let us set

{l e p@y+)) ’ I <m < z‘} = It = Lins « - Lyss ).

If this set is empty (s = 0), then the position of m does not change when
Y @¥+1) is applied to T”. In this case, we, we have (¢ — Ag—p)+min(m, i) =
(¢ — Aq —p) +m < n by Lemma 3.1 because C'®¥*+1 is KN-coadmissible
(T # (). This inequality still holds when ¢@¥+1) is applied to 7" so that
C@¥) is KN-coadmissible. Now suppose that the above set is not empty

(s > 1). We adopt the second kind algorithm for ¢)(*¥*1) here. Let us
assume that ]j{l e Lyt | m <<l } = t. Since the number of I’s

min

such that [,,;, <[ < I oiss +t — 1, we have

min
(71) anin_Aq_pi@in—{_l:rninSn+(s+t—1)+1
T T

by Lemma 3.7, where p! . is the position of [! . in the (y+1)-st column and

min min

I is the position of I . in the 2-th column of ¥ @¥+1)(T") = T'. Initially,

qmin min

the tableau 7" has the following configuration, where the left (resp. right)
part is the %E_) (resp. ‘Kéﬁ)—letters one (Iy31 = lmin < .. <lpps <m <1).
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T y+1
q9— 1 m lmin
lrys lrts

lnin i | <D

Let us divide this case further into the following two cases:
(a-1): i > 1!

i min’
(a-2): ) . > 1.

Note that i # I . because i € C@¥+D) and I ¢ ClwvtD),
Case (a-1). The filling diagram of the C®*¥+1) has the following config-

uration before the operation for l,,,;, — l;rnm.
[ ] (@] 0 (@]
[ ] [ ] ( ) (@]
Zmin m ljmn

Here, the number of (£)-slots in region (0) is t. There are no (-slots in
this region. Also, there are no (x)-slots in this region. Otherwise, it would

contradict the minimality of [,,;, in {l e Z@ytl) ‘ It <m < l_}. Let us

assume that the number of (+)-slots and that of (—)-slots in region (0) are
« and f, respectively. Then we have

=m+ (a+B+1t)+1.

When the operation (A) for l,,;, — 0o s finished, the (y + 1)-st column

min

of the updated tableau has the left configuration in the figure below.

(A) (B)
lr+2 p:rnin - limn
i A
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In the operation (B), s — 1 .Z@¥+) letters, l,49,...,l4s together with ¢
L@yt Jetters are relocated just below the box containing ljm.n so that the
(y 4+ 1)-st column of the updated tableau has the right configuration, Hence,
we have

(7.3) I <p—s—t.

min —
Note that p;fm-n does not change under subsequent operations for [,1o —
li+2, ...,lo = 1. The z-th column of T" has the left configuration (A) in
the figure below when the operation (A) for l,;, — I s finished. When

min
ljm.n appears above m, the position of the box containing m is

changed from ¢ to g + 1. Since there are 8 + t boxes with ¢ (*)-letters

the entry

between the box containing l;rnm and that containing m, the position of the

box containing U is q— 0 —t.

min

(A) (B)
q— /6 —t—= l;‘;’m‘n q’jnzn - ljnin
g+1—|m qg+s—|m

When the operation (B) for l,,;, — AT finished, the z-th column of the

min
updated tableau has the right configuration (B) in the above figure. Since

s —1 L@y+1) Jetters lyysy...,lr12 lying above the box containing m before

the operation (B) for i, — ljm;n are relocated above lim-n, the position of
m is changed from ¢+ 1 to ¢+ 1+ (s — 1) = ¢ + s. Likewise, the position

of the box containing ljm.n is changed from ¢ — 3 —t to

(7.4) g =q—B—t+(s+t—1)=q—B+s—1,
which does not change under subsequent operations for [, o — li 42y le =

If. From Eqgs. (7.1), (7.2), and (7.4), we have
(7.5) (q+s)—Aq—pIm-n+m = q;[nm—Aq—pInm—Hjnm—@—t <n+s—a.
Combining Eqs. (7.3) and (7.5), we have (¢+s)—Ag—p+m <n—a—-t <n.
Here the position of m in the y-th column of 7" is p and that of m in the
z-th column is ¢ + s. Therefore, C'*¥) is KN-coadmissible.

Case (a-2). Let us assume that i ¢ Z@¥TD_ The proof for the case

when i € Z@¥+Dig similar. The filling diagram of the column C*¥+1) has
T

the following configuration before the operation for l,;, — [, ;.-
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[ ] (@] 1 [ ] 2 (@]
s W @

The total number of (£)-slots in regions (1) and (2) is t. Let us assume
that the number of (+)-slots in region (1) is t;. There are no (-slots in both
regions. Also, there are no (x)-slots in both regions as in (a-1). Let us
assume that the number of (+)-slots and that of (—)-slots in region (j) are
a; and f3;, respectively (j = 1,2). Then
2

(7.6) i =m+ Y (ai+B;) +t+2.

i=1
The updated tableau has the following configuration when the operation (A)
for lyin — II . is finished.

min
x y+1
- Bi—t—-lf i | «p-1
= T
Q+1_>m lmin

When the operation (B) for l,,,;,, — ljm-n is finished, the updated tableau has
the following configuration.

x y+1
¢ — it i | ep—s—t;
+s— [ m i f
q man %pm’ln
where
2 2
(7.7) q;rnm:q—ZBi—t—l—(s—i—t—l):(q—|—s)—ZBi—1.
i=1 =1

Since a # W) Jetters exist between the box containing ¢ and that contain-
o T
ing [

min’

(7.8) o aa—1l=p—s—t.

p min
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Note that pjm.n and qim.n do not change under subsequent operations for

loya = I,y 1o — Ib. From Eqs. (7.1), (7.6), (7.7), and (7.8), we have

(g+8) = Ag—p+m =g, — Ag—phy, + 1, —a1 —s =t — 1

<n-—oa —t <n.

Here, the position of the box containing m in the y-th column of T is P
and that of m in the z-th column of T is ¢ + s. Therefore, C®¥) is KN-
coadmissible.

