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UNSTABLE HIGHER TODA BRACKETS

Dedicated to memories of the Arakis

H. Ōshima and K. Ōshima

Abstract. We define new unstable n-fold Toda brackets { ~f }(aqs̈2) and

{ ~f }(s̈t) for every composable sequence ~f = (fn, . . . , f1) of pointed maps

between well-pointed spaces Xn+1
fn
←− · · ·

f2←− X2
f1←− X1 with n ≥ 3.

The brackets agree with the classical Toda bracket when n = 3, and they
are subsets of both the unstable n-fold Toda brackets of Gershenson and
Cohen for every n ≥ 3.

1. Introduction

The Toda bracket [23, 24, 25, 18] is one of the basic tools in homo-
topy theory and often called a secondary composition or a 3-fold bracket.
After [24] a number of definitions of a higher Toda bracket, that is, an
n-fold bracket for n ≥ 3, have appeared in the literature. Stable higher
Toda brackets are comparatively investigated in [3, 27] (cf. [7, 10, 11, 16]).
In this paper we study mainly unstable higher Toda brackets. A sequence
(p3, p4, p5, . . . ), where pn is an unstable n-fold bracket, is called a system of
unstable higher Toda brackets if it is defined systematically, and it is called
normal if p3 agrees with the classical Toda bracket up to sign. Systems of
Spanier [19], Walker [26, 27] (cf.Mori [13]), Blanc [1], Blanc–Markl [2],
and Marcum–Oda [12] (cf. [8]) are normal; systems of Gershenson [7] and
Cohen [3] are not normal. It seems difficult to nominate one of known sys-
tems as the standard system, because we have little information about their
applications and relations between them. We provide two new candidates
for the standard system by modifying the Gershenson’s system which orig-
inated with [24], and study relations between new systems, the systems of

Gershenson and Cohen, and the 4-fold bracket of Ôguchi [14, 15]. Two new
systems are normal. Our method is classical and not so abstract as [1, 2].

Given a composable sequence ~f = (fn, . . . , f1) of pointed maps between

well-pointed spaces fi : Xi → Xi+1 with n ≥ 3, we will define { ~f }(⋆) which
is a subset of the group [Σn−2X1,Xn+1], where ⋆ is one of twelve symbols
defined in Definition 6.1.1(4). ([ΣkX,Y ] is the set of homotopy classes of
pointed maps from the k-fold pointed suspension of X to Y .) Hence we
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have twelve systems of unstable higher Toda brackets. Four of them, { ~f }(⋆)

for ⋆ = aqs̈2, s̈t, qs2, q, are essential; { ~f }(aqs̈2) and { ~f }(s̈t) are candidates

for the standard n-fold bracket; { ~f }(q) is the largest of the twelve subsets
and a revision of the n-fold C-composition product of Gershenson [7, Def-

inition 2.2D]; they are the empty set for suitable ~f . For a pointed space
X, we denote the set of homotopy classes of pointed homotopy equivalences
X → X by E(X) which is a subset of [X,X] and a group under the com-
position operation. The group E(Σn−2X1) acts on [Σn−2X1,Xn+1] from the
right by the composition:

[Σn−2X1,Xn+1]× E(Σn−2X1)→ [Σn−2X1,Xn+1], (α, ε) 7→ α ◦ ε.

Our main results are (1.1) – (1.11) below.

(1.1) { ~f }(aqs̈2) ∪ { ~f }(s̈t) ⊂ { ~f }(qs2) ⊂ { ~f }(q); { ~f }(q) ◦ ε = { ~f }(q)

for every ε ∈ E(Σn−2X1); { ~f }
(qs2) = { ~f }(aqs̈2) ◦ E(Σn−2X1) =

{ ~f }(s̈t) ◦ E(Σn−2X1).

(1.2) If α ∈ { ~f }(q), then there are θ, θ′ ∈ [Σn−2X1,Σ
n−2X1] such that

α ◦ θ ∈ { ~f }(aqs̈2) and α ◦ θ′ ∈ { ~f }(s̈t).

(1.3) If { ~f }(⋆) is not empty for some ⋆, then { ~f }(⋆) is not empty for all
⋆.

(1.4) If { ~f }(⋆) contains 0 for some ⋆, then { ~f }(⋆) contains 0 for all ⋆.

(1.5) Σ{ ~f }(⋆) ⊂ (−1)n{Σ ~f }(⋆) for all ⋆, where Σ ~f = (Σfn, . . . ,Σf1).

(1.6) { ~f }(⋆) depends only on the homotopy classes of fi (1 ≤ i ≤ n) for
all ⋆.

(1.7) { ~f }(aqs̈2) ∪ { ~f }(s̈t) ⊂ 〈 ~f 〉, where 〈 ~f 〉 is the n-fold bracket of Cohen
[3].

(1.8) When n = 3, we have { ~f }(aqs̈2) = { ~f }(s̈t) = { ~f }, where { ~f } =
{f3, f2, f1} is the classical unstable Toda bracket which does not

necessarily coincide with either { ~f }(qs2) or 〈 ~f 〉.

(1.9) When n = 4, we have { ~f }(s̈t) =
⋃
{f4, [f3, A2, f2], (f2, A1, f1)} ⊃

{ ~f }(1), where the union
⋃

is taken over all triples (A3, A2, A1) of
null-homotopies Ai : fi+1◦fi ≃ ∗ (i = 1, 2, 3) such that [fi+1, Ai, fi]◦

(fi, Ai−1, fi−1) ≃ ∗ (i = 2, 3), and { ~f }(1) is the 4-fold bracket of

Ôguchi [15, (6.1)]. (See Section 2 for definitions of [fi+1, Ai, fi] and
(fi, Ai−1, fi−1).)

(1.10) For two pointed maps Z
f
←− Y

g
←− X, we denote by {f, g}(⋆) the

one point set consisting of the homotopy class of f ◦ g. Then
(1) If {fn−1, . . . , f1}

(q) ∋ 0 and {fn, fn−1, . . . , fk}
(aqs̈2) = {0} for all

k with 2 ≤ k < n, then {fn, . . . , f1}
(⋆) is not empty for all ⋆.
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(2) If {fn, . . . , f2}
(q) ∋ 0 and {fk, . . . , f2, f1}

(aqs̈2) = {0} for all k

with 2 ≤ k < n, then {fn, . . . , f1}
(⋆) is not empty for all ⋆.

(1.11) If a pointed map j : A→ X is a cofibration in the category of non-
pointed spaces, then for any pointed map f : X → Y the pointed
map 1Y ∪ Cj : Y ∪f◦j CA → Y ∪f CX between pointed mapping
cones is a cofibration in the category of non-pointed spaces.

It is not clear whether the n-fold bracket { ~f }(⋆) agrees with one of the
n-fold brackets in [1, 2, 3, 7, 12, 19, 26, 27] when n ≥ 4. An advantage
of our definition is that it can be generalized easily to the stable version

(see §6.9) and the subscripted version { ~f }
(⋆)
~m ⊂ [Σ| ~m|+n−2X1,Xn+1] (cf. [25,

p.9] when n = 3), where ~m = (mn, . . . ,m1) is a sequence of non-negative
integers, | ~m| = mn+ · · ·+m1, and fi : Σ

miXi → Xi+1 (1 ≤ i ≤ n). We omit
details of the subscripted version because they are complicated but similar
to the non subscripted version.

The referee pointed out that B. Gray defined unstable higher Toda brack-
ets in his unpublished note. However we have not confirmed his definition
because we could not get his note.

In Section 2, we recall usual notions of homotopy theory and state two
propositions 2.1 and 2.2, where 2.1 is well-known and 2.2 is (1.11) above and

a key to define { ~f }(⋆). In Section 3, we study maps between mapping cones,
that is, we prove a lemma which shall be used in Section 5, and recall results
of Puppe [17]. In Section 4, we introduce the notion of homotopy cofibre.
In Section 5, we revise the notion of shaft of Gershenson [7]. Section 6

consists of nine subsections §6.1–§6.9. In §6.1 we define { ~f }(⋆). In §6.2 we
prove (1.k) for k=1,2,3,4 and state an example. In §6.k we prove (1.k+2)
for k=3,4,5,6,7. In §6.8 we prove a proposition which is the same as (1.10).
In §6.9 we define stable higher Toda brackets. In Appendix A, we prove

Proposition 2.2. In Appendix B, we recall the definition of 〈 ~f 〉 and prove

Σ〈 ~f 〉 ⊂ (−1)n〈Σ ~f 〉.

2. Preliminaries

Let TOP denote the category of topological spaces (spaces for short) and
continuous maps (maps for short). Let I denote the unit interval [0, 1],
In = I × · · · × I (n-times), and ∂In the boundary of In. For a space X,
we denote by 1X : X → X the identity map of X and by iXt : X → X × I
for t ∈ I the map iXt (x) = (x, t). For a map f : X → Y , we denote by
1f : X × I → Y the map 1f (x, t) = f(x), and we call f closed if f(A) is
closed for every closed subset A of X. Given maps f, g : X → Y , if there is
a map H : X × I → Y such that H0 = f and H1 = g, then we write f ≃ g
or H : f ≃ g, where Ht = H ◦ iXt : X → Y i.e. Ht(x) = H(x, t). In the last
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case, the map H is often denoted by Ht and called a homotopy from f to
g. The homotopy relation ≃ is an equivalence relation on the set of maps
X → Y and the equivalence class of f is called the homotopy class of f .
Given a homotopy H : X × I → Y , the inverse homotopy −H : X × I → Y
is defined by (−H)t = H1−t; H is a null homotopy if H1 is a constant map
to a point of Y . A map f : X → Y is a homotopy equivalence (denoted
by f : X ≃ Y ) if there is a map g : Y → X such that g ◦ f ≃ 1X and
f ◦ g ≃ 1Y , where g is called a homotopy inverse of f and denoted often by
f−1. We write X ≃ Y if there is a homotopy equivalence X → Y . A map
j : A→ X is a cofibration if, for any space Y and any maps f : X → Y and
G : A× I → Y such that f ◦ j = G ◦ iA0 , there is a map H : X × I → Y such
that H ◦ (j × 1I) = G and H ◦ iX0 = f .

A× I

j×1I $$❏
❏❏

❏❏
❏❏

❏❏ G

&&
A

iA0
<<②②②②②②②②②

j ""❋
❋❋

❋❋
❋❋

❋❋
X × I

H // Y

X

iX0
99tttttttttt f

88

By [20, Theorem 1], every cofibration j : A→ X is an embedding, that is, j
gives a homeomorphism from A to the subspace j(A) of X i.e. j : A ≈ j(A).

Let TOP∗ denote the category of spaces with base points (pointed spaces
for short) and maps preserving base points (pointed maps for short). We
often call a space, a map, and a cofibration in TOP a free space, a free
map, and a free cofibration, respectively. For any pointed space X, we
denote the base point of X by x0 or ∗. A pointed space X is a well-pointed
space (w-space for short) (resp. clw-space) if the inclusion {x0} → X is a
free (resp. closed free) cofibration. Let TOPw (resp.TOPclw) denote the
category of w-spaces (resp. clw-spaces) and pointed maps. Thus we have a
sequence of categories: TOPclw ֌ TOPw ֌ TOP∗

։ TOP, where ։ is
the functor forgetting the base points, and C ֌ D means that the category
C is a full subcategory of the category D and D contains at least one object
which is not in C (cf. Beispiele 1 and 2 [5, pp.32-33]). Homotopy, homotopy
equivalence, cofibration, and some of other notions in TOP can be defined
in other three categories of the above sequence exactly as in TOP, except
that all maps and homotopies are required to respect the base points. As
remarked in [22, p.438], the proof of [20, Theorem 1] can be modified to
prove that all cofibrations in TOP∗ are embeddings. When we set C4 =
TOPclw, C3 = TOPw, C2 = TOP∗, C1 = TOP, if, for some k > ℓ, a map
j : A → X in Ck is a cofibration in Cℓ, then j is a cofibration in Ck. For
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pointed spaces X and Y , [X,Y ] denotes the set of pointed homotopy classes
of pointed maps X → Y , and the trivial map X → Y, x 7→ y0, is denoted by
∗ and its homotopy class is denoted by 0; [X,Y ] is regarded as a pointed set
with the base point 0. For homotopies H : Y ×I → Z and G,F : X×I → Y
with F1 = G0, homotopies H ◦̄G : X × I → Z and G • F : X × I → Y are
defined by

H ◦̄G(x, t) = H(G(x, t), t), G • F (x, t) =

{
F (x, 2t) 0 ≤ t ≤ 1

2

G(x, 2t − 1) 1
2 ≤ t ≤ 1

.

Assign to the n-sphere Sn = {(t1, . . . , tn+1) ∈ Rn+1 |
∑
t2i = 1} (n =

0, 1, 2, . . . ) and I = [0, 1] the base points (1, 0, . . . , 0) and 1, respectively.
Then, as is well-known, Sn and I are clw-spaces.

For pointed spaces X1, . . . ,Xn, we denote by X1 ∧ · · · ∧Xn the quotient
space

(X1 × · · · ×Xn)/(

n⋃

i=1

X1 × · · · ×Xi−1 × {∗i} ×Xi+1 × · · · ×Xn),

where ∗i is the base point of Xi. In X1 ∧ · · · ∧Xn, the point represented by
(x1, . . . , xn) is denoted by x1 ∧ · · · ∧ xn, and ∗1 ∧ · · · ∧ ∗n is the base point.
For pointed maps fi : Xi → Yi, we set f1∧· · ·∧fn : X1∧· · ·∧Xn → Y1∧· · ·∧
Yn, x1∧· · ·∧xn 7→ f1(x1)∧· · ·∧fn(xn). For a pointed space X and an integer
n ≥ 0, we set ΣnX = X ∧ Sn which is called the n-fold pointed suspension
of X; for a pointed map f : X → Y we set Σnf = f ∧ 1Sn : ΣnX → ΣnY .

We identify Sn (n ≥ 1) with In/∂In and S1 ∧ · · · ∧ S1 (n-times) by the
following way. Take and fix a relative homeomorphism ψn : (In, ∂In) →
(Sn, ∗) for each n ≥ 1 (e.g. [25, p.5]). Identify In/∂In with Sn by the
homeomorphism induced from ψn, and denote ψn(t1, . . . , tn) by t1∧ · · · ∧ tn.
Also identify Sn with S1 ∧ · · · ∧ S1 (n-times) by the homeomorphism hn of
the following commutative square with q the quotient map. (Notice that
hn(t1 ∧ · · · ∧ tn) = t1 ∧ · · · ∧ tn.)

In
ψ1×···×ψ1
−−−−−−→ S1× · · · × S1

ψn

y
yq

Sn
hn−−−−→
≈

S1 ∧ · · · ∧ S1

Under the above identifications, we have Sm ∧ Sn = Sm+n = Sn ∧ Sm, where,
if m,n ≥ 1, then

(x1 ∧ · · · ∧ xm) ∧ (xm+1 ∧ · · · ∧ xm+n) = x1 ∧ · · · ∧ xm+n

= (x1 ∧ · · · ∧ xn) ∧ (xn+1 ∧ · · · ∧ xm+n) (xi ∈ S
1 (1 ≤ i ≤ m+ n)).
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Since spheres are compact and Hausdorff, it follows that, for any pointed
space X, we have the identifications:

ΣnΣmX = (X ∧ Sm) ∧ Sn = X ∧ (Sm ∧ Sn) = X ∧ Sm+n

= X ∧ (Sn ∧ Sm) = (X ∧ Sn) ∧ Sm = ΣmΣnX.
(2.1)

The switching map

(2.2) τ(Sm,Sn) : Sm+n = Sm ∧ Sn → Sn ∧ Sm = Sm+n, x ∧ y 7→ y ∧ x,

is a homeomorphism of the degree (−1)mn.
Given a space A, let TOPA denote the category of spaces under A, that

is, objects are free maps i : A → X and a morphism f from i : A → X to
i′ : A→ X ′ is a free map f : X → X ′ with f ◦ i = i′.

A
i

��⑦⑦
⑦⑦
⑦⑦
⑦⑦ i′

  ❆
❆❆

❆❆
❆❆

X
f // X ′

(2.3)

Let TOPA(i, i′) denote the set of all morphisms from i : A→ X to i′ : A→
X ′. For f, f ′ ∈ TOPA(i, i′), if there exists a homotopy H : X× I → X ′ such

that H0 = f, H1 = f ′, Ht ∈ TOPA(i, i′) for all t ∈ I, then we write f
A
≃ f ′

or H : f
A
≃ f ′. Note that TOP{∗} = TOP∗. The following is well-known

(e.g. [6, (3.6)], [4, (5.2.5)], [5, (2.18)], [9, (6.18)]).

Proposition 2.1. Given a commutative triangle (2.3), if i and i′ are cofi-
brations and f : X → X ′ is a homotopy equivalence in TOP, then f : i→ i′

is a homotopy equivalence in TOPA, that is, there exists g ∈ TOPA(i′, i)

with g ◦ f
A
≃ 1X and f ◦ g

A
≃ 1X′ .

For spaces X and Y , we denote by X + Y the topological sum of them,
that is, it is the disjoint union of them as a set and A ⊂ X + Y is open if
and only if A ∩X is open in X and A ∩ Y is open in Y .

For a pointed space X, the cone CX over it and the suspension ΣX
of it are defined by CX = X ∧ I = (X × I)/({x0} × I ∪ X × {1}) and
ΣX = (X × I)/({x0} × I ∪ X × {0, 1}). The point of ΣX represented by
(x, t) ∈ X × I is denoted by x ∧ t. The space ΣX is based by x0 ∧ 1.
Usually we identify ΣX = Σ1X. For a pointed map f : X → Y , two maps
Cf : CX → CY and Σf : ΣX → ΣY are defined by Cf(x ∧ t) = f(x) ∧ t
and Σf(x ∧ t) = f(x) ∧ t; the (pointed) mapping cone of f is the space
Cf = Y ∪f CX which is the quotient of Y +CX by the equivalence relation
generated by the relation f(x) ∼ x ∧ 0 (x ∈ X) and is based by the point
represented by y0; the injection if : Y → Y ∪f CX is a cofibration in TOP∗
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by [17, Hilfssatz 6] and so an embedding; let

qf : Y ∪f CX → (Y ∪f CX)/Y = ΣX,

q′f : (Y ∪f CX) ∪if CY → ((Y ∪f CX) ∪if CY )/CY = ΣX

denote the quotient maps, then qf = q′f◦iif and q′f is a homotopy equivalence

in TOP∗ by [17, Satz 3]; for any integer ℓ ≥ 1 let ψℓf : ΣℓY ∪Σℓf CΣℓX ≈

Σℓ(Y ∪f CX) denote the homeomorphism defined by ψℓf (y ∧ sℓ) = y ∧ sℓ
and ψℓf (x ∧ sℓ ∧ t) = x ∧ t ∧ sℓ for sℓ ∈ Sℓ and t ∈ I. If the first square of

the following diagram in TOP∗ is commutative, then there exists the map
b ∪ Ca with the diagram commutative.

X
f //

a

��

Y
if //

b

��

Y ∪f CX
qf //

b∪Ca
��

ΣX

Σa

��
X ′ f ′ // Y ′

if ′ // Y ′ ∪f ′ CX
′

qf ′ // ΣX ′

The next proposition is the same as (1.11) and shall be used to define
induced iterated mapping cones in Definition 5.4.

Proposition 2.2. If a pointed map j : A → X is a free (resp. closed free)
cofibration, then, for any pointed map f : X → Y , 1Y ∪ Cj : Y ∪f◦j CA→
Y ∪f CX is a free (resp. closed free) cofibration.

The above proposition may be folklorish, but we have not found its proof
in the literature, and so we will prove it in Appendix A for completeness.

Corollary 2.3. (1) If a pointed map j : A → X is a free (resp. closed
free) cofibration, then Σj : ΣA → ΣX is a free (resp. closed free)
cofibration.

(2) If X is a w-space (resp. clw-space), then ΣX and CX are w-spaces
(resp. clw-spaces), and if : Y → Y ∪f CX is a free (resp. closed free)
cofibration for every pointed map f : X → Y .

(3) If f : X → Y is a pointed map between w-spaces (resp. clw-spaces),
then Y ∪f CX is a w-space (resp. clw-space).

Proof. (1) By taking Y = {y0} in Proposition 2.2, the assertion follows.
(2) Let X be a w-space (resp. clw-space). Set j : A = {x0} ⊂ X. The

assertions about ΣX and if follow from (1) and Proposition 2.2. Since
i1X ◦ j : {x0} → CX is a free (resp. closed free) cofibration, CX is a w-space
(resp. clw-space).

(3) Let X and Y be w-spaces (resp. clw-spaces). Then Y ∪f CX is a
w-space (resp. clw-spaces), since the composite of {y0} ⊂ Y with if : Y →
Y ∪f CX is a free (resp. closed free) cofibration. �
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Given pointed maps f : X → Y and g : Y → Z with a pointed null
homotopy H : g ◦ f ≃ ∗, we set

(g,H, f) : ΣX → Z ∪g CY, x ∧ t 7→

{
f(x) ∧ (1− 2t) 0 ≤ t ≤ 1

2

H(x, 2t − 1) 1
2 ≤ t ≤ 1

,

[g,H, f ] : Y ∪f CX → Z, y 7→ g(y), x ∧ t 7→ H(x, t),

which are called a coextension of f with respect to g and an extension of g
with respect to f , respectively ([25, 14]). Given pointed maps fi : Xi →
Xi+1 for i = 1, 2, 3, the Toda bracket {f3, f2, f1} ([23, 24, 25]) which is
a subset of [ΣX1,X4] is the set of homotopy classes of maps of the form
[f3, A2, f2] ◦ (f2, A1, f1), where Aj : fj+1 ◦ fj ≃ ∗ for j = 1, 2. If A1 or A2

does not exist, then {f3, f2, f1} denotes the empty set. As is well-known,
{f3, f2, f1} depends only on the homotopy classes of fi (i = 1, 2, 3) (e.g.
Section 3 of [15]).

3. Maps between mapping cones

In this section we will work in TOP∗.
The following shall be used to prove Lemma 5.3 which defines induced

iterated mapping cones.

Lemma 3.1. Given two maps j : Y → Y ′ and g′ : Y ′ → Z, the following
diagram is homotopy commutative and ig′◦j∪Cij is a homotopy equivalence.

Y
j // Y ′

g′

��

ij // Y ′ ∪j CY

g′∪C1Y
��

Y
g′◦j // Z

ig′

��

ig′◦j // Z ∪g′◦j CY

ig′∪C1Y
��

1Z∪Cj

tt✐✐✐✐
✐✐✐

✐✐✐
✐✐✐

✐✐✐
✐

Z ∪g′ CY
′
ig′◦j∪Cij

// (Z ∪g′◦j CY ) ∪g′∪C1Y C(Y ′ ∪j CY )

Proof. Obviously three squares are commutative and (1Z ∪Cj) ◦ ig′◦j = ig′ .
For simplicity, we set

g = g′ ◦ j, h = g′ ∪C1Y , k = 1Z ∪ Cj, ϕ = ig′◦j ∪Cij .

We should prove that ih ≃ ϕ ◦ k and ϕ is a homotopy equivalence. Let
z ∈ Z, y ∈ Y, y′ ∈ Y ′ and s, t, u ∈ I. We define

w : I × I → I, G : (Z ∪g CY )× I → (Z ∪g CY ) ∪h C(Y ′ ∪j CY )
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by

w(s, t) =





0 s ≤ t

2s− 2t s
2 ≤ t ≤ s

s t ≤ s
2

,

G(z, t) = z, G(y ∧ s, t) = y ∧ w(s, t) ∧ w(s, 1− t).

