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UNSTABLE HIGHER TODA BRACKETS

Dedicated to memories of the Arakis
H. OsaiMA AND K. OSHIMA

ABSTRACT. We define new unstable n-fold Toda brackets {f }(24*2) and
{j?}(gt) for every composable sequence f = (fn, ..., f1) of pointed maps

between well-pointed spaces X, +1 <f—n <f—2 Xo <f—1 X1 with n > 3.

The brackets agree with the classical Toda bracket when n = 3, and they
are subsets of both the unstable n-fold Toda brackets of Gershenson and
Cohen for every n > 3.

1. INTRODUCTION

The Toda bracket [23, 24, 25, 18] is one of the basic tools in homo-
topy theory and often called a secondary composition or a 3-fold bracket.
After [24] a number of definitions of a higher Toda bracket, that is, an
n-fold bracket for n > 3, have appeared in the literature. Stable higher
Toda brackets are comparatively investigated in [3, 27] (cf. [7, 10, 11, 16]).
In this paper we study mainly unstable higher Toda brackets. A sequence
(ps, P4, D5, - . . ), where p,, is an unstable n-fold bracket, is called a system of
unstable higher Toda brackets if it is defined systematically, and it is called
normal if ps agrees with the classical Toda bracket up to sign. Systems of
Spanier [19], Walker [26, 27] (cf. Mori [13]), Blanc [1], Blanc-Markl [2],
and Marcum—Oda [12] (cf. [8]) are normal; systems of Gershenson [7] and
Cohen [3] are not normal. It seems difficult to nominate one of known sys-
tems as the standard system, because we have little information about their
applications and relations between them. We provide two new candidates
for the standard system by modifying the Gershenson’s system which orig-
inated with [24], and study relations between new systems, the systems of
Gershenson and Cohen, and the 4-fold bracket of Oguchi [14, 15]. Two new
systems are normal. Our method is classical and not so abstract as [1, 2].

Given a composable sequence f = (fn,-.., f1) of pointed maps between
well-pointed spaces f; : X; — X;11 with n > 3, we will define { _f 1) which
is a subset of the group [£"2X7, X,,11], where * is one of twelve symbols
defined in Definition 6.1.1(4). ([¥*X,Y] is the set of homotopy classes of
pointed maps from the k-fold pointed suspension of X to Y.) Hence we
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have twelve systems of unstable higher Toda brackets. Four of them, { j? }(*)
for x = aqs$s, §¢,qs9, q, are essential; {f}(aq§2) and {f}(gt) are candidates
for the standard n-fold bracket; {f }(@ is the largest of the twelve subsets
and a revision of the n-fold C-composition product of Gershenson |7, Def-

inition 2.2D]; they are the empty set for suitable f For a pointed space
X, we denote the set of homotopy classes of pointed homotopy equivalences
X — X by &(X) which is a subset of [X, X] and a group under the com-
position operation. The group (X" 2X7) acts on [X"2X1, X, 1] from the
right by the composition:

(22X, Xpga] x E(2"2X)) = [2"2X1, Xpp], (€)= aoe.

Our main results are (1.1) — (1.11) below.

(1.1) {f}Haes2) y {f1E) ¢ {fHa2) ¢ {F1@; {f1@ oc = {f1@
for every e € &(X"2X); {f1s2) = {f1la%2) o g(xmn-2X)) =
{F1E) o e(mn2X,).

(1.2) If a € {f 1@, then there are 6,6 € [E"2X;,~"2X,] such that
ool e {f %) and a0 e {f 0.

(1.3) If {f 1™ is not empty for some *, then {f }* is not empty for all
*.

(1.4) If {f }® contains 0 for some *, then {f }* contains 0 for all *.

(1.5) S{f1® c (=1)"{SF}® for all x, where Sf = (Zfn,...,5f1).

(1.6) {f}(*) depends only on the homotopy classes of f; (1 < i < n) for
all *.

(1.7) {f1ea%2) U {£1E)  (F), where (f) is the n-fold bracket of Cohen
[3].

(1.8) When n = 3, we have {f }(@%2) = {£1G) = {7} where {f} =
{fs, f2, f1} is the classical unstable Toda bracket which does not
necessarily coincide with either {f }(452) or ().

(1.9) When n = 4, we have {]F}(St) = U{f4, [f3,A2,f2],(f2,A1,f1)} >
{f1® where the union |J is taken over all triples (As, Aa, A;) of
null-homotopies A; : fir10f; >~ * (i = 1,2,3) such that [fi11, A, fi]o
(fis Ai1, fic1) ~ * (i = 2,3), and {f }(V) is the 4-fold bracket of
Oguchi [15, (6.1)]. (See Section 2 for definitions of [f;11, A;, fi] and
(fir Ai-1, fi-1).)

(1.10) For two pointed maps Z J oy o X, we denote by {f,g}*) the
one point set consisting of the homotopy class of f o g. Then

(1) ¥ {fn-1,- - /1Y D 2 0and {fn, fa1, ..., fu} %) = {0} for all
k with 2 < k < n, then {f,,..., f1}* is not empty for all *.



UNSTABLE HIGHER TODA BRACKETS 29

(2) If {fn,..., f2}9 30 and {fs,..., fo, f1}{99%2) = {0} for all k
with 2 < k < n, then {fn,..., f1}* is not empty for all *.
(1.11) If a pointed map j : A — X is a cofibration in the category of non-
pointed spaces, then for any pointed map f : X — Y the pointed
map ly UC) : Y Ugo; CA — Y Uy CX between pointed mapping
cones is a cofibration in the category of non-pointed spaces.

It is not clear whether the n-fold bracket {f }**) agrees with one of the
n-fold brackets in [1, 2, 3, 7, 12, 19, 26, 27] when n > 4. An advantage
of our definition is that it can be generalized easily to the stable version
(see §6.9) and the subscripted version {f}%) C [ZI™Hr=2 X X ] (cf. [25,
p.9] when n = 3), where m = (m,...,m1) is a sequence of non-negative
integers, |[m| =m,+---+mq,and f; : X" X; = X;11 (1 <i<n). We omit
details of the subscripted version because they are complicated but similar
to the non subscripted version.

The referee pointed out that B. Gray defined unstable higher Toda brack-
ets in his unpublished note. However we have not confirmed his definition
because we could not get his note.

In Section 2, we recall usual notions of homotopy theory and state two
propositions 2.1 and 2.2, where 2.1 is well-known and 2.2 is (1.11) above and
a key to define { f 1), In Section 3, we study maps between mapping cones,
that is, we prove a lemma which shall be used in Section 5, and recall results
of Puppe [17]. In Section 4, we introduce the notion of homotopy cofibre.
In Section 5, we revise the notion of shaft of Gershenson [7]. Section 6
consists of nine subsections §6.1-86.9. In §6.1 we define {f}(*). In §6.2 we
prove (1.k) for k=1,2,3.4 and state an example. In §6.k we prove (1.k+2)
for k=3,4,5,6,7. In §6.8 we prove a proposition which is the same as (1.10).
In §6.9 we define stable higher Toda brackets. In Appendix A, we prove

—

Proposition 2.2. In Appendix B, we recall the definition of (f) and prove
5(f) c (=)"ES).

2. PRELIMINARIES

Let TOP denote the category of topological spaces (spaces for short) and
continuous maps (maps for short). Let I denote the unit interval [0,1],
I =1 x--- x I (ntimes), and 0I" the boundary of I"™. For a space X,
we denote by 1y : X — X the identity map of X and by i;* : X — X x [
for t € I the map i (z) = (x,t). For amap f : X — Y, we denote by
1y : X x I = Y the map 1¢(x,t) = f(x), and we call f closed if f(A) is
closed for every closed subset A of X. Given maps f,g: X — Y, if there is
amap H : X x I — Y such that Hy = f and H; = g, then we write f ~ g
or H: f~g, where H = Hoi} : X =Y ie. Hy(z)= H(x,t). In the last
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case, the map H is often denoted by H; and called a homotopy from f to
g. The homotopy relation ~ is an equivalence relation on the set of maps
X — Y and the equivalence class of f is called the homotopy class of f.
Given a homotopy H : X x I — Y, the inverse homotopy —H : X x I —Y
is defined by (—H); = Hi_¢; H is a null homotopy if Hy is a constant map
to a point of Y. A map f: X — Y is a homotopy equivalence (denoted
by f: X ~Y) if there is a map g : ¥ — X such that go f ~ 1x and
fog~ 1y, where g is called a homotopy inverse of f and denoted often by
f~t. We write X ~ Y if there is a homotopy equivalence X — Y. A map
j:A— X is a cofibration if, for any space Y and any maps f: X — Y and
G : Ax I — Y such that ij:Goi()“,thereisamapH:XxI—>Ysuch
that Ho (j x 1;) = G and H oif = f.

By [20, Theorem 1], every cofibration j : A — X is an embedding, that is, j
gives a homeomorphism from A to the subspace j(A) of X ie.j: A= j(A).

Let TOP* denote the category of spaces with base points (pointed spaces
for short) and maps preserving base points (pointed maps for short). We
often call a space, a map, and a cofibration in TOP a free space, a free
map, and a free cofibration, respectively. For any pointed space X, we
denote the base point of X by xy or *x. A pointed space X is a well-pointed
space (w-space for short) (resp. clw-space) if the inclusion {z¢o} — X is a
free (resp.closed free) cofibration. Let TOPY (resp. TOP““) denote the
category of w-spaces (resp. clw-spaces) and pointed maps. Thus we have a
sequence of categories: TOPY »— TOPY — TOP* — TOP, where —» is
the functor forgetting the base points, and € — D means that the category
C is a full subcategory of the category D and D contains at least one object
which is not in € (cf. Beispiele 1 and 2 [5, pp.32-33]). Homotopy, homotopy
equivalence, cofibration, and some of other notions in TOP can be defined
in other three categories of the above sequence exactly as in TOP, except
that all maps and homotopies are required to respect the base points. As
remarked in [22, p.438|, the proof of [20, Theorem 1] can be modified to
prove that all cofibrations in TOP* are embeddings. When we set C4 =
TOP“™ €3 = TOPY, Cy = TOP*, €; = TOP, if, for some k > ¢, a map
j: A — X in @ is a cofibration in Gy, then j is a cofibration in Cg. For
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pointed spaces X and Y, [ X, Y] denotes the set of pointed homotopy classes
of pointed maps X — Y, and the trivial map X — Y, x — yq, is denoted by
x and its homotopy class is denoted by 0; [X, Y] is regarded as a pointed set
with the base point 0. For homotopies H : Y xI - Zand G, F : X xI —»Y
with Fi; = Gg, homotopies Ho G : X xI - Z and GeF': X x I — Y are
defined by

F(x,2t)

HoG(z,t) = H(G(x,1),1), GeF(xt)= {G(m 2t — 1) (l)i
3 2 —
2

Assign to the m-sphere S™ = {(t1,...,t,11) € R*™H S22 = 1} (n =
0,1,2,...) and I = [0,1] the base points (1,0,...,0) and 1, respectively.
Then, as is well-known, S™ and I are clw-spaces.