Case (b). In this case, we can write m = l;r c L@yt — {ZI, l;, . ,ll}.
Let us set {lp+1,...,lp+r} = {l e L@yt ‘ I <l< lj} (if » = 0, then this

set is considered to be empty). We adopt the first kind algorithm for Pleytl)

here. When the operation for [; — l;r = m is finished, the updated tableau
has the left configuration in the figure below, where A is the block consisting
of s boxes (s > 1).

yy+1 yy+1
mi< P p=m
p—[mA p>p+1 ‘m— p1

The right configuration is not allowed, where A’ is the block consisting of
s’ boxes (s’ > 0). This can be seen as follows. Suppose that the entry
in the pi-th box in the (y + 1)-st column is j in the initial tableau T".
When the operations for [;,_; — l;.r_l is finished, lJlr, e ,l;r_l lie above the
box containing j in the (y + 1)-st column so that the p;-th box in the
(y + 1)-st column still has the entry j. The operation for [; — l;r replaces
the entry ;5 with lj = m. This implies that j < lj = m by Lemma 3.5,

which contradicts the semistandardness of the %&H—letters part of T” so

that the right configuration cannot happen. When a sequence of operations

for Lppr = U yyeeslpyr = Uy

(y + 1)-st column becomes to be p’ = p; — r, which does not change under
subsequent operations. Since p > p; + 1, we have p’ < p —r — 1. On the
other hand, by Lemma 3.7, we have (¢ — Ag — p)+m<n+r+1, where

is finished, the position of m = lj in the

q is the position of m = l;-r in the z-th column. Combining these, we have
that (¢ — Aq —p) +m < n, i.e., C®¥ is KN-coadmissible. O

The following four lemmas may be proven in the similar manner of the
proof of Lemma 5.2 (Lemma 5.4), Lemma 5.3, and Lemma 5.5.
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Lemma 7.3. Let us set
T =@yt oo p@ne) o §a-1(T) (1<z<y<n.—1).

Here, we assume that T # () and that in the updating process of the tableau
from T to T the semistandardness of the ‘5,§+)—letters part of the tableau is
preserved (WO(T) =T).
(1). Suppose that T has the following configuration, where the left (resp.
right) part is the ‘KT(L_) (resp. CKTEJF))—letters one (p<qg<r<s).
x yy+1

r — by a| [<Pp

Then we have
(g —p) + (s —r) < max(by, bs) — a.

(2). Let @) be the set of # -letters in the x-th column and F'W) be the
set of S -letters in the y-th column and set Ly — /(x) N7,
Ifg{l e L @y) ‘ l<a<ll}=din P@Y(T), then we have

(g —p)+ (s —7r) < max(by,b) —a —§
in the above configuration in T.
Lemma 7.4. Let us set
T — (¢(m—l,y) o w(m,y—i—l)) 0...0 (,(/}(m—l,nc—l) o w(m,nd) o w(m—l,nc)
o (TN Lo gl-1)(T) 2<z<y+1<n,).

Here, we assume that T # ) and that in the updating process of the tableau
from T to T the semistandardness of the ‘ﬁé_)—letters part of the tableau is
preserved.
(1). Suppose that the tableau T has the following configuration, where the
left (resp. right) part is the CKT(L_) (resp. ‘57(L+))—letters one (p < q<
r <s).
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Then we have
(g —p) + (s —r) < max(by, bs) — a.

(2). Let #@) be the set of # -letters in the x-th column and FW) be the
S -letters part of the y-th column and set L@Y) .= /(ZE) NnsW. If
t{l e L@y) [l<a<ll}=6in YE@EY(T), then we have

(¢ —p)+ (s —7) <max(by,b2) —a—3
in the above configuration in T.

Lemma 7.5. Let us set
T =@t oo p@ne) o Ya—1(T) (1<2<y<n.—1).

Here, we assume that T # 0 and that in the updating process of the tableau
from T to T the semistandardness of the ‘ﬁ,ng)-letters part of the tableau is
preserved (WON(T) = T). Then the &\ letters part of Y&V (T) is semis-
tandard.

Lemma 7.6. Let us set

7o (w(gj—l,y) o w(m,y—i—l)) oo (,(/}(ac—l,nc—l) o w(x,nc)> o l@—1Lme)
o (WEN Lo wl-1(T) 2<z<y<n.—1).

Here, we assume that T # () and that in the updating process of the tableau
from T to T the semistandardness of the ‘f,g_)-letters part of the tableau s
preserved. Then the %,g_)—letters part of Y@Y)(T) and that of (w(m_l’y_l) o ¢(x7y)) (1)

are semistandard.

The following two lemmas (Lemma 7.7 and Lemma 7.8), which may be
proven in the similar manner of the proof of Lemma 5.2 and Lemma 5.4,
guarantee that W(7") satisfies the KN-admissible condition on adjacent columns
(Definition 2.6 (C2)).

Lemma 7.7. Let us set
T =) 0. ogpl®m) o Wl=IN(T) (2 <z <ny).

Here, we assume that T # () and that in the updating process of the tableau

from T to T the semistandardness of the (KTSJF)-letters part of the tableau is
preserved. Suppose that T has the following configuration, where the left

(resp. right) part is the %,&‘) (resp. ‘Kéﬂ)—lettem one (p<qg<r<s).
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T r—1x
7“—) m —~0p
H
s —|a] b 4q

Then we have (¢ —p) + (s —71) < b—a.
Lemma 7.8. Let us set
T _ (,(p(w—l,m—l) o w(m,w)) 0.0 (,(p(m—l,nc—l) o ,(p(m,nc)) o w(w—l,nc)
o (BE=N=lo wl-1(T) (2 <z <n,),

Here, we assume that T # () and that in the updating process of the tableau

from T to T the semistandardness of the %s_)-letters part of the tableau is
preserved. Suppose that the tableau T has the following configuration, where

the left (resp. right) part is the %) (resp. ‘57§+))-lette7‘s one (p<g<r<

r—1x r—1
ﬂ
<_q
Then we have (q — (s—r)<b—a.

Lemma 7.9. Suppose that W1 is well-defined on T and ¥@=D(T) is
semistandard (2 < x < n.). Then ¥®) is well-defined on T and ¥®)(T) is
semistandard. Therefore, W is well-defined on T by induction and ¥(T') €
Cn—SSTKN(V).