Then G : ih ≃ ϕ ◦ k rel Z. In the rest of the proof we prove that ϕ is a
homotopy equivalence. Define ψ : (Z ∪g CY ) ∪h C(Y ′ ∪j CY )→ Z ∪g′ CY

′

by

ψ(z) = z, ψ(y ∧ t) = j(y) ∧ t, ψ(y′ ∧ t) = y′ ∧ t,

ψ(y ∧ s ∧ t) = j(y) ∧ (s + (1− s)t).

As is easily seen, ψ is well-defined, continuous, and ψ ◦ ϕ = 1Cg′
. We will

show 1Ch
≃ ϕ ◦ ψ. We have

ϕ ◦ ψ(z) = z, ϕ ◦ ψ(y ∧ t) = j(y) ∧ t = y ∧ 0 ∧ t, ϕ ◦ ψ(y′ ∧ t) = y′ ∧ t,

ϕ ◦ ψ(y ∧ s ∧ t) = j(y) ∧ (s+ (1− s)t) = y ∧ 0 ∧ (s+ (1− s)t).

Thus it suffices to construct a map

H :
(
(Z ∪g CY ) ∪h C(Y ′ ∪j CY )

)
× I → (Z ∪g CY ) ∪h C(Y ′ ∪j CY )

such that

H(z, u) = z, H(y′ ∧ t, u) = y′ ∧ t,

H(y ∧ 0 ∧ t, u) = H(j(y) ∧ t, u) = j(y) ∧ t = y ∧ 0 ∧ t,

H(y ∧ t, 0) = y ∧ t = y ∧ t ∧ 0, H(y ∧ t, 1) = y ∧ 0 ∧ t,

H(y ∧ s ∧ t, 0) = y ∧ s ∧ t, H(y ∧ s ∧ t, 1) = y ∧ 0 ∧ (s + (1− s)t).

The space K = I×I×{0}∪{0}×I×I∪I×I×{1}∪I×{1}×I ∪{1}×I×I
is a retract of I × I × I. Indeed a retraction r : I × I × I → K is defined
as follows: for P ∈ I × I × I, r(P ) is the intersection of K and the half line
which starts from (12 ,−

1
2 ,

1
2 ) and passes through P . Define v′ : K → I × I

by

v′(s, t, 0) = (s, t), v′(0, t, u) = (0, t), v′(s, t, 1) = (0, s + (1− s)t),

v′(s, 1, u) =





(0, 1) s ≤ u

(2s − 2u, 1) s
2 ≤ u ≤ s

(s, 1) u ≤ s
2

,

v′(1, t, u) =





(1, t) u ≤ t
2

(1, 2u) t
2 ≤ u ≤

1
2

(2− 2u, 1) 1
2 ≤ u ≤ 1

.
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Then v′ is well-defined and continuous. Set v = v′ ◦ r : I × I × I → I × I.
Then

v({1} × I × I ∪ I × {1} × I) ⊂ {1} × I ∪ I × {1},

v(0, t, u) = (0, t), v(s, t, 0) = (s, t), v(s, t, 1) = (0, s + (1− s)t).

Write v(s, t, u) = (v1(s, t, u), v2(s, t, u)) and define H by

H(z, u) = z, H(y ∧ s, u) = y ∧ v1(s, 0, u) ∧ v2(s, 0, u),

H(y′ ∧ t, u) = y′ ∧ t, H(y ∧ s ∧ t, u) = y ∧ v1(s, t, u) ∧ v2(s, t, u).

Then H satisfies the desired properties. Therefore ϕ is a homotopy equiva-
lence. This completes the proof. �

Definition 3.2 ((9) of [17]). Given a homotopy commutative square and a
homotopy

(3.1)

X
f

−−−−→ Y

a

y
yb

X ′ f ′
−−−−→ Y ′

, J : b ◦ f ≃ f ′ ◦ a,

we define Φ(f, f ′, a, b;J) : Y ∪f CX → Y ′ ∪f ′ CX
′ by

Φ(f, f ′, a, b;J)(y) = b(y),

Φ(f, f ′, a, b;J)(x ∧ s) =

{
J(x, 2s) 0 ≤ s ≤ 1

2

a(x) ∧ (2s − 1) 1
2 ≤ s ≤ 1

.

Given a homotopy K : b◦f ≃ f ′ ◦a, if there is a free map ϕ : X×I×I → Y ′

such that ϕ(x, s, 0) = J(x, s), ϕ(x, s, 1) = K(x, s), ϕ(∗, s, t) = ∗, ϕ(x, 0, t) =
b◦f(x), and ϕ(x, 1, t) = f ′ ◦a(x) for every x ∈ X and s, t ∈ I, then we write

J
X
≃ K or ϕ : J ≃ K.

Proposition 3.3. Suppose that (3.1) is given.

(1) ([17, Hilfssatz 7])
(a) The following diagram is homotopy commutative such that the

middle square is commutative.

X
f //

a

��

Y
if //

b

��

Y ∪f CX
qf //

Φ(f,f ′,a,b;J)
��

ΣX

Σa

��
X ′ f ′ // Y ′

if ′ // Y ′ ∪f ′ CX
′

qf ′ // ΣX ′
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(b) In the following diagram, the first square is commutative and
the second square is homotopy commutative.

Y ∪f CX
iif //

Φ(f,f ′,a,b;J)

��

(Y ∪f CX) ∪if CY
q′
f //

Φ(if ,if ′ ,b,Φ(f,f ′,a,b;J);1i
f ′

◦b)

��

ΣX

Σa

��
Y ′ ∪f ′ CX

′
ii
f ′ // (Y ′ ∪f ′ CX

′) ∪if ′ CY
′

q′
f ′ // ΣX ′

Also Φ(if , if ′ , b,Φ(f, f
′, a, b;J); 1if ′ ◦b) ≃ Φ(f, f ′, a, b;J) ∪ Cb.

(c) If a and b are homotopy equivalences, then Φ(f, f ′, a, b;J) is a
homotopy equivalence.

(d) If furthermore a′ : X ′ → X ′′, b′ : Y ′ → Y ′′, f ′′ : X ′′ → Y ′′ with
J ′ : b′ ◦ f ′ ≃ f ′′ ◦ a′ are given, then

Φ(f ′, f ′′, a′, b′;J ′) ◦Φ(f, f ′, a, b;J) ≃ Φ(f, f ′′, a′ ◦ a, b′ ◦ b; (J ′◦1a) • (1b′◦J)).

(2) Define ea : ΣX → ΣX ′ by ea(x ∧ t) =

{
a(x) ∧ 0 0 ≤ t ≤ 1

2

a(x) ∧ 2t− 1 1
2 ≤ t ≤ 1

.

Then ea ≃ Σa and q′f ′ ◦ (Φ(f, f
′, a, b;J) ∪Cb) = ea ◦ q

′
f ≃ Σa ◦ q′f .

(3) If the square in (3.1) is strictly commutative, then Φ(f, f ′, a, b; 1b◦f )
≃ b ∪ Ca.

(4) ([17, p.315]) For homotopies at : X → X ′ and bt : Y → Y ′, if
there exists a homotopy J t : bt ◦ f ≃ f ′ ◦ at for every t ∈ I such
that the function X × I × I → Y ′, (x, s, t) 7→ J t(x, s), is continu-
ous, then the function Φ : (Y ∪f CX) × I → Y ′ ∪f ′ CX

′, (z, t) 7→
Φ(f, f ′, at, bt;J

t)(z), is continuous and so

Φ(f, f ′, a0, b0;J
0) ≃ Φ(f, f ′, a1, b1;J

1).

(5) If K : b ◦ f ≃ f ′ ◦ a satisfies J
X
≃ K, then Φ(f, f ′, a, b;J) ≃

Φ(f, f ′, a, b;K) as elements of TOPY (if , if ′ ◦ b).

Proof. We refer a proof of (1) to [17].
Define v : I × I → I and F : ΣX × I → ΣX ′ by

v(t, u) =





0 u ≤ −2t+ 1

t+ u/2− 1/2 2t− 1 ≤ u and − 2t+ 1 ≤ u

2t− 1 u ≤ 2t− 1

,

F (x ∧ t, u) = a(x) ∧ v(t, u).

Then F : ea ≃ Σa. As is easily seen, q′f ′ ◦ (Φ(f, f
′, a, b;J) ∪ Cb) = ea ◦ q

′
f .

Hence we obtain (2).
(3) can be easily proved.
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For (4), define ξ : (Y +X × I)× I → Y ′ ∪f ′ CX
′ by

ξ(y, t) = bt(y), ξ(x, s, t) =

{
J t(x, 2s) 0 ≤ s ≤ 1

2

at(x) ∧ (2s− 1) 1
2 ≤ s ≤ 1

.

Then it is continuous and satisfies ξ = Φ ◦ (q × 1I), where q : Y +X × I →
Y ∪f CX is the quotient map. Hence Φ is continuous. This proves (4).

(5) is obtained by taking at = a, bt = b, J t(x, s) = ϕ(x, s, t) in (4), where
ϕ : J ≃ K. �

4. Homotopy cofibres

In this section we will work in TOP∗. Hence if : Y → Y ∪f CX is always
a cofibration for every map f : X → Y .

Definition 4.1. Amap j : Y → Z is a homotopy cofibre of a map f : X → Y
if j is a cofibration and there exists a homotopy equivalence a : Z → Y ∪fCX
with a ◦ j ≃ if .

The notion “homotopy cofibre” is not new. Indeed we have the following.

Lemma 4.2. Given maps f : X → Y and j : Y → Z, j is a homotopy

cofibre of f if and only if j : Y → Z is a cofibration and X
f
−→ Y

j
−→ Z

is a cofibre sequence, that is, there exists a homotopy commutative diagram
with b, c, d homotopy equivalences:

X
f //

b ≃
��

Y
j //

c ≃
��

Z

d ≃
��

X ′ f ′ // Y ′
if ′ // Y ′ ∪f ′ CX

′

Proof. It suffices to prove “if”-part. Let J : c ◦ f ≃ f ′ ◦ b. Then Φ =
Φ(f, f ′, b, c;J) : Y ∪f CX → Y ′ ∪f ′ CX

′ is a homotopy equivalence with
Φ ◦ if = if ′ ◦ c by Proposition 3.3(1)(c). Set a = Φ−1 ◦ d : Z → Y ∪f CX.
Then a is a homotopy equivalence such that a◦j = Φ−1◦d◦j ≃ Φ−1◦if ′ ◦c =
Φ−1 ◦ Φ ◦ if ≃ if . Hence j is a homotopy cofibre of f . �

Lemma 4.3. Let j : Y → Z be a homotopy cofibre of f : X → Y .

(1) There is a homotopy equivalence a ∈ TOPY (j, if ) and its homotopy

inverse a−1 ∈ TOPY (if , j) such that a−1 ∪ C1Y : (Y ∪f CX) ∪if
CY → Z ∪j CY is a homotopy inverse of a ∪C1Y , that is,

(4.1)

{
(a−1 ∪ C1Y ) ◦ (a ∪ C1Y ) ≃ 1Z∪jCY ,
(a ∪ C1Y ) ◦ (a

−1 ∪ C1Y ) ≃ 1(Y ∪fCX)∪if
CY .

(2) If f ′ : X → Y satisfies f ≃ f ′, then j is a homotopy cofibre of f ′.
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(3) If h : X → X is a homotopy equivalence, then j is a homotopy
cofibre of f ◦ h.

(4) If f = g ◦ h : X
h
→ X ′ g

→ Y with h a homotopy equivalence, then j
is a homotopy cofibre of g.

(5) If j is a free cofibration, then Σℓj : ΣℓY → ΣℓZ is a homotopy cofibre
of Σℓf : ΣℓX → ΣℓY for any positive integer ℓ.

(6) If h : Y → Y ′ and k : Z → Z ′ are homeomorphisms, then j′ =
k ◦ j ◦ h−1 : Y ′ → Z ′ is a homotopy cofibre of h ◦ f : X → Y ′.

(7) Given a map g : Y → W , g can be extended to Z if and only if
g ◦ f ≃ ∗.

Proof. (1) Suppose that a′ : Z → Y ∪f CX is a homotopy equivalence and
g : a′ ◦ j ≃ if is a homotopy. Since j is a cofibration by the assumption,

there exists a homotopy H : Z × I → Y ∪f CX with a′ = H ◦ iZ0 and
g = H ◦ (j × 1I). Then the map a : Z → Y ∪f CX, z 7→ H(z, 1), is a
homotopy equivalence with a ◦ j = if and so a is a homotopy equivalence

in TOPY (j, if ) by Proposition 2.1. Let a−1 ∈ TOPY (if , j) be a homotopy

inverse of a. Then a−1 ◦ if = j and there exist homotopies K : a−1 ◦ a
Y
≃ 1Z

and L : a ◦ a−1 Y
≃ 1Y ∪fCX . Hence (a−1 ∪ C1Y ) ◦ (a ∪ C1Y ) = K0 ∪ C1Y ≃

K1 ∪ C1Y = 1Z∪jCY and the second equation of (4.1) is obtained similarly.
This proves (1).

In the rest of the proof a : Z → Y ∪f CX is a homotopy equivalence such
that a ◦ j = if .

(2) Suppose that J : f ≃ f ′. By Proposition 3.3(1),

Φ(J) := Φ(f, f ′, 1X , 1Y ;J) : Y ∪f CX → Y ∪f ′ CX

is a homotopy equivalence and Φ(J)◦if = if ′ . Hence Φ(J)◦a : Z → Y ∪f ′CX
is a homotopy equivalence and Φ(J) ◦ a ◦ j = if ′ . This proves (2).

(3) Take J : f ≃ f ◦ h ◦ h−1. Then Φ(f, f ◦ h, h−1, 1Y ;J) is a homotopy
equivalence and Φ(f, f ◦ h, h−1, 1Y ;J) ◦ a ◦ j = if◦h. Hence j is a homotopy
cofibre of f ◦ h.

(4) Since (1Y ∪ Ch) ◦ a ◦ j = (1Y ∪ Ch) ◦ if = ig, (4) follows.

(5) Suppose that j is a free cofibration. Then Σℓj is a free cofibration by
Corollary 2.3(1). We set a′ = (ψℓf )

−1 ◦Σℓa, where ψℓf is the homeomorphism

ΣℓY ∪Σℓf CΣℓX ≈ Σℓ(Y ∪f CX) defined in the section 2. Then a′ : ΣℓZ →

ΣℓY ∪Σℓf CΣℓX is a homotopy equivalence and a′ ◦ Σℓj = iΣℓf . Hence Σℓj

is a homotopy cofibre of Σℓf .
(6) Since (h∪C1X)◦a◦k

−1 : Z ′ → Y ′∪h◦f CX is a homotopy equivalence
and (h ∪ C1X) ◦ a ◦ k

−1 ◦ j′ = ih◦f , it follows that j′ is a homotopy cofibre
of h ◦ f . This proves (6).
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(7) Let a : Z → Y ∪f CX be a homotopy equivalence such that a◦ j = if ,
and a−1 a homotopy inverse of a such that a−1 ◦ if = j. If g ◦ f ≃ ∗, then
there exists g̃ : Y ∪f CX →W such that g̃ ◦ if = g and g̃ ◦ a is an extension
of g to Z. If g has an extension g′ : Z → W , then g ◦ f = g′ ◦ a−1 ◦ if ◦ f ≃
g′ ◦ a−1 ◦ ∗ = ∗. �

Remark 4.4. A map a in Lemma 4.3(1) is not necessarily unique in the sense

of
Y
≃.

Proof. Let ∇ : S1 ∨ S1 → S1 be the folding map. Then S1 ∪∇C(S1 ∨ S1) = S2

and i∇ : S1 → S2 can be identified with j : S1 → S2, (x, y) 7→ (x, y, 0).
Obviously j is a homotopy cofibre of ∇. We set a : S2 → S2, (x, y, z) 7→

(x, y,−z). Then a, 1S2 are homotopy equivalences in TOPS1(j, i∇). Their

degrees are −1 and 1, respectively. Hence a 6≃ 1S2 and so a
S1

≃ 1S2 does not
hold. �

Lemma 4.5. If j : Y → Z is a homotopy cofibre of f : X → Y and if a
map g : Y → W satisfies g ◦ f ≃ ∗, then, for any homotopy A : g ◦ f ≃ ∗,
we have

[g,A, f ] ∪C1Y ≃ (g,A, f) ◦ q′f : (Y ∪f CX) ∪if CY →W ∪g CY

and, for any homotopy equivalence a : Z → Y ∪f CX satisfying a ◦ j = if ,
we have

(4.2) ([g,A, f ]◦a∪C1Y )◦ω
−1 = ([g,A, f ]∪C1Y )◦(a∪C1Y )◦ω

−1 ≃ (g,A, f),

where ω−1 is a homotopy inverse of ω = q′f ◦ (a ∪C1Y ) : Z ∪j CY → ΣX.

Proof. Consider the following diagram.

Y
j // Z

a ≃

��

ij // Z ∪j CY

a∪C1Y ≃

��

ω

##
X

f // Y

g
##❍

❍❍
❍❍

❍❍
❍❍

❍

if // Y ∪f CX

[g,A,f ]

��

iif // (Y ∪f CX) ∪if CY

[g,A,f ]∪C1Y
��

q′
f

≃
// ΣX

(g,A,f)uu
W

ig
// W ∪g CY

The above diagram is commutative except the right lower triangle. Define
u : I × I → I and H : ((Y ∪f CX) ∪if CY )× I →W ∪g CY by

u(s, t) =





s s ≥ t

2s − t 2s ≥ t ≥ s

−2s+ t 2s ≤ t

, H(x ∧ s, t) =

{
f(x) ∧ u(s, t) 2s ≤ t

A(x, u(s, t)) 2s ≥ t
,
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H(y, t) = y ∧ t, H(y ∧ s, t) = y ∧max{s, t}.

Then H : [g,A, f ] ∪ C1Y ≃ (g,A, f) ◦ q′f . Hence

([g,A, f ] ◦ a ∪C1Y ) ◦ ω
−1 = ([g,A, f ] ∪ C1Y ) ◦ (a ∪ C1Y ) ◦ ω

−1

≃ (g,A, f) ◦ q′f ◦ (a ∪ C1Y ) ◦ ω
−1 = (g,A, f) ◦ ω ◦ ω−1 ≃ (g,A, f).

�

5. Iterated mapping cones

In this section we will work in TOPw. Hence for any map f : X → Y
the injection if : Y → Y ∪f CX is in TOPw and a free cofibration by
Corollary 2.3(2),(3).

By replacing the words “w-space” and “free cofibration” with “clw-space”
and “closed free cofibration” respectively, we can develop consideration of
this section similarly in TOPclw.

We will revise the notion of “shaft” of Gershenson [7] and rename it
“iterated mapping cone”. Suppose that the diagram

X1 X2 X3 · · · Xn

g1

y g2

y g3

y gn

y

C1
j1

−−−−→ C2
j2

−−−−→ C3
j3

−−−−→ · · ·
jn−1
−−−−→ Cn

jn
−−−−→ Cn+1

(5.1)

is given with n ≥ 1, where js : Cs → Cs+1 is a “free” cofibration for every
s. We denote the above diagram by

S = (X1, . . . ,Xn;C1, . . . , Cn+1; g1, . . . , gn; j1, . . . , jn).

We often add C0 = {∗} and the inclusion j0 : C0 → C1 to the above diagram.

Definition 5.1. (1) The sequence (g1, j1, . . . , jn) is called the edge of S.
(2) S is a quasi iterated mapping cone of depth n if Cs+1 ∪js CCs ≃

ΣXs and [Xs, Z]
g∗s←− [Cs, Z]

j∗s←− [Cs+1, Z] is exact as a sequence of
pointed sets for every space Z and every s ≥ 1 (cf. [4, p.68]). If we
choose a homotopy equivalence ωs : Cs+1 ∪js CCs ≃ ΣXs for each
s ≥ 1, then the set Ω = {ωs | 1 ≤ s ≤ n} is called a quasi-structure
on S. We set ω0 = 1C1 : C1 ∪j0 CC0 = C1 → C1.

(3) S is an iterated mapping cone of depth n if js is a homotopy cofibre of
gs for every s ≥ 1. In this case a homotopy equivalence as : Cs+1 −→
Cs ∪gs CXs and its homotopy inverse a−1

s can be taken such that

(5.2) as ◦ js = igs , a
−1
s ◦ igs = js, a

−1
s ◦ as

Cs
≃ 1Cs+1 , as ◦ a

−1
s

Cs
≃ 1Cs∪gsCXs .

If we choose such a homotopy equivalence as for each s ≥ 1, then
we call the set A = {as | 1 ≤ s ≤ n} a structure on S, and we set
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ωs = q′gs ◦ (as ∪ C1Cs) and Ω(A) = {ωs | 1 ≤ s ≤ n} which is a
quasi-structure on S.

(4) S is reduced if C2 = C1 ∪g1 CX1 and j1 = ig1 . A quasi-structure Ω
on a reduced quasi iterated mapping cone is reduced if ω1 = q′g1 . A
structure A on a reduced iterated mapping cone is reduced if a1 =
1C2 .

(5) Given a map f : C1 → Y , we denote by f
s
: Cs → Y an extension

of f to Cs, that is, f =

{
f
1

s = 1

f
s
◦ js−1 ◦ · · · ◦ j1 s ≥ 2

. We set f
0
= ∗ :

C0 → Y .

Convention 5.2. When S is an iterated mapping cone of depth n with a
structure {as | 1 ≤ s ≤ n}, we denote by a−1

s a homotopy inverse of as such
that it satisfies (5.2).

Note that an iterated mapping cone is a quasi iterated mapping cone.
When S is a reduced iterated mapping cone, a structure A on S is reduced
if and only if Ω(A) is reduced. Notice also that a quasi iterated mapping
cone is a revised version of the one called a shaft by Gershenson in [7,
Definition 1.2D] where he did not suppose that the cofibrations ji are free.

Let S = (X1, . . . ,Xn;C1, . . . , Cn+1; g1, . . . , gn; j1, . . . , jn) be a quasi iter-
ated mapping cone of depth n with a quasi-structure Ω = {ωs | 1 ≤ s ≤ n}

and f : C1 → Y a map with an extension f
n+1

to Cn+1. We define maps
for 0 ≤ s ≤ n as follows:
(5.3)



f
s
= f

n+1
◦ jn ◦ · · · ◦ js : Cs → Y,

hs+1 = f
s+1
∪ C1Cs : Cs+1 ∪js CCs → Y ∪fs CCs,

ks+1 = 1Y ∪ Cjs : Y ∪fs CCs → Y ∪
f
s+1 CCs+1,

g̃s+1 =

{
f : C1 → Y s = 0

hs+1 ◦ ω
−1
s : ΣXs → Y ∪fs CCs s ≥ 1

,

ξs+1 : (Y ∪fs+1 CCs+1) ∪ks+1 C(Y ∪fs CCs)

→ (Y ∪1Y CY ) ∪
f
s+1

∪Cf
s C(Cs+1 ∪js CCs),

y 7→ y, cs+1 ∧ t 7→ cs+1 ∧ t, y ∧ t 7→ y ∧ t, cs ∧ u ∧ t 7→ cs ∧ t ∧ u,

ω̃s = Σωs ◦ qfs+1
∪Cf

s ◦ ξs+1 : Cks+1 →

{
ΣC1 s = 0

ΣΣXs s ≥ 1
,

where y ∈ Y, cs+1 ∈ Cs+1, cs ∈ Cs, t, u ∈ I, and ω
−1
s is a homotopy inverse

of ωs. Since ω
−1
s is determined by ωs up to homotopy, so is g̃s+1 for s ≥ 1.