For pointed spaces X1,...,X,, we denote by X; A--- A X,, the quotient
space

n
(XlX"'XXn)/(UXlX--'XXZ‘,1><{>X<Z'}XXZ’+1X"'XX”),
i=1

where %; is the base point of X;. In X7 A--- A X,,, the point represented by
(x1,...,x,) is denoted by 1 A -+ A zy, and %1 A --- A %, is the base point.
For pointed maps f; : X; — Y;, weset fiA---Afn: XiA---AX, = YIA---A
Yo, TiN- - Axy = fr(x1)A- A fn(x,). For a pointed space X and an integer
n > 0, we set XX = X A S" which is called the n-fold pointed suspension
of X; for a pointed map f: X — Y weset X"f = f Algn : X" X — XY

We identify S™ (n > 1) with I"/0I™ and S'A--- A S' (n-times) by the
following way. Take and fix a relative homeomorphism ¢, : (I",0I") —
(S, %) for each n > 1 (e.g. [25, p.5]). Identify I"/0I™ with S™ by the
homeomorphism induced from 1), and denote ¥, (t1,...,t,) by t1 A+ Aty,.
Also identify S™ with SLA--- A St (n-times) by the homeomorphism h,, of
the following commutative square with ¢ the quotient map. (Notice that
hn(BLA - Atp) =t A Aty.)

In 2/)1)("')(’1#1} Sl X oo X S].

wnl lq

qn h_:j> GgLA...AGE
Under the above identifications, we have §” A §" = §"T" = §" A §™, where,
if m,n > 1, then
(TL A AZp) A (Tt A A Zpan) = X1 A -+ A Ty

= (1 A ATp) A @pg1 A AZpngn) (€SP (1 <i<m+n)).
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Since spheres are compact and Hausdorff, it follows that, for any pointed

space X, we have the identifications:
2.1) YPYMX = (X AST)AS" =X A(SASY) = X ASTH"
' =XA(S"AS™") = (X AS")AS" =X"N"X.

The switching map
(2.2)  7(S™,8") 8" =8"AS" - S"AST =8 Ay y A,

is a homeomorphism of the degree (—1)™".

Given a space A, let TOP4 denote the category of spaces under A, that
is, objects are free maps 7 : A — X and a morphism f from¢: A — X to
i':A— X'isafree map f: X — X' with foi=71.

A
(2.3) / \
X ! X/

Let TOP4(4,i') denote the set of all morphisms fromi: A — X to4 : A —
X'. For f, f' € TOPA(i, ), if there exists a homotopy H : X x I — X' such

that Ho = f, Hy = f', H, € TOPA(i, ) for all ¢ € I, then we write f 2 f/

or H: f S f'. Note that TOP¥*} = TOP*. The following is well-known
(e-g. [6, (3.6)], [4, (5.2.5)], [5, (2.18)], [9, (6.18)]).

Proposition 2.1. Given a commutative triangle (2.3), if i and i’ are cofi-
brations and f : X — X' is a homotopy equivalence in TOP, then f :i — 4’
is a homotopy equivalence in TOPA, that is, there exists g € TOPA('L",Z')

A A
with go f ~1x and fog>~1x.

For spaces X and Y, we denote by X + Y the topological sum of them,
that is, it is the disjoint union of them as a set and A C X + Y is open if
and only if AN X is open in X and ANY is openin Y.

For a pointed space X, the cone CX over it and the suspension XX
of it are defined by CX = X AT = (X x I)/({zo} x I UX x {1}) and
YX = (X xI)/({xo} x ITUX x {0,1}). The point of ¥X represented by
(z,t) € X x I is denoted by x A t. The space X is based by zg A 1.
Usually we identify ¥X = X!X. For a pointed map f : X — Y, two maps
Cf:CX — CY and ¥f : ¥X — XY are defined by Cf(z At) = f(x) At
and Xf(x At) = f(x) At; the (pointed) mapping cone of f is the space
Cy =Y Uy CX which is the quotient of Y +CX by the equivalence relation
generated by the relation f(z) ~ 2 A0 (x € X) and is based by the point
represented by yo; the injection iy : Y — Y Uy CX is a cofibration in TOP*
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by [17, Hilfssatz 6] and so an embedding; let
g YU CX = (YU CX)/Y = XX,
¢y (YU CX)U;, CY — (Y Uy CX) U, CY)/CY = XX
denote the quotient maps, then gy = q}oii ; and q} is a homotopy equivalence
in TOP* by [17, Satz 3]; for any integer ¢ > 1 let 1[)? DI Usey CYX ~
YHY U ¢ CX) denote the homeomorphism defined by wff(y N sg) =y NSy

and wff(x AsgANt) =z At Asyfor sy €S and t € I. If the first square of
the following diagram in TOP* is commutative, then there exists the map
bU Ca with the diagram commutative.

x 1oy Y

:

Xl

YU;CX —Lsnx

bl bUCa | Eal
. % Qer

/ s
Tyt oyrupoxt e wx

The next proposition is the same as (1.11) and shall be used to define
induced iterated mapping cones in Definition 5.4.

Proposition 2.2. If a pointed map j : A — X is a free (resp. closed free)
cofibration, then, for any pointed map f : X —Y, 1y UCj:Y Up; CA —
Y Uy CX is a free (resp. closed free) cofibration.

The above proposition may be folklorish, but we have not found its proof
in the literature, and so we will prove it in Appendix A for completeness.

Corollary 2.3. (1) If a pointed map j : A — X is a free (resp. closed
free) cofibration, then ¥j : XA — XX is a free (resp. closed free)
cofibration.

(2) If X is a w-space (resp. clw-space), then XX and CX are w-spaces
(resp. clw-spaces), and iy : Y — Y Uy CX is a free (resp. closed free)
cofibration for every pointed map f : X — Y.

(3) If f: X =Y is a pointed map between w-spaces (resp. clw-spaces),
then Y Uy CX is a w-space (resp. clw-space).

Proof. (1) By taking Y = {yg} in Proposition 2.2, the assertion follows.

(2) Let X be a w-space (resp.clw-space). Set j : A = {xg} C X. The
assertions about XX and iy follow from (1) and Proposition 2.2. Since
i1, 0J : {zo} — CX is a free (resp. closed free) cofibration, C X is a w-space
(resp. clw-space).

(3) Let X and Y be w-spaces (resp.clw-spaces). Then Y Uy CX is a
w-space (resp. clw-spaces), since the composite of {yp} C Y with 4 Y —
Y Uy CX is a free (resp. closed free) cofibration. O
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Given pointed maps f : X — Y and g : Y — Z with a pointed null
homotopy H : go f =~ %, we set

(9,H,f): X - ZU, CY, xAtrs {f(:z:)/\(

9. H, f]1: YU CX = Z, yw—g(y), At~ H(x,t),

which are called a coextension of f with respect to g and an extension of g
with respect to f, respectively ([25, 14]). Given pointed maps f; : X; —
Xip1 for i = 1,2,3, the Toda bracket {fs, fo, f1} ([23, 24, 25]) which is
a subset of [X X7, Xy] is the set of homotopy classes of maps of the form
[f3, Az, fa] o (f2, A1, f1), where Aj : fii10 f;j >~ * for j =1,2. If A; or Ay
does not exist, then {fs, fa, f1} denotes the empty set. As is well-known,
{fs, f2, f1} depends only on the homotopy classes of f; (i = 1,2,3) (e.g.
Section 3 of [15]).

3. MAPS BETWEEN MAPPING CONES

In this section we will work in TOP*.
The following shall be used to prove Lemma 5.3 which defines induced
iterated mapping cones.

Lemma 3.1. Given two maps j:Y — Y  and ¢ : Y' — Z, the following
diagram is homotopy commutative and iy;UC'; is a homotopy equivalence.

y — L -y E Y'U; CY

H g’ g'UC1y

y 99 7 foe Z Uyo; CY
ig! y ig/UCy

Z Ug’ CY; /_UC’>ZJ(Z Ugloj CY) Uglucly C(Y/ Uj CY)
g'oj

Proof. Obviously three squares are commutative and (17 U Cj) oigo; = ig.
For simplicity, we set

g=4goj, h=¢gUCly, k=1UCj, ¢=iys UCi;.

We should prove that i, >~ ¢ o k and ¢ is a homotopy equivalence. Let
ze€Z, yeY, y €Y and s,t,u € I. We define

w:IxI—1I G:(ZU,CY)xI— (ZU,CY)U, CY'U; CY)
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by
0 s<t
w(s,t) =¢2s -2t $<t<s,
s t<3

G(z,t) =2, G(yAs,t)=yAw(s,t) Nw(s,1—1).
Then G : i), >~ @ ok rel Z. In the rest of the proof we prove that ¢ is a
homotopy equivalence. Define ¢ : (Z U, CY) U, C(Y' U; CY) — Z Uy CY!
by
(z) =z YyAt)=jly) At, O At) =y At
by AsAt) =jy) A(s+ (1 —s)t).
As is easily seen, v is well-defined, continuous, and 1 o ¢ = le,. We will
show 1¢, ~ ¢ o). We have
poth(z) =z, @o(ynt)=jy) Nt=yAOAt, woip(y At)=y At
potp(yAsAt)=Jy)AN(s+ (1 —3s)t) =yAO0A(s+ (1 —s)t).
Thus it suffices to construct a map
H:((ZU,CY)U, CY'U; CY)) x I = (Z Uy CY) U, C(Y'U; CY)
such that
H(z,u) =z, H@W Nt,u) =y At,
H(yANOAt,u)=H(jly) ANt,u) =j5(y) ANt =y AOAL,
Hynt,0)=yANt=yAtNO, H(yAt,1)=yA0AL,
HyANsANt,0)=yAsAt, H(yAsANt,1)=yAOA(s+ (1—s)t).
The space K = I X I x{0}U{0} X I x TUT x I x{1}UI x {1} x TU{1} xIx I

is a retract of I x I x I. Indeed a retraction r : I x I x I — K 1is defined

as follows: for P € I x I x I, r(P) is the intersection of K and the half line

which starts from (%, —%, %) and passes through P. Define v/ : K — I x I

by
v'(s,t,0) = (s,t), '(0,t,u) =(0,t), 2'(s,t,1)=(0,s+ (1 — s)t),

(0,1) s<u
v'(s,1,u) =< (2s —2u,1) $<u<s,
L (s,1) u< 3
( t
(1,t) USE )
/ _ ¢
v'(1,t,u) =< (1,2u) ?§u§§.
\(2—2u,1) s<u<l
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Then v is well-defined and continuous. Set v = v or: I x I x I — I x I.
Then

({1} x IXxTUI x{1} xI)C {1} xITUI x {1},
v(0,t,u) = (0,t), wv(s,t,0)=(s,t), wv(s,t,1)=(0,s+ (1 —s)t).
Write v(s,t,u) = (vi(s,t,u),v2(s,t,u)) and define H by
H(z,u) =2, H(yAs,u)=yAvi(s,0,u) Ava(s,0,u),
Hy nt,bu) =y At, HyAsAt,u)=yAvi(s,t,u) Ava(s,t,u).