Proof. The proof is analogous to that of Lemma 5.10. Each column of
U(T) satisfies the KN-admissible condition (Definition 2.6 (C1)) because
P2 = (p@2))=1 g well-defined (1 < x < n.) and any pair of adjacent
columns in W (7T") satisfies the KN-admissible condition (Definition 2.6 (C2))
by Lemma 7.7 and Lemma 7.8. Since ¥ is well-defined on T so that it
preserves the shape of T, we have that W(T') € C,,-SSTkn(v). O

8. PROOF OF PROPOSITION 4.2

In this section, we provide the proof of Proposition 4.2. Let T' € C,-SST(v)
be the tableau described in Proposition 4.2 with n. columns. We use the
same notation as in Section 6 to keep track of the updating stage in W(7T').
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Initially, the set of .# (resp. _#)-letters in the z-th column of T" is written
as @0 (resp. #@9) with i =0 (1 <z < n.). Whenever the map (@)
is applied to the updated tableau whose entries are updated by preceding
application of the map of the form ¢, the counter i in I (1) ig increased
by one; ¢ (,0) B (zi+1) and the counter j in .#¥J) is increased by one;
FW3) 5 gWit) | At the end, i.e., in U(T) the set of .# (resp. _#)-letters
in the z-th column is #@®) (resp. ¢ @ne=2+1)) (1 <z < n.). The letters
in # @) (resp. # @) are called .#(®? (resp. #(@))-letters and those in
S (@:1) (resp. /(W)) are called .# (%9 (resp. /(x’i))—letters as in Section 6.

For all (T3, Tz) € BV (€)) x BL ()t ¢ [FE(T1 ] — A by definition, i.e.,

(8.1) C[Mﬂ} — A\

Furthermore, |:FE(T2 ] = ( by definition and therefore p [FE(T(_) )] =(
by Proposition 6.1, i.e.,

(8.2) [ {WW} = (.

R T

Under these conditions and the notation introduced above, we have the
following lemma.

Lemma 8.1. (1). Let us define

Then we have ™% 4s smooth on p' (1 <i < n,).
(2). Let us define

ﬁ(x) o {M [ﬂ(nc,nc), f(nc,l)7 e J(m+1,m+1)’m} 1<z<n.—1),
K (x =ne)

and ) = i@ [F@2)] . For 2 <z < n,, let us assume that u'® and
p@d = ) [W’ o 7W} (1<i<uz)

are all Young diagrams. Suppose that j(x_l’i_l) is smooth on p\®9 . Then
we have that 7@~ 5) 4s smooth on p®H1) 1 <i<z—1).

(3). ly(nc,nc>,‘/<n_c,1>,,,,,yu,l),f(l,nc)} Y

Proof. Let us begin by giving the proof of (2). Note that the pair of .#@=17)
and _¢ (ine=2+2) is generated from the pair of # @171 and g (ime—a+1)
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by applying 2= to the updated tableau whose entries are updated by
preceding application of the map of the form ). Let us call such sets

g @=Li=1) and J (ime=a+1) 0 be updated are paired and write
g @=Li1) (i,nc—m+1)>
< / pair

(1<i<z—-1;2<x<n.+1) asin Section 6. Let us set g la=1i-1) —
{ir, iy yia), LMt = L) o gy, F@TD = Lif b il
plime=atd) = (50 5b i), &= g Emhimn glnematl) = £y 1,
and £t .= g1 n j(i’”c_“m = {lJ{,lg, e ,ll}. Recall that these are
ordered sets and are also considered as the sequences of letters. We write
= pl@d [/(i’”c_”l)} = @D for brevity.

(I). Let us consider the following three cases separately:

(a): i) =11,
(b): it # 1! and iy = 1.
(c): i} # 11 and i) #1,.

Case (a). In this case, ZT # () and i = [;. Indeed, if I; =i, (p > 1),
then i; ¢ £ because i; is smaller than [; that is the smallest letter in
Z. This implies i = i;. However, this also implies ZI =4 € gl-1i-1)
due to the assumption of (a), which contradicts the fact that li is not
an #@=Li=1) Jetter. To proceed, let us divide this case further into the
following two cases:

(a-1): All #@=Li=D letters iy, g, . . . 4, are also _# (#7e=#+1) Jetters.
(a-2): There exist non-_¢ (#"<=#+1)_Jetters in the sequence of .# (#=1i=1)_
letters i1,1492,...,i, (That is, there exist some letters belonging to
J(m—l,i—l)\g in {il, 12, ... ,’ia}).
In case (a-1), we have i} = ZI. According to the Remark 3.2, we can write
lI = jr +1 (3j, € #re=2+D) In case (a-2), let us choose the smallest
letter i, (p > 1) from the set of & @=Li=1) Jetters iq,49,...,is such that
ip is not a _Z (ne=#+ . Jetter (ie., i, € S @ 1"\ Z). Now consider the
)

increasing (just by one) sequence of (57§+ -letters

(8.3) i+l +2,. .0, —1

By the minimality of i,,, any letter belonging to .# (@=Li=1)\ & cannot appear
in (8.3). If all of the letters in (8.3) are ¢ (#me=2+1)_etters, then ZI > 4
so that ¢ = 7, which contradicts the assumption of (a). Consequently,
there must exist some letters that are not . (*~17=1_letters nor I (ime—zt+1)_
letters in the sequence (8.3). Denote by i1 + ¢ (3¢ > 1) the smallest letter

among them. Since [ = i1, we have lJlr = 11 +¢. By the minimality of i1 + ¢,
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i1+qg—1isa /(i’”c_erl)—letter (wheng=1,iy =1l isa /(i’”c_m“)—le’cter).
Hence, we can write i1 + ¢ — 1 = Jr (37 € j(i’”c_”“)) SO tha’p il = lI =
Jr + 1. Since ¢} = lI € #@=19) is the letter generated by ¢~ i ¢
_gline=z+1) " By the assumption of (2) of Lemma 8.1, fi {/(ivnc_ﬁl)} =