Lemma 5.3. Under the above situation, we have C
f
0 = Y , f

1
= h1 =

g̃1 = f , k1 = if , ω̃0 = q′f , ξs+1 is a homeomorphism, ω̃s is a homotopy
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equivalence, and the following diagram (5.4) is a reduced iterated mapping

cone of depth n+ 1 with a reduced quasi-structure Ω̃ = {ω̃s | 0 ≤ s ≤ n}.
(5.4)

C1 ΣX1 ΣX2 · · · ΣXn

g̃1

y g̃2

y g̃3

y g̃n+1

y

C
f
0

k1−−−−→ C
f
1

k2−−−−→ C
f
2

k3−−−−→ · · ·
kn−−−−→ Cfn

kn+1
−−−−→ C

f
n+1

Proof. Since k1 = ig̃1 , k1 is a free cofibration and a homotopy cofibre of g̃1,
and ω̃0 = q′g̃1 . Let 1 ≤ s ≤ n. By Proposition 2.2, ks+1 is a free cofibration.

Take J : hs+1 ≃ g̃s+1 ◦ ωs and set Φ(J, s + 1) = Φ(hs+1, g̃s+1, ωs, 1C
f
s ;J).

Then we have the following diagram.

Cs
js // Cs+1

ijs //

f
s+1

��

Cs+1 ∪js CCs

hs+1

��

ωs

≃
// ΣXs

g̃s+1

��
Cs

f
s

// Y
i
f
s

//

i
f
s+1

��

Y ∪fs CCs

ks+1

xxrrr
rr
rr
rr
r

ihs+1

��

Cfs

ig̃s+1

��
C
f
s+1

i
f
s∪Cijs

≃ // Chs+1

≃

Φ(J,s+1)
// Cg̃s+1

By Proposition 3.3(1), Φ(J, s + 1) is a homotopy equivalence and Φ(J, s +
1) ◦ ihs+1 = ig̃s+1

. By Lemma 3.1, ifs ∪Cijs is a homotopy equivalence and

(ifs∪Cijs)◦ks+1 ≃ ihs+1 . Hence Φ(J, s+1)◦(if s∪Cijs)◦ks+1 ≃ ig̃s+1
. Thus

ks+1 is a homotopy cofibre of g̃s+1. Hence (5.4) is a reduced iterated map-
ping cone of depth n + 1. As is easily seen, ξs+1 is a homeomorphism, and
q
f
s+1

∪Cf
s : C

f
s+1

∪Cf
s → Σ(Cs+1 ∪js CCs) and Σωs are homotopy equiv-

alences. Hence ω̃s is a homotopy equivalence. Therefore Ω̃ is a reduced
quasi-structure on (5.4). �

Definition 5.4. We denote the iterated mapping cone (5.4) by S(f
n+1

,Ω),
that is,

S(f
n+1

,Ω) =
(
C1,ΣX1, . . . ,ΣXn;Y,Cf1 , . . . , Cfn+1 ;

f, g̃2, . . . , g̃n+1; k1, . . . , kn+1

)
,

and call it the iterated mapping cone induced from S by f
n+1

and Ω, and we

call Ω̃ = {ω̃s | 0 ≤ s ≤ n} the typical quasi-structure on S(f
n+1

,Ω). When
S is an iterated mapping cone with a structure A, we denote the reduced

iterated mapping cone S(f
n+1

,Ω(A)) by S(f
n+1

,A) and call it the iterated
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mapping cone induced from S by f
n+1

and A. (Notice that we do not have

typical structure on S(f
n+1

,Ω) even if S is an iterated mapping cone.)

Remark 5.5. We have easily the following from definitions.

(1) The iterated mapping cone S(f
n+1

,Ω) depends on the map f
n+1

and
spaces X1, . . . ,Xn but not on maps g1, . . . , gn.

(2) The edge of S(f
n+1

,Ω) does not depend on Ω.
(3) If two quasi iterated mapping cones S, S′ of depth n have the same

edge X1
g1
→ C1

j1
→ C2

j2
→ · · ·

jn
→ Cn+1 and if a map f : C1 → Y

has an extension f
n+1

to Cn+1, then two iterated mapping cones

S(f
n+1

,Ω), S′(f
n+1

,Ω′) have the same edge for any quasi-structures
Ω,Ω′ on S, S′, respectively.

If the following problem is solved affirmatively, the number of systems
which shall be defined in the next section decreases by 2 to 10.

Problem 5.6. Is every quasi iterated mapping cone of depth 1 an iterated
mapping cone?

6. Unstable higher Toda brackets

In this section we will work in TOPw. (As indicated in the previous section
we can develop our consideration of this section similarly in TOPclw.)

Sometimes, without particular comments, we do not distinguish in nota-
tion between a map and its homotopy class.

Throughout the section 6, we denote by ~α = (αn, . . . , α1) a sequence of
homotopy classes

(6.1) αi ∈ [Xi,Xi+1] (i = 1, 2, . . . , n; n ≥ 3).

If a map fi : Xi → Xi+1 represents αi, then the sequence ~f = (fn, . . . , f1) is
called a representative of ~α. We denote by Rep(~α) the set of representatives
of ~α.

6.1. Definition of higher Toda brackets. Given ~f ∈ Rep(~α), we con-
sider collections {Sr, fr,Ωr | 2 ≤ r ≤ n}, {S2, f2,Ω2} ∪ {Sr, fr,Ar | 3 ≤ r ≤
n}, and {Sr, fr,Ar | 2 ≤ r ≤ n} (provided S2 is an iterated mapping cone)
which satisfy the following (i), (ii), and (iii). (There is a possibility that

such collections do not exist for suitable ~f .)
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(i) S2 is a quasi iterated mapping cone of depth 1 as displayed in

X1

f1
��
X2

j2,1 // C2,2

with Ω2 a quasi-structure and A2 a structure provided S2 is an iter-
ated mapping cone.

(ii) Sr is an iterated mapping cone of depth r − 1 for 3 ≤ r ≤ n as
displayed in

Xr−1

fr−1

��

ΣXr−2

gr,2

��

Σ2Xr−3

gr,3

��

· · · Σr−2X1

gr,r−1

��
Xr

jr,1 // Cr,2
jr,2 // Cr,3

jr,3 // · · ·
jr,r−2 // Cr,r−1

jr,r−1 // Cr,r

with Ωr a quasi-structure and Ar a structure.
(iii) fr : Cr,r → Xr+1 is an extension of fr to Cr,r for 2 ≤ r ≤ n− 1, and

fn : Cn,n−1 → Xn+1 is an extension of fn to Cn,n−1.

We use the following notations:

• Cr,0 = {∗}, Cr,1 = Xr, jr,0 = ∗ : Cr,0 → Cr,1, f
0
r = fr ◦ jr,0 : Cr,0 →

Xr+1 for 1 ≤ r ≤ n, and f1 = f1 : C1,1 → X2;
• gr,1 = fr−1 for 2 ≤ r ≤ n;

• fr
s
=





fr 1 = s ≤ r ≤ n

fr ◦ jr,r−1 ◦ · · · ◦ jr,s 0 ≤ s < r ≤ n− 1

fr 1 ≤ s = r ≤ n− 1

: Cr,s → Xr+1;

• fn
s
=

{
fn ◦ jn,n−2 ◦ · · · ◦ jn,s 0 ≤ s ≤ n− 2

fn s = n− 1
: Cn,s → Xn+1;

• Ωr = {ωr,s | 1 ≤ s < r} and ωr,0 = 1Xr for 2 ≤ r ≤ n, where
ωr,s : Cr,s+1 ∪jr,s CCr,s → ΣΣs−1Xr−s;
• Ar = {ar,s | 1 ≤ s < r} and Ω(Ar) = {ωr,s | 1 ≤ s < r}, where
ar,s : Cr,s+1 → Cr,s ∪gr,s CΣs−1Xr−s and

ωr,s = q′gr,s ◦ (ar,s ∪C1Cr,s) : Cr,s+1 ∪jr,s CCr,s ≃ ΣΣs−1Xr−s,

and a−1
r,s is a homotopy inverse of ar,s such that

a−1
r,s ◦ igr,s = jr,s, a−1

r,s ◦ ar,s
Cr,s

≃ 1Cr,s+1 , ar,s ◦ a
−1
r,s

Cr,s

≃ 1Cgr,s
.

Definition 6.1.1. Various presentations of ~f and related notions are de-
fined as follows (if Problem 5.6 is affirmative, (a) (resp. (d)) equals with (a′)
(resp. (d′)).
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(1) A collection {Sr, fr, Ωr | 2 ≤ r ≤ n} is
(a) a q-presentation if Sr+1 = Sr(fr,Ωr) for 2 ≤ r < n;
(a′) a qs2-presentation if S2 is an iterated mapping cone and Sr+1 =

Sr(fr,Ωr) for 2 ≤ r < n;
(b) a qṡ2-presentation if it is a qs2-presentation and S2 is reduced;
(c) a qs̈2-presentation if it is a qṡ2-presentation and Ω2 is reduced;

(d) an aq-presentation if Sr+1 = Sr(fr,Ωr) and Ωr+1 = Ω̃r for 2 ≤
r < n;

(d′) an aqs2-presentation if S2 is an iterated mapping cone and

Sr+1 = Sr(fr,Ωr) and Ωr+1 = Ω̃r for 2 ≤ r < n;
(e) an aqṡ2-presentation if it is an aqs2-presentation and S2 is re-

duced;
(f) an aqs̈2-presentation if it is an aqṡ2-presentation and Ω2 is re-

duced.
(2) A collection {S2, f2,Ω2}∪{Sr, fr,Ar | 3 ≤ r ≤ n} is a q2-presentation

if S3 = S2(f2,Ω2), Sr+1 = Sr(fr,Ar) (3 ≤ r < n), and Ar is reduced
for 3 ≤ r ≤ n.

(3) A collection {Sr, fr, Ar | 2 ≤ r ≤ n} is
(g) an st-presentation if Sr+1 = Sr(fr,Ar) and Ar+1 is reduced for

2 ≤ r < n;
(h) an ṡt-presentation if it is an st-presentation and S2 is reduced;
(i) an s̈t-presentation if it is an ṡt-presentation and A2 is reduced.

(4) Let ⋆ denote one of the following: q, aq, qs2, qṡ2, qs̈2, aqs2, aqṡ2,

aqs̈2, st, ṡt, s̈t, and q2. ~f is ⋆-presentable if it has a ⋆-presentation,
and ~α is ⋆-presentable if it has a ⋆-presentable representative.

In the above definitions we used the following abbreviations: q=“quasi-
structure”; s2=“S2 is an iterated mapping cone”; ṡ2=“S2 is a reduced iter-
ated mapping cone”; s̈2=“S2 is a reduced iterated mapping cone with Ω2

reduced”; a=“asymptotic”; st=“structure”; ṡt=“st and ṡ2”; s̈t=“ṡt and A2

is reduced”.

Definition 6.1.2. We denote the set of homotopy classes of fn ◦ gn,n−1 for

all ⋆-presentations of ~f by { ~f }(⋆) or {fn, . . . , f1}
(⋆) which is called the ⋆-

bracket of ~f . It is a subset of [Σn−2X1,Xn+1] and there is a possibility that

it is the empty set. For convenience we denote by {f2, f1}
(⋆) the one point

set consisting of the homotopy class of f2 ◦ f1.

Notice that ~f is ⋆-presentable if and only if { ~f }(⋆) is not empty. As shall

be seen in §6.4, we can denote { ~f }(⋆) by {~α }(⋆) for any ~f ∈ Rep(~α).
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Remark 6.1.3. It follows from definitions that if ~α is q-presentable, then
αr+1 ◦αr = 0 for 1 ≤ r ≤ n− 1, and that we have the commutative diagram

{ ~f }(qs̈2)
!! // { ~f }(qṡ2)

!

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯

{ ~f }(s̈t)
! // { ~f }(ṡt)

!
��

{ ~f }(aqs̈2) //

OO

{ ~f }(aqṡ2)
! //

OO

{ ~f }(aqs2)

#
��

// { ~f }(qs2)

#
��

{ ~f }(st)oo

��

{ ~f }(aq) // { ~f }(q) { ~f }(q2)oo

(6.1.1)

where arrows are inclusions, !! is = for n ≥ 4, and four !’s are = as shall be
shown in Theorem 6.2.1. Notice that if Problem 5.6 is affirmative, two #’s
are =.

The following two propositions are easy consequences of definitions.

Proposition 6.1.4. Let {Sr, fr,Ωr | 2 ≤ r ≤ n} be a q-presentation of ~f .
Then

Cr,2 = Xr ∪fr−1
1 CXr−1 (3 ≤ r ≤ n), C3,3 = X3 ∪f2 CC2,2,

Cr,s = Xr ∪fr−1
s−1 C(Xr−1 ∪fr−2

s−2 C(Xr−2 ∪ · · ·

∪
fr−s+2

2 C(Xr−s+2 ∪fr−s+1
1 CXr−s+1) · · · )) (3 ≤ s < r ≤ n),

Cr,r = Xr ∪fr−1
r−1 C(Xr−1 ∪fr−2

r−2 C(· · · ∪
f3

3 C(X3 ∪f2
2 CC2,2) · · · ))

(4 ≤ r ≤ n).

Proposition 6.1.5. If { ~f }(⋆) is not empty, then {fm, fm−1, . . . , fℓ}
(⋆) con-

tains 0 for 1 ≤ ℓ < m ≤ n, (ℓ,m) 6= (1, n).

Definition 6.1.6. If there exist null-homotopies Ai : fi+1 ◦ fi ≃ ∗ (1 ≤
i ≤ n − 1) such that [fi+2, Ai+1, fi+1] ◦ (fi+1, Ai, fi) ≃ ∗ (1 ≤ i ≤ n − 2),

then we call ~f and ( ~f ; ~A) admissible, where ~A = (An−1, . . . , A1). We call
~α admissible if it has an admissible representative.

It follows from Proposition 2.11 of [15] that if ~α is admissible, then every
representative of it is admissible. From results in forthcoming sub-sections,
we can prove the following without difficulties: when n = 3, ~α is admissible
if and only if {~α }(⋆) contains 0 for all ⋆; when n = 4, ~α is admissible if
and only if ~α is ⋆-presentable for all ⋆; when n ≥ 5, if ~α is ⋆-presentable for
some ⋆, then ~α is admissible.
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Remark 6.1.7. The following is obvious by definitions: if fi : Xi → Xi+1 is a

map in TOPclw for every i, then the ⋆-brackets of ~f in TOPclw and TOPw

are the same for ⋆ = qṡ2, qs̈2, aqṡ2, aqs̈2, ṡt, s̈t.

6.2. Relations between twelve brackets. In this subsection we prove
three results and state an example. From 6.2.1, 6.2.2, and (6.1.1), we have
(1.1)–(1.4).

Theorem 6.2.1. (1) { ~f }(s̈t) = { ~f }(ṡt) = { ~f }(st).

(2) { ~f }(aqs2) = { ~f }(aqṡ2) = { ~f }(aqs̈2) ◦ Σn−3E(ΣX1), { ~f }
(qs2) =

{ ~f }(qṡ2) = { ~f }(aqs̈2) ◦ E(Σn−2X1), and

{ ~f }(qs̈2) =

{
{ ~f }(aqs̈2) n = 3

{ ~f }(aqs̈2) ◦ E(Σn−2X1) n ≥ 4
.

(3) { ~f }(q) = { ~f }(aq) ◦ E(Σn−2X1).

(4) { ~f }(s̈t) ◦ E(Σn−2X1) = { ~f }
(aqs̈2) ◦ E(Σn−2X1).

(5) If α ∈ { ~f }(q), then there are θ, θ′ ∈ [Σn−2X1,Σ
n−2X1] such that

α ◦ θ ∈ { ~f }(aqs̈2) and α ◦ θ′ ∈ { ~f }(s̈t).

Corollary 6.2.2. (1) { ~f }(q) ◦ ε = { ~f }(q) and { ~f }(qs2) ◦ ε = { ~f }(qs2)

for every ε ∈ E(Σn−2X1), and { ~f }(aqs2) ◦ Σn−3γ = { ~f }(aqs2) for
every γ ∈ E(ΣX1).

(2) { ~f }(aq) ◦ Σn−2γ = { ~f }(aq) for every γ ∈ E(X1), and −{ ~f }(aq) =

{ ~f }(aq).
(3) If the suspension Σn−2 : E(X1) → E(Σn−2X1) is surjective, for ex-

ample if X1 is a sphere of positive dimension, then { ~f }(q) = { ~f }(aq).

(4) If { ~f }(⋆) is not empty for some ⋆, then { ~f }(⋆) is not empty for all
⋆.

(5) If { ~f }(⋆) contains 0 for some ⋆, then { ~f }(⋆) contains 0 for all ⋆.

(6) −{ ~f }(⋆) = { ~f }(⋆) for ⋆ = q, qs2, aq, aqs2.

(7) If n ≥ 4 and ~f is ⋆-presentable for some ⋆, then ~f is admissible and
⋆-presentable for all ⋆.

(8) If { ~f }(⋆) = {0} for some ⋆, then { ~f }(⋆) = {0} for all ⋆ except
aq, q, q2.

Proposition 6.2.3 (cf. p.26, p.25, and p.33 of [27]). Given maps fn+1 :
Xn+1 → Xn+2 and f0 : X0 → X1, we have

fn+1 ◦ {fn, . . . , f1}
(⋆) ⊂ {fn+1 ◦ fn, fn−1, . . . , f1}

(⋆),(6.2.1)

{fn+1 ◦ fn, fn−1, . . . , f1}
(⋆) ⊂ {fn+1, fn ◦ fn−1, fn−2, . . . , f1}

(⋆),(6.2.2)



UNSTABLE HIGHER TODA BRACKETS 49

{fn, . . . , f1}
(aqs̈2) ◦ Σn−2f0 ⊂ {fn, . . . , f2, f1 ◦ f0}

(aqs̈2)

⊂ {fn, . . . , f3, f2 ◦ f1, f0}
(aqs̈2).

(6.2.3)

Remark 6.2.4. We can prove the following analogues relations of (6.2.3).

{fn, . . . , f1}
(s̈t) ◦ Σn−2f0 ⊂ {fn, . . . , f2, f1 ◦ f0}

(s̈t)

⊂ {fn, . . . , f3, f2 ◦ f1, f0}
(s̈t).

Details shall appear elsewhere.

Example 6.2.5 (cf. Lemma 4.10 of [24], Lemma 5.1 of [7], Example 6.6.2(2)
below). Let p be an odd prime and α1(3) : S2p → S3 a map of which the
homotopy class is of order p. For every integer n ≥ 3, we set α1(n) =
Σn−3α1(3) : S

n+2p−3 → Sn and Ξ = {α1(n), α1(n + 2p − 3), α1(n + 2(2p −

3)), . . . , α1(n + (p − 1)(2p − 3))}(⋆) ⊂ πn+2p(p−1)−2(S
n). Take n such that

n ≥ 2p(p − 1). Then the p-primary component of πn+2p(p−1)−2(S
n) is Zp,

and the following can be proved: Ξ contains an element of order p and the
order of any element of Ξ is a multiple of p so that Ξ does not contain 0.
We need an argument for the proof, but we omit details.

Proof of Theorem 6.2.1(1). It suffices to show that { ~f }(st) ⊂ { ~f }(s̈t). Let

α ∈ { ~f }(st) and {Sr, fr,Ar | 2 ≤ r ≤ n} an st-presentation of ~f with α =
fn ◦ gn,n−1, where

Sr = (Xr−1,ΣXr−2, . . . ,Σ
r−2X1;Cr,1, . . . , Cr,r;

gr,1, . . . , gr,r−1; jr,1, . . . , jr,r−1);

Cr,1 = Xr, gr,1 = fr−1, Ar = {ar,s | 1 ≤ s < r}, Ω(Ar) = {ωr,s | 1 ≤ s < r};

if 3 ≤ r ≤ n, then Cr,2 = Xr ∪fr−1 CXr−1, jr,1 = ifr−1 , and ar,1 = 1Cr,2 .

We are going to construct an s̈t-presentation {S
′
r, fr

′
,A′

r | 2 ≤ r ≤ n} of ~f

such that fn
′
◦ g′n,n−1 = α.

First we set S′2 = (X1;X2,X2 ∪f1 CX1; f1; if1), a
′
2,1 = 1C′

2,2
, A′

2 = {a′2,1},

Ω′
2 = Ω(A′

2) = {q′f1}, e2 = a−1
2,1 : C ′

2,2 → C2,2, and f2
′
= f2 ◦ e2. Then

C ′
2,1 = C2,1, e2 ◦ j

′
2,1 = j2,1 and

ω2,1 ◦ (e2 ∪ C1X2) = q′f1 ◦ (a2,1 ∪ C1X2) ◦ (e2 ∪ C1X2)

≃ q′f1 = ω′
2,1 (by (4.1)).

Secondly we set S′3 = S′2(f2
′
,A′

2) and

e3 = 1X3 ∪ Ce2 : C
′
3,3 = X3 ∪f2

′ C(X2 ∪f1 CX1)→ C3,3 = X3 ∪f2 CC2,2.
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Then C ′
3,s = C3,s (s = 1, 2), j′3,1 = j3,1, j

′
3,2 = 1X3 ∪ Cj

′
2,1, e3 ◦ j

′
3,2 = j3,2,

and

g′3,2 = (f2
′
∪C1X2) ◦ ω

′−1
2,1 = (f2 ∪ C1X2) ◦ (e2 ∪ C1X2) ◦ ω

′−1
2,1

≃ (f2 ∪ C1X2) ◦ ω
−1
2,1 = g3,2.

Take a homotopy K3 : g3,2 ≃ g
′
3,2 and set

Φ(K3) = Φ(g3,2, g
′
3,2, 1ΣX1 , 1X3∪f2

CX2 ;K
3)

: (X3 ∪f2 CX2) ∪g3,2 CΣX1 → (X3 ∪f2 CX2) ∪g′3,2 CΣX1,

a′3,2 = Φ(K3) ◦ a3,2 ◦ e3 : C
′
3,3 → (X3 ∪f2 CX2) ∪g′3,2 CΣX1,

a′3,1 = 1C′

3,2
, A′

3 = {a
′
3,1, a

′
3,2}, f3

′
=

{
f3 : C

′
3,2 = C3,2 → X4 n = 3

f3 ◦ e3 : C
′
3,3 → X4 n ≥ 4

.

Then A′
3 is a reduced structure on S′3. When n = 3, {S′r, fr

′
,A′

r | r = 2, 3} is

an s̈t-presentation of ~f such that f3
′
◦ g′3,2 = α. When n ≥ 4, by repeating

the above process, we have S′r, fr
′
,A′

r and er : C
′
r,r ≃ Cr,r for 4 ≤ r ≤ n such

that 



S′r = S′r−1(fr−1
′
,A′

r−1), er = 1Xr ∪ Cer−1;
C ′
r,s = Cr,s (1 ≤ s ≤ r − 1), C ′

r,r = Xr ∪fr−1
′ CC ′

r−1,r−1;

j′r,s = jr,s, a
′
r,s = ar,s, g

′
r,s = gr,s (1 ≤ s ≤ r − 2);

ω′
r,r−1 ≃ ωr,r−1 ◦ (er ∪C1Cr,r−1), g

′
r,r−1 ≃ gr,r−1;

fr
′
=

{
fn : C ′

n,n−1 = Cn,n−1 → Xn+1 r = n

fr ◦ er : C
′
r,r → Xr+1 r < n

;

a′r,r−1 = Φ(Kr) ◦ ar,r−1 ◦ er : C
′
r,r → C ′

r,r−1 ∪g′r,r−1
CΣr−2X1,

where Kr : gr,r−1 ≃ g
′
r,r−1 and

Φ(Kr) = Φ(gr,r−1, g
′
r,r−1, 1Σr−2X1

, 1Cr,r−1 ;K
r)

: Cr,r−1 ∪gr,r−1 CΣr−2X1 → C ′
r,r−1 ∪g′r,r−1

CΣr−2X1.