Then H satisfies the desired properties. Therefore ¢ is a homotopy equiva-
lence. This completes the proof. O

Definition 3.2 ((9) of [17]). Given a homotopy commutative square and a
homotopy

x I,y

(3.1) al Jb , J:bof~foa,
x Iy
we define ®(f, f',a,b;J) : Y Uy CX = Y' Up CX' by

O(f, f',a, b5 1) (y) = b(y),

! . o J(l‘,Qs) OSSSL
U Fha b d) e ne) = {a(z)/\(2sl) %gsgi

Given a homotopy K : bo f ~ f’oa, if there is a free map ¢ : X x I x I — Y’
such that ¢(x,s,0) = J(z,s), p(x,s,1) = K(x,s), @(*,8,t) = *, p(x,0,t) =
bo f(x), and ¢(x,1,t) = f'oa(x) for every € X and s,t € I, then we write

JgKorgp:JzK.

Proposition 3.3. Suppose that (3.1) is given.
(1) ([17, Hilfssatz 7])

(a) The following diagram is homotopy commutative such that the
middle square is commutative.

Xty Yovuox —Zovx
S
x Loy oy oxt 2wy
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(b) In the following diagram, the first square is commutative and
the second square is homotopy commutative.
1

q/
(Y Ur CX) U, CY ! S X

YUf CX

(I)(fvf/7a7b;‘])l lq)(if7if/7b7q)(f7.f/7a/ab;‘]);1if/ob) Ya

by Q}/

f
Y/Uf/ CX/—>(Y/Uf/ CX’) Uif/ cy’ Y X/

Also ®(ig,ip, b, @(f, f',a,b;J); 1if/ob) ~ ®(f, f',a,b;J)UCb.
(¢) If a and b are homotopy equivalences, then ®(f, f',a,b;J) is a
homotopy equivalence.
(d) If furthermore @’ : X' — X" 0/ : Y = Y" f": X" = Y" with
J Vo f ~ f"od are given, then

O(f, f",d Vs T) 0o (f, f,a,b; T) = B(f, f",d" 0 a, b 0 b; (J'0La) e (1y0])).

_ a(z) AD 0<t<d
2) D XX - XX b Nt) = 5T it
(2) Define e, y ea(® A1) a(x) N2t —1 %gtgl

Then e, >~ Ya and q}/ o (®(f, fya,b;J) UChH) = e, oq} ~ Zaoq}.

(3) If the square in (3.1) is strictly commutative, then ®(f, f',a,b; 1pos)
~ bU Ca.

(4) ([17, p.315]) For homotopies a; : X — X' and by : Y — Y/, if
there exists a homotopy J¢ : by o f ~ f' oa; for every t € I such
that the function X x I x I — Y’ (x,s,t) — J%(x,s), is continu-
ous, then the function ® : (Y Uy CX) x I = Y'Up CX', (2,t) —
O(f, f' as, by; JV)(2), is continuous and so

O(f, f',ap, bo; J) = (f, f',a1,b1; J").

(5) If K : bo f ~ f'oa satisfies J X K, then ®(f, f',a,b;J) ~
®(f, f',a,b; K) as elements of TOPY (if,ip ob).

Proof. We refer a proof of (1) to [17].
Definev:I xI —1Tand F:YXX xI— XX’ by

0 u< =2t+1
v(t,u) =< t+u/2—1/2 2t—1<wand —2t+1<u,
2t —1 u<2t—-1

F(x ANt,u) = a(x) Ao(t,u).

Then F': e, ~ Ya. As is easily seen, ¢} o ((f, f',a,b;J) UCb) = eq 0 q}.
Hence we obtain (2).
(3) can be easily proved.
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For (4), define £ : (Y + X xI) x I =Y Uy CX' by

— N

E(y,1) =bi(y), &(x,s,t) = {Jt(x’%) 2
2

<s<
ar(z) N (2s — 1) <s<
Then it is continuous and satisfies ¢ = ®o (¢ x 1), where ¢ : Y + X x I —
Y Uy CX is the quotient map. Hence ® is continuous. This proves (4).
(5) is obtained by taking a; = a, by = b, J'(x,s) = p(x,s,t) in (4), where
p:J~K. [J

4. HOMOTOPY COFIBRES

In this section we will work in TOP*. Hence iy : Y — Y Uy CX is always
a cofibration for every map f: X — Y.

Definition 4.1. Amap j : Y — Z is a homotopy cofibreofamap f : X — Y
if j is a cofibration and there exists a homotopy equivalence a : Z — YU;CX
with a o j ~iy.

The notion “homotopy cofibre” is not new. Indeed we have the following.

Lemma 4.2. Given maps f : X — Y and j :' Y — Z, j is a homotopy

cofibre of f if and only if j 'Y — Z is a cofibration and X Ty 2y 7

1S a cofibre sequence, that is, there exists a homotopy commutative diagram
with b, ¢, d homotopy equivalences:

x .y 7 .y
bl: Cl: dl:

1 if/
X' Y’ Y’ Uf/ cXx’

Proof. Tt suffices to prove “if”-part. Let J : co f ~ f'ob. Then ® =
O(f, f,b,6;J) : Y Up CX — Y' Up CX' is a homotopy equivalence with
® ois =ip oc by Proposition 3.3(1)(c). Set a=® 1od:Z - Y U; CX.
Then a is a homotopy equivalence such that aoj = ® 1odoj ~ & loisoc =
dlodo if ~ iy. Hence j is a homotopy cofibre of f. [

Lemma 4.3. Let j: Y — Z be a homotopy cofibre of f : X — Y.

(1) There is a homotopy equivalence a € TOPY(j,z'f) and its homotopy
inverse a~! € TOPY (if,j) such that a=' U Cly : (Y Uy CX) Ui,
CY — ZU; CY s a homotopy inverse of a U Cly, that is,

{ (a_l U Cly) o (CL U Cly) ~ IZchy,

(4.1) (a U Cly) o (a—l U Cly) ~ 1(YUfCX)UifCY.

(2) If f': X =Y satisfies f ~ f', then j is a homotopy cofibre of f'.
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(3) If h : X — X is a homotopy equivalence, then j is a homotopy
cofibre of f o h.

4) If f=goh:X X LY with b a homotopy equivalence, then j
1s a homotopy cofibre of g.

(5) Ifj is a free cofibration, then X¢j : ©Y — %¢Z is a homotopy cofibre
of £ f : XX — SY for any positive integer £.

6) If h - Y =Y and k : Z — Z' are homeomorphisms, then j' =
kojoh ™t :Y' = Z'is a homotopy cofibre of ho f: X — Y.

(7) Given a map g :' Y — W, g can be extended to Z if and only if
go f o~ x.

Proof. (1) Suppose that a’ : Z — Y Uy CX is a homotopy equivalence and
g :a oj =~ iy is a homotopy. Since j is a cofibration by the assumption,
there exists a homotopy H : Z x I — Y Uy CX with ¢/ = Ho ig and
g =Ho(jx17). Then the map a : 7 = Y Uy CX,z — H(z,1), is a
homotopy equivalence with a o j = iy and so a is a homotopy equivalence
in TOPY (j,i7) by Proposition 2.1. Let a=! € TOPY (is, ) be a homotopy

1 1

. _ Y
inverse of a. Then a oca~1ly

and L :aoa! L8 lyu,cx. Hence (a='UCly)o(aUCly) = KgUCly ~
K1UCly = 1zy,0y and the second equation of (4.1) is obtained similarly.
This proves (1).

In the rest of the proof a : Z — Y Uy C'X is a homotopy equivalence such
that aoj =1y.

(2) Suppose that J : f ~ f’. By Proposition 3.3(1),

®(J) = ®(f, f,1x,1y;J) : Y U; CX = Y Up CX

o4y = j and there exist homotopies K : a™

is a homotopy equivalence and ®(.J)oiy = ip. Hence ®(J)oa : Z = YUpCX
is a homotopy equivalence and ®(J) oa o j =isp. This proves (2).

(3) Take J : f ~ fohoh™!. Then ®(f,foh,h !, 1y;J) is a homotopy
equivalence and ®(f, foh,h™!,1y;J)oaoj = ifon. Hence j is a homotopy
cofibre of f o h.

(4) Since (1y UCh)oaoj = (1ly UCh) ois = ig4, (4) follows.

(5) Suppose that j is a free cofibration. Then %¢j is a free cofibration by
Corollary 2.3(1). We set a' = (1&?)_1 oXa, where ¢§ is the homeomorphism
S Usep CXPX &~ S4Y Uy CX) defined in the section 2. Then o’ : £°Z —
Y Uge ¥ CY'X is a homotopy equivalence and a’ o %5 = iy 5. Hence ¥t
is a homotopy cofibre of ¥ f.

(6) Since (hUC1x)oaok ™ : Z' — Y'Upor CX is a homotopy equivalence
and (hUCly)oaok ! oj =iy, it follows that j' is a homotopy cofibre
of ho f. This proves (6).