1@ is a Young diagram so that
o [j(i,nc—mﬁ-l)} > i {/(i,nc—x—i—l)] .
-1 iy
The left-hand side of this inequality is fi—1 — 1 because i — 1 = j, €
7 n=z+1) "while the right-hand side is fiy, because iy ¢ g line=z+l) and
thereby ﬂill_l > '&7‘/1
Case (b). Firstly, let us show that we can write i} = i, (Ji, € .# @11\ ).
Since i ¢ £ we can write i =i, (3i, € LT LU\ L), because i} €
(FE=Li=\ )1y £t In this case, p > 2. Otherwise 7 = i; = Iy, which
is a contradiction. To proceed, let us consider the following three cases
separately:
(b-].): p:2andi’1:ip:2:i1+1:l1—|—1.
(b-2): p > 2 and i, > 47 + 1.
(b-3): p>2and i, =14 + 1.
In case (b-1), we can write I; = j, (3j, € £ 2t} and i} = j. + 1. In
case (b-2), there must exist a sequence of ¢ (ine—2+1) Jetters Jgr s Jg+m
such that i1 < jg4r <ip (k=0,1,...,m) and

jq - il - 17
jq—I—k_jq—l—k—l:l (k:17"')m))
'l:p - jq+m =1.
Otherwise, lJlr cannot be larger than ij = i,(€ f(x_l’i_l)\.i”). The existence
of such a sequence implies ¢} = i, = jg4m + 1. Case (b-3) must be excluded
because the inequalities i; < i9 < --- < i, do not hold. In both cases (b-
1) and (b-2), we can write 7, = j, + 1 (3j, € Z@m==+)) Now since
f {/(iv”c—f”l)} is a Young diagram,

j| fGreetD] 2| gD

(5| 1
The left-hand side of this inequality is fiy—1 — 1 because i — 1 = j,. €
/(i’”c_a’ﬂ), while the right-hand side is f;, = f1;; because i), € f(x_l’i_l)\f,
i.e., ip ¢ j(l,ncfx+l) so that ,ai/l_l > [Lzll
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Case (c). Let us show that i} = i;. If £ = (), this is obvious. If £ # 0,
the .#(@=1i=1)_Jetter 4; is smaller than [; that is the smallest letter in &
so that the .#@—Li=D_ Jetter i; is not a /(i’”c_x“)—letter, which implies
iy = i1. By the assumption of (2) of Lemma 8.1, 7 @=Li=1) ig smooth on

plo) = o [ FGn=r1] s0 that

[L[W} 1>,1{W],

11— 1
The left-hand side of this inequality is fi;;—1 —0 (§ € {0,1}), while the right-
hand side is fi;, because i1 ¢ j(i’”c_g’). Therefore, we have fi; 1 = f1i,—1 >
fii, = iy . In (I), we have verified that fiy 1 > fiz, that is, a[i}] is a Young
diagram for all possible cases.

(IT). Let us suppose that fif = ffi},...,i._4] is a Young diagram
(k—1>1). We prove that g'*~1[i!] is also a Young diagram. Note that
I (ime—a+1) i5 gmooth on i by Lemma 6.1. Let us consider the following
three cases separately:

(a): @, € F@ELIN\ Zt(= gLzl ),
(b): i}, , € F@ LN\ LT and i € £1.
(c): i), € £ and i) € &7,
Case (a). We can write ¢ = i), (3i, € I\L) and
Y =l iy, =

;[}Ek__ll) = fi, ..., 4;,_1)i,—1, we divide this case further

into the following three cases:
(a-1): iy — 1 € F@1D),
(a-2): ip — 1 ¢ @ 1) and 4, — 1 € Z.
(a-3): i, — 1 ¢ 7@ 1) and i, — 1 ¢ Z.
In case (a-1), we have i, =i, — 1 because 7}, = i,. Then

(k—=1)

In order to compute [

_t(k=1) _ . : : _
/’Ljé_l : = /‘l’[llla SR 72;{—1 =1p — 1]ip—1 = Mip—1 +1
so that we obtain
_t(k=1) - N k—1
Mjé_l )= fi,—1+ 1> p;, = MI;E )
In both cases (a-2) and (a-3), we have /23,(]‘7__11) = fi;,—1 because i, — 1 ¢
k

#(@=1L1) By the assumption of (2) of Lemma 8.1, 7 (@=1Li=1) is smooth on
”(x,z) _ ,lNL [%(i,nc—x—l—l)}’

(8.4) ,1[j@%nc—ﬁl),z‘l,...,z'p_l] >ﬁ[/@%nc—xH),zl,...,z'p_l]

ip—1 ip
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In case (a-2), the left-hand side of Eq.(8.4) is fi;,—1 because i,—1 € .Z (i,—1
appears once in {i1,...,4,—1} and i, — 1 appears once in _¢ (ibne—a+1)) The
right-hand side is fi;, because i, € ﬂ(m_l’i_l)\g, ie., iy, ¢ /(i’”c_”l).

k—1 . . ~f(k—1
1;5_1 ) = Hip—1 > Hi, = MI;E ) In

case (a-3), i, — 1 ¢ # @171 because i, — 1 ¢ (L@ LD\ Z) U 2T and
ip—1 ¢ Z. The left-hand side of Eq. (8.4) is fi;,—1 —0 (d € {0,1}), while the
right-hand side is fi;,_1 because i, € S@ L=\ Z ie. i, ¢ gEnre-atl),
~ ~ ~T(k— ~ ~ ~T(k—
Therefore, fi;,-1 — 0 > fi;, so that /Jj;i_ll) = [li,—1 > fli, = “jﬁi b,
Case (b). In this case, £T # () and we can write i} = Al e #h. we
divide this case further into the following two cases according to Remark 3.2:
(b-1): Il =i, +1 (i, € F—LimD\ @),
(b-2): If = j,+1 (3j, € g lime—atD)),
The situation that [} = I!_,+1 (r # 1) cannot happen. Indeed, if I} = II_, +
1(r#1), thend, =1, +1. Since Il | € .#@ 1) this implies #}_, =11 |,
which contradicts the assumption of (b). In case (b-1), i}, = i, because
ip € @171 and ) =i, + 1. Then