Then A′
r is a reduced structure on S′r. Therefore {S′r, fr

′
,A′

r | 2 ≤ r ≤ n}

is an s̈t-presentation of ~f such that fn
′
◦ g′n,n−1 ≃ fn ◦ gn,n−1 and hence

α ∈ { ~f }(s̈t). This proves Theorem 6.2.1(1). �

Proof of Theorem 6.2.1(2). First we prove { ~f }(aqs2) ⊂ { ~f }(aqṡ2) which is

equivalent to the first equality. Let α ∈ { ~f }(aqs2) and {Sr, fr,Ωr | 2 ≤ r ≤ n}

an aqs2-presentation of ~f with α = fn ◦ gn,n−1. It suffices to construct

an aqṡ2-presentation {S
′
r, fr

′
,Ω′

r | 2 ≤ r ≤ n} with α = fn
′
◦ g′n,n−1. Set

S′2 = (X1;X2,X2 ∪f1 CX1; f1; if1). Since S2 is an iterated mapping cone,
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we can take e2 : C ′
2,2 = X2 ∪f1 CX1 ≃ C2,2 such that e2 ◦ j

′
2,1 = j2,1. Set

f2
′
= f2 ◦ e2, ω

′
2,1 = ω2,1 ◦ (e2 ∪ C1X2) : C ′

2,2 ∪j′2,1 CC
′
2,1 → ΣX1, and

Ω′
2 = {ω′

2,1}. Set S′3 = S′2(f2
′
,Ω′

2), Ω
′
3 = Ω̃′

2, e3 = 1X3 ∪ Ce2 : C ′
3,3 → C3,3,

and f3
′
=

{
f3 : C

′
3,2 = C3,2 → X4 n = 3

f3 ◦ e3 : C
′
3,3 → X4 n ≥ 4

. Then ω′
3,2 = ω3,2 ◦ (e3 ∪ C1C3,2)

and g′3,2 = (f2
′
∪C1X2)◦ω

′−1
2,1 ≃ (f2∪C1X2)◦ω

−1
2,1 = g3,2. By continuing the

construction inductively, we obtain an aqṡ2-presentation {S
′
r, fr

′
,Ω′

r | 2 ≤
r ≤ n} and er : C ′

r,r ≃ Cr,r such that C ′
r,s = Cr,s (1 ≤ s < r < n),

ω′
r,r−1 = ωr,r−1 ◦ (er ∪ 1Cr,r−1) : C

′
r,r ∪ CC

′
r,r−1 → Cr,r ∪ CCr,r−1 for r < n,

and fr
′
=

{
fn : C ′

n,n−1 = Cn,n−1 → Xn+1 r = n

fr ◦ er : C
′
r,r → Xr+1 r < n

so that g′n,n−1 = (fn−1
′
∪

C1n−1,n−2)◦ω
′−1
n−1,n−2 ≃ gn,n−1. Hence fn

′
◦g′n,n−1 ≃ fn◦gn,n−1. This proves

the first equality in (2).

Secondly we prove the second equality in (2). Let α ∈ { ~f }(aqṡ2) and

{Sr, fr,Ωr | 2 ≤ r ≤ n} an aqṡ2-presentation of ~f with α = fn ◦ gn,n−1.

Set S′2 = S2, ω
′
2,1 = q′f1 , Ω

′
2 = {ω′

2,1}, and θ = ω2,1 ◦ ω
′−1
2,1 ∈ E(ΣX1). By

Remark 5.5(3), we define inductively S′3 = S′2(f2,Ω
′
2), Ω

′
3 = Ω̃′

2; . . . ; S′n =

S′n−1(fn−1,Ω
′
n−1), Ω′

n = Ω̃′
n−1. Then {S′r, fr,Ω

′
r | 2 ≤ r ≤ n} is an aqs̈2-

presentation of ~f such that ω′
r,s = ωr,s for 1 ≤ s ≤ r − 2, and Σr−2θ ◦

ω′
r,r−1 = ωr,r−1. Hence α ◦ Σn−3θ = fn ◦ g

′
n,n−1 ∈ {

~f }(aqs̈2) and so α ∈

{ ~f }(aqs̈2)◦Σn−3θ−1 ⊂ { ~f }(aqs̈2)◦Σn−3E(ΣX1). Thus { ~f }
(aqṡ2) ⊂ { ~f }(aqs̈2)◦

Σn−3E(ΣX1).

Conversely let α ∈ { ~f }(aqs̈2) and θ ∈ E(ΣX1). Let {S′r, fr
′
,Ω′

r | 2 ≤ r ≤

n} be an aqs̈2-presentation of ~f with α = fn
′
◦ g′n,n−1. Let Sr be the

iterated mapping cone which is obtained from S′r by replacing g′r,r−1 with

g′r,r−1 ◦ Σ
r−3θ, and Ωr the quasi-structure on Sr which is obtained from Ω′

r

by replacing ω′
r,r−1 with Σr−2θ−1 ◦ ω′

r,r−1. Then {Sr, fr
′
,Ωr | 2 ≤ r ≤ n}

is an aqṡ2-presentation of ~f such that gr,s = g′r,s for 1 ≤ s ≤ r − 2 and

gr,r−1 = g′r,r−1◦Σ
r−3θ. Hence α◦Σn−3θ = fn

′
◦g′n,n−1◦Σ

n−3θ = fn
′
◦gn,n−1 ∈

{ ~f }(aqṡ2). Thus { ~f }(aqṡ2) ⊃ { ~f }(aqs̈2) ◦ Σn−3E(ΣX1). This proves the
second equality in (2).

Thirdly we prove the third and fourth equalities in (2). We prove

{ ~f }(qs2) ⊂ { ~f }(aqs̈2) ◦ E(Σn−2X1),(6.2.4)



52 H. ŌSHIMA AND K. ŌSHIMA

{ ~f }(aqs̈2) ◦ E(Σn−2X1) ⊂

{
{ ~f }(qṡ2) n = 3

{ ~f }(qs̈2) n ≥ 4
.(6.2.5)

If these are proved, then

{ ~f }(qs2) ⊂ { ~f }(aqs̈2) ◦ E(Σn−2X1)

⊂

{
{ ~f }(qṡ2) ⊂ { ~f }(qs2) n = 3

{ ~f }(qs̈2) ⊂ { ~f }(qṡ2) ⊂ { ~f }(qs2) n ≥ 4

(6.2.6)

so that the third and fourth equalities in (2) follow. To prove (6.2.4), let

α ∈ { ~f }(qs2) and {Sr, fr,Ωr | 2 ≤ r ≤ n} a qs2-presentation of ~f with
α = fn ◦ gn,n−1. Set

S
′
2 = (X1;X2,X2 ∪f1 CX1; f1; if1), j′2,1 = if1 , ω′

2,1 = q′f1 , Ω′
2 = {ω

′
2,1}.

Since j2,1 is a homotopy cofibre of f1 by the hypothesis, there exists a ho-
motopy equivalence e2 : C

′
2,2 = X2∪f1 CX1 → C2,2 such that e2 ◦ j

′
2,1 = j2,1.

Set f2
′
= f2 ◦ e2. Then f2

′
is an extension of f2 to C ′

2,2. Set

S
′
3 = S

′
2(f2

′
,Ω′

2), Ω
′
3 = Ω̃′

2, e3 = 1X3 ∪ Ce2 : C
′
3,3 → C3,3,

f3
′
=

{
f3 : C

′
3,2 = C3,2 → X4 n = 3

f3 ◦ e3 : C
′
3,3 → X4 n ≥ 4

.

Proceeding with the construction, we have an aqs̈2-presentation

{S′r, fr
′
,Ω′

r | 2 ≤ r ≤ n} of
~f such that

C ′
r,s = Cr,s (1 ≤ s ≤ r − 1), j′r,s = jr,s (1 ≤ s ≤ r − 2),

er = 1Xr ∪ Cer−1 : C
′
r,r → Cr,r (3 ≤ r ≤ n),

fr
′
=

{
fr ◦ er : C

′
r,r → Xr+1 r < n

fn : C ′
n,n−1 = Cn,n−1 → Xn+1 r = n

.

Set θ = ωn−1,n−2 ◦ (en−1 ∪ C1Cn−1,n−2) ◦ ω
′−1
n−1,n−2 : Σn−2X1 → Σn−2X1.

Then θ is a homotopy equivalence and

α = fn ◦ gn,n−1 = fn ◦ (fn−1 ∪ C1Cn−1,n−2) ◦ ω
−1
n−1,n−2

= fn ◦ (fn−1 ∪ C1Cn−1,n−2) ◦ (en−1 ∪ C1Cn−1,n−2) ◦ ω
′−1
n−1,n−2 ◦ θ

−1

= fn
′
◦ (fn−1

′
∪ C1n−1,n−2) ◦ ω

′−1
n−1,n−2 ◦ θ

−1

∈ { ~f }(aqs̈2) ◦ θ−1 ⊂ { ~f }(aqs̈2) ◦ E(Σn−2X1).

This proves (6.2.4).

To prove (6.2.5), let α ∈ { ~f }(aqs̈2), ε ∈ E(Σn−2X1), and {Sr, fr,Ωr|2 ≤

r ≤ n} an aqs̈2-presentation of ~f such that α = fn ◦gn,n−1. Let {S
′
r, fr

′
,Ω′

r |
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2 ≤ r ≤ n} be obtained from {Sr, fr,Ωr|2 ≤ r ≤ n} by replacing ωn−1,n−2

and Sn with ε−1 ◦ ωn−1,n−2 and S′n = Sn−1(fn−1,Ω
′
n−1), respectively. Then

{S′r, fr
′
,Ω′

r | 2 ≤ r ≤ n} is a qṡ2-presentation of ~f if n = 3 and a qs̈2-

presentation of ~f if n ≥ 4, and g′n,n−1 = gn,n−1 ◦ ε for n ≥ 3. Hence

α ◦ ε = fn ◦ gn,n−1 ◦ ε = fn
′
◦ g′n,n−1 ∈

{
{ ~f }(qṡ2) n = 3

{ ~f }(qs̈2) n ≥ 4
. This proves

(6.2.5).
Fourthly it follows from (6.2.6) that

{ ~f }(qṡ2) =

{
{ ~f }(aqs̈2) ◦ E(ΣX1) n = 3

{ ~f }(qs̈2) n ≥ 4
.

By definition, we have { ~f }(aqs̈2) = { ~f }(qs̈2) for n = 3. Hence we obtain the
fifth equality in (2). �

Proof of Theorem 6.2.1(3). First we prove { ~f }(q) ⊂ { ~f }(aq) ◦ E(Σn−2X1).

Let α ∈ { ~f }(q) and {Sr, fr,Ωr | 2 ≤ r ≤ n} a q-presentation of ~f with
α = fn ◦ gn,n−1. We define inductively

S
′
2 = S2, Ω

′
2 = Ω2; S

′
k+1 = S

′
k(fk,Ω

′
k), Ω

′
k+1 = Ω̃′

k (2 ≤ k < n).

By Remark 5.5(3), this definition is possible and S′r, Sr have the same edge.

Then {S′r, fr,Ω
′
r | 2 ≤ r ≤ n} is an aq-presentation of ~f and

{ ~f}(aq) ∋ fn ◦ g
′
n,n−1 = fn ◦ (fn−1 ∪ C1Cn−1,n−2) ◦ ω

′−1
n−1,n−2

= fn ◦ (fn−1 ∪ C1Cn−1,n−2) ◦ ω
−1
n−1,n−2 ◦ ε0 = α ◦ ε0

where ε0 = ωn−1,n−2 ◦ ω
′−1
n−1,n−2 ∈ E(Σn−2X1). Hence

α ∈ { ~f }(aq) ◦ ε−1
0 ⊂ {

~f }(aq) ◦ E(Σn−2X1)

and so { ~f }(q) ⊂ { ~f }(aq) ◦ E(Σn−2X1).

Secondly we prove { ~f }(q) ⊃ { ~f }(aq) ◦ E(Σn−2X1). Let α ∈ { ~f }(aq),

ε ∈ E(Σn−2X1), and {Sr, fr,Ωr | 2 ≤ r ≤ n} an aq-presentation of ~f with
α = fn ◦ gn,n−1. We set

Ω′
n−1 =

{
{ε−1 ◦ ω2,1} n = 3

{ωn−1,s, ε
−1 ◦ ωn−1,n−2 | 1 ≤ s ≤ n− 3} n ≥ 4

which is a quasi-structure on Sn−1. Set S
′
n = Sn−1(fn−1,Ω

′
n−1). Since S′n is

obtained from Sn by replacing gn,n−1 with gn,n−1 ◦ ε, it follows that

{Sr, fr,Ωr | 2 ≤ r ≤ n− 2} ∪ {Sn−1, fn−1,Ω
′
n−1, S

′
n, fn,Ωn}
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is a q-presentation of ~f and it represents α ◦ ε. Hence α ◦ ε ∈ { ~f }(q). Thus

{ ~f }(q) ⊃ { ~f }(aq) ◦ E(Σn−2X1).

Therefore { ~f }(q) = { ~f }(aq) ◦ E(Σn−2X1). �

Proof of Theorem 6.2.1(4). We prove

{ ~f }(s̈t) ⊂ { ~f }(aqs̈2) ◦ E(Σn−2X1),(6.2.7)

{ ~f }(s̈t) ◦ E(Σn−2X1) ⊃ { ~f }
(aqs̈2).(6.2.8)

If these are done, then, by applying E(Σn−2X1) to them from the right, we

have the equality. To prove (6.2.7), let α ∈ { ~f }(s̈t) and {Sr, fr,Ar | 2 ≤ r ≤

n} an s̈t-presentation of ~f with α = fn ◦ gn,n−1. We define inductively

S
′
2 = S2,Ω

′
2 = Ω(A2); S

′
k+1 = S

′
k(fk,Ω

′
k), Ω

′
k+1 = Ω̃′

k (2 ≤ k < n).

By Remark 5.5(3), this definition is possible, and S′r, Sr have the same edge.

Then {S′r, fr,Ω
′
r | 2 ≤ r ≤ n} is an aqs̈2-presentation of ~f and

{ ~f }(aqs̈2) ∋ fn ◦ g
′
n,n−1 = fn ◦ (fn−1 ∪C1Cn−1,n−2) ◦ ω

′−1
n−1,n−2

= fn ◦ (fn−1 ∪C1Cn−1,n−2) ◦ ω
−1
n−1,n−2 ◦ ε0 = α ◦ ε0,

where ε0 = ωn−1,n−2 ◦ ω
′−1
n−1,n−2 ∈ E(Σn−2X1). Hence

α ∈ { ~f }(aqs̈2) ◦ ε−1
0 ⊂ {

~f }(aqs̈2) ◦ E(Σn−2X1).

This proves (6.2.7).

To prove (6.2.8), let α ∈ { ~f }(aqs̈2) and {Sr, fr,Ωr | 2 ≤ r ≤ n} an aqs̈2-

presentation of ~f with α = fn ◦ gn,n−1. Set S′2 = S2 and A′
2 = {1C2,2}. We

define inductively S′r+1 = S′r(fr,A
′
r) and A′

r+1 is a reduced structure on S′r+1

for r ≥ 2. By Remark 5.5(3), this definition is possible, and S′r, Sr have the

same edge. Then {S′r, fr,A
′
r | 2 ≤ r ≤ n} is an s̈t-presentation of ~f and

{ ~f }(s̈t) ∋ fn ◦ g
′
n,n−1 = fn ◦ (fn−1 ∪C1Cn−1,n−2) ◦ ω

′−1
n−1,n−2

= fn ◦ (fn−1 ∪C1Cn−1,n−2) ◦ ω
−1
n−1,n−2 ◦ ε0 = α ◦ ε0,

where Ω(A′
n−1) = {ω

′
n−1,s | 1 ≤ s < n − 1} and ε0 = ωn−1,n−2 ◦ ω

′−1
n−1,n−2 ∈

E(Σn−2X1). Hence α ∈ { ~f }(s̈t) ◦ ε−1
0 ⊂ { ~f }(s̈t) ◦ E(Σn−2X1). This proves

(6.2.8) and completes the proof of Theorem 6.2.1(4). �

Proof of Theorem 6.2.1(5). Let α ∈ { ~f}(q) and {Sr, fr,Ωr | 2 ≤ r ≤ n} a

q-presentation of ~f with α = fn ◦ gn,n−1. We are going to define an aqs̈2-

presentation {S′r, fr
′
,Ω′

r | 2 ≤ r ≤ n} of ~f such that fn
′
◦ g′n,n−1 = α ◦ θ



UNSTABLE HIGHER TODA BRACKETS 55

for some map θ : Σn−2X1 → Σn−2X1 (notice that θ is not necessarily a
homotopy equivalence). Now set

S
′
2 = (X1;X2,X2 ∪f1 CX1; f1; if1), Ω′

2 = {q
′
f1}.

Since S2 is a quasi iterated mapping cone and j′2,1 = if1 is a cofibration, there

exists a map (not necessarily a homotopy equivalence) e2 : C
′
2,2 → C2,2 such

that e2 ◦ j
′
2,1 = j2,1. Set f2

′
= f2 ◦ e2. Then f2

′
◦ j′2,1 = f2 and so f2

′
is an

extension of f2 to C ′
2,2. Set

S
′
3 = S

′
2(f2

′
,Ω′

2), Ω
′
3 = Ω̃′

2, e3 = 1X3 ∪ Ce2 : C
′
3,3 → C3,3,

f3
′
=

{
f3 : C

′
3,2 = C3,2 → X4 n = 3

f3 ◦ e3 : C
′
3,3 → X4 n ≥ 4

.

Proceeding with the construction, we have an aqs̈2-presentation {S
′
r, fr

′
,Ω′

r |

2 ≤ r ≤ n} of ~f and maps er : C
′
r,r → Cr,r (2 ≤ r ≤ n− 1) such that

C ′
r,s = Cr,s (1 ≤ s ≤ r − 1), j′r,s = jr,s (1 ≤ s ≤ r − 2),

er ◦ j
′
r,r−1 = jr,r−1 (2 ≤ r ≤ n− 1),

fr
′
=

{
fn : C ′

n,n−1 = Cn,n−1 → Xn+1 r = n

fr ◦ er : C
′
r,r → Xr+1 r < n

.

Set θ = ωn−1,n−2 ◦ (en−1 ∪ C1C′

n−1,n−2
) ◦ ω′−1

n−1,n−2 : Σn−2X1 → Σn−2X1.

Then ω−1
n−1,n−2 ◦ θ = (en−1 ∪ C1C′

n−1,n−2
) ◦ ω′−1

n−1,n−2 and

{ ~f }(aqs̈2) ∋fn
′
◦ g′n,n−1 = fn

′
◦ (fn−1

′
∪C1Cn−1,n−2) ◦ ω

′−1
n−1,n−2

= fn ◦ (fn−1 ∪ C1Cn−1,n−2) ◦ (en−1 ∪ C1Cn−1,n−2) ◦ ω
′−1
n−1,n−2

= fn ◦ (fn−1 ∪ C1Cn−1,n−2) ◦ ω
−1
n−1,n−2 ◦ θ

= α ◦ θ.

Since { ~f }(aqs̈2) ⊂ { ~f }(aqs̈2) ◦ E(Σn−2X1) = { ~f }
(s̈t) ◦ E(Σn−2X1) by (4), we

have α◦θ = β ◦γ for some β ∈ { ~f }(s̈t) and γ ∈ E(Σn−2X1). Set θ
′ = θ◦γ−1.

Then α ◦ θ′ = β ∈ { ~f }(s̈t). �

Proof of Corollary 6.2.2. To prove (1), let ε ∈ E(Σn−2X1). By compos-

ing ε from the right to equalities { ~f }(q) = { ~f }(aq) ◦ E(Σn−2X1) in Theo-

rem 6.2.1(3) and { ~f }(qs2) = { ~f }(aqs̈2) ◦E(Σn−2X1) in Theorem 6.2.1(2), we

have { ~f }(q) ◦ ε = { ~f }(q) and { ~f }(qs2) ◦ ε = { ~f }(qs2). Let γ ∈ E(ΣX1).

By composing Σn−3γ from the right to equality { ~f }(aqs2) = { ~f }(aqs̈2) ◦

Σn−3E(ΣX1) in Theorem 6.2.1(2), we have { ~f }(aqs2) ◦ Σn−3γ = { ~f }(aqs2).
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To prove (2), let α ∈ { ~f }(aq) and {Sr, fr,Ωr | 2 ≤ r ≤ n} an aq-presen-

tation of ~f with α = fn ◦ gn,n−1. For the first equality in (2), let γ ∈ E(X1),
and set

ω′
r,s =

{
ωr,s 1 ≤ s ≤ r − 2

Σr−1γ ◦ ωr,r−1 1 ≤ s = r − 1
.

Then Ω′
r = {ω

′
r,s | 1 ≤ s < r} is a quasi-structure on Sr and Ω′

r+1 = Ω̃′
r. For

r ≥ 2 and 1 ≤ s < r < n, we set g′r+1,s+1 =

{
gr+1,s+1 s ≤ r − 2

gr+1,r ◦ Σ
r−1γ−1 s = r − 1

,

that is,

g′r+1,s+1 =

{
(fr

s+1
∪C1Cr,s) ◦ ω

−1
r,s s ≤ r − 2

(fr ∪ C1Cr,r−1) ◦ ω
−1
r,r−1 ◦Σ

r−1γ−1 s = r − 1
.

Set S′2 = S2 and let S′r+1 be the iterated mapping cone obtained from Sr+1

by replacing gr+1,r with g′r+1,r for 2 ≤ r ≤ n − 1. Then S′r and Sr have the

same edge, and {S′r, fr,Ω
′
r | 2 ≤ r ≤ n} is an aq-presentation of ~f such that

fn ◦ g
′
n,n−1 = fn ◦ gn,n−1 ◦ Σ

n−2γ−1 = α ◦ Σn−2γ−1.

Hence { ~f }(aq) ◦ Σn−2γ−1 ⊂ { ~f }(aq) and so { ~f }(aq) ⊂ { ~f }(aq) ◦ Σn−2γ. By

taking γ−1 instead of γ, we have { ~f }(aq) ◦ Σn−2γ ⊂ { ~f }(aq). Therefore we
obtain the first equality in (2). For the second equality in (2), set ω∗

2,1 =

(−1ΣX1)◦ω2,1, ω
∗
3,2 = Σ(−1ΣX1)◦ω3,2, . . . , ω

∗
n,n−1 = Σn−2(−1ΣX1)◦ωn,n−1,

Ω∗
2 = {ω∗

2,1}, and Ω∗
r = {ωr,1, . . . , ωr,r−2, ω

∗
r,r−1} for 3 ≤ r ≤ n. Set S∗2 = S2

and, for r ≥ 3, let S∗r be the iterated mapping cone obtained from Sr by
replacing gr,r−1 with g∗r,r−1 = gr,r−1 ◦ Σ

r−3(−1ΣX1). Then {S∗r , fr,Ω
∗
r | 2 ≤

r ≤ n} is an aq-presentation of ~f by Lemma 4.3(3) such that −α = fn ◦

g∗n,n−1 ∈ {
~f }(aq). Hence −{ ~f }(aq) ⊂ { ~f }(aq). By composing −1Σn−2X1

from the right to the last relation, we have { ~f }(aq) ⊂ −{ ~f }(aq). Therefore

−{ ~f }(aq) = { ~f }(aq).
The assertion (3) follows from (2) and Theorem 6.2.1(3).