40 H. OSHIMA AND K. OSHIMA

(7) Let a : Z — Y Uy CX be a homotopy equivalence such that aoj = iy,
and a~! a homotopy inverse of a such that a=! o if =7. lf go f ~ %, then
there exists g : Y Uy CX — W such that goiy = g and goa is an extension
of g to Z. If g has an extension ¢’ : Z — W, then go f =g’ oa "t oifo f ~
g oalox=x O

Remark 4.4. A map a in Lemma 4.3(1) is not necessarily unique in the sense
Y

of ~.

Proof. Let V : S' v S! — ! be the folding map. Then §' Uy C/(S! Vv S§!) = 82
and iy : S' — S? can be identified with j : S' — S2, (z,y) — (x,,0).
Obviously j is a homotopy cofibre of V. We set a : §? — S?, (x,y,2) —

(,y,—%). Then a,1q2 are homotopy equivalences in TOPSl(j,iv). Their
1
degrees are —1 and 1, respectively. Hence a % 1g2 and so a 2 1g2 does not

hold. L]

Lemma 4.5. If j : Y — Z is a homotopy cofibre of f : X — Y and if a
map g : Y — W satisfies go f ~ x, then, for any homotopy A : go f ~ x,
we have

9, A, flUCly ~ (g, A, f) oq} (YU CX) U, CY = WU, CY
and, for any homotopy equivalence a : Z — 'Y Uy CX satisfying aoj = iy,
we have

(4.2) ([g, A, floaUC1y)ow™ = ([g, A, f]lUC1y)o(aUCly)ow™ ! ~ (g, A, f),

1

where w™" is a homotopy inverse of w = q} o(aUCly):ZU; CY — EX.

Proof. Consider the following diagram.

y —L -7z E ZU; CY
w
H a |~ aUCly | ~ \
f if big ay
XLy oyuex e (YU CX) U, OY —2- 3
’A7 b b

\ (9,4, f] [9,A,fluC1y %

] — WU, CY

lg

The above diagram is commutative except the right lower triangle. Define
u:IxI—Tand H:((YUyCX)U;, CY) x I — WU, CY by

S s>t
u(s,t) =4¢2s—t 2s>t>s, H(x/\s,t)—{
—2s+t 2s<t

f(x) Au(s,t) 2s<t
A(z,u(s,t)) 2s>t
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H(y,t)=yAt, H(yAs,t)=yAmax{s,t}.
Then H : [g, A, flUCly ~ (g,A, f) o q}. Hence
([9,A, floaUCly) ow ™ = ([g,A, fluCly)o(aUCly)ow™!
~ (g, A, f) oq} o(aUCly)ow = (g, A, flowow ™ ~(g,A4,f).
[

5. ITERATED MAPPING CONES

In this section we will work in TOP®. Hence for any map f : X — Y
the injection iy : ¥ — Y Uy CX is in TOPY and a free cofibration by
Corollary 2.3(2),(3).

By replacing the words “w-space” and “free cofibration” with “clw-space”
and “closed free cofibration” respectively, we can develop consideration of
this section similarly in TOP.

We will revise the notion of “shaft” of Gershenson [7] and rename it
“iterated mapping cone”. Suppose that the diagram

(51) gll 92J/ 931 gnJ/
Cq I > Oy %2 » Cs ]—3> jn71> Cn & 7 Yntl

is given with n > 1, where js : Cs — Cs41 is a “free” cofibration for every
s. We denote the above diagram by

S — (Xla---7Xn§Cla--->Cn—|—1;gla---79n;jl,---ajn)-
We often add Cy = {*} and the inclusion jy : Cy — C to the above diagram.

Definition 5.1. (1) The sequence (g1, J1,---,Jn) is called the edge of 8.
(2) 8 is a quasi iterated mapping cone of depth n if Cs1q U;, CCy ~

X, and [X,, Z] < [Cy, Z] < [Cyiq, Z] is exact as a sequence of
pointed sets for every space Z and every s > 1 (cf. [4, p.68]). If we
choose a homotopy equivalence w, : Csy1 Uj, CCs ~ XX, for each
s > 1, then the set 2 = {ws|1 < s < n} is called a quasi-structure
on 8. We set wg = 1¢, : C1 Uj, CCy = C1 — (.

(3) 8 1is an iterated mapping cone of depth n if j, is a homotopy cofibre of
gs for every s > 1. In this case a homotopy equivalence as : Csy1 —
Cs Uy, C X, and its homotopy inverse aS_1 can be taken such that

1¢s

. . —1 . . —1 Cs _
(5-2) Q50 Js = 1lgsy Qg Olg, = Jsy, Qg O00Qs = 1C5+17 asoay, =~ 1CSUgSCXS-

If we choose such a homotopy equivalence as for each s > 1, then
we call the set A = {as|1 < s < n} a structure on 8, and we set
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ws = qg, © (as UClg,) and QA) = {ws|1 < s < n} which is a
quasi-structure on 8.

(4) 8 is reduced if Cy = C1 Uy, CX; and j; = i4,. A quasi-structure {2
on a reduced quasi iterated mapping cone is reduced if w; = q’gl. A
structure A on a reduced iterated mapping cone is reduced if a1 =
lc,.

(5) Given a map f : C; — Y, we denote by f° : Cy — Y an extension
—1

of f to Uy, that is, f = L 8:1.Weset70:*:
[ ojs—10-r051 s52>2
Co —Y.
Convention 5.2. When § is an iterated mapping cone of depth n with a
structure {as |1 < s < n}, we denote by a; ! a homotopy inverse of a, such
that it satisfies (5.2).

Note that an iterated mapping cone is a quasi iterated mapping cone.
When 8 is a reduced iterated mapping cone, a structure A on 8§ is reduced
if and only if Q(A) is reduced. Notice also that a quasi iterated mapping
cone is a revised version of the one called a shaft by Gershenson in [7,
Definition 1.2D] where he did not suppose that the cofibrations j; are free.

Let § = (X1,..., Xn;C1, o, Cns1591, - - - s 9n3 J1s - - - Jn) be a quasi iter-
ated mapping cone of depth n with a quasi-structure Q = {ws |1 < s < n}
and f : C; — Y a map with an extension 7”“ to Cp41. We define maps
for 0 < s < n as follows:

(5.3)
rTSZTR-i-lenO“.OjS:CS_}Y,
hss1 = UCle, : Capr Ug, CCs — Y Ups CC,
ksy1 =1y UCys: Y Ufs CcCs —Y U?s+1 CCsy1,
~ f:Ci =Y s=0
P T Vhei 0wy X, Y Up OCs s>1°
Est1: (Y U?s—&-l CCS_H) Uketa C(Y UTS CCS)
— (Y Uty CY) U73+1U075 C(CS_H Uj, CCS),

Y=y, Csy1 Nt—=csp1 AN, YNt —=yANt, cs N\u Nt cs NEAu,
ECl s=0
YYX, s>17

"\

&)\; — Ews o q?3+1U075 O £S+1 . Cks+1 — {
\

where y € Y, cs11 € Csyq, ¢ € C, t,u € I, and ws_l is a homotopy inverse
of ws. Since w; ! is determined by w, up to homotopy, so is gs 1 for s > 1.

Lemma 5.3. Under the above situation, we have 070 =Y, 71 = h =

g = f, k1 =i, wy = q}, £s11 98 a homeomorphism, wg is a homotopy
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equivalence, and the following diagram (5.4) is a reduced iterated mapping
cone of depth n + 1 with a reduced quasi-structure Q = {ws|0 < s < n}.

(5.4)
1 Y X4 Y X5 e XX,
g1 l g2 l g3 l In+1 l
k1 ko ks kn 2 knt1
070 —_— 0?1 —_— 072 > e ? Cfn —_— CTn+1

Proof. Since k1 = ig,, k1 is a free cofibration and a homotopy cofibre of g1,
and wy = qul. Let 1 < s < n. By Proposition 2.2, ks11 is a free cofibration.
Take J : hgi1 =~ gsy+1 ows and set ®(J,s + 1) = <I>(h5+1,§s+1,ws,1c?s;<]).
Then we have the following diagram.

Cy —L> Cyyy —2 Cop1 U;, CCy —=5 ¥X,

H _S+l hs+1 §S+1
i?s
Y Y Uss OCy —= Cs
f f
- ks—i—l . .
Zfs+1 / 1hs+1 Z§S+1
Cosi1 —— > (C = -
P U0, e ey 9

By Proposition 3.3(1), ®(J,s + 1) is a homotopy equivalence and ®(J, s +
1) odp,,, =iz, By Lemma 3.1, zfs U C'ij, is a homotopy equivalence and
(172 UC5,) 0ksy1 = ip,,, - Hence ®(J, s+1)o0 (i UCE;, ) oksq ~ ig,,,. Thus
ksy1 is a homotopy cofibre of gs;1. Hence (5. 4) is a reduced iterated map-
ping cone of depth n 4 1. As is easily seen, &11 is a homeomorphism, and
gt g Crst1, s — 2(Csq1 Uj, CC5) and Xws are homotopy equiv-

FrtucT .
alences. Hence wy is a homotopy equivalence. Therefore Q is a reduced
quasi-structure on (5.4). O
Definition 5.4. We denote the iterated mapping cone (5.4) by 5(]anrl Q),
that is,

S(F,0) = (C1,5X,,...,5X,.; Y, Cpyovry Cnin;

f7§27"'7§n+1;k17"'7kn+1))

and call it the iterated mapping cone induced from 8 by an and 2, and we
call Q = {w; |0 < s < n} the typical quasi-structure on 8(?”“,9). When

S is an iterated mapping cone with a structure A, we denote the reduced

iterated mapping cone S(?nH, Q(A)) by 8(7”“,/1) and call it the iterated



44 H. OSHIMA AND K. OSHIMA

mapping cone induced from 8 by fnﬂ and A. (Notice that we do not have
typical structure on S(?nﬂ, Q) even if 8 is an iterated mapping cone.)

Remark 5.5. We have easily the following from definitions.

(1) The iterated mapping cone S(?nﬂ, ) depends on the map 7”“ and
spaces Xq,...,X, but not on maps g1, ..., gn.
(2) The edge of S(fnﬂ, Q) does not depend on ).

(3) If two quasi iterated mapping cones 8,8’ of depth n have the same
edge X 9401 J#ng---ﬂCnH and if amap f: C; —» Y
has an extension 7n+1 to Cp41, then two iterated mapping cones

S(?nﬂ, 0),8 (THH, ?) have the same edge for any quasi-structures

Q,Q on 8,8, respectively.

If the following problem is solved affirmatively, the number of systems
which shall be defined in the next section decreases by 2 to 10.