Therefore, we have fi;, 1 > fi;, so that [

H(k=1)  ~p. . : _
/J’I;S ) = /L[Z{la s 77J§<;—1 = Zp]’ip—i—l = Hip+1,
and
H(k—1) _ ~p. . . _
A = Bl = i, = 1.
From these two equations, we have /lj,(k__ll) > [L;r,(k_l). In case (b-2),
k k
Hk—1) _ ~p. . . N
uj: D= Gl i, = i = e
On the other hand,
_t(k—1) _ ~p. : . -
Mjfi_l ) = M[l/p e 7@_1]2’;—1 = Hif —1 = Hjg»

where we have used the fact that ¢, —1 > 4;_,. This is shown as follows.
If 44 —1 = i._4, then we have j, = z; — 1 =d;_,. This implies that j, is
an .7 @=Li=D Jetter but is not a _# (#"e==+1) Jetter due to the assumption

of (b), which is a contradiction. Now since _# (ibne—2+1) is smooth on i, we
have

/’l[ﬂ’ cee 7jq+1]jq > ﬂ[j_bv oo 7jq+1]jq+1‘
By noting that j, +1 = I ¢ {jb,---+Jq+1}, the right-hand side of the above
inequality is found to be fi; 11, while the left-hand side is clearly fi;,. Hence,

~t(k—1 ~f(k—1
a0 5 D)
k k



CRYSTAL INTERPRETATION OF A FORMULA ON THE BRANCHING RULE 165

Case (c). In this case, ZT # () and we can write i} , = Il and
i, = A (3Ir € {2,...,¢}). According to the algorithm described above
Eq. (3.2) or Remark 3.2, let us consider the following three cases separately:

(c-1): ll =i, +1 (3ip e FELimD\ @),

(c-2): Il = j,+1 (Fj, € gline—ath)y,

(c-3): ll=11_,+1 (r#1).
In case (c-1), i, = i, because i, € Z@=L1) and i, = ip + 1. Then
I =i, e sLi-D\ @ — gL\ 2t which derives a contradiction,
and thereby case (c-1) must be excluded. In case (c-2),

~f(k—1) ~rs ; (0 [
/'LT’( - /1,[7,/1, cen 77’;4:—1]1';: = /*Lz;c = Hjg+1-
On the other hand,
(k-1 : [0 [
MT’(_l ) _ — M[ ,Z;C_l]z‘;c_l = ,U'i;C—l = qu’

where we have used the fact that #)_; < i, — 1. This is shown as follows.
Ifif_, =i}, —1, then, Il_, =i, | =i —1=j,, which contradicts the fact

that ll_l is not a _¢ (#ne=2+1) Jetter. Now since ¢ (ine—2+1) is smooth on
i1, we have

ﬁ[jb) cee ajq-f-l]jq > [L[jba cee 7jq+1]jq+1'

By noting j, +1 = Il ¢ {jbs---,Jg+1}, the right-hand side of the above
inequality is seen to be fij,+1, while the left-hand side is clearly fi;,. Hence,

we have ,uT(k_ Vs ﬂT,(k Y. In case (c-3), since i) — 1 =1;_,(= ZI 1)
_t(k—1) _ ~p. : .
MT( )= :u[zl? cee al;c—l = l;[—l]l:[_l = M) —1 + 1,
while
_f(k—1) _ ~p. : .
MT]E D= Al iy =
Hence, we have [LT(kil) > ,ELZT,(k Y I (IT), we have verified that NT(k_ U
k

~T,(k 2 , that is, /ﬂ(k D[i!] is a Young diagram for all possible cases. From (I)

and (IT) and by induction, we have completed the proof of (2) of Lemma 8.1.
The proof of (1) is as follows. We proceed by induction on 4. Since

pO = | gwe0) g0} = ¢ and &0 is smooth on ¢ by Egs. (8.1)

and (8.2), we have that F(1e:0) is smooth on p®. For i = 0,...,n, — 1,

suppose that .# (™" is smooth on ,u(i)’ . This is satisfied for : = 0. Then we

have that .# ("1 is smooth on p(*Y" by the same argument as in (2).
The proof of (3) is as follows. We proceed by induction on x and i.
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(I). We have p [W, ... ,W] [M} el [W} [f(n07nc_1)]7

and p [,ﬂ (”C’”C)} = u() are all Young diagrams by the claim of (1). For
1 <1< ng,

<y(nc,i—1)7W>palr < g ed) “g L, 0)>
so that we have

[ [W,,W] [j(nc,i—l)] _y [/(nc,1)7...7/(i,1)] [](”c,nc)}
=Mmﬂ/““%muf“ﬂ-

., <j(nc,nc—1)7W>

pair pair

Hence,

M%“:Mmﬂf““%~wfmﬂ (1<i<n,)

are all Young diagrams and the smoothness of ¢ (ne:l) .. #(@:1) on y(ne)
follows from Lemma 6.1.
(II). For = = n,, ..., 2, let us assume that p(*) and

(i) — () (z,ne— z—l—l) (t,nc—z+1) 1<i<
7 o {/' " 1 (1<i<wz)

are all Young diagrams, where p(*) is defined in (2). For & = n, this is
satisfied by (I). (i). For i =1,

p@h =@ [W, . ,W]
—u [y(nmnc)w' 7@, w)} [/(nc, o, f @nematD)
|:f($_17nc_$+1)7 o /(l,nc_$+1):| ‘

The right-hand side of this equation is written as

p [ 700, 0] [#0e0, g @O) = [ g0 g0
(- (8:2))

because

<y(nc,0)7W> ., <j(nc,nc—1)’W>

pair pair

(o0 FET) L ten )

pair pair
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Thus, we have that .#~19 is smooth on p(®Y by Eq. (8.1). (ii). For
1=1,...,x — 1, suppose that & (@=1i=1) ig smooth on ,u(m) (for i = 1 this
is satisfied). Then we have that @=L is smooth on p(**+1 by the same
argument as in (2). From (i) and (ii) and by induction on i, we have that

N(a:,l) [f(a:—l,O)] ’“.’Iu(w,a:) [j(m—l,w—l)]

are all Young diagrams. Here,
(8.5) M(z,i) [j(:r—l,i—l)]
=u [j(nc,nc)7 j(nc,l)’ e j(m,z)’ j(a:,nc—x—l—l)]