If { ~f }(⋆) is not empty for some ⋆, then { ~f }(q) is not empty by (6.1.1)

so that { ~f }(aqs̈2) and { ~f }(s̈t) are not empty by Theorem 6.2.1(5), and so

{ ~f }(⋆) is not empty for every ⋆ by (6.1.1) and Theorem 6.2.1. This proves
(4).

If { ~f }(⋆) contains 0 for some ⋆, then { ~f }(q) contains 0 by (6.1.1), and so

{ ~f }(⋆) contains 0 for every ⋆ by Theorem 6.2.1(5) and (6.1.1). This proves
(5).

By setting ε = −1Σn−2X1
and γ = −1ΣX1 in (1), we have (6) for ⋆ =

q, qs2, aqs2. The assertion (6) for ⋆ = aq was proved in (2).
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Suppose that n ≥ 4 and ~f is ⋆-presentable for some ⋆. Then ~f is ⋆-
presentable for all ⋆ by (4) so that in particular it is aqs̈2-presentable and
so it is admissible by definitions and (4.2). This proves (7).

We have (8) from (6.1.1) and Theorem 6.2.1(1),(2),(4). �

Proof of Proposition 6.2.3. (6.2.1) is easily obtained from definitions.
About (6.2.2), it suffices to prove it for ⋆ = aqs̈2, s̈t, aq, q2 by Theo-

rem 6.2.1(1)-(3). We prove (6.2.2) for ⋆ = aqs̈2, because other cases can be

proved similarly. Let α ∈ {fn+1 ◦ fn, fn−1, . . . , f1}
(aqs̈2) and {Sr, fr,Ωr | 2 ≤

r < n}∪{Sn, fn+1 ◦ fn,Ωn} an aqs̈2-presentation of (fn+1 ◦ fn, fn−1, . . . , f1)
such that α = fn+1 ◦ fn ◦ gn,n−1. Then Cn,r = Xn ∪fn−1

r−1 CCn−1,r−1

and fn+1 ◦ fn is an extension of fn+1 ◦ fn to Cn,n−1. Set S′n = Sn−1(fn ◦

fn−1,Ωn−1) and Ω′
n the typical quasi-structure on S′n. Then C ′

n,r = Xn+1

∪
fn◦fn−1

r−1CCn−1,r−1. Define fn
′
: C ′

n,n−1 = Xn+1∪fn◦fn−1
n−2CCn−1,n−2 →

Xn+2 by fn
′
|Xn+1 = fn+1 and fn

′
|CCn−1,n−2 = fn+1 ◦ fn|CCn−1,n−2 . The map

fn
′
is a well-defined extension of fn+1 to C

′
n,n−1 and fn

′
◦(fn∪C1Cn−1,n−2) =

fn+1 ◦ fn. Hence {Sr, fr,Ωr|r ≤ n−2}∪{Sn−1, fn◦fn−1,Ωn−1}∪{S
′
n, fn

′
,Ω′

n}

is an aqs̈2-presentation of (fn+1, fn◦fn−1, . . . , f1) and it represents fn
′
◦(fn∪

C1Cn−1,n−2) ◦ gn,n−1 = α so that α ∈ {fn+1, fn ◦ fn−1, . . . , f1}
(aqs̈2). This

proves (6.2.2) for ⋆ = aqs̈2.

To prove the first containment of (6.2.3), let α ∈ {fn, . . . , f1}
(aqs̈2) and

{Sr, fr,Ωr | 2 ≤ r ≤ n} an aqs̈2-presentation of (fn, . . . , f1) with fn◦gn,n−1 =

α. We are going to construct an aqs̈2-presentation {S
′
r, fr

′
,Ω′

r | 2 ≤ r ≤ n}

of (fn, . . . , f2, f1 ◦ f0) with fn
′
◦ g′n,n−1 = α ◦ Σn−2f0. We set

X ′
1 = X0, X

′
k = Xk (2 ≤ k ≤ n+ 1), f ′1 = f1 ◦ f0, f

′
k = fk (2 ≤ k ≤ n),

e1,0 = 1{∗} : C ′
1,0 → C1,0, e1,1 = f0 : C

′
1,1 = X0 → C1,1 = X1,

S
′
2 = (X ′

1;X
′
2,X

′
2 ∪f ′1 CX

′
1; f

′
1; if ′1), Ω

′
2 = {q

′
f ′1
},

e2,0 = 1{∗} : C
′
2,0 → C2,0, e2,s = 1X2 ∪ Ce1,s−1 : C

′
2,s → C2,s (s = 1, 2),

f2
′
= f2 ◦ e2,2 : C

′
2,2 → X3, S

′
3 = S

′
2(f2

′
,Ω′

2), Ω
′
3 = Ω̃′

2.

Then C ′
3,s = C3,s for s = 0, 1, 2. We set

e3,0 = 1{∗} : C ′
3,0 → C3,0, e3,s = 1X3 ∪ Ce2,s−1 : C

′
3,s → C3,s (1 ≤ s ≤ 3),

f3
′
=

{
f3 ◦ e3,2 : C

′
3,2 → X4 n = 3

f3 ◦ e3,3 : C
′
3,3 → X4 n ≥ 4

.

Then e3,s = 1C3,s for 0 ≤ s ≤ 2 and g3,2 ◦ Σf0 ≃ g′3,2. By repeat-

ing the process, we have an aqs̈2-presentation {S
′
r, fr

′
,Ωr | 2 ≤ r ≤ n}
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of (fn, . . . , f2, f1 ◦ f0) such that C ′
r,s = Cr,s (1 ≤ s < r), fn

′
= fn and

gn,n−1 ◦ Σ
n−2f0 ≃ g′n,n−1 so that fn ◦ gn,n−1 ◦ Σ

n−2f0 ≃ fn
′
◦ g′n,n−1. Hence

α ◦Σn−2f0 ∈ {fn, . . . , f2, f1 ◦ f0}
(aqs̈2). This proves the first containment of

(6.2.3).
In the rest of the proof we prove the second containment of (6.2.3).

Let α ∈ {fn, . . . , f2, f1 ◦ f0}
(aqs̈2) and {Sr, fr,Ωr | 2 ≤ r ≤ n} an aqs̈2-

presentation of (fn, . . . , f2, f1 ◦ f0) with fn ◦ gn,n−1 = α. Set

X∗
1 = X0, X∗

2 = X1, f∗1 = f0, X∗
k = Xk (3 ≤ k ≤ n),

f∗2 = f2 ◦ f1, f∗k = fk (3 ≤ k ≤ n),

S
∗
2 = (X∗

1 ;X
∗
2 ,X

∗
2 ∪f∗1 CX

∗
1 ; f

∗
1 ; if∗1 ), Ω∗

2 = {q
′
f∗1
},

e2,2 = f1 ∪ C1X0 : C∗
2,2 = X1 ∪f0 CX0 → C2,2 = X2 ∪f1◦f0 CX0,

e2,1 = f1 : C
∗
2,1 → C2,1, f2

∗
= f2 ◦ e2,2 : C

∗
2,2 → X3,

S
∗
3 = S

∗
2(f2

∗
,Ω∗

2), Ω∗
3 = Ω̃∗

2, e3,1 = 1X3 ,

e3,2 = 1X3 ∪ Cf1 : C
∗
3,2 = X3 ∪f2◦f1 CX1 → X3 ∪f2 CX2 = C3,2,

e3,3 = 1X3 ∪ Ce2,2 : C
∗
3,3 = X3 ∪f2

∗ CC∗
2,2 → X3 ∪f2 CC2,2 = C3,3,

f3
∗
=

{
f3 ◦ e3,2 : C

∗
3,2 → X4 n = 3

f3 ◦ e3,3 : C
∗
3,3 → X4 n ≥ 4

.

Then e3,s+1 ◦ j
∗
3,s = j3,s ◦ e3,s (s = 1, 2) and e3,2 ◦ g

∗
3,2 ≃ g3,2. When n = 3,

{S∗r , fr
∗
,Ω∗

r | r = 2, 3} is an aqs̈2-presentation of (f3, f2 ◦ f1, f0) and f3 ◦

g3,2 ≃ f3
∗
◦ g∗3,2 so that α ∈ {f3, f2 ◦ f1, f0}

(aqs̈2). Suppose n ≥ 4. Set

S∗4 = S∗3(f3
∗
,Ω∗

3) and Ω∗
4 = Ω̃∗

3. Then C
∗
4,s = C4,s (s = 1, 2). Set

e4,s = 1C4,s : C
∗
4,s → C4,s (s = 1, 2),

e4,s+1 = 1X4 ∪ Ce3,s

: C∗
4,s+1 = X4 ∪f3

∗s CC∗
3,s → C4,s+1 = X4 ∪f3

s CC3,s (s = 2, 3),

f4
∗
=

{
f4 ◦ e4,3 : C

∗
4,3 → X5 n = 4

f4 ◦ e4,4 : C
∗
4,4 → X5 n ≥ 5

.

Then e4,s+1 ◦ j
∗
4,s = j4,s ◦ e4,s (1 ≤ s ≤ 3) and e4,3 ◦ g

∗
4,3 ≃ g4,3. By repeating

the process, we obtain {S∗r , fr
∗
,Ω∗

r | 2 ≤ r ≤ n} which is an aqs̈2-presentation

of (fn, . . . , f2 ◦f1, f0) such that en,n−1◦g
∗
n,n−1 ≃ gn,n−1 and fn

∗
= fn◦en,n−1

so that fn
∗
◦ g∗n,n−1 ≃ fn ◦ gn,n−1. This shows α ∈ {fn, . . . , f2 ◦ f1, f0}

(aqs̈2)

and completes the proof of Proposition 6.2.3. �
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6.3. Suspension of higher Toda brackets. Let ~f = (fn, . . . , f1). Given

ℓ ≥ 1, {Σℓ ~f }(⋆) can be considered, since ΣℓXi is well-pointed for every i
by Corollary 2.3(2). We prove the following which implies (1.5) (cf. [7,
Lemma 2.3D], [27, Lemma 2.3]).

Theorem 6.3.1. (1) Σℓ{ ~f }(⋆) ⊂ (−1)ℓn{Σℓ ~f }(⋆) for all ℓ ≥ 1 and ⋆.

(2) Σℓ{ ~f }(⋆) ⊂ {Σℓ ~f }(⋆) for all ℓ ≥ 1 and ⋆ = q, qs2, aq, aqs2.

Proof. (2) follows from (1) and Corollary 6.2.2(6). We are going to prove
(1). Note that

Σℓ{ ~f }(⋆) ⊂ [ΣℓΣn−2X1,Σ
ℓXn+1], {Σ

ℓ ~f }(⋆) ⊂ [Σn−2ΣℓX1,Σ
ℓXn+1],

where ΣℓΣn−2X1 = Σn−2ΣℓX1 by the identification (2.1). Hence (1) is
equivalent to

(6.3.1) Σℓ{ ~f }(⋆) ⊂ {Σℓ ~f }(⋆) ◦ (1X1 ∧ τ(S
n−2,S

ℓ)),

where τ(Sn−2,Sℓ) : Sn−2+ℓ = Sn−2 ∧ Sℓ → Sℓ ∧ Sn−2 = Sn−2+ℓ is the switch-
ing homeomorphism defined in (2.2). We prove (6.3.1) when ℓ = 1, be-
cause (6.3.1) for ℓ ≥ 2 is obtained by an induction. By Theorem 6.2.1(1)-
(4), it suffices to prove (6.3.1) for ⋆ = s̈t, aqs̈2, aq, qs̈2, q2. We prove
(6.3.1) for only the case of ⋆ = s̈t, because the cases of ⋆ = aqs̈2, aq,

qs̈2, q2 can be treated similarly or more easily. Let α ∈ { ~f }(s̈t) and

{Sr, fr,Ar | 2 ≤ r ≤ n} an s̈t-presentation of ~f with α = fn ◦ gn,n−1. Set
C∗
r,1 = ΣXr (2 ≤ r ≤ n) and f∗r = Σfr : ΣXr → ΣXr+1 (1 ≤ r ≤ n). We

are going to construct an s̈t-presentation {S
∗
r , f

∗
r ,A

∗
r | 2 ≤ r ≤ n} of Σ

~f such
that Σ(fn ◦ gn,n−1) ≃ (f∗n ◦ g

∗
n,n−1) ◦ (1X1 ∧ τ(S

n−2,S1)), where

S
∗
r = (ΣXr−1,Σ

2Xr−2, . . . ,Σ
r−1X1;C

∗
r,1, . . . , C

∗
r,r;

g∗r,1, . . . , g
∗
r,r−1; j

∗
r,1, . . . , j

∗
r,r−1),

g∗r,1 = f∗r−1, C∗
r,2 = ΣXr ∪f∗r−1

CΣXr−1, j∗r,1 = ig∗r,1 .

Set S∗2 = (ΣX1; ΣX2,ΣX2 ∪f∗1 CΣX1; f
∗
1 ; if∗1 ). Then S∗2 is an iterated

mapping cone with a reduced structure A∗
2 = {a∗2,1} and a reduced quasi-

structure Ω(A∗
2) = {ω∗

2,1}, where a
∗
2,1 = 1C∗

2,2
and ω∗

2,1 = q′f∗1
. Set e2,s ={

1{∗} s = 0

ψfs−1
1

s = 1, 2
: C∗

2,s ≈ ΣC2,s and f∗2 = Σf2 ◦ e2,2 : C∗
2,2 → ΣX3. Then

e2,1 = 1ΣX2 , f
∗
2 is an extension of f∗2 to C∗

2,2, and

a∗2,1 = (e−1
2,1 ∪ C(1X1 ∧ τ(S

0,S1))) ◦ (ψ1
g2,1)

−1 ◦Σa2,1 ◦ e2,2,

e2,s+1 ◦ j
∗
2,s = Σj2,s ◦ e2,s (s = 0, 1),

f∗2
s
= Σf2

s
◦ e2,s : C

∗
2,s → ΣX3 (s = 0, 1, 2),
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ω∗
2,1 = (1X1 ∧ τ(S

0 ∧ S1,S1)) ◦Σω2,1 ◦ ψ
1
j2,1 ◦ (e2,2 ∪Ce2,1)

: C∗
2,2 ∪j∗2,1 CC

∗
2,1 → ΣΣX1.

Set S∗3 = S∗2(f
∗
2 ,A

∗
2) and

e3,s =

{
1{∗} s = 0

ψ1

f2
s−1 ◦ (1ΣX3 ∪ Ce2,s−1) s = 1, 2, 3

: C∗
3,s ≈ ΣC3,s,

f∗3 =

{
Σf3 ◦ e3,2 : C

∗
3,2 → ΣX4 n = 3

Σf3 ◦ e3,3 : C
∗
3,3 → ΣX4 n ≥ 4

.

Then S∗3 is an iterated mapping cone, f∗3 is an extension of f∗3 to C∗
3,2 or C

∗
3,3

according as n = 3 or n ≥ 4, and

e3,1 = 1ΣX3 , e3,s+1 ◦ j
∗
3,s = Σj3,s ◦ e3,s (s = 0, 1, 2),

f∗3
s
= Σf3

s
◦ e3,s (s = 1, 2),

g∗3,1 = f∗2 , g∗3,2 = (f∗2 ∪ C1C∗

2,1
) ◦ ω∗

2,1
−1 : ΣΣX1 → C∗

3,2.

The next relation holds when r = 3.
(6.3.2)
g∗r,s ≃ e

−1
r,s ◦Σgr,s ◦ (1Xr−s

∧ τ(S
s−1,S

1))−1 : Σs−1ΣXr−s → C∗
r,s (1 ≤ s < r).

Indeed

g∗r,s = (f∗r−1
s
∪ C1C∗

r−1,s−1
) ◦ ω∗

r−1,s−1
−1

= (Σfr−1
s
◦ er−1,s ∪C1C∗

r−1,s−1
) ◦ ω∗

r−1,s−1
−1

= (1ΣXr ∪ Cer−1,s−1)
−1 ◦ (Σfr−1

s
∪C1ΣCr−1,s−1) ◦ (er−1,s ∪Cer−1,s−1)

◦ ω∗
r−1,s−1

−1

≃ (1ΣXr ∪ Cer−1,s−1)
−1 ◦ (Σfr−1

s
∪C1ΣCr−1,s−1) ◦ (er−1,s ∪Cer−1,s−1)

◦ (er−1,s ∪ Cer−1,s−1)
−1 ◦ (ψ1

jr−1,s−1
)−1

◦ (Σωr−1,s−1)
−1 ◦ (1Xr−s

∧ τ(Ss−1,S1))−1

= (1ΣXr ∪ Cer−1,s−1)
−1 ◦ (Σfr−1

s
∪C1ΣCr−1,s−1) ◦ (ψ

1
jr−1,s−1

)−1

◦ (Σωr−1,s−1)
−1 ◦ (1Xr−s

∧ τ(S
s−1,S

1))−1

= (1ΣXr ∪ Cer−1,s−1)
−1 ◦ (ψ1

fr−1
s−1)

−1 ◦ Σ(fr−1
s
∪ C1Cr−1,s−1)

◦ (Σωr−1,s−1)
−1 ◦ (1Xr−s

∧ τ(S
s−1,S

1))−1

= e−1
r,s ◦ Σ(fr−1

s
∪C1Cr−1,s−1) ◦ (Σωr−1,s−1)

−1 ◦ (1Xr−s
∧ τ(Ss−1,S1))−1

≃ e−1
r,s ◦ Σ((fr−1

s
∪ C1Cr−1,s−1) ◦ ω

−1
r−1,s−1) ◦ (1Xr−s

∧ τ(Ss−1,S1))−1
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= e−1
r,s ◦ Σgr,s ◦ (1Xr−s

∧ τ(Ss−1,S1))−1.

Set

a∗3,s = (e−1
3,s ∪ C(1X3−s

∧ τ(Ss−1,S1))) ◦ (ψ1
g3,s)

−1 ◦Σa3,s ◦ e3,s+1

: C∗
3,s+1 ≃ C

∗
3,s ∪g∗3,s CΣsX3−s (s = 1, 2).

Then A∗
3 = {a∗3,1, a

∗
3,2} is a reduced structure on S∗3. Indeed, a∗3,1 = 1C∗

3,2
is

obvious and, from the commutative diagram below for r = s = 3, we have
a∗3,2 ◦ j

∗
3,2 = ig∗3,2 .

C∗
r,s−1

j∗r,s−1

��

er,s−1 // ΣCr,s−1

Σjr,s−1

��
C∗
r,s

a∗r,s−1

��

er,s // ΣCr,s

Σar,s−1

��
C∗
r,s−1 ∪g∗r,s−1

CΣs−2ΣXr−s+1 Σ(Cr,s−1 ∪gr,s−1 CΣs−2Xr−s+1)

(ψ1
gr,s−1

)−1

��
ΣCr,s−1 ∪ CΣΣs−2Xr−s+1

e−1
r,s−1∪C(1Xr−s+1

∧τ(Ss−2,S1))

kk❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲

(6.3.3)

Hence S∗3 is an iterated mapping cone with a reduced structure A∗
3 and a

reduced quasi-structure Ω(A∗
3) = {ω

∗
3,s | s = 1, 2}, where ω∗

3,s = q′g∗3,s
◦ (a∗3,s ∪

C1C∗

3,s
). We are going to prove

ω∗
3,s = (1X3−s

∧ τ(Ss−1 ∧ S1,S1)) ◦ Σω3,s ◦ ψ
1
j3,s ◦ (e3,s+1 ∪Ce3,s)

: C∗
3,s+1 ∪ CC

∗
3,s → ΣΣs−1ΣX3−s (s = 1, 2),

that is, we are going to prove that the following diagram is commutative
when r = 3.

C∗
r,s+1 ∪ CC

∗
r,s

a∗r,s∪C1C∗
r,s

��

er,s+1∪Cer,s // ΣCr,s+1 ∪ CΣCr,s

ψ1
jr,s

��
(C∗

r,s ∪g∗r,s CΣs−1ΣXr−s) ∪ CC
∗
r,s

q′
g∗r,s

��

Σ(Cr,s+1 ∪ CCr,s)

Σωr,s

��
(ΣΣs−1)ΣXr−s Σ(ΣΣs−1)Xr−s

1Xr−s
∧τ(Ss−1 ∧ S1,S1)

oo

(6.3.4)
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Recall that

ωr,s = q′gr,s ◦ (ar,s ∪C1Cr,s)

: Cr,s+1 ∪jr,s CCr,s → (Cr,s ∪gr,s CΣs−1Xr−s) ∪igr,s CCr,s → ΣΣs−1Xr−s.

Since CC∗
r,s is mapped finally to ∗ by the maps in the last diagram, it suffices

to show that the two maps from C∗
r,s+1 to (ΣΣs−1)ΣXr−s are the same, that

is, qg∗r,s ◦ a
∗
r,s = (1Xr−s

∧ τ(Ss−1 ∧ S1,S1)) ◦Σqgr,s ◦ Σar,s ◦ er,s+1. Since

a∗r,s = (e−1
r,s ∪ (1Xr−s

∧ τ(Ss−1,S1)) ◦ (ψ1
gr,s)

−1 ◦ Σar,s ◦ er,s+1

by the definition, it suffices to show

qg∗r,s ◦ (e
−1
r,s ∪ C(1Xr−s

∧ τ(Ss−1,S1)) ◦ (ψ1
gr,s)

−1

= (1Xr−s
∧ τ(S

s−1 ∧ S
1,S

1)) ◦ Σqgr,s

: Σ(Cr,s ∪gr,s CΣs−1Xr−s)→ ΣΣs−1ΣXr−s.

The last equality is proved easily. Hence (6.3.4) is commutative when r = 3.

When n = 3, {S∗r , f
∗
r ,A

∗
r | r = 2, 3} is an s̈t-presentation of Σ ~f and

f∗3 ◦ g
∗
3,2 = Σf3 ◦ e3,2 ◦ g

∗
3,2

≃ Σf3 ◦ e3,2 ◦ e
−1
3,2 ◦Σg3,2 ◦ (1X1 ∧ τ(S

1,S1))−1 (by (6.3.2))

= Σ(f3 ◦ g3,2) ◦ (1X1 ∧ τ(S
1,S

1))−1.

Hence Σ{ ~f }(s̈t) ⊂ {Σ ~f}(s̈t) ◦ (1X1 ∧ τ(S
1,S1)).

When n ≥ 4, we set S∗4 = S∗3(f
∗
3 ,A

∗
3) and

e4,s =

{
1{∗} s = 0

ψ1

f3
s−1 ◦ (1ΣX4 ∪Ce3,s−1) s = 1, 2, 3, 4

: C∗
4,s ≈ ΣC4,s,

f∗4 =

{
Σf4 ◦ e4,3 : C

∗
4,3 → ΣX5 n = 4

Σf4 ◦ e4,4 : C
∗
4,4 → ΣX5 n ≥ 5

.