Problem 5.6. Is every quasi iterated mapping cone of depth 1 an iterated
mapping cone?

6. UNSTABLE HIGHER TODA BRACKETS

In this section we will work in TOP"Y. (As indicated in the previous section
we can develop our consideration of this section similarly in TOP®.)

Sometimes, without particular comments, we do not distinguish in nota-
tion between a map and its homotopy class.

Throughout the section 6, we denote by & = (au,,...,a1) a sequence of
homotopy classes

(6.1) a; € [X;, Xina] (i=1,2,...,n5 n > 3).

If a map f; : X; — Xi41 represents a;, then the sequence f = (fry---s f1)1s
called a representative of &. We denote by Rep(&) the set of representatives
of a.

6.1. Definition of higher Toda brackets. Given j? € Rep(&), we con-
sider collections {8, fr, Q|2 < r < n}, {82, f2, W} U{S,, fr, A |3 < r <
n}, and {8,, fr, A, |2 < r < n} (provided 83 is an iterated mapping cone)
which satisfy the following (i), (i), and (iii). (There is a possibility that
such collections do not exist for suitable f)
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(i) 82 is a quasi iterated mapping cone of depth 1 as displayed in
X1

fll
J2,1

Xo —— Ca9

with 9 a quasi-structure and As a structure provided 89 is an iter-
ated mapping cone.

(ii) 8, is an iterated mapping cone of depth r — 1 for 3 < r < n as
displayed in

Xr1 Y Xr 2 ¥2X,_3 e XX
frlj gﬂ?l gT,3l gr,r—lt
jr71 jr,2 jr,3 jr,r—Z jr,r—l
X, o Crs Lo e,

with €, a quasi-structure and A, a structure.
(iii) e Crr — X,41 is an extension of f,. to €y, for 2 <r <n—1, and
E : Cpn—1 — Xp41 1s an extension of f;, to Cj, 5—1.
We use the following notations:
L Cr,O = {*}, Cr,l =X, jr&z * 1 Cr,O — C?",17 f79 = fr Ojr,O : CT,O —
Xpy1 for 1 <r <n,and f1 = f1 : C1;1 = Xo;
® gr1 = fr—1 for 2 <r <mn;

fr 1=s5<r<n

o [ =X frojrr10-0jrs 0<s<r<n—1 :Cns— X41;
1 1<s=r<n-1

— f 04 . _90---07] 0<s<n—-2

° fnS: & Jnn—2 Jn,s - ZCn,s_>Xn+1§
fn s=n-—1

e O = {wrs|l < s <r}and wpg = lx, for 2 < r < n, where
Wrs : Cr,s—!—l Uj,«,s CCr,s — ZES_IXT—S;

o A, = {ars|1 < s < r}and QA,) = {wrs|1 < s < r}, where
ars: Crsy1 — Cr s Ug, O~ 1X,_, and

w’I“S = q‘lgr,s © (aTaS U C]'Cr,s) : CT7S+1 UjT,S CCr7S = 228_1XT_S,

)

and a, !'is a homotopy inverse of ar s such that

-1 . . -1 C,L’S -1 CLS
ar,s © Zgr,s - .77”,57 ar,s © aﬁS - 1Cr,s+17 a7’78 © a?“,s - 1Cgr,s'
Definition 6.1.1. Various presentations of j? and related notions are de-
fined as follows (if Problem 5.6 is affirmative, (a) (resp. (d)) equals with (a')

(resp. (d')).
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(1) A collection {8, fr, Q]2 <7 <n}is

(a) a g-presentation if 8,41 = 8,.(f,, Q) for 2 < r < n;

(a') a gsg-presentation if 85 is an iterated mapping cone and 8,11 =
8:(fr, ) for 2 <r < m;

(b) a gse-presentation if it is a gsa-presentation and 89 is reduced;

(c) a q8o-presentation if it is a gse-presentation and €2y is reduced;

(d) an ag-presentation if 8,1 = 8,(f-,€,) and Q1 = er for 2 <
r<mn;

(d") an agsy-presentation if 8y is an iterated mapping cone and
Sri1=8(fr, ) and Q, 41 = f): for 2 <r <mn;

(e) an ag$q-presentation if it is an agse-presentation and 8y is re-
duced;

(f) an aq8e-presentation if it is an agss-presentation and g is re-
duced.

(2) A collection {82, f2, 20 }U{S,, f, A |3 < r < n} is a go-presentation
if 83 = 82(f2,Q2), 841 = S, (fr, Ar) (3 <r <n), and A, is reduced
for 3 <r <n.

(3) A collection {8, f., A.|2<r <n}is

(g) an s;-presentation if 8,1 = 8,(f.,A;) and A, is reduced for
2<r<n;

(h) an $;-presentation if it is an s;-presentation and 89 is reduced;

(i) an §;-presentation if it is an $;-presentation and As is reduced.

(4) Let * denote one of the following: ¢, aq, qse, qs2, qS2, aqsa, aqss,
aqsa, St, S¢, St, and ¢s. j?is *-presentable if it has a x-presentation,
and & is x-presentable if it has a x-presentable representative.

In the above definitions we used the following abbreviations: ¢=“quasi-
structure”; so=""89 is an iterated mapping cone”; $9=*“8So is a reduced iter-
ated mapping cone”; So=""89 is a reduced iterated mapping cone with 29
reduced”; a=“asymptotic”; s;=“structure”; $;="“s; and s$2”; 5;="“$; and As
is reduced”.

Definition 6.1.2. We denote the set of homotopy classes of f,, o 9n,n—1 for
all *-presentations of f by { f Y& or {fn, ..., f1}®) which is called the *-
bracket of f. It is a subset of [¥""2X7, X,,11] and there is a possibility that

it is the empty set. For convenience we denote by {fa, fl}(*) the one point
set consisting of the homotopy class of fs 0 fi.

Notice that f is x-presentable if and only if { j? }(*) is not empty. As shall
be seen in §6.4, we can denote {f }*) by {& 1™ for any f € Rep(a).
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Remark 6.1.3. It follows from definitions that if & is g-presentable, then
arr10a, =0 for 1 <r <n—1, and that we have the commutative diagram

(6.1.1)
(Fas2) M Fes) (F160 s (F160)

T

{005 — {f yloan) Lo (Flaase) 2 (Fyaw)  (Fyo0

.
{F}e) —— {(f}D —— {f}(®)

where arrows are inclusions, !! is = for n > 4, and four !I’s are = as shall be
shown in Theorem 6.2.1. Notice that if Problem 5.6 is affirmative, two #’s
are =.

The following two propositions are easy consequences of definitions.

Proposition 6.1.4. Let {S,, f.,Q.|2 < r < n} be a g-presentation of f
Then

C =X, Uf 1 CX,_q (3 <r< n), 0373 = X3 Uf_2 CCQ’Q,

CTS_X Uf 15 10( TlUf_s2C(Xr72U"'
Uf Jr22 C( e 5_|_2Uf 1CX,~ S-H) )) (3§8<T’§n),
C =X, Ufr— r— 1C( re— 1Uf — QC( Uf_33 C(Xg UE2 00272)-'-))

(4 <r<n).

Proposition 6.1.5. If{j?}(*) is not empty, then { fum, fm-1,---, fo}*) con-
tains 0 for 1 <l <m <n, ({,m) # (1,n).

Definition 6.1.6. If there exist null-homotopies A; : fiz10 fi >~ % (1 <
i < n—1) such that [fits, Aiy1, figa] o (firr, A fi) =+ (1 <0 < n—2),
then we call £ and (f: A) admissible, where A = (Ap_1,...,A;). We call

a admissible if it has an admissible representative.

It follows from Proposition 2.11 of [15] that if & is admissible, then every
representative of it is admissible. From results in forthcoming sub-sections,
we can prove the following without difficulties: when n = 3, & is admissible
if and only if {& }*) contains 0 for all x; when n = 4, @ is admissible if
and only if & is x-presentable for all x; when n > 5, if & is x-presentable for
some *, then & is admissible.
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Remark 6.1.7. The following is obvious by definitions: if f; : X; — X, is a

map in TOPY for every i, then the x-brackets of f in TOP“" and TOPY
are the same for x = ¢s9, ¢S50, aqs$s, aqss, S¢, St.

6.2. Relations between twelve brackets. In this subsection we prove
three results and state an example. From 6.2.1, 6.2.2, and (6.1.1), we have

(1.1)~(1.4).

Theorem 6.2.1. (1) {f}(%) = {f}(&) — {F}(),

@) (F)lr) — (flss) — (Fles) o sodg(sxy), (£
{F}as2) = {f1(ag52) o g(Tn2X), and

= (gha) _ {f}(aqé"z) n=3
{f}q - {{f}(aq§2)08(2n2X1) n24.

(3) {f}@ = {f}@ o g(=n2X)),

(4) {f1E) 0 g(5n2X) = {f}(295) 0 £(2772X)).

(5) If @ € {f}9, then there are 6,0 € ["2X,,Y"2X,] such that
aof e {f %) and ol e {f}E),

Corollary 6.2.2. (1) {f1@oec = {f}@ and {f}(@52) o ¢ = {f }(a52)
Jor every e € &(X"2Xy), and {f }(9952) o 3y = {f 1 (aas2) for
every v € £(XX7).

(2) {f}(aq) o X" 2y = {J?}(‘IQ) for every v € &(X1), and —{f}(GQ) =

(F ).

(3) If the suspension X" 2 : &(X1) — &(X"2X1) is surjective, for ex-
ample if X1 is a sphere of positive dimension, then { f Y@ = {f }(@a)

(4) If {f ) is not empty for some x, then {f}(*) is not empty for all
*.

(5) If {j?}(*) contains 0 for some %, then {f }*) contains 0 for all x.

(6) {3 ={F}) for x = q, g5, ag, agss.
(7) If n >4 and f is x-presentable for some %, then _f 18 admissible and
*-presentable for all .

(8) If {f1}® = {0} for some *, then {f}*) = {0} for all x except
agq,q,q2-

Proposition 6.2.3 (cf.p.26, p.25, and p.33 of [27]). Given maps fni1 :
Xnt1 = Xnta2 and fo : Xo — X1, we have

(6.2.1) Fas1 0 {fuseo s F1Y C {fnit 0 frs Frots s 11,
(62.2)  {far10 fus frotseoos 1} C {fasts fn © froty froy ooy f1},
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{fns-- .,fl}(aqis'z) o Zn—zfo CAfns---sfo, f10 fo}(aqs'g)
- {f’rw . '7f37f2 o f17f0}(aq§2).