[%(m—l,nc—x—i—l)’ e /(i,nc—x—i—l)] [j(x—l,i—l)} (1 <i<x-— 1).
and ,u(m’x) [f(x_l’m_l)} = u(x_l) so that

lu(:v—l) _ lu(:]c,:r:) [j(:v—l,:v—l)] _ M(:r:) l/(x,nc_m+1),j($—l,$—l):|

\
/4 4

by Lemma 6.1 and by the assumption of (II). Since

<f(x—1,i—1),W>

. <j(:1:—1,:13—2)’ /(g:—l,nc—a:+1)> (1 <i<ax-— 1)7

pair

’<j(w—1,i), /(i+1,nc—x+1)>

. A
pair pair

the right-hand side of Eq. (8.5) is written as

p[otnend FEed, g @) gnai)]

{/(m—l,nc—x—l—Q),“"/(i,nc—z+2)i| [j(x—l,x—n]

—pe=1) [/(x—l,nc—x—l—Q)’ - j(i,nc—x—iﬂ)} _

Hence,

L@ Z @) [m f@c—l,x—n]

\
4 7

and

lu(:z:—l,z') _ lu(m—l) l/(x—l,nc—m+237 o /(i,nc—m+23] (1 <1 <x-— 1)

are all Young diagrams. The smoothness of ¢ @ne—2+2) = 7 (inc—2+2)
on u*=1) follows from Lemma 6.1. From (I) and (II) and by induction
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I h (1) |: (1,nc):| — lf(nc,nc)’ (nc’l), .o 7f(1’1)7 (17n0)1 -
on z, we have p'*) | ¢ I > I > ) 4 >
p[FE (U(T))]. Since ¥ is weight-preserving,

#[FE (9(T))] = p[FE(T)] =p |50, 700, g0 7 W)

—¢ [ﬂ”cﬁ), 0] )
The last line is due to Egs. (8.1) and (8.2). This completes the proof. [

Proof of Proposition 4.2. Let T be the tableau described in Proposition 4.2.
Suppose that T consists of n. columns. By Lemma 7.9, we have W(T) €

Cn-SSTkn(v). By Lemma 8.1, we have [ﬂncmc), Foe) gLl g (Lne) | =
A. This completes the proof. [

9. MAIN THEOREM 11

In this section, we will show that LR crystals of Cy,-type By 2 (1/)/); defined
by Eq. (2.4) are identical to LR crystals of type B,, or D,, B%(V)f; (g = $02541
or §09,) in the stable region, [(x) 4+ I(r) < n (Theorems 9.2 and 9.4). Here
sony = 50(IN,C) (N = 2n+ 1 or 2n) is the special orthogonal Lie algebra.
Consequently, Theorem 4.1 with sp,,, being replaced by s09,,+1 or s02, holds
and it provides the crystal interpretation of the branching rule (Eq. (2.5)).

9.1. LR crystals of B,-type. The odd special orthogonal Lie algebra
s0(2n + 1,C) = so09,41 is the classical Lie algebra of B,-type. Using the

standard unit vectors ¢; € Z" (i = 1,2,...,n), the simple roots are ex-
presses as

O = € — €41 (i:1,2,...,n—1),

Op = €n,

and the fundamental weights as

Ww; =€1+e€x+ -+ € (i:1,2,...,n—1),

1
wn:§(61—|—62—|—-"+6n).
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Let A\ = ajwy + + - + anwy, (a; € Z>p) be a dominant integral weight.
Then A can be written as A = A\jeq + -+ - + A\, €, Where

1
>\1:a1+a2+"’+an—l+§ana

1
)\2:a2+"'+an—1+§an7

1
Ap = —Qp,.

2
Here, we do not need to consider the spin representation for the finite-
dimensional irreducible U, (§02,,+1)-module V; "™ (w,,) as explained later so
that %an € Z>o. Hence we can associate a Young diagram A = (A1,...,\,)

to A and simplify the original definition of B,,-tableaux [13]. Throughout this
section, B,-tableaux are referred to as B,-tableaux without spin columns
associated with the spin representations.

Definition 9.1 ([3, 13]). (1) Let X\ be a Young diagram with at most n
rows. A Byp-tableau of shape X\ is a tableau obtained by filling the
boxes in A with entries from the set

{1,2,...,n,0,m,...,1}
equipped with the total order

1<2<--<n<0<m=<---=<1.

(2) A By,-tableau is said to be semistandard if
(a) the entries in each rows are weakly increasing, but zeros cannot
be repeated;
(b) the entries in each column are strictly increasing, but zeros can
be repeated.

We denote by B,-SST(\) the set of all semistandard B,,-tableaux of shape
A. For a tableau T € B,,-SST()), we define its weight to be

n

wi(T) = 3 (ki — Fes,

=1
where k; (resp. k;) is the number of i’s (resp. i’s) appearing in T'.

Definition 9.2 ([3, 13]). A tableau T' € B,-SST(\) is said to be KN-
admissible when the following conditions are satisfied.

(B1) If T has a column of the form
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p—i]

q—{7]

then we have (¢ — p) +1i > N, where N is the length of the column.

(B2) If T has a pair of adjacent columns having one of the following con-
figurations with p < g<r<s anda <b<n:

pP— a a
q— b b
r — b b
S — a’ a

then we have (g —p)+ (s —1r) <b—a.
(B3) If T has a pair of adjacent columns having one of the following con-
figurations withp < qg<r=q+1<s anda <n:

pP— a a a a
qQ— [n n 0 0
r— n 0 0 n
S — a’ a: a’ a
)
pP— a a a a
q—n n 0 0
r—n 0 0 n
S — a’ a’ a’ a

then we have (g —p)+ (s—r)=s—p—1<n—a.
(B4) The tableau T cannot have a pair of adjacent columns having one of
the following configurations with p < s:

pP—n n 0

s — o > |0 > |n.

n )

We denote by B,-SSTkn(A) the set of all KN-admissible semistandard
B-tableau (without spin columns) of shape A.