Then S∗4 is an iterated mapping cone, f∗4 is an extension of f∗4 to C∗
4,3 or C

∗
4,4

according as n = 4 or n ≥ 5, and

e4,1 = 1ΣX4 , e4,s+1 ◦ j
∗
4,s = Σj4,s ◦ e4,s (s = 0, 1, 2, 3),

f∗4
s
= Σf4

s
◦ e4,s (s = 1, 2, 3),

g∗4,s =

{
f∗3 s = 1

(f∗3
s
∪ C1C∗

3,s−1
) ◦ ω∗

3,s−1
−1 s = 2, 3

: ΣΣs−2ΣX4−s → C∗
4,s

We can prove

g∗4,s ≃ e
−1
4,s ◦ Σg4,s ◦ (1X4−s

∧ τ(Ss−1,S1))−1 (s = 1, 2, 3)
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by the method which was used to prove (6.3.2) for r = 3. Set

a∗4,s = (e−1
4,s ∪ C(1X4−s

∧ τ(S
s−1,S

1)) ◦ (ψ1
g4,s)

−1 ◦ Σa4,s ◦ e4,s+1

: C∗
4,s+1 → C∗

4,s ∪g∗4,s CΣsX4−s (s = 1, 2, 3).

Then the diagrams (6.3.3) and (6.3.4) are commutative for r = 4, that
is, A∗

4 = {a∗4,s | 1 ≤ s ≤ 3} is a reduced structure on S∗4 and, if we set

Ω(A∗
4) = {ω

∗
4,s | 1 ≤ s ≤ 3}, then

ω∗
4,s = q′g∗4,s ◦ (a

∗
4,s ∪ C1C∗

4,s
)

= (1X4−s
∧ τ(S

s−1 ∧ S
1,S

1)) ◦ Σω4,s ◦ ψ
1
j4,s ◦ (e4,s+1 ∪ Ce4,s).

When n = 4, {S∗r , f
∗
r ,A

∗
r | 2 ≤ r ≤ 4} is an s̈t-presentation of Σ ~f and

f∗4 ◦ g
∗
4,3 ≃ Σf4 ◦ e4,3 ◦ e

−1
4,3 ◦ Σg4,3 ◦ (1X1 ∧ τ(S

2,S
1))−1

= Σ(f4 ◦ g4,3) ◦ (1X1 ∧ τ(S
2, s1))−1.

Hence Σ{ ~f }(s̈t) ⊂ {Σ ~f }(s̈t) ◦ (1X1 ∧ τ(S
2,S1)).

By repeating the above process, we have an s̈t-presentation {S
∗
r , f

∗
r ,A

∗
r |2 ≤

r ≤ n} of Σ ~f such that f∗n ◦ g
∗
n,n−1 ≃ Σ(fn ◦ gn,n−1) ◦ (1X1 ∧ τ(S

n−2,S1))−1

so that Σ{ ~f }(s̈t) ⊂ {Σ ~f }(s̈t) ◦ (1X1 ∧ τ(S
n−2,S1)). This completes the proof

of Theorem 6.3.1 for ⋆ = s̈t. �

6.4. Homotopy invariance of higher Toda brackets. We prove the

following which is (1.6) (cf. [7, Theorem 3.4] for { ~f }(q)) and allows us to

use the notation {~α }(⋆) instead of { ~f }(⋆) for every ⋆.

Theorem 6.4.1. If ~f , ~f ′ ∈ Rep(~α), then { ~f }(⋆) = {~f ′}(⋆) for all ⋆.

For ~f = (fn, . . . , f1) ∈ Rep(~α) and i ∈ {1, 2, . . . , n}, let ~fi ∈ Rep(~α)

denote a sequence obtained from ~f by replacing fi with f
′
i such that f ′i ≃ fi,

for example ~f2 = (fn, . . . , f3, f
′
2, f1) with f

′
2 ≃ f2.

Lemma 6.4.2. If ~f ∈ Rep(~α), then { ~f }(⋆) = { ~fi }
(⋆) for all ⋆ and i.

From the lemma, the theorem is proved as follows:

{ ~f }(⋆) = {fn, . . . , f2, f
′
1}

(⋆) = {fn, . . . , f3, f
′
2, f

′
1}

(⋆) = . . .

= {f ′n, . . . , f
′
1}

(⋆) = { ~f ′}(⋆).

Proof of Lemma 6.4.2. By Theorem 6.2.1, it suffices to prove the lemma
for the cases ⋆ = s̈t, aqs̈2, aq, q2. We consider only the case of ⋆ = s̈t,
because other cases can be treated similarly or more easily. For simplicity

we abbreviate { }(s̈t) as { }. Let α ∈ { ~f }, {Sr, fr,Ar | 2 ≤ r ≤ n} an s̈t-

presentation of ~f = (fn, . . . , f1) such that α = fn ◦ gn,n−1, Ar = {ar,s | 1 ≤



64 H. ŌSHIMA AND K. ŌSHIMA

s < r} with ar,1 = 1Cr,2 , and Ω(Ar) = {ωr,s | 1 ≤ s < r}. We are going to

construct an s̈t-presentation {S
′
r, fr

′
,A′

r | 2 ≤ r ≤ n} of
~fi with fn

′
◦g′n,n−1 =

α. If this is done, then { ~f } ⊂ { ~fi}, and by interchanging ~f with ~fi each

other we have { ~fi} ⊂ { ~f } so that { ~f } = { ~fi}.
We divide the proof into three cases: i = n; i = 1; 2 ≤ i ≤ n− 1.

First we consider the case: i = n. Let ~fn = (f ′n, fn−1, . . . , f1) with
Jn : fn ≃ f

′
n and set j = jn,n−2 ◦ · · · ◦ jn,2 ◦ jn,1. Since j is a free cofibration,

there exists a map H : Cn,n−1 × I → Xn+1 such that H ◦ i
Cn,n−1

0 = fn and

H◦(j×1I) = Jn. Let {S′r, fr
′
,A′

r | 2 ≤ r ≤ n} be the collection obtained from
{Sr, fr,Ar | 2 ≤ r ≤ n} by replacing fn with H1. Then the new collection

is an s̈t-presentation of ~fn such that it represents α = H1 ◦ gn,n−1 ∈ { ~fn}.

Hence { ~f } = { ~fn}.

Secondly we consider the case: i = 1. Let ~f1 = (fn, . . . , f2, f
′
1) with

J1 : f1 ≃ f
′
1. Set

S
′
2 = (X1;X2,X2 ∪f ′1 CX1; f

′
1; if ′1),

e2,2 = Φ(f ′1, f1, 1X1 , 1X2 ;−J
1) : C ′

2,2 = X2 ∪f ′1 CX1 → C2,2 = X2 ∪f1 CX1,

e2,1 = 1X2 , f2
′
= f2 ◦ e2,2 : C

′
2,2 → X3, a′2,1 = 1C′

2,2
.

Then e2,2 ◦ j
′
2,1 = j2,1, and ω′

2,1 ≃ e1X1
◦ ω′

2,1 = ω2,1 ◦ (e2,2 ∪ Ce2,1) by

Proposition 3.3(2). Set S′3 = S′2(f2
′
,A′

2). Then C ′
3,s = C3,s for s = 1, 2 and

j′3,1 = j3,1. Set

e3,3 = 1X3 ∪ Ce2,2 : C
′
3,3 = X3 ∪f2

′ CC ′
2,2 → C3,3 = X3 ∪f2 CC2,2,

e3,s = 1C3,s (s = 1, 2), f3
′
=

{
f3 ◦ e3,2 n = 3

f3 ◦ e3,3 n ≥ 4
.

We have e3,3 ◦ j
′
3,2 = j3,2 ◦ e3,2, g

′
3,1 = g3,1, and

g′3,2 = (f2
′
∪ C1X2) ◦ ω

′−1
2,1 = (f2 ∪ C1X2) ◦ (e2,2 ∪ C1X2) ◦ ω

′−1
2,1

≃ (f2 ∪ C1X2) ◦ ω
−1
2,1 = g3,2.

Take K3 : g3,2 ≃ g
′
3,2 and set

Φ(K3) = Φ(g3,2, g
′
3,2, 1ΣX1 , 1C3,2 ;K

3) : C3,2 ∪g3,2 CΣX1 → C ′
3,2 ∪g′3,2 CΣX1,

a′3,2 = Φ(K3) ◦ a3,2 ◦ e3,3 : C
′
3,3 → C ′

3,2 ∪g′3,2 CΣX1.

Then A′
3 = {a3,1, a

′
3,2} is a reduced structure on S′3. We have ω′

3,1 = ω3,1 =

ω3,1 ◦ (e3,2 ∪ Ce3,1) and

ω′
3,2 = q′g′3,2

◦ (a′3,2 ∪ C1C′

3,2
)
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= q′g′3,2
◦ (Φ(K3) ∪ C1C3,2) ◦ (a3,2 ∪ C1C3,2) ◦ (e3,3 ∪ Ce3,2)

≃ q′g3,2 ◦ (a3,2 ∪ C1C3,2) ◦ (e3,3 ∪Ce3,2) (by Proposition 3.3(2))

= ω3,2 ◦ (e3,3 ∪ Ce3,2).

When n = 3, {S′r, fr
′
,A′

r | r = 2, 3} is an s̈t-presentation of (f3, f2, f
′
1) such

that f3
′
◦ g′3,2 ≃ f3 ◦ g3,2 and so { ~f } = { ~f1 }. When n ≥ 4, set S′4 =

S′3(f3
′
,A′

3). By repeating the above process we obtain {S′r, fn
′
,A′

r | 2 ≤ r ≤

n}, an s̈t-presentation of ~f1, and er,s : C
′
r,s ≃ Cr,s such that

C ′
n,s = Cn,s, en,s = 1Cn,s (1 ≤ s ≤ n− 1);

a′n,s = an,s, ω
′
n,s = ωn,s (1 ≤ s ≤ n− 2);

ω′
n,n−1 ≃ ωn,n−1 ◦ (en,n ∪Cen,n−1);

fn
′
= fn : C ′

n,n−1 = Cn,n−1 → Xn+1; g′n,n−1 ≃ gn,n−1

so that fn
′
◦ g′n,n−1 ≃ fn ◦ gn,n−1 and hence { ~f } = { ~f1 }.

Thirdly we consider the case: 2 ≤ i ≤ n−1. We prove only the case i = 2,

because other cases can be proved similarly. Let ~f2 = (fn, . . . , f3, f
′
2, f1) with

J2 : f2 ≃ f
′
2.

Step 1: Set S′2 = S2 and A′
2 = A2. Then C

′
2,s = C2,s, j

′
2,1 = j2,1 = if1 , and

ω′
2,1 = ω2,1 = q′f1 . Set e2,s = 1C2,s for s = 1, 2. Since j2,1 = if1 : X2 → C2,2 =

X2 ∪f1 CX1 is a free cofibration, there exists H2 : C2,2 × I → X3 such that

H2 ◦ i
C2,2

0 = f2 and H2 ◦ (if1 × 1I) = J2. Set f2
′
= H2

1 : C ′
2,2 = C2,2 → X3.

Step 2: Set

S
′
3 = S

′
2(f2

′
,A′

2), a′3,1 = 1C′

3,2
,

e3,3 = Φ(f2
′
, f2, 1C2,2 , 1X3 ;−H

2) : C ′
3,3 = X3 ∪f2

′ CC ′
2,2 →

C3,3 = X3 ∪f2 CC2,2,

e3,2 = Φ(f ′2, f2, 1X2 , 1X3 ;−J
2) : C ′

3,2 = X3 ∪f ′2 CX2 → C3,2 = X3 ∪f2 CX2,

e3,1 = 1X3 : C ′
3,1 → C3,1, f3

′
=

{
f3 ◦ e3,2 : C

′
3,2 → X4 n = 3

f3 ◦ e3,3 : C
′
3,3 → X4 n ≥ 4

.

Then e3,3 ◦ j
′
3,2 = j3,2 ◦ e3,2, e3,2 ◦ j

′
3,1 = j3,1 ◦ e3,1, and e3,1 ◦ g

′
3,1 = f ′2 ≃ f2 =

g3,1. We will prove

e3,2 ◦ g
′
3,2 ≃ g3,2 i.e. e3,2 ◦ (f2

′
∪ C1X2) ◦ ω

′−1
2,1 ≃ (f2 ∪ C1X2) ◦ ω

−1
2,1.

It suffices to prove e3,2 ◦ (f2
′
∪ C1X2) ≃ f2 ∪ C1X2 , since ω

′
2,1 = ω2,1. We

have

e3,2 ◦ (f2
′
∪ C1X2)
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≃ Φ(f ′2, f2, 1X2 , 1X3 ;−J
2) ◦ Φ(if1 , f

′
2, 1X2 , f2

′
; 1f ′2) (by Proposition 3.3(3))

≃ Φ(if1 , f2, 1X2 , f2
′
; ((−J2)◦̄11X2

) • (11X3
◦̄1f ′2)) (by Proposition 3.3(1)(d))

≃ Φ(if1 , f2, 1X2 , f2
′
;−J2)

(by Proposition 3.3(5) and ((−J2)◦̄11X2
) • (11X3

◦̄1f ′2)
X2
≃ −J2).

We define J̃ t : X2 × I → X3 for t ∈ I by J̃ t(x2, u) = (−J2)(x2, t+ u − tu).

Then J̃ t : (−H2)t ◦ if1 ≃ f2 ◦ 1X2 and so

Φ(if1 , f2, 1X2 , f2
′
;−J2) ≃ Φ(if1 , f2, 1X2 , f2; 1f2) (by Proposition 3.3(4))

≃ f2 ∪ C1X2 (by Proposition 3.3(3)).

Therefore e3,2 ◦ (f2
′
∪C1X2) ≃ f2 ∪ C1X2 as desired.

Let e−1
3,2 : C3,2 → C ′

3,2 be a homotopy inverse of e3,2. Take N : e−1
3,2 ◦ e3,2 ≃

1C′

3,2
and set L = 1ig′3,2

◦̄N : ig′3,2◦e
−1
3,2◦e3,2 ≃ ig′3,2 . TakeK

3,2 : e−1
3,2◦g3,2 ≃ g

′
3,2

and set Φ(K3,2) = Φ(g3,2, g
′
3,2, 1ΣX1 , e

−1
3,2;K

3,2) and

a′′3,2 = Φ(K3,2) ◦ a3,2 ◦ e3,3 : C
′
3,3 → C ′

3,2 ∪g′3,2 CΣX1.

Then L : a′′3,2 ◦ j
′
3,2 = ig′3,2 ◦ e

−1
3,2 ◦ e3,2 ≃ ig′3,2 . Since j

′
3,2 is a free cofibration,

there exists a homotopyM : C ′
3,3×I → C ′

3,2∪g′3,2CΣX1 such thatM0 = a′′3,2
and M ◦ (j′3,2× 1I) = L. Set a′3,2 =M1, A

′
3 = {1C′

3,2
, a′3,2}, and Ω′

3 = Ω(A′
3).

Then A′
3 is a reduced structure on S′3. We will prove

ω′
3,s ≃ ω3,s ◦ (e3,s+1 ∪ Ce3,s) (s = 1, 2).

Since ω3,1 ◦ (e3,2 ∪Ce3,1) = e1X1
◦ω′

3,1 ≃ ω
′
3,1 by Proposition 3.3(2), the case

of s = 1 holds. By the definition, we have Mt ◦ j
′
3,2 = Lt = ig′3,2 ◦ Nt for

every t ∈ I. Set Ht = 1Mt◦j′3,2
: Mt ◦ j

′
3,2 = ig′3,2 ◦ Nt. Since the function

C ′
3,2 × I × I → C ′

3,2 ∪g′3,2 CΣX1, (z, s, t) 7→ Ht(z, s) = Mt(j
′
3,2(z)), is con-

tinuous, it follows from Proposition 3.3(4) that Φ(j′3,2, ig′3,2 , N0,M0;H
0) ≃

Φ(j′3,2, ig′3,2 , N1,M1;H
1). By Proposition 3.3(3), we have

Φ(j′3,2, ig′3,2 , N0,M0;H
0) ≃M0 ∪ CN0 = a′′3,2 ∪ C(e−1

3,2 ◦ e3,2),

Φ(j′3,2, ig′3,2 , N1,M1;H
1) ≃M1 ∪ CN1 = a′3,2 ∪ C1C′

3,2

and so

ω′
3,2 = q′g′3,2

◦ (a′3,2 ∪C1C′

3,2
) ≃ q′g′3,2

◦ (a′′3,2 ∪ C(e−1
3,2 ◦ e3,2))

= q′g′3,2
◦ (Φ(K3,2) ∪Ce−1

3,2) ◦ (a3,2 ∪C1C3,2) ◦ (e3,3 ∪ Ce3,2)

≃ q′g3,2 ◦ (a3,2 ◦ C1C3,2) ◦ (e3,3 ∪ Ce3,2) (by Proposition 3.3(2))
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= ω3,2 ◦ (e3,3 ∪ Ce3,2).

Step 3: When n = 3, {S′r, fr
′
,A′

r | r = 2, 3} is an s̈t-presentation of

(f3, f
′
2, f1) such that f3

′
◦g′3,2 = f3 ◦e3,2 ◦g

′
3,2 ≃ f3◦g3,2 so that { ~f } = { ~f2 }.

When n ≥ 4, by repeating the above process, we have S′r, fr
′
, A′

r, and
er,s : C

′
r,s ≃ Cr,s for 4 ≤ r ≤ n such that A′

r is a reduced structure on S′r and





S′r = S′r−1(fr−1
′
,A′

r−1),
er,1 = 1Xr , er,s = 1Xr ∪ Cer−1,s−1 : C

′
r,s ≃ Cr,s (2 ≤ s ≤ r),

er,s+1 ◦ j
′
r,s = jr,s ◦ er,s, ω

′
r,s ≃ ωr,s ◦ (er,s+1 ∪Cer,s),

er,s ◦ g
′
r,s ≃ gr,s (1 ≤ s < r),

fr
′
=

{
fn ◦ en,n−1 : C

′
n,n−1 → Xn+1 r = n

fr ◦ er,r : C
′
r,r → Xr+1 r < n

.

Then {S′r, fr
′
,A′

r | 2 ≤ r ≤ n} is an s̈t-presentation of ~f2 such that fn
′
◦

g′n,n−1 = fn ◦ en,n−1 ◦ g
′
n,n−1 ≃ fn ◦ gn,n−1. Therefore { ~f} = { ~f2}. �

6.5. Relations with the J. Cohen’s higher Toda bracket. Let 〈 ~f 〉

be the Cohen’s n-fold bracket of ~f which shall be recalled and denoted by

〈 ~f 〉w in Appendix B. The purpose of this subsection is to prove the following
which is (1.7).

Theorem 6.5.1. { ~f }(aqs̈2) ∪ { ~f }(s̈t) ⊂ 〈 ~f 〉.

Let α ∈ { ~f }(aqs̈2)∪{ ~f }(s̈t). Let {Sr, fr,Ωr|2 ≤ r ≤ n} and {Sr, fr,Ar | 2 ≤

r ≤ n} be an aqs̈2-presentation of ~f and an s̈t-presentation of ~f with

α = fn ◦ gn,n−1 according as α ∈ { ~f }(aqs̈2) or α ∈ { ~f }(s̈t). We prepare
two lemmas.

Lemma 6.5.2. Cn,n−1 is a finitely filtered space of type (fn−1, . . . , f2) (see
Appendix B for the definition).

Proof. We can assume that the free cofibration jn,s : Cn,s → Cn,s+1 is an
inclusion map. Then by setting Fk = Cn,k (0 ≤ k ≤ n − 1), where Cn,0 =
{∗}, we obtain the filtration of Cn,n−1: F0 = {∗} ⊂ F1 ⊂ F2 ⊂ · · · ⊂
Fn−1 = Cn,n−1. By Proposition 6.1.4 and Lemma B.5, we have the canonical
homeomorphism

Fk+1/Fk = Cn,k+1/Cn,k ≈ ΣkXn−k (0 ≤ k ≤ n− 2).

By this homeomorphism, we identify Fk+1/Fk with ΣkXn−k. We set

gk = (−1)k1ΣkXn−k
: ΣkXn−k → Cn,k+1/Cn,k = ΣkXn−k.
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The assertion we must prove is that the skew pentagon of the following
diagram is homotopy commutative for 1 ≤ k ≤ n− 2.

ΣkXn−k+1

Σgk−1

��

ΣkXn−k

gk
��

Σkfn−kpp

ΣFk

Σ(/Fk−1)

��

Fk+1/Fk
δoo Fk+1

/Fk−1

��

qoo Fk

/Fk−1

��

jn,koo

ΣkXn−k+1 ΣkXn−k

−Σkfn−k

nn Σk−1Cfn−k

Σk−1qfn−k

mm Σk−1Xn−k+1

Σk−1ifn−k

nn

Since lower two rows are cofibre sequences and three squares are homotopy
commutative, we have Σ(/Fk−1)◦δ◦gk ≃ (−Σkfn−k)◦gk = (−1)k+1Σkfn−k =
(−1)k−1Σkfn−k = Σgk−1 ◦ Σ

kfn−k. Hence the skew pentagon of the above
diagram is homotopy commutative. This proves Lemma 6.5.2. �

Lemma 6.5.3. The next square is homotopy commutative for 2 ≤ r ≤ n,
where qr is the quotient.

Σr−2X1

Σr−2f1
��

gr,r−1 // Cr,r−1

qr=/Cr,r−2

��
Σr−2X2

(−1)r // Σr−2X2 = Cr,r−1/Cr,r−2

Proof. For r = 2, the square is commutative. We use an induction on r ≥ 3.
The next diagram is homotopy commutative and g3,2 ≃ (f2 ∪ C1X2) ◦ ω

−1
2,1.

ΣX1
−Σf1 // ΣX2

=

uu

X2

if1 // Cf1

qf1
99rrrrrrrrrrr

iif1

//

f2
��

Cf1 ∪ CX2

ω2,1 ≃

OO

iiif1 //

f2∪C1X2
��

(Cf1 ∪ CX2) ∪ CCf1

q′if1
≃

OO

(f2∪C1X2
)∪Cf2

��
X2

f2 // X3

if2 // X3 ∪f2 CX2

iif2 //

qf2 ))❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
(X3 ∪ CX2) ∪ CX3

q′
f2

≃

��
ΣX2

Then qf2 ◦ g3,2 ◦ ω2,1 ≃ qf2 ◦ (f2 ∪C1X2) ≃ (−Σf1) ◦ ω2,1 and so qf2 ◦ g3,2 ≃
−Σf1. This proves the assertion for r = 3. Suppose that the assertion is
true for some r with 3 ≤ r < n.
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First we consider the case of s̈t-presentation. Set Y = Cr,r−1 ∪gr,r−1

CΣr−2X1 and consider the following diagram.

Σr−1X1
−Σgr,r−1 // ΣCr,r−1

=

��

Y ∪igr,r−1
CCr,r−1

q′gr,r−1≃

OO

iiigr,r−1 // (Y ∪CCr,r−1) ∪ CY

q′iigr,r−1
≃

OO

Cr,r ∪jr,r−1 CCr,r−1

ar,r−1∪C1Cr,r−1≃

OO

iijr,r−1 //

fr∪C1Cr,r−1

��

(Cr,r ∪CCr,r−1) ∪ CCr,r

(ar,r−1∪C1Cr,r−1
)∪Car,r−1≃

OO

q′jr,r−1

≃
//

(fr∪C1Cr,r−1
)∪Cfr

��

ΣCr,r−1

Xr+1 ∪fr
r−1 CCr,r−1

ii
fr

r−1

// (Xr+1 ∪CCr,r−1) ∪ CXr+1

q′
fr

r−1

≃
// ΣCr,r−1

Σqr
��

Cr+1,r
qr+1=/Cr+1,r−1 // Σr−1X2

The diagram is commutative except the first square which is homotopy com-
mutative. It follows from definitions that ωr,r−1 = q′gr,r−1

◦(ar,r−1∪C1Cr,r−1)

and gr+1,r ◦ ωr,r−1 ≃ fr ∪ C1Cr,r−1 so that

( /Cr+1,r−1)◦gr+1,r ◦ ωr,r−1 ≃ ( /Cr+1,r−1) ◦ (fr ∪ C1Cr,r−1) = Σqr ◦ qjr,r−1

≃ Σqr ◦ (−Σgr,r−1) ◦ ωr,r−1

≃ (−1)r+1Σr−1f1 ◦ ωr,r−1 (by the inductive assumption).