Remark 6.2.4. We can prove the following analogues relations of (6.2.3).

{Frr-o s J1YCD) 05200 € {fn, ..o fo, f1 0 fo} 59
- {fn> .- 7f37f2 o flva}(gt).

(6.2.3)

Details shall appear elsewhere.

Ezample 6.2.5 (cf. Lemma 4.10 of [24], Lemma 5.1 of [7], Example 6.6.2(2)
below). Let p be an odd prime and a1(3) : S?? — S a map of which the
homotopy class is of order p. For every integer n > 3, we set aj(n) =
Y 3aq(3) : S35 §" and E = {a1(n),a1(n +2p — 3),a1(n + 2(2p —
3),...,aq0(n+ (p—1)2p—3)}¥ c Tptop(p—1)—2(S™). Take n such that
n > 2p(p — 1). Then the p-primary component of 7, o,;—1)-2(S") is Zy,
and the following can be proved: = contains an element of order p and the
order of any element of = is a multiple of p so that = does not contain 0.
We need an argument for the proof, but we omit details.

Proof of Theorem 6.2.1(1). Tt suffices to show that {f}(*) c {f F1E) | Let
a € {f16) and {S,, fr Ay |2 < r < n} an s-presentation of f with o =
fn O Gn,n—1, where
8 = (X, 1,5 X0, X 2X1;Cr1,y oo, O

Grts s Grr—13 Jr s e o oy Jrr—1);
Cr1 =X, gr1 = fr—1, Ar={ars|1 <s<r}, QA) ={wrs|1 <s<r}y
if 3 <r <mn, then Cyo =X, Uy, _, CX; 1, jr1=15_,,and a;1 = 1¢, .

We are going to construct an §;-presentation {S;,ﬁ/,fl; 12 <r<n}of f
such that f,, o Inn—1=
First we set 8y = (X1; X2, Xo Uf1 CXy; fryip), a5y = 1oy, Ay ={ay,},

2 = Q) = {qf1} €2 = a21 022 — (92, and fz = f2062 Then
C31 = Ca1, €205, = ja1 and

wa1 0 (e2UCx,) = ¢} o (ag1UCly,) o (e2UClx,)
~ ¢y =wyy  (by (41)).
Secondly we set 8§ = 84(f2 ,A}) and
es = 1x, UCey: Cé73 = X3 UE/ C(XoUyp, CXq) = C33 = X3 Uz CCy.
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Then C3, = C35(s = 1,2), jy1 = j31, Jso = lx; UCS51, €30 55 = 32,
and
gho = (F2 UCLy,) owpi = (faUCly,) 0 (2UCly,) owp
~ (foUCly,) ow;& = g3,2.
Take a homotopy K3 : 93,2 ™ ggg and set

O(K®) = ®(g3,2, 65,2, 1ux1, Lxsup, 005 K°)
: (X3 Uf2 CXQ) Ug&2 CZXl — (Xg Uf2 CXQ) Ugé,Q CEXl,

CLg’2 = CI)(K3) oagooey: Ci/%,B — (Xg Ug, CXQ) Ugég CY X4,

f3:055=C30— X4 n=3
Eoeg,:Cé’g—)le n>4

! ! ! / i
azq1 = 105727 5 ={d51,a35}, f3 = {

Then Aj is a reduced structure on 85. When n = 3, {8/, T AL =2,3} is
an Ss-presentation of f such that E’ o gg72 = a. When n > 4, by repeating
the above process, we have S;,EI,A} and e, : C;,. ~ C;., for 4 <7 < n such
that
( —_

8;“ = 8;1—1(]01"—1 7‘A;=—1)7 €r = 1X7n U Ce?‘ 15
Crs=0Crs (1<s<r—1), C, =X, U - CC_y 1
j;“,s = jT,S? a;“,s = Qr,s, gqlﬂ,s = Yr;s (1 <s S r— 2)

/ ~ / ~ )
{ Wpp1 = Wrpr—10 (e, U ClCr,rq)v Irp—1 = 9ryr—1;

e _ _
f / _ fn . n’fn_l i CTL,’/L—]_ — Xn+1 T=n .
=
froe 1 Cl . — Xoq1 r<n’
/ / -2
Ay g = O(K")oap,—10e€: C r— Gy Uy - CX" Xy,

\

where K" : g.1~g,, ; and

(I)(KT) = (I)(gT,T—lv gr/mr—lv 1ZT*2X17 1Cr,7~71 ; KT)
: Crpo1Ug,,_, OX7X) - C) Uy CET2X],

Then A/ is a reduced structure on 8. Therefore {8/, fT "AL|2 <r < n}
is an S;-presentation of f such that fn o gnn L~ fao 9gnn—1 and hence
o € {f }). This proves Theorem 6.2.1(1). O

Proof of Theorem 6.2.1(2). First we prove {f }(@452) < {f}(@452) which is
equivalent to the first equality. Let a € {f}(aq‘s?) and {8,, f,Q, |2 <r <n}
an agss-presentation of f with a = f, o 9gnn—1. 1t suffices to construct
an agso-presentation {8.,f, ,QL[2 < r < n} with o = f,, o gr 1. Set

b = (X1; X9, Xo Uy, CXy; fiyig, ). Since 89 is an iterated mapﬁing cone,
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we can take e : Cé’Q = Xy Uy, CX; >~ Cy such that ep o jé,l = jo1. Set

F = froen why = w0 (e2UCly,) « Gy Uy, CChy — X, and
Q = {wh,}. Set 8 = S5(F', ), Q) = O, e5 = 1x, UCep : Chy — Chg,
— f3:0%,=C39 — X =3
and fgl = E 3,2 . 32 4 n . Then w5 = w320 (e3 UCley,)
f3063:033—>X4 n >4 ’ ’ ’
and g3 o = (E/UCl)(Q)ole o~ (ngClX2)0w21 = g32. By contlnumg the

construction inductively, we obtain an agss-presentation {S., f,. ,Q; |12 <
r < n}and e : C.,. ~ Cp, such that C;, = C,s (1 < s <17 < n),

w;m_l = Wpp_1 0 (er Ule,,_,):Cp, U CC’,{’T_l — Crp, UCC, ,—q for r < n,
— : =Chn-1— X r=mn S
and fT, = f_n "” 1= Fnn—d ntl so that g/, | = (fn_ll U
froe 1 Cl. — Xoq1 r<n ’

—1 ~ = ~ T :
C’ln_l’n_g)own_Ln_2 =~ gnn—1. Hence fn 0g;, . 1 =~ fnognn—1. This proves

the first equality in (2).

Secondly we prove the second equality in (2). Let o € {f }(@4%2) and
{8, 1,912 <r < n} an agss-presentation of f with a = f, o0 O Gnon—1-
Set 8y = 82, w1 = ¢}, U = {ws,}, and 6 = wa g0 W21 &(XX1). By
Remark 5. 5(3), we define inductively 84 = 84(f2, ), Qf = Q’Q, o 8=

o (famn, 1) Q= Q;L .- Then {8/ f.,Q.|2 < r < n}is an agss-
presentatlon of f such that wm = wps for 1 < s < r—2, and Y20 o
W, 1 = wpp—1. Hence a0 X730 = frLogq, , | € {f}@4%2) and so o €
{f Hags2) oyn=39—1 — {1 (ag¥2) o3n=3¢(xX7). Thus {f }(@s2) ¢ {f}(ag¥2)
yr3E(XXq).

Conversely let o € {f }(@9%2) and 0 € &(ZX,). Let {SL,EI,Q; |2 <r <
n} be an ag8s-presentation of f with o = E’ © gnn_1- Let 8 be the
iterated mapping cone which is obtained from 8/. by replacing g;,’T_l with
Grr_1 © Y730, and €, the quasi-structure on 8, which is obtained from ).,

Then {ST,EI,QHZ <r <n}

is an agso-presentation of f such that g, = 91/"75 for 1 < s <r—2and

by replacing wy., ; with X720 ow]. . .
Iror—1 = g;«,r—lozr_ge' Hence ao¥" 7% = E/OQZ,n_PZn_gQ = ﬁlognm—l S
{f}aas2)  Thus {f }(@es2) 5 {f1(aad2) o n=3g($X,). This proves the
second equality in (2).

Thirdly we prove the third and fourth equalities in (2). We prove

(6.2.4) (£} c {Fylea) o g(22X),
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F1(ags2) o n—2 {f}(qéQ) n=3
(6.2.5) {F P o 8(X77X) C {{f}@'s'z) n>4

If these are proved, then
{f1oo2) c {F =) o g(zm2 X))

(6.2.6) {f }ad2)  {f}(as2) n=3

= {f}a%2) c {f1af2)  {f1les2) >4
so that the third and fourth equalities in (2) follow. To prove (6.2.4), let
a € {f 1@s2) and {8, fr, Q|2 < 7 < n} a gso-presentation of f with
a = fr00gnn-1. Set
85 = (X1; Xo, Xo Uy, CXy; fryip,), Jo1 =tp, whi=4qp, Qp={wy}.
Since jo 1 is a homotopy cofibre of f; by the hypothesis, there exists a ho-
motopy equivalence e, : C’§72 = XoUy, CX1 — (a9 such that ey ojé,1 = jo1.

Set E/ = fy0ey. Then E/ is an extension of fy to 0572. Set
8t = 8h(fa', ), Q= Qf, ez =1x, UCes: Chs— Ca,

f—/: E:C§72:Cg72—>X4 n=3
s EO&gZC§’3—>X4 n>4

Proceeding with the construction, we have an agSs-presentation
(8!, 7. V|2 <r <n}of fsuch that

C;)S - CT‘,S (1 S S S r—= 1)7 j;‘,s = .7"75 (1 S S S T — 2)7
er =1x,UCe1:C, = Cry (3<7 <),
o [Toe:CoXn v
7" o raa .
fn : ;L,n—l = Cn,n—l — Xn—|—1 r=mn

Set 9 = wn_17n_2 © (en_l U C]‘Cn—l,n—Q) © w;’L_—ll,n—Q : En_QXl — En_QXl'
Then 6 is a homotopy equivalence and

= frnognn-1=fno(faciUClg,_,, )0 w;il,n—2
= fno (fas1UCle, ,, 5) o (enc1 UCLe, ) 0wy, p007"
=i o (fast UCLy_1n0) 0wl y007!
e {f}a2) o g1  {f}a2) o g(xn2X)).