A crystal B°2n+1(\) associated with the finite-dimensional irreducible
U,(509,11)-module V; 2"+ (\) of a dominant integral weight X is defined in
the same way as in Section 2.2. As a set, B*2n+1()) is B,-SSTkn(A). The
crystal structure of B%°2n+1()\) is given by the crystal graph of B%°2n+1([J),
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the tensor product rule, and the far-eastern reading of 7' € B*2»+1()). The
crystal graph of B°°2n+1([0) is given by as follows:

TR P e 7 R ) N T B
where wt () = €, wt (@) = ¢;, and wt () = —¢ (1 = 1,2,...,n).

In B,, case, Definition 2.8 is still valid, but the following rule has to be
added [13]. For a Young diagram A\ = (\1,...,\,) € Py,

A (A, > 0),
(9:1) A] == {()\1, A1, —00) (A, = 0).

The generalized LR rule of B,,-type is given by:

Theorem 9.1 ([3, 6, 13]). Let i = > | pri€; and 7 =Y.' | v;€; be dominant
integral weights, and p = (1, p2, ..., n) and v = (v1,va,...,Vy) be the
corresponding Young diagrams, respectively. Then we have the following
1somorphism:

(9.2)

B2t (1) @ B2 (1) o~ @ B+t (plma, mo, ..., my]),
TeB*2n+1 (1/)

FE(T)=fmi)z--en N

where N = |v|. In the right-hand side of Eq. (9.2), we set B*2"+1 (u[my,...,mpy]) =
() if the sequence of letters mq,...,my s not smooth on .

Let us denote by d;\w the number of B°27+1(\) appearing in the right-

hand side of Eq. (9.2). Then the multiplicity df;l, is given by the cardinality
of the following set:

By (v)) = {T € B (v) | [%] =}

In the stable region, i.e., [(x) +1(v) < n, a tableau T' € By, *"** (V)i) dose not
contain zeros. This is shown as follows. We can assume that [(u) =n — k
and {(v) <k (k=1,2,...,n—1) so that u, = v, = 0 and g and v (and
therefore \) do not contain spin columns. Suppose that in the far-eastern
reading of T € By 2"+ (V)/j\b, 0 appears firstly in the i-th box;

FE(T):®...®WZ.:(®....

Since the sequence of letters myq, ..., m; = 0is smooth on p, [ (u[mq,...,m;—1]) =
n. Otherwise, pu[myq,...,m;—1][0] would not be a Young diagram by the rule
of Eq. (9.1). Hence, k letters n — k + 1,...,n must appear in the sequence
of letters myq,...,m;_1 in this order. This implies [(v) > k+ 1 because k+ 1
letters n — k + 1,...,n,0 in T appear at different rows due to the semis-
tandardness of T'. This contradicts the assumption that I(v) < k. Thus, T
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has no zeros. Therefore, conditions (B1), (B2), and (B3) in Definition 9.2
can be replaced by conditions (C1) and (C2) in Definition 2.6 (with A\ being

replaced by v) as long as tableaux in By, 2" (V)/’) are considered in the stable

region. Condition (B4) in Definition 9.2 is replaced by:

(B4’) A tableau T' € B,,-SSTkn(v) cannot have a pair of adjacent columns
having the following configuration with p < s:

pP—= nin
S — ﬁ.

This is contained in condition (C2) in Definition 2.6 (with A being replaced
by v).

Combining these, we obtain:
Theorem 9.2. Fix A\, u,v € P,,. Ifl(p)+1(v) < n, then we have Bf{u”“(y)z\b =
BZPQ" ( l/) /);

9.2. LR crystals of D,-type. The even special orthogonal Lie algebra
50(2n,C) = so09, is the classical Lie algebra of D, -type. Using the standard
unit vectors ¢; € Z" (i = 1,2,...,n), the simple roots are expressed as

O = € — €41 (iZl,Z,...,TL—l),
Qp = €p—1 + €p,
and the fundamental weights as

wi=€ +e+--+¢ (i=1,2,...,n—2),

Wnp—1 = 5(61 + -t epm1 —€n),
1
Wn = 5(61 + -+ € +€n)

Let A = ajwy + -+ + apwy, (a; € Z>p) be a dominant integral weight.
Then A can be written as A = A\je1 + -+ - + \,€p,, Where

1
A :al—i-ag-l—---—i—an_z—i-§(an_1+an),

1
Aa=ag~+ - +ap_2+ 5(%—1 + ap),



CRYSTAL INTERPRETATION OF A FORMULA ON THE BRANCHING RULE 173

Here we do not consider the spin representations for the finite-dimensional
irreducible U, (s502,,)-modules V2" (w, 1) and V;°?"(w,) as in Section 9.1
so that A\,_1,|A\n| € Z>0. Hence we can associate a Young diagram A\ =
(AL, -+ An_1,|An|) to X and simplify the original definition of D,-tableaux [13].
Throughout this section, D,,-tableaux are referred to as D,-tableaux with-
out spin columns associated with the spin representations.

Definition 9.3 ([3, 13]). (1) Let X be a Young diagram with at most n
rows. A D,-tableau of shape X\ is a tableau obtained by filling the
boxes in A with entries from the set

{1,2,...,n,m,...,1}

equipped with the linear order

1<2<--<n—1< g <nm—1<--<T,

where the order between n and n is not defined.
(2) A D, -tableau is said to be semistandard if
(a) the entries in each rows are weakly increasing, and n and n do
not appear simultaneously;
(b) the entries in each column are strictly increasing, and n and n
can appear successively.

For a D,-tableau T', we write

TO
T=|T%

where T+ = T if a, < ap_1, TT =T if a, > ap_y, (TT) = n and
I(T°) < n — 1. We denote by D,-SST()) the set of all semistandard D,,-
tableaux of shape A. For a tableau T' € D,,-SST()\), we define its weight to
be

n

wt(T) := Z(kz — ki)es,

i=1
where k; (resp. k;) is the number of i’s (resp. i’s) appearing in 7.

Definition 9.4 ([3, 13]). A tableau T' € D,-SST()) is said to be KN-
admissible when the following conditions are satisfied.