Hence ( /Cr+1,r−1) ◦ gr+1,r ≃ (−1)r+1Σr−1f1. This completes the induction
and proves Lemma 6.5.3 for the case of s̈t-presentation.

Secondly we consider the case of aqs̈2-presentation. It suffices to prove

(6.5.1) qr+1 ◦ gr+1,r ◦ ωr,r−1 ≃ (−1)r+11Σr−1X2
◦ Σr−1f1 ◦ ωr,r−1.

We have

qr+1◦gr+1,r◦ωr,r−1 ≃ qr+1◦(fr∪C1Cr,r−1) = Σqr◦q
′
jr,r−1

◦iijr,r−1
= Σqr◦qjr,r−1

and

(−1)r+11Σr−1X2
◦ Σr−1f1 ◦ ωr,r−1

≃ Σqr ◦ (−Σgr,r−1) ◦ ωr,r−1 (by the inductive assumption)

≃ Σqr ◦ (−Σ(fr−1 ∪C1Cr−1,r−2) ◦ Σω
−1
r−1,r−2) ◦ ωr,r−1

= Σqr ◦ (−Σ(fr−1 ∪C1Cr−1,r−2) ◦ Σω
−1
r−1,r−2) ◦ ˜ωr−1,r−2

= Σqr ◦ (−Σ(fr−1 ∪C1Cr−1,r−2) ◦ Σω
−1
r−1,r−2) ◦ Σωr−1,r−2
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◦ q
fr−1∪Cfr−1

r−2 ◦ ξ

≃ Σqr ◦ (−Σ(fr−1 ∪C1Cr−1,r−2)) ◦ qfr−1∪Cfr−1
r−2 ◦ ξ,

where

ξ : Cr,r ∪jr,r−1 CCr,r−1

= (Xr ∪fr−1
CCr−1,r−1) ∪1Xr∪Cjr−1,r−2 C(Xr ∪fr−1

r−2 CCr−1,r−2)

→ (Xr ∪1Xr
CXr) ∪fr−1∪Cfr−1

r−2 C(Cr−1,r−1 ∪jr−1,r−2 CCr−1,r−2)

is the homeomorphism defined in (5.3). Set

M = Σqr ◦ qjr,r−1 ,

N = Σqr ◦ (−Σ(fr−1 ∪ C1Cr−1,r−2)) ◦ qfr−1∪Cfr−1
r−2 ◦ ξ.

Then (6.5.1) is equivalent to M ≃ N . Let π denote the composite of

Cr,r ∪jr,r−1 CCr,r−1

qjr,r−1
−→ ΣCr,r−1 = Σ(Xr ∪fr−1

r−2 CCr−1,r−2)

Σq
fr−1

r−2

−→ ΣΣCr−1,r−2.

Define M ′, N ′ : ΣΣCr−1,r−2 → Σr−1X2 by

M ′(y ∧ t ∧ u) = qr−1(y) ∧ t ∧ u, N ′(y ∧ t ∧ u) = qr−1(y) ∧ u ∧ 1− t.

Since qr = Σqr−1 ◦ qfr−1
r−2 , we have M = M ′ ◦ π and N = N ′ ◦ π. As is

easily seen, M ′ ≃ N ′ so that we have M ≃ N as desired. This completes
the induction and the proof of Lemma 6.5.3. �

Proof of Theorem 6.5.1. Under the notations of [3, 15] and Lemma 6.5.2,
we have

jCn,n−1 : Xn = F1 ⊂ Fn−1 = Cn,n−1,

σCn,n−1 : Cn,n−1 = Fn−1
/Fn−2
−→ Fn−1/Fn−2 = Σn−2X2

(−1)n
−→ Σn−2X2.

By Lemma 6.5.3, we have the following homotopy commutative diagram.

Σn−2X1

Σn−2f1

yysss
ss
ss
ss
s

gn,n−1

��
Σn−2X2 Cn,n−1σCn,n−1

oo

fn
��

Xn

jCn,n−1oo

fn{{✈✈
✈✈
✈✈
✈✈
✈

Xn+1
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Hence α = fn ◦ gn,n−1 ∈ 〈 ~f 〉 and so { ~f }(aqs̈2) ∪ { ~f }(s̈t) ⊂ 〈 ~f 〉. This proves
Theorem 6.5.1. �

6.6. 3-fold brackets. We denote the classical unstable Toda bracket of
~f = (f3, f2, f1) by { ~f } or {f3, f2, f1} (see the end of Section 2). We have
(1.8) from Theorem 6.6.1 and Example 6.6.2 below.

Theorem 6.6.1. When n = 3, we have

{ ~f }(s̈t) = { ~f }(aqs̈2) = { ~f }(qs̈2) = { ~f }

⊂ { ~f }(aqs2) = { ~f }(qs2) = { ~f }(qṡ2) = { ~f }(aqs̈2) ◦ E(ΣX1)

⊂ { ~f }(aq) = { ~f }(q2) = { ~f }(q),

so that systems { }(⋆) of unstable higher Toda brackets for ⋆ = s̈t, aqs̈2, qs̈2
are normal, and there exist ~f and ~f ′ such that { ~f }(q) is empty, 〈 ~f 〉 is not

empty, and {~f ′}(q) is a non-empty proper subset of 〈~f ′ 〉 so that the Cohen’s
system of unstable higher Toda brackets is not normal.

Proof. The relations { ~f }(s̈t) = { ~f }(aqs̈2) = { ~f }(qs̈2) ⊂ { ~f }(aq) = { ~f }(q2) =

{ ~f }(q) ⊃ { ~f }(qs2) ⊃ { ~f }(aqs2) ⊃ { ~f }(aqs̈2) hold immediately from the defi-

nitions. We have { ~f }(aqs2) = { ~f }(aqs̈2) ◦ E(ΣX1) = { ~f }
(qs2) = { ~f }(qṡ2) by

Theorem 6.2.1(2). The equality { ~f }(qs̈2) = { ~f } follows easily from (4.2).
Let p1 : S7 → S4 = HP 1 be the projection, where HPm is the quaternionic

projective m-space, and ∗13 the trivial map S4 → S3. Set ~f = (∗13, p
1, 2Σ3p1).

Then it follows from [15, Remark B.5] that 〈 ~f 〉 contains 0 and { ~f } is empty

so that { ~f }(q) is empty by Corollary 6.2.2(4).

Set ~f ′ = (2ι5, ν5η8, 2ι9) (see [25] for notations). Then, since π10(S
5) =

Z2{ν5η
2
8} and {

~f ′ } = {ν5η
2
8} by [25, Proposition 5.9, Theorem 13.4, Corol-

lary 3.7], we have {~f ′ }(q) = {ν5η
2
8} by Theorem 6.2.1(5). Also we have

〈~f ′ 〉 = π10(S
5) by Remark B.5(1) of [15]. Hence {~f ′ }(q) is a non-empty

proper subset of 〈~f ′ 〉 so that the Cohen’s system of unstable higher Toda
brackets is not normal. This completes the proof of the theorem. �

Example 6.6.2. We use freely notations and results in [25].

(1) If ℓ ≥ 8, then {Σℓν5, 8ιℓ+8,Σ
ℓ+1σ′} = (−1)ℓζℓ+5,

{Σℓν5, 8ιℓ+8,Σ
ℓ+1σ′}(qs2) = {ζℓ+5,−ζℓ+5} ⊂ πℓ+16(S

ℓ+5) = Z8{ζℓ+5} ⊕ Z63,

and the order of any element of {Σℓν5, 8ιℓ+8,Σ
ℓ+1σ′}(q) is a multiple

of 8.
(2) If ℓ ≥ 7, then {Σℓα1(5),Σ

ℓα1(9),Σ
ℓα1(12)} = (−1)ℓβ1(ℓ+ 5),

{Σℓα1(5),Σ
ℓα1(9),Σ

ℓα1(12)}
(qs2) = {β1(ℓ+ 5),−β1(ℓ+ 5)}
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⊂ πℓ+15(S
ℓ+5) = Z3{β1(ℓ+ 5)} ⊕ Z2,

and the order of any element of {Σℓα1(5),Σ
ℓα1(9),Σ

ℓα1(12)}
(q) is a

multiple of 3.

6.7. A 4-fold bracket. When ~α = (α4, α3, α2, α1) is admissible, we have
considered the next four non-empty subsets of [Σ2X1,X5] which are called

tertiary compositions [15]: {~α }(0) ⊂ {~α }(1) ⊂ {~α }(2) ⊂ {~α }(3). Here

{~α }(1) =
⋃
~f∈Rep(~α)

{ ~f }(1) is the tertiary composition of Ôguchi [14, 15],

and

{~α }(2) =
⋃

~A

(
{f4, [f3, A2, f2], (f2, A1, f1)}

∩ {[f4, A3, f3], (f3, A2, f2),−Σf1}
)
,

(6.7.1)

{~α }(3) =
⋃

~A

{[f4, A3, f3], if3 ◦ [f3, A2, f2], (f2, A1, f1)},(6.7.2)

where ~f = (f4, f3, f2, f1) is a representative of ~α and unions
⋃

~A are taken

over all ~A = (A3, A2, A1) such that ( ~f ; ~A) is admissible. As remarked in
[15, p.56], the terms on right hand sides of (6.7.1) and (6.7.2) do not depend

on the choice of a representative ~f . The following theorem implies (1.9).

Theorem 6.7.1. The sequence ~α = (α4, α3, α2, α1) is admissible if and
only if it is ⋆-presentable for some and hence all ⋆. If ~α is admissible and
~f = (f4, f3, f2, f1) ∈ Rep(~α), then
(6.7.3)

{~α }(2) ⊂ {~α }(s̈t) = { ~f }(s̈t) =
⋃
{f4, [f3, A2, f2], (f2, A1, f1)} ⊂ {~α }

(3),

where
⋃

is taken over all ~A = (A3, A2, A1) such that ( ~f ; ~A) is admissible.

Corollary 6.7.2 (cf. Theorem 2.7 of [27]). Given a map f0 : X0 → X1, if

{f2, f1, f0} = {0}, then {f4, f3, f2, f1}
(s̈t) ◦Σ2f0 ⊂ f4 ◦ {f3, f2, f1, f0}

(s̈t).

Proof of Theorem 6.7.1. First we suppose that ~α is admissible. Let ~f =
(f4, f3, f2, f1) be a representative of ~α. We are going to show

(6.7.4)
⋃
{f4, [f3, A2, f2], (f2, A1, f1)} ⊂ { ~f }

(s̈t)

where
⋃

is taken over all ~A = (A3, A2, A1) such that ( ~f ; ~A) is admissible.

Let ( ~f ; ~A) be an admissible representative of ~α. Then [f4, A3, f3] ◦
(f3, A2, f2) ≃ ∗ and [f3, A2, f2] ◦ (f2, A1, f1) ≃ ∗, and it follows from [14,
Proposition (5.11)] (or [15, Lemma 3.6]) that

f4 ◦ [f3, A2, f2] = [f4, A3, f3] ◦ if3 ◦ [f3, A2, f2]

≃ [f4, A3, f3] ◦ (f3, A2, f2) ◦ qf2 ≃ ∗.
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Hence {f4, [f3, A2, f2], (f2, A1, f1)} is non-empty. Take α from it. Then there
exist F : f4 ◦ [f3, A2, f2] ≃ ∗ and B2 : [f3, A2, f2] ◦ (f2, A1, f1) ≃ ∗ with

α = [f4, F, [f3, A2, f2]] ◦ ([f3, A2, f2], B2, (f2, A1, f1)).

We are going to construct an s̈t-presentation {Sr, fr,Ar | r = 2, 3, 4} of ~f

with f4 ◦ g4,3 = α. If this is done, then ~f is s̈t-presentable and hence ⋆-
presentable for every ⋆ by Corollary 6.2.2(4), and (6.7.4) is proved.

Set

S2 =
(
X1;X2,X2 ∪f1 CX1; f1; if1), f2 = [f2, A1, f1], A2 = {1X2∪f1

CX1},

S3 = S2(f2,A2).

Then g3,2 = (f2∪C1X2)◦q
′−1
f1
≃ (f2, A1, f1) by (4.2). Since j3,2 is a homotopy

cofibre of g3,2, there exists a3,2 : C3,3 ≃ C3,2∪g3,2CΣX1 such that a3,2◦j3,2 =
ig3,2 . Set A3 = {1C3,2 , a3,2}. Take H : g3,2 ≃ (f2, A1, f1) and set

Φ(H) = Φ(g3,2, (f2, A1, f1), 1ΣX1 , 1C3,2 ;H)

: C3,2 ∪g3,2 CΣX1 → C3,2 ∪(f2,A1,f1) CΣX1,

f3 = [[f3, A2, f2], B2, (f2, A1, f1)] ◦ Φ(H) ◦ a3,2 : C3,3 → X4,

S4 = S3(f3,A3).

Since f3
2
= f3 ◦ j3,2 = [f3, A2, f2], we can set

f4 = [f4, F, [f3, A2, f2]] : C4,3 = X4 ∪f3
2 CC3,2 → X5.

Let A4 be any reduced structure on S4. Then {Sr, fr,Ar | r = 2, 3, 4} is an

s̈t-presentation of ~f and

g4,3 = (f3 ∪ C1C3,2) ◦ ω
−1
3,2

≃ ([[f3, A2, f2], B2, (f2, A1, f1)] ∪ C1C3,2) ◦ (Φ(H) ∪ C1C3,2)

◦ (a3,2 ∪ C1C3,2) ◦ ω
−1
3,2

≃ ([[f3, A2, f2], B2, (f2, A1, f1)] ∪ C1C3,2) ◦ (Φ(H) ∪ C1C3,2) ◦ q
′−1
g3,2

≃ ([[f3, A2, f2], B2, (f2, A1, f1)] ∪ C1C3,2) ◦ q
′−1
(f2,A1,f1)

(by Proposition 3.3(2))

≃ ([f3, A2, f2], B2, (f2, A1, f1)) (by (4.2)).

Hence f4◦g4,3 ≃ [f4, F, [f3, A2, f2]]◦([f3, A2, f2], B2, (f2, A1, f1). Thus (6.7.4)
is proved.

Secondly suppose that ~α is s̈t-presentable. Then it has an s̈t-presentable

representative ~f = (f4, f3, f2, f1). We are going to show that ~f and ~α are
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admissible, and

(6.7.5)
⋃
{f4, [f3, A2, f2], (f2, A1, f1)} ⊃ { ~f }

(s̈t),

where
⋃

is taken over all ~A = (A3, A2, A1) such that ( ~f ; ~A) is admissible.
If this is done, then

(6.7.6) { ~f }(s̈t) =
⋃
{f4, [f3, A2, f2], (f2, A1, f1)}

by (6.7.4) and (6.7.5).

Let α ∈ { ~f }(s̈t) and {Sr, fr, Ar | r = 2, 3, 4} an s̈t-presentation of ~f with
α = f4 ◦ g4,3. Take A1 : f2 ◦ f1 ≃ ∗ and A2 : f3 ◦ f2 ≃ ∗ such that

f2 = [f2, A1, f1] and f3
2
= [f3, A2, f2]. We have g3,2 = (f2 ∪ C1X2) ◦ q

′−1
f1
≃

(f2, A1, f1) and g4,2 = (f3
2
∪ C1X3) ◦ q

′−1
f2
≃ (f3, A2, f2) by (4.2). Since j3,2

is a homotopy cofibre of g3,2 and f3 is an extension of f3
2
on C3,3, we have

f3
2
◦ g3,2 ≃ ∗ by Lemma 4.3(7). Hence

[f3, A2, f2] ◦ (f2, A1, f1) ≃ ∗.

Since f4
2
: X4∪f3CX3 → X5 is an extension of f4, there exists A3 : f4◦f3 ≃ ∗

such that f4
2
= [f4, A3, f3]. Since j4,2 is a homotopy cofibre of g4,2 and f4 is

an extension of f4
2
on C4,3, we have f4

2
◦ g4,2 ≃ ∗ by Lemma 4.3(7), that is,

[f4, A3, f3] ◦ (f3, A2, f2) ≃ ∗.

Thus ( ~f ; ~A) is admissible. Since f4 is an extension of f4 on X4 ∪f3
2 CC3,2,

there exists a homotopy D : f4 ◦ f3
2
≃ ∗ such that f4 = [f4,D, f3

2
]. Let

B : f3
2
◦ g3,2 ≃ ∗ be a homotopy such that f3 ◦ a

−1
3,2 = [f3

2
, B, g3,2]. Then

g4,3 = (f3 ∪C1C3,2) ◦ ω
−1
3,2

≃ (f3 ∪C1C3,2) ◦ (a
−1
3,2 ∪ C1C3,2) ◦ (a3,2 ∪ C1C3,2) ◦ ω

−1
3,2

= (f3 ◦ a
−1
3,2 ◦ a3,2 ∪ C1C3,2) ◦ ω

−1
3,2 = ([f3

2
, B, g3,2] ◦ a3,2 ∪ C1C3,2) ◦ ω

−1
3,2

≃ (f3
2
, B, g3,2) (by (4.2)).

Hence we have

α = f4 ◦ g4,3 = [f4,D, f3
2
] ◦ (f3

2
, B, g3,2)

∈ {f4, f3
2
, g3,2} = {f4, [f3, A2, f2], (f2, A1, f1)}.

This proves (6.7.5) and (6.7.6) holds.
Therefore ~α is admissible if and only if it is s̈t-presentable and hence ⋆-

presentable for every ⋆. Also if ~α is admissible, then (6.7.6) holds for every

representative ~f of ~α.
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In the rest of the proof we suppose that ~α is admissible and ~f ∈ Rep(~α).

Then {~α }(2) ⊂ {~α }(s̈t) = { ~f }(s̈t) =
⋃

~A{f4, [f3, A2, f2], (f2, A1, f1)} by
(6.7.1), (6.7.6), and Theorem 6.5.1. Since f4 = [f4, A3, f3] ◦ if3 , it follows
from [25, Proposition 1.2 III)] that

{f4, [f3, A2, f2], (f2, A1, f1)} ⊂ {[f4, A3, f3], if3 ◦ [f3, A2, f2], (f2, A1, f1)}

so that { ~f }(s̈t) ⊂ {~α }(3) by (6.7.2). This completes the proof of Theo-
rem 6.7.1. �

Proof of Corollary 6.7.2. By Theorem 6.7.1, we have

{f4, f3, f2, f1}
(s̈t) ◦ Σ2f0 =

⋃(
{f4, [f3, A2, f2], (f2, A1, f1)} ◦ Σ

2f0
)
,

where
⋃

is taken over all (A3, A2, A1) such that (f4, f3, f2, f1;A3, A2, A1) is
admissible. Take any such (A3, A2, A1). By the assumption, f1 ◦ f0 ≃ ∗
and for any A0 : f1 ◦ f0 ≃ ∗, we have [f2, A2, f1] ◦ (f1, A0, f0) ≃ ∗ so that
(f3, f2, f1, f0;A2, A1, A0) is admissible. Hence {f3, [f2, A1, f1], (f1, A0, f0)} ⊂

{f3, f2, f1, f0}
(s̈t) by Theorem 6.7.1. Now we have

{f4, [f3, A2, f2], (f2, A1, f1)} ◦ Σ
2f0

= −{f4, [f3, A2, f2], (f2, A1, f1)} ◦ Σqf1 ◦ Σ(f1, A0, f0)

(since qf1 ◦ (f1, A0, f0) ≃ −Σf0)

⊂ −{f4, [f3, A2, f2], (f2, A1, f1) ◦ qf1} ◦ Σ(f1, A0, f0)

(by [25, Proposition 1.2(i)])

= −{f4, [f3, A2, f2], if2 ◦ [f2, A1, f1]} ◦ Σ(f1, A0, f0) (by [14, (5.11)])

⊂ −{f4, [f3, A2, f2] ◦ if2 , [f2, A1, f1]} ◦ Σ(f1, A0, f0)

(by [25, Proposition 1.2(ii)])

= −{f4, f3, [f2, A1, f1]} ◦ Σ(f1, A0, f0)

= f4 ◦ {f3, [f2, A1, f1], (f1, A0, f0)} (by [25, Proposition 1.4]).

Hence we have the assertion. �

Remark 6.7.3. (1) It follows from Theorem 6.7.1, Theorem 6.5.1 and [15,

Proposition B.6] that if ~f = (f4, f3, f2, f1) is admissible, then

〈 ~f 〉 ⊃
⋃[
{f4, [f3, A2, f2], (f2, A1, f1)} ∪ {[f4, A3, f3], (f3, A2, f2),−Σf1}

]
,

where
⋃

is taken over all ~A = (A3, A2, A1) such that ( ~f ; ~A) is admissible.
(2) When we work in TOPclw, it can be shown that the Walker’s 4-fold

product of ~α = (α4, α3, α2, α1) is not empty if and only if ~α is admissible.
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6.8. Proof of (1.10). We prove the following which is the same as (1.10).

Proposition 6.8.1. (1) If {fn−1, . . . , f1}
(q) ∋ 0 and {fn, . . . , fk}

(aqs̈2)

= {0} for all k with 2 ≤ k < n, then {fn, . . . , f1}
(⋆) is not empty for

all ⋆.
(2) (cf. [27, Lemma 2.2]) If {fn, . . . , f2}

(q) ∋ 0 and {fk, . . . , f1}
(aqs̈2) =

{0} for all k with 2 ≤ k < n, then {fn, . . . , f1}
(⋆) is not empty for

all ⋆.

Proof. When n = 3, the assertions hold by Theorem 6.6.1 and Corol-
lary 6.2.2(4). Hence we suppose n ≥ 4.

(1) By Corollary 6.2.2(5) and the assumptions, there exists an aqs̈2-
presentation {Sr, fr,Ωr | 2 ≤ r < n} of (fn−1, . . . , f1) such that fn−1 ◦
gn−1,n−2 ≃ ∗. Since jn−1,n−2 is a homotopy cofibre of gn−1,n−2, there is
a homotopy equivalence e : Cn−1,n−1 → Cn−1,n−2 ∪gn−1,n−2 CΣn−3X1 such

that e ◦ jn−1,n−2 = ign−1,n−2 . Let fn−1
′
: Cn−1,n−2 ∪gn−1,n−2 CΣn−3X1 → Xn

be an extension of fn−1. Set fn−1
∗
= fn−1

′
◦ e : Cn−1,n−1 → Xn, Sn =

Sn−1(fn−1
∗
,Ωn−1), and Ωn = Ω̃n−1. Since fn ◦ fn−1 ≃ ∗ by the assumption

{fn, fn−1}
(aqs̈2) = {0}, fn has an extension fn

2
: Cn,2 = Xn ∪fn−1 CXn−1 →

Xn+1. Since fn
2
◦ gn,2 represents an element of {fn, fn−1, fn−2}

(aqs̈2) =

{0}, and since jn,2 is a homotopy cofibre of gn,2, fn
2
has an extension

fn
3
: Cn,3 = Xn ∪fn−1

∗2 CCn−1,2 → Xn+1. We inductively have a map

fn : Cn,n−1 = Xn ∪fn−1
∗n−2 CCn−1,n−2 → Xn+1 which is an extension of fn.