This proves (6.2.4).
To prove (6.2.5), let a € {f }(aq§2), e € &(X"2Xy), and {8, fr, Q]2 <
r < n} an agde-presentation of f such that o = f, 0gnn—1. Let {S;,ﬁ/, Q|
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2 < r < n} be obtained from {8, ., Q|2 < r < n} by replacing wy,_1.,_2
and 8, with e Y owy, 1,2 and 8/, = 8,_1(fu_1,,_;), respectively. Then
(8.7 .02 < r < n} is a géy-presentation of f if n = 3 and a ¢da-
presentation of f if n > 4, and g;%n_l = gnn—10¢€ for n > 3. Hence
{fYas2) =3
{f Y2 p >4

_ ., _
aoe = fpogppn-10€ = fn 0 gim_l € { . This proves

(6.2.5).
Fourthly it follows from (6.2.6) that

e JUFH (X)) n=3
{f}q {{f’}(qSQ) n>4"

By definition, we have {f }(49%2) = { £}(4%2) for n = 3. Hence we obtain the
fifth equality in (2). O

Vv

Proof of Theorem 6.2.1(3). First we prove {f }(@ c {f}(@9) o g(xn~ 2X1)
Let a € {f}9 and {8,,, Q|2 < r < n} a g-presentation of f with
a=f,o Gn.n—1- We define inductively

Sh = 85, U = a3 Syy = Sh(F )y Uy = U (2 < ke < ),

By Remark 5.5(3), this definition is possible and 8/, 8, have the same edge.
Then {8., f,,Q.|2 <r < n} is an ag-presentation of f and

{(FYD 5 Fuoghu1=Too (a1 UCIo, o) owl
=fno(fum1UCLe, .- 2)own11n 5 0E) = OEy
where €9 = Wy 120w, 4 no € E(X"2X1). Hence
ae {f}19Doest c {f10D o g2 X))

and so {f 1@ c {f 1} o g(xn"2X)).

Secondly we prove {f}@ > {f}@ o &(£"2X]). Let a € {f Faa)
e € & 2X,), and {8, fr, |2 < 7 < n} an ag-presentation of f with
a=fpo Inn—1. We set

Q= {{510w2,1} n=3

e {wn—l,Sa elo Wn—1,n—2 ‘ 1<s<n- 3} n >4

which is a quasi-structure on 8,,_1. Set 8/, = 8,,—1(fn—1,,_1). Since 8/, is
obtained from §,, by replacing g, ,—1 with g, ,—1 o€, it follows that

{Sraﬁagr’2STSR_Q}U{Sn—lvfn—la n— 17 fna n}
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is a g-presentation of f and it represents «woe. Hence avoe € { f }(q). Thus
{FHD D {F1P o (27 2X).
Therefore {f }(9) = {f }(a0) o g(x2X)). O

Proof of Theorem 6.2.1(4). We prove

(6.2.7) (£ c {fYea) o g(2m2X),

(6.2.8) (£ 0 (=m72X) D {f Y0,

If these are done, then, by applying &(X""2X;) to them from the right, we

have the equality. To prove (6.2.7), let v € {f }*) and {8, f,, A, |2 <r <
n} an §;-presentation of f with a = f,, o 9n.n—1- We define inductively

5/2 = 52,9’2 = Q(A2)§ 2;+1 = Sz(ﬁ, Q;c)a 1<;+1 QI (2 <k< n)

By Remark 5.5(3), this definition is possible, and 8/., 8, have the same edge.
Then {8/, f.,Q.|2 <r < n} is an agds-presentation of f and

{f}(aq§2) = ﬁ % g;’l,’l’L—l = ﬁ o (fn—l U C]‘Cnfl,n72) © w;L_—l].,?’L—Q

:EO (fn—l UClCnfl,n72) Ownl]_n 2080 = 0y,

where g9 = wp_1p-20 w;__ll n2 € &(X"2X1). Hence

o € {F 1) o gl € {F10052) o g(272X)).

This proves (6.2.7).
To prove (6.2. 8) let o € {f}@%2) and {S,, 7, |2 < r < n} an agso-
presentation of f with o = f, o Inn—1- Set 8 = 8 and A) = {1¢,,}. We

define inductively 8., = 8.(f,.A.) and A/, 11isa reduced structure on 8/,
for r > 2. By Remark 5.5(3), this definition is possible, and 8/, 8, have the

same edge. Then {8, f,, A.|2 <r < n} is an §;-presentation of f and

{f }(St) > fno gnn 1= = f,o o(fp_1U C]'Cn—l,n—Q) o w;Z__an_Q
:fno(fn—lLJClCnfl, )ownlln 9 0Ep = ¥ oEgy,

where Q(A!_,) = {w] _ 1S|1<s<n—1} and €9 = wp—1,n— QOW;L__an_zE

E(X"2X,). Hence o € {f}) ogyt ¢ {f}9) 0 £(X"2X,). This proves
(6.2.8) and completes the proof of Theorem 6.2.1(4). O

Proof of Theorem 6.2.1(5). Let o € {f}@ and {8,,7,,Q.|2 < r < n} a
g-presentation of f with a = f,, o gnn—1. We are going to define an agss-
presentation {S;,ﬁ/,Q; |2 < 7 < n} of f such that 1o Ipp1 = ol
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for some map 0 : ¥"2X; — X" 2X; (notice that @ is not necessarily a
homotopy equivalence). Now set

8y = (X1; Xo, Xo Uy, CXy; frsip), Q= {q},}-
Since 89 is a quasi iterated mapping cone and j§71 = iy, is a cofibration, there
exists a map (not necessarily a homotopy equivalence) e : C’é’z — Ca 2 such
that e ojé’1 = Jo,1. Set E/ = fy 0ey. Then E/ oji1 = fo and so E/ is an
extension of fa to Cg,. Set
84 = 84(fa , ), Q= 0, e3 =1x, UCes : Ch 5 — Cyz,

f—/: EZC&Q:C&Q%AXE n=23
3 fzoez: O35 — Xy n>4

. . . . : —
Proceeding Wltli the construction, we have an ag$s-presentation {8/, f,, Q.|
2 <r <n} of f and maps e, : C’{n’r — Crr (2 <r <n—1) such that

Cro=0Crs (1<s<r—1), jr,=Jrs (1 <s<r—2),
Er Oj;,r—l = jr,rfl (2 <r<n-— 1)7
f—/ B o T’w_l =Chn-1— Xpy1 r=n
L =2 :
froe.: Cl, — Xoq1 r<n
Set 0 = Wn—1,n—2 © (enfl U ClC’;L71 n—2) © w:”b_—ll,n—Z : Zn_QAle — Zn_2X1.

1 o —1
Then Wy 12 © 0= (ep—1U Clcéq,nfz) O Wy 1 2 and

- 5 — — —_ —
{F 1) 5 ogh v =Fa o (Fart UCLe, y,_y) owhi s
= E © (fn—l U ClCn—l,n—2) © (en—l U ClCn—l,n—Q) © wiz_—ll,n—2

— E o (fn—l U Clcnfl,n72) o w?’:—ll,n—Q © 0

=aof.

Since {f }(*4%2) C {f}(19%2) 0 £(5" 72X, ) = {f }(5) 0 £(T"72X)) by (4), we
have a0 = fo for some 3 € {f }®) and v € E(X"72X,). Set @' = oL
Then avo 0 = 8 € {f }(&), O

Proof of Corollary 6.2.2. To prove (1), let ¢ € &(X"2X;). By compos-
ing ¢ from the right to equalities {f }(@ = {f}(@0) o &(¥"2X,) in Theo-
rem 6.2.1(3) and {f }(452) = {f}(04%2) 5 &($7~2X}) in Theorem 6.2.1(2), we
have {f}@ oe = {f}@ and {f}@2) o e = {f1052) Let v € &(XX1).
By composing Y™ 3~ from the right to equality {f}(aqsz) = {f}(aq§2) o
»7=3¢(XX) in Theorem 6.2.1(2), we have {f }(0452) o 53~ — { f }(a4s2)
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To prove (2), let a € {f }(® and {8,,f,,Q |2 < r < n} an ag-presen-
tation of f with o = f,, 0 gy, —1. For the first equality in (2), let v € &(X7),
and set

p Wr s 1<s<r—2
O.)r’s - Er—l — )

Yyowrr—1 1<s=r-—1
Then . = {w; ;|1 < s < r} is a quasi-structure on 8, and €., | = Q0. For
s<r—2
r>2and1<s<r<n,weset g, ;= Gr+1,s+1 C0s ’
’ Gry1r0 Xy s=r—1

that is,
—s+1
g/ . (frs+ U ClCT,s) o wT’_,Sl S S r— 2
(R UCle,, ) ow g oX Ty s=r -1

Set 8, = 82 and let 8/, 41 be the iterated mapping cone obtained from 8,1

by replacing g,41, with g, , for 2 <r <n —1. Then 8, and §, have the
same edge, and {8’ f,,Q.|2 <r < n} is an ag-presentation of fsuch that

fnoghnt = a0 gnn-105" 2y =aox" 2y,

Hence {f }(0) o 72y ~1 < {f1(@9) and so {f }(@) c {f}(@) o x7~2 By
taking 7! instead of 7, we have {f }(@) o X7=2~ < { £ }(@0) Therefore we
obtain the first equality in (2). For the second equality in (2), set w3, =
(—12)(1) w21, w§,2 = Z(—lgxl) w32, - - ,w;"m_l = En_z(—lgxl) OWn,n—1;
0 = {W§,1}7 and QF = {wr1,... ,wT,T_g,w;’:r_l} for 3 <r < n. Set 8 = 89
and, for r > 3, let 8 be the iterated mapping cone obtained from §, by
replacing g, -1 with g5, | = grr—10 Y 3(—1xx,). Then {8%, f., Q|2 <
r < n} is an ag-presentation of fby Lemma 4.3(3) such that —a = f, o
Ipn—1 € {fd)  Hence —{f}@) < {f}@). By composing —lyn—2x,
from the right to the last relation, we have { f Hea) ¢ f }(99) " Therefore
—{f}ad) = { FY(ag),

The assertion (3) follows from (2) and Theorem 6.2.1(3).

If {f}(*) is not empty for some %, then {f}(Q) is not empty by (6.1.1)
so that {f}(aq‘§2) and {f}(gt) are not empty by Theorem 6.2.1(5), and so
{f1® is not empty for every % by (6.1.1) and Theorem 6.2.1. This proves
(4).

If {f}*) contains 0 for some *, then {f }(4) contains 0 by (6.1.1), and so
{f}* contains 0 for every * by Theorem 6.2.1(5) and (6.1.1). This proves
9).

( )By setting e = —lygn—2x, and v = —1xx, in (1), we have (6) for x =
q, qs2,aqss. The assertion (6) for x = ag was proved in (2).
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Suppose that n > 4 and f is x-presentable for some x. Then f is *-
presentable for all x by (4) so that in particular it is agSe-presentable and
so it is admissible by definitions and (4.2). This proves (7).

We have (8) from (6.1.1) and Theorem 6.2.1(1),(2),(4). O

Proof of Proposition 6.2.3. (6.2.1) is easily obtained from definitions.
About (6.2.2), it suffices to prove it for x = aqg8s, 8, aq,q2 by Theo-
rem 6.2.1(1)-(3). We prove (6.2.2) for x = ag§2, because other cases can be
proved similarly. Let & € {fni1© fu, foet,---, f11(%2) and {8, ., Q, |2 <
r < n}tU{8Sy, fnt1© fn, Qn} an agSe-presentation of (fr110 fu, fno1,---,f1)
such that o = fp410fh 0o gnpn—1. Then Cp, = X, U1 CCp_1,-1

n—1
and fp41 0 fy is an extension of fy41 0 fy, to Cppo1. Set 8, = 8,_1(fn ©
fn—1,Qn-1) and Q;, the typical quasi-structure on 8;,. Then Cj, , = Xy 11

—
r—1 CCn,erl. Define f,, : ! Xn+1Ufnomn—2 CCn,Ln,Q —

nn—1

Ufnofn—l _ _
Xnt2 by fo|xpp = farrand folco, 1 = fat+10 folcc, i, »- The map
ﬁ/ is a well-defined extension of f,11to C;,,, ; and E/o (fnUClg,_ . ,) =

Frz1 0 fn. Hence {8, fr, Qulr < n—2}U{Sn_1, fnofn—1, Q1 JU{S., Fr s .}
is an agSs-presentation of (fr11, fnofn_1,..., f1) and it represents Elo(fnu
Clc, 1, 5) © Gnn-1 = « so that a € {fny1, fno fno1,.. .,fl}(“q‘§2). This

proves (6.2.2) for x = ag$s.

To prove the first containment of (6.2.3), let a € {f,... ,@(“q‘:’:?) and
{8, fr, 2 |2 <1 < n} an agde-presentation of (fy, ..., f1) with frognn—1 =
a. We are going to construct an agse-presentation {Sé,ﬁ/, Q|2 <r<n}
of (fny---, fo, f1 0 fo) with f) o Ipn-1=Q0 ¥ =2 f5. We set

e1,0 =1 : Clg = Crp, e11 = fo:C1 1 = Xo— C11 = X1,
8y = (X1; X3, Xo Upy OX13 flsigy), Q5 ={dp},
€20 = 1{*} : Cé,O — CQ’O, €25 = 1X2 U 06175_1 : Cé,s — 0275 (S = 1,2),
— = — -~
fo = faoenn: Chy — X3, 85 =85(f2,0y), Q5 =,
Then C3 , = O35 for s = 0,1,2. We set
€3,0 = 1{*} : Cé’o — 0370, €3,s = 1X3 U 06275_1 : Cé“s — 0373 (1 <s< 3),
f—/_ Eoeg’g : Cé’2 — X4 n=3
5 EO€3’3:C§73—>X4 77,24.
Then e3s = 1g;, for 0 < s < 2 and g32 0 Xfy =~ gé’Q. By repeat-

ing the process, we have an ag$o-presentation {S’T,ﬁ/,Qrﬂ < r < n}
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of (fn,---,f2,f1 0 fo) such that C{ﬁ,s =Cs (1 <s <), E/ = f, and
gnm-105""2fg ~ g1 so that f, 0 gnpn_10X" 2 fo ~ 1. o 91~ Hence
aoX" 2fg € {fun,...,f2, fr0 fo}(aq§2). This proves the first containment of
(6.2.3).

In the rest of the proof we prove the second containment of (6.2.3).
Let o € {fn,..., f2, f1 0 fo}(®%2) and LST,E,QTM < r < n} an ag8s-
presentation of (fy,..., f2, f1 o fo) with f, 0 gnn—1 = a. Set

X7 =Xo, Xo=X1, fi=/fo, Xp=Xi 3<k<n),
fy="rfeofi, fr="/fk B<k<n),
85 = (X7: X3, X5 Uy OXT5 fivigs), Q5 ={d}:},
e22 = f1UCly, : 035 = X1 Up, CXo — Co2 = Xo Up o5, CXo,
e21=f1:C51 = Cor, fo =faoess:Csy— X3,
S3=85(f2 %), =05 ez =1x,,
€32 = 1xy UCS 1 Chy = X3 Uppop, CX1 — X3 Uy, CXp = Ca,
e33=1x,UCegs: C'§73 = X3 UE* CC’;}Q — X3 Uz CCs9 = C33,
— ﬁoeg’g:C§2—>X4 n=23
s = {]%063’3205;:3—))(4 n>4

Then €3 5+1 Ojis = j3,s 0 €3,s (S = 1,2) and €3,2 © gék,z >~ g3,2- When n = 3,

{8z, f ., |r = 2,3} is an agéy-presentation of (fs, f2 o f1, fo) and f3 o

gs2 ~ f3 o 930 so that a € {f3, fa 0 f1, for@%2)  Suppose n > 4. Set
5 =85(f5 , Q%) and Qf = Q. Then Cj, = Cy, (s = 1,2). Set

€45 = 104’5 : CZ’S — 04,3 (S = 1,2),
€4,54+1 = 1X4 U 063,3
. CZ,S-}-l — X4 UE*S Ccék,s — 04,5_’_1 —= X4 UES 003,8 (8 = 2’3)7

ﬁ*: ﬁ06473:CZ’3—>X5 n=4
f4o€4’4:CZ’4—>X5 TLZ5'

Then ey 541075 s = jasoess (1 <s<3)and es30g)3 = gs3. By repeating
the process, we obtain {8, /. , Q2|2 < r < n} which is an agé,-presentation
doe

so that fo © g5,y = fn © gnn—1. This shows a € {fn, ..., foo fi, fo}(*#*)
and completes the proof of Proposition 6.2.3. [
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6.3. Suspension of higher Toda brackets. Let j?: (fny---, f1). Given
‘> 1, {Zé f }(*) can be considered, since 2¢X; is well-pointed for every i
by Corollary 2.3(2). We prove the following which implies (1.5) (cf. |7,
Lemma 2.3D], [27, Lemma 2.3]).

Theorem 6.3.1. (1) SHYFIO c (=) {SEFI® for all € > 1 and .
(2) SHFIW c SIS for all £ > 1 and x = q, gsa, aq, agss.

Proof. (2) follows from (1) and Corollary 6.2.2(6). We are going to prove
(1). Note that

S0 C B 2X0, B X ], {B0F10) C (220X, B X ),

where YY" "2X; = ¥ 2%fX; by the identification (2.1). Hence (1) is
equivalent to

(6.3.1) SHAY c {ZF W o (1x, AT(8"72,87),

where 7(S"72,8%) : §" 72+ = g2 A G — §P AS"2 = g2+ is the switch-
ing homeomorphism defined in (2.2). We prove (6.3.1) when ¢ = 1, be-
cause (6.3.1) for £ > 2 is obtained by an induction. By Theorem 6.2.1(1)-
(4), it suffices to prove (6.3.1) for x = §;, aqSe, aq, q82, qg2. We prove
(6.3.1) for only the case of x = §;, because the cases of x = aq$2, aq,
q82, g2 can be treated similarly or more easily. Let o € { f 1% and
{8, fr,Ar|2 < r < n} an §-presentation of f with a = f,, o Gnn—1- Set
Cri=%X, 2<r<n)and ff =3f : X, - XX, 1 (1 <7 <n). We

are going to construct an §-presentation {8*, f, A* |2 < r < n} of X f such

that X(fn © gnn—1) = (fi © g 1) © (Lx, A7(S"72,81)), where

* 2 r—1 Vats *
8: = (X1, 52X, 0., XTTIX Oy CF
g’l“,l""797‘,7“—17]7‘,1""7JT,7“—1)’

9:,1 = f*—1a :,2 = XX, Uf;f,l CX, 1, j;f,l - igi,l'

r

Set 85 = (¥X1;3 X0, XX Uyr CXXy; fiiigr). Then 85 is an iterated
mapping cone with a reduced structure A3 = {aj,} and a reduced quasi-
structure (A7) = {w3 1}, where a3, = ¢z, and w3, = q}f. Set egs =

1y, s=0 -5 -
{¢{ b, 08 ~ S0k, and ff = S0 ez : Cjy — EX5. Then
gt s=1

e2.1 = lxx,, f5 is an extension of fJ to (39, and

(1 = (62_& UC(1x, AT(SY,81)) o ( ;2,1)_1 o Xag © €232,
€2,541 0 Jas = Lj2s 0 eas (5 =0,1),

f_éks = EES 0€25s - Cék,s — XX3(s=0,1,2),
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wy1 = (1x; A 7(SPA S 8Y)) 0 Xwa 1 09l o (e22UCeat)

J2,1
: 0572 Ujs . CCSJ — XY X;.
Set 8% = 85(f5,A5) and
€35 = He s=0 :CX .~ X4
,S ;.—s—l o) (1ZX3 U 062,3_1) S = 1’ 2, 3 3,8 )89
2

F_ ZEO€3’220§,2—>2X4 n=3
| Sfs0es3:Ciy > EXy n>4

Then 8} is an iterated mapping cone, f3 is an extension of f3 to Ciqor CF 4
according as n =3 or n > 4, and
e31 = lxxs, €3s110J34 = Nj3soess (s=0,1,2),
f_g‘s —3Yf3 0 e3s (s =1,2),
931 =13, 932= (f_z*U 010571) °© Wg,fl 1 XXXy — C5,.
The next relation holds when r = 3.

(6.3.2)
Grs e,T’; 0o¥grso(lx,_ AT(S* L8t 2 leX,  — Crs (1<s<r).

Indeed

x _ (g% S * ~1
9rs = ( r—1 U ClC’:_Ls_l) OWr_1,5-1

— S
=(Efrc1 o1, UCLer | | )owi g,

— (1EXT U Cer—l,s—l)_l o (Efr—ls U ClEC