(D1) If T has a column of the form
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p—i]

q—7]

then we have (¢ —p) +1i > N, where N is the length of the column.

(D2) If T* has a column whose k-th entry is n (resp. 1), then n — k is
even (resp. odd).

(D3) If T~ has a column whose k-th entry is n (resp. n), then n — k is
odd (resp. even).

(D4) If T has a pair of adjacent columns having one of the following con-
figurations with p < qg<r <sanda < b <n:

P— a a
q— b b

r — b b
S — a’ a

then we have (g —p)+ (s —7r) <b—a.
(D5) If T has a pair of adjacent columns having one of the following con-
figurations withp < qg<r=q+1<s anda <n:

pP— a a a a
q— n n n n
r — n n n n
S — a’ a’ a’ a

then we have (q—p)+ (s—r)=s—p—1<n—a.
(D6) The tableau T cannot have a pair of adjacent columns having one of
the following configurations with p < s:
p—=n

n n

mn

S — n-» n-» n

(D7) If T has a pair of adjacent columns having one of the following con-
figurations with p < q <r < s and a < n;

p— a a a a
q— n n n n
r— n n n n
S — a’ a a’ a

r—q+1=odd, r—q+ 1= even,
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then we have s —p < n — a.

We denote by D,,-SSTkn(\) the set of all KN-admissible semistandard
D,,-tableau (without spin columns) of shape .

A crystal B°°27(\) associated with the finite-dimensional irreducible U, (s02,,)-
module V;“Qn(j\) of a dominant integral weight X is defined in the same way
as in Section 2.2. As a set, B°°27()\) is B,,-SSTkn(A). The crystal structure
of B2 ()\) is given by the crystal graph of B°°2"(0J), the tensor product rule,
and the far-eastern reading of 7" € B*2»(\). The crystal graph of B2 (0J)
is given by as follows:

n
"N
1 2 n—2 n—2 2 — 1 —

1 D) e S — 1 n— —"— 9 -1

A n—l

n

where wt (> = ¢; and wt () =—¢ (i=1,2,...,n).

Even in D,, case, Definition 2.8 is valid and the generalized LR rule of
D, -type is given by:
Theorem 9.3 ([3, 6, 13]). Let i = > " | pri€; and 7 =Y | vi€; be dominant
integral weights, and = (1, .., n-1, |tn|) and v = (v1,...,Un_1,|vn|) be

the corresponding Young diagrams, respectively. Then we have the following
1somorphism:

(9.3) B (u) @ B (v) ~ D B (ufmy, ma, ..., mny]),
TeB 2n (v)

FE(T)=fmi]z--en

where N = |v|. In the right-hand side of Eq. (9.3), we set B*2" (u[m1,...,my]) =
() if the sequence of letters myq,...,my is not smooth on .

Let us denote by dl)),/ the number of B°°2»(\) appearing in the right-hand
side of Eq (9.3). Then the multiplicity di‘w is given by the cardinality of the

following set:

B (v)) = {T € B (v) ‘ " [IM] =2},

Suppose that the far-eastern reading of 7' € B}2» (V)i; is

FE(T) = [ma| @ g - @ )

If I() + U(v) < n, then the following additional rule is imposed on the
sequence of entries, mi,mo,...,my,, in order to guarantee the smoothness
of FE(T') on u: To each n (resp. n) in this sequence, we assign + (resp. —)




176 TOYA HIROSHIMA

and cancel out all (4+, —)-pairs. Then, the resulting sequence must not have
—’s.

To verify this rule, it is sufficient to show that [n| must appear before |n|in
FE(T) (if n’s exist in T'). This is shown as follows. If I(u) = n, then v = ().
Excluding this trivial case, we can assume that [(x) < n — 1. Suppose that
in the far-eastern reading of 7' € B}’?» (y)ﬁ, n appears firstly in the i-th box;

(9.4) FE(T)=®'“®%=’®~-

Since the sequence of letters my, ..., m; = nissmooth on p, I (u[mq,...,m;—1]) =
n. However, this cannot occur because the sequence of letters mq,...,m;_1
does not contain n and I(y) < n — 1. The same is true for By (V)i‘b in the

stable region, (1) + I(v) < n. In particular, a tableau T' € BZOQ"(I/)Q does
not have vertical dominoes . Thus, conditions (D1), (D2), (D3), (D4), and

(D5) in Definition 9.4 can be replaced by conditions (C1) and (C2) in Defi-

nition 2.6 (with X\ being replaced by v) as long as tableaux in B;’ 2”(V)l)) are

considered in the stable region. Condition (D6) in Definition 9.4 is replaced
by:

(D6’) A tableau T' € D,,-SSTkn(v) cannot have a pair of adjacent columns
having the following configurations with p < s:

pP— nin

S — n.

This is contained in (C2) in Definition 2.6 (with A being replaced by v).
Condition (D7) in Definition 9.4 is replaced by:

(D7) If T € D,-SSTkn(v) has a pair of adjacent columns having one of
the following configurations with p < g <r < s and a < n;

p— a|l (4) a| (B)
q — n n

r — n n

s — a a

r—q+1=o0dd, 7r—gq+1=even,

then we have s —p <n — a.

This is due to the fact that FE(T) of Eq.(9.4) is not allowed.
Suppose that T' € D,,-SSTkn(v) has configuration (A) above.



CRYSTAL INTERPRETATION OF A FORMULA ON THE BRANCHING RULE 177

p —

[=]

q —

3] » |[&

r—

s—| |al

Since r — ¢ + 1 is odd, A has at least one box. Let by be the entry at the
(q + 1)-st position in the left column (a < by < by < n). Then,

(g—p)+(s—71)<s—p<n—a=max(b,n)—a,
and
(g+1—p)+(s—r)<s—p<n—a=max(by,n) —a.

Thus, the condition for the right configuration of (C2) in Definition 2.6 is
satisfied irrespective of whether ¢ — p is odd or even. Similarly, the con-
figuration (B) leads to the condition for the left configuration of (C2) in
Definition 2.6

Combining these, we obtain:

Theorem 9.4. Fix \, u,v € P,,. Ifl(p)+1(v) < n, then we have B;?2" (V)Z‘ =
B, 2" (1/)2 :
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