Then the collection obtained from {Sr, fr,Ωr | 2 ≤ r ≤ n} by replacing fn−1

with fn−1
∗
is an aqs̈2-presentation of (fn, . . . , f1). Thus {fn, . . . , f1}

(aqs̈2) is

not empty and so {fn, . . . , f1}
(⋆) is not empty for all ⋆ by Corollary 6.2.2(4).

(2) We set X ′
r = Xr+1 (1 ≤ r ≤ n) and f ′r = fr+1 (1 ≤ r < n). By

the assumptions and Corollary 6.2.2(5), {f ′n−1, . . . , f
′
1}

(aqs̈2) contains 0. Let

{S′r, f
′
r,Ω

′
r | 2 ≤ r < n} be an aqs̈2-presentation of (f ′n−1, . . . , f

′
1) with f

′
n−1 ◦

g′n−1,n−2 ≃ ∗. Set S2 = (X1;X2,X2 ∪f1 CX1; f1; if1) and Ω2 = {q′f1}. Let

f2 : C2,2 = X2 ∪f1 CX1 → X3 be an extension of f2. Set S3 = S2(f2,Ω2)

and Ω3 = Ω̃2. Then C3,s = C ′
2,s (1 ≤ s ≤ 2), j3,1 = j′2,1, g3,1 = g′2,1, and Ω3

contains Ω′
2. Set f3

2
= f ′2 : C3,2 → X4. By the assumptions, f3

2
◦ g3,2 ≃ ∗

so that f3
2
can be extended to a map f3 : C3,3 → X4 which is an extension

of f3. Set S4 = S3(f3,Ω3) and Ω4 = Ω̃3. Then C4,s = C ′
3,s (1 ≤ s ≤ 3),

j4,s = j′3,s (1 ≤ s ≤ 2), g4,s = g′3,s (1 ≤ s ≤ 2), and Ω4 contains Ω′
3. When

n = 4, f4 := f ′3 : C4,3 → X5 is an extension of f4 and we obtain aqs̈2-

presentation {Sr, fr,Ωr | 2 ≤ r ≤ 4} of (f4, . . . , f1) so that {f4, . . . , f1}
(⋆) is
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not empty for all ⋆. When n ≥ 5, by repeating the above process, we have
an aqs̈2-presentation of (fn, . . . , f1). Hence {fn, . . . , f1}

(⋆) is not empty for
all ⋆. This completes the proof of Proposition 6.8.1. �

6.9. Stable higher Toda brackets. A stable n-fold bracket for n ≥ 3 was
defined in [3, 27] (cf. [10, 16]). We will give another definition which is a
generalization of [25, p.32]. We set {X,Y } = lim

−→k
[ΣkX,ΣkY ]. Given βi ∈

{Xi,Xi+1} (1 ≤ i ≤ n), we will define {βn, . . . , β1 }
(⋆) ⊂ {Σn−2X1,Xn+1}.

Take a non-negative integer m such that βi is represented by fmi : ΣmXi →

ΣmXi+1 for all i and set ~fm = (fmn , . . . , f
m
1 ). The following square is com-

mutative for every integer M ≥ 0.

[ΣmΣn−2X1,Σ
mXn+1]

ΣM
// [ΣMΣmΣn−2X1,Σ

MΣmXn+1]

[Σn−2ΣmX1,Σ
mXn+1]

ΣM
//

(1X1
∧τ(Sn−2,Sm))∗

OO

[ΣMΣn−2ΣmX1,Σ
MΣmXn+1]

(1X1
∧τ(Sn−2,Sm)∧1

SM
)∗

OO

We have

ΣM({ ~fm}(⋆) ◦ (1X1 ∧ τ(S
n−2,Sm)))

= ΣM{ ~fm}(⋆) ◦ (1X1 ∧ τ(S
n−2,Sm) ∧ 1SM )

⊂ {ΣM ~fm}(⋆) ◦ (1ΣmX1 ∧ τ(S
n−2,S

M )) ◦ (1X1 ∧ τ(S
n−2,S

m) ∧ 1SM )

(by (6.3.1))

= {ΣM ~fm}(⋆) ◦ (1X1 ∧ τ(S
n−2,S

m ∧ S
M )).

Hence the sequence {{ΣM ~fm}(⋆) ◦ (1X1 ∧ τ(S
n−2,Sm ∧ SM ))}M≥0 defines a

subset of {Σn−2X1,Xn+1}. We denote it by {βn, . . . , β1}
(⋆). It does not

depend on the choice of ~fm. For another ~fk, there exist M,K such that

ΣMfmi ≃ ΣKfki for all i. In this case m +M = k +K and {ΣM ~fm}(⋆) =

{ΣK ~fk}(⋆) by Theorem 6.4.1. Hence {ΣM ~fm}(⋆) ◦ (1X1 ∧ τ(S
n−2,Sm ∧ SM ))

= {ΣK ~fk}(⋆)◦(1X1∧τ(S
n−2,Sk ∧ SK)). Thus {βn, . . . , β1}

(⋆) is well-defined.

Appendix A. Proof of Proposition 2.2

Given a free space X, we set ΓX = (X × I)/(X × {1}) which is called
the unpointed cone on X and whose point represented by (x, t) ∈ X × I is
denoted by x ∧ t. We regard X as a subspace of ΓX by the identification
x = x ∧ 0 (x ∈ X). We set SX = ΓX/X which is called the unpointed
suspension of X and whose point represented by (x, t) ∈ X × I is denoted
by x∧t. For a map f : X → Y , we define Γf : ΓX → ΓY and Sf : SX → SY
by Γf(x∧ t) = f(x)∧ t and Sf(x∧ t) = f(x)∧ t, and we denote by Y ∪f ΓX
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the quotient space of Y + ΓX by the equivalence relation generated by the
relation f(x) ∼ x ∧ 0 (x ∈ X).

Given two free maps X
u
←− A

v
−→ Y , let X

uAv
+ Y denote the quotient

space of X+Y by the equivalence relation generated by the relation u(a) ∼

v(a) (a ∈ A). Let X
iX−→ X + Y

iY←− Y be the inclusion maps and q :

X + Y → X
uAv
+ Y the quotient map. Then the following is a push-out

diagram in TOP.

(A.1)

A
v

−−−−→ Y

u

y
yq◦iY

X
q◦iX−−−−→ X

uAv
+ Y

The space X
uAi
+ ΓA which is induced from X

u
←− A

i
⊂ ΓA is denoted by

X ∪u ΓA and called the unpointed mapping cone of u.

Lemma A.1. Given the push-out diagram (A.1), if u is a free (resp. closed
free) cofibration, then q ◦ iY is a free (resp. closed free) cofibration.

Proof. Suppose that u is a free cofibration. Then, as is well-known (for
example [4, (5.1.8)]), q ◦ iY is a free cofibration. Since u is injective, the
equality q−1(q ◦ iY (B)) = u(v−1(B)) + B holds for every subset B of Y .
Hence if u is closed then q ◦ iY is closed. �

Note that, given a pointed map f : X → Y , we have the following com-
mutative diagram in which all maps are quotient maps.

Y +X × I
1Y +q //

1Y +q &&◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

Y + ΓX
q //

1Y +q

��

Y ∪f ΓX

1Y ∪q

��
Y + CX

q // Y ∪f CX

Proof of Proposition 2.2. We can suppose that j : A ⊂ X by [20, Theorem
1]. Consider the following commutative diagram.

Y +A× I

i
��

π1 // Y ∪f◦j ΓA

1Y ∪Γj

��

q1 // Y ∪f◦j CA

1Y ∪Cj

��

Y +X × ∂I ∪ A× I

i′

��

ϕf

55

Y +X × I
π2 // Y ∪f ΓX

q2 // Y ∪f CX
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where π1, π2, q1, q2 are quotient maps, i, i′ are inclusions, and ϕf is defined
by

ϕf |Y = π1|Y , ϕf (x, 0) = π1f(x),

ϕf (x, 1) = π1(a, 1) (a ∈ A), ϕf |A×I = π1|A×I .

First we show that ϕf is continuous. By [21, Theorem 2], X × {0} ∪A× I
and X×{1}∪A× I are retracts of X× I. Therefore, since ϕf is continuous
on the subspaces X × {0}, X × {1}, A × I of the space X × I, it follows
from [21, Lemma 3] that ϕf is continuous on the subspaces X×{0}∪A× I,
X × {1} ∪ A × I of the space X × I. Hence ϕf is continuous on the open
subspaces X×{0}∪A×[0, 1), X×{1}∪A×(0, 1] of the space X×∂I∪A×I.
Therefore ϕf is continuous on X × {0} ∪A× [0, 1) ∪X × {1} ∪A× (0, 1] =
X × ∂I ∪ A× I so that ϕf is continuous.

Secondly we show that (π2, 1Y ∪ Γj) is a push-out of (i′, ϕf ) in TOP.

For any space Z and any maps Y + X × I
g
→ Z

h
← Y ∪f◦j ΓA such that

g ◦ i′ = h ◦ ϕf , there exists only one map k : Y ∪f ΓX → Z with k ◦ π2 = g.
It is obvious that k ◦ (1Y ∪ Γj) = h. Hence (π2, 1Y ∪ Γj) is a push-out of
(i′, ϕf ) in TOP.

Thirdly we show that 1Y ∪Γj is a free (resp. closed free) cofibration. By the
last assertion and Lemma A.1, it suffices to show that i′ is a free (resp. closed
free) cofibration. Since the inclusion ∂I ⊂ I is a closed free cofibration, it
follows from [21, Theorem 6] that the inclusion X × ∂I ∪ A × I ⊂ X × I
is a free (resp. closed free) cofibration so that i′ is a free (resp. closed free)
cofibration.

Fourthly we show that 1Y ∪ Cj : Y ∪f◦j CA → Y ∪f CX is a free
(resp. closed free) cofibration. By Lemma A.1 it suffices to show that the
last square of the above diagram is a push-out in TOP. Let Z be any space

and Y ∪f ΓX
g
→ Z

h
← Y ∪f◦j CA any maps such that g ◦ (1Y ∪ Γj) = h ◦ q1.

Then there is only one map k : Y ∪f CX → Z with k ◦ q2 = g. It is obvious
that k ◦ (1Y ∪ Cj) = h. Hence the last square of the above diagram is a
push-out in TOP. �

The following corollary overlaps with [9, (6.13)].

Corollary A.2. If j : A → X is a free (resp. closed free) cofibration, then
Γj : ΓA → ΓX and Sj : SA → SX are free (resp. closed free) cofibrations.
If in addition j is pointed, then Cj : CA→ CX is a free (resp. closed free)
cofibration.
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Proof. We can suppose that j : A ⊂ X. Consider the commutative diagram

A+A× I

i1
��

q1 // A ∪1A ΓA = ΓA

j∪Γ1A
��

X +A× I

i2
��

q2 // X ∪j ΓA

1X∪Γj

��

/X // SA

Sj

��

X +X × ∂I ∪ A× I

ϕ1X

44

i3
��

X +X × I
q3 // X ∪1X ΓX = ΓX

/X // SX

where i1, i2, i3 are inclusions, q1, q2, q3 are quotients, and ϕ1X is defined
as in the proof of Proposition 2.2. When we take off i2, the remaining
three squares of the diagram are push-outs in TOP. Since i1, i3 are free
(resp. closed free) cofibrations, it follows that j ∪ Γ1A, 1X ∪ Γj are free
(resp. closed free) cofibrations so that Γj = (1X ∪Γj) ◦ (j ∪Γ1A) and Sj are
free (resp. closed free) cofibrations.

Suppose that j is pointed. Consider the commutative diagram

A ∪1A ΓA = ΓA

j∪Γ1A
��

q4 // A ∪1A CA = CA

j∪C1A
��

X ∪j ΓA

1X∪Γj
��

q5 // X ∪j CA

1X∪Cj
��

X ∪1X ΓX
q6 // X ∪1X CX = CX

where q4, q5, q6 are quotients. Since the two squares of the diagram are
push-outs in TOP, Cj = (1X ∪ Cj) ◦ (j ∪ C1A) is a free (resp. closed free)
cofibration by Lemma A.1. This completes the proof of Corollary A.2. �

Appendix B. J. Cohen’s higher Toda brackets

First we recall from [21, Theorem 2] that the inclusion j : X ⊂ Y is a free
cofibration if and only if there exists a retraction r : Y ×I → Y ×{0}∪X×I.
When j is pointed, the pointed map δ : Y/X → ΣX which makes the
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following diagram to be commutative was called “canonical” in [3].

Y

q

��

iY1 // Y × I
r // Y × {0} ∪X × I

p

��
Y/X

δ
// ΣX

Here q is the quotient, p(Y × {0}) = ∗, and p(x, t) = x ∧ t. An important
property of δ is the following.

Lemma B.1. The canonical map δ is a connecting map in the cofibre se-
quence

X
j

−−−−→ Y
q

−−−−→ Y/X
δ

−−−−→ ΣX
−Σj
−−−−→ ΣY

−Σq
−−−−→ · · · .

Proof. Consider the following diagram, where π is the usual homotopy equiv-
alence [17, Satz 2].
(B.1)

X
j

−−−−→ Y
ij

−−−−→ Y ∪j CX
iij
−−−−→ (Y ∪j CX) ∪ij CY

iiij
−−−−→ · · ·

∥∥∥ ≃

yπ ≃

yq′j

Y
q

−−−−→ Y/X
δ

−−−−→ ΣX
−Σj
−−−−→ · · ·

We define u : I × I → I and H : (Y ∪j CX)× I → ΣX by

u(s, t) =

{
s+ t s+ t ≤ 1

1 s+ t ≥ 1
, H(y, t) = p◦r(y, t), H(x∧s, t) = x∧u(s, t).

Then H : q′j ◦ iij ≃ δ ◦ π. Hence the second square of (B.1) is homotopy

commutative. Since the first square of (B.1) is commutative, this completes
the proof. �

J. Cohen [3] defined an n-fold bracket 〈 ~f 〉 in the category TOP∗, where
~f = (fn, . . . , f1) and fi : Xi → Xi+1 is a map in TOP∗ (1 ≤ i ≤ n; n ≥ 3).

We are going to modify 〈 ~f 〉 to 〈 ~f 〉w (resp. 〈 ~f 〉clw) by restricting TOP∗ to
its full-subcategory TOPw (resp.TOPclw).

Let ⊛ denote ∗, w or clw.

By ~f = (fn, . . . , f1) ∈ TOP⊛, we mean that fi : Xi → Xi+1 is in TOP⊛

for every i. To avoid confusions, we paraphrase Cohen’s expression “X ∈
{fn−1, . . . , f2}” in “X is a finitely filtered space of type (fn−1, . . . , f2)” [15].
Given (fn−1, . . . , f2) ∈ TOP⊛, where fi : Xi → Xi+1, a pointed space X is a
finitely filtered space of type (fn−1, . . . , f2) in TOP⊛ if the following (1) and
(2) are satisfied.
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(1) The pointed space X has a filtration F0X = {∗} ⊂ F1X ⊂ · · · ⊂
Fn−1X = X such that the inclusion FkX ⊂ Fk+1X is a free, free
or closed free cofibration for every k according as ⊛ is ∗, w or clw.
(Hence X,FkX ∈ TOPw.)

(2) There exists gk : ΣkXn−k ≃ Fk+1X/FkX for 0 ≤ k ≤ n − 2 such
that the next diagram is homotopy commutative for 1 ≤ k ≤ n− 2.

ΣΣk−1Xn+1−k

Σgk−1

��

ΣkXn−k

Σkfn−koo

gk
��

Σ(FkX/Fk−1X) ΣFkX
Σq

oo Fk+1X/FkX
δ

oo

(B.2)

Under the above situation, we set

(B.3)

{
jX : Xn = Σ0Xn

g0
−→ F1X ⊂ X,

σX : X = Fn−1X
q
→ Fn−1X/Fn−2X

g−1
n−2
−→ Σn−2X2.

We define 〈 ~f 〉⊛ for ~f ∈ TOP⊛ to be the set of all α ∈ [Σn−2X1,Xn+1]
such that there is a finitely filtered space X of type (fn−1, . . . , f2) in TOP⊛

and a couple of maps g, h which make the following diagram homotopy
commutative and α is the homotopy class of h ◦ g.

Σn−2X1

Σn−2f1

yyrrr
rr
rr
rr
r

g

��
Σn−2X2 XσX

oo

h

��

Xn
jXoo

fnzz✈✈
✈✈
✈✈
✈✈
✈

Xn+1

(B.4)

Note that 〈 ~f 〉∗ is the bracket 〈 ~f 〉 defined by Cohen, 〈 ~f 〉w = 〈 ~f 〉∗ if ~f ∈

TOPw, and 〈 ~f 〉clw ⊂ 〈 ~f 〉w = 〈 ~f 〉∗ if ~f ∈ TOPclw. If ~f = (fn, . . . , f1) and
~f ′ = (f ′n, . . . , f

′
1) are in TOP⊛ and satisfy fi ≃ f ′i for all i, and if X is a

finitely filtered space of type (fn−1, . . . , f2) in TOP⊛, then X is a finitely

filtered space of type (f ′n−1, . . . , f
′
2) in TOP⊛ so that 〈 ~f 〉⊛ = 〈~f ′ 〉⊛.

The following holds obviously from definitions.

Proposition B.2. Given a map f0 : X0 → X1 in TOP⊛, we have

〈fn, . . . , f1〉
⊛ ◦ Σn−2f0 ⊂ 〈fn, . . . , f2, f1 ◦ f0〉

⊛.
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Lemma B.3. Given ~f ∈ TOP⊛, if X is a finitely filtered space of type
(fn−1, . . . , f2) in TOP⊛, then ΣX is a finitely filtered space of type
(Σfn−1, . . . ,Σf2) in TOP⊛ such that jΣX = ΣjX : ΣXn → ΣX and σΣX ≃
(−1)nΣσX : ΣX → Σn−1X2.

Proof. From the definitions, there is a filtration F0X = {∗} ⊂ F1X ⊂ · · · ⊂
Fn−1X = X with Fk−1X ⊂ FkX a free or closed free cofibration for k ≥ 1
and maps jX , σX of (B.3). Define FkΣX = ΣFkX for 0 ≤ k ≤ n − 1. Set
g∗k = Σgk ◦ (1Xn−k

∧ τ(S1,Sk)) for 0 ≤ k ≤ n − 2. Then g∗k is a homotopy

equivalence and g∗k ≃ (−1)kΣgk under the identification (2.1): ΣkΣXn−k =

ΣΣkXn−k. By suspending (B.2), the diagram

ΣkΣXn+1−k

1Xn+1−k
∧τ(S1,Sk−1 ∧S1)

��

ΣkΣXn−k
ΣkΣfn−koo

1Xn−k
∧τ(S1,Sk)

��
g∗
k

~~

ΣΣk−1ΣXn+1−k

Σg∗
k−1

��

ΣΣkXn+1−k
1Xn+1−k

∧τ(Sk−1,S1)∧1S1

oo

Σ2gk−1

��

ΣΣkXn−k

Σgk
��

ΣΣkfn−k

oo

Σ2(FkX/Fk−1X) Σ2(FkX/Fk−1X) Σ(Fk+1X/FkX)
Σ2qk−1◦Σδkoo

is homotopy commutative for 1 ≤ k ≤ n− 2, where δk is a connecting map

of the cofibre sequence FkX
jk
⊂ Fk+1X

qk→ Fk+1X/FkX and qk−1 : FkX →
FkX/Fk−1X is the quotient map. Set

δ∗k = −Σδk : Fk+1ΣX/FkΣX = Σ(Fk+1X/FkX)→ ΣFkΣX = Σ2FkX

which is a connecting map of the cofibre sequence FkΣX
−Σjk−→ Fk+1ΣX

−Σqk−→
Fk+1ΣX/FkΣX. We have

Σ2qk−1 ◦ δ
∗
k ◦ g

∗
k = Σ2qk−1 ◦ (−Σδk) ◦ g

∗
k

≃ (−1Σ(FkΣX/Fk−1ΣX)) ◦Σ
2qk−1 ◦ Σδk ◦ g

∗
k

≃ (−1Σ(FkΣX/Fk−1ΣX)) ◦Σ
2gk−1 ◦ (1Xn+1−k

∧ τ(S1,Sk−1 ∧ S1)) ◦ ΣkΣfn−k

= (−1Σ(FkΣX/Fk−1ΣX)) ◦Σg
∗
k−1 ◦ (1Xn+1−k

∧ τ(Sk−1,S1) ∧ 1S1)

◦ (1Xn+1−k
∧ τ(S1,Sk−1 ∧ S1)) ◦ ΣkΣfn−k

≃ Σg∗k−1 ◦ (−1ΣΣk−1ΣX) ◦ (1Xn+1−k
∧ τ(S

k−1,S
1) ∧ 1S1)

◦ (1Xn+1−k
∧ τ(S1,Sk−1 ∧ S1)) ◦ ΣkΣfn−k

≃ Σg∗k−1 ◦ Σ
kΣfn−k.
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Hence ΣX is a finitely filtered space of type (Σfn−1, . . . ,Σf2) such that
jΣX = ΣjX and σΣX = g∗−1

n−2 ◦Σqn−2 ≃ (−1)n−2Σg−1
n−2 ◦Σqn−2 = (−1)nΣσX .

�

Theorem B.4. Σ〈 ~f 〉⊛ ⊂ (−1)n〈Σ ~f 〉⊛.

Proof. Take α ∈ 〈 ~f 〉⊛. Then there is a finitely filtered space X of type
(fn−1, . . . , f2) in TOP⊛ and the homotopy commutative diagram (B.4) with
α = h ◦ g. Suspending (B.4), we have the next homotopy commutative
diagram, where τ = 1X2 ∧ τ(S

n−2,S1).

Σn−2ΣX1

Σn−2Σf1

xx♣♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣

1X1
∧τ(S1,Sn−2)

��
ΣΣn−2X1

ΣΣn−2f1

xx♣♣♣
♣♣
♣♣
♣♣
♣♣

Σg

��
Σn−2ΣX2 ΣΣn−2X2τ

oo ΣX
ΣσX

oo

Σh

��

ΣXn
ΣjXoo

Σfnyysss
ss
ss
ss
s

ΣXn+1

Since ΣX is a finitely filtered space of type (Σfn−1, . . . ,Σf2) in TOP⊛, we
have τ ◦ ΣσX ≃ σΣX and ΣjX = jΣX by Lemma B.3. It follows from the
homotopy commutativity of the above diagram that

σΣX ◦ Σg ◦ (1X1 ∧ τ(S
1,S

n−2)) ≃ Σn−2Σf1,

(−1)nΣα = Σh ◦ Σg ◦ (1X1 ∧ τ(S
1,Sn−2)) ∈ 〈Σ ~f 〉⊛,

and so Σα ∈ (−1)n〈Σ ~f 〉⊛. This completes the proof. �

The following lemma was used in the proof of Lemma 6.4.2. It can be
proved easily, so we omit details.

Lemma B.5. Let j : A ⊂ X be a pointed inclusion map which is a free
cofibration, and f : X → Y a pointed map. Then there are natural homeo-
morphisms

(Y ∪f CX)/(Y ∪f◦j CA) ≈ ΣX/ΣA ≈ Σ(X/A).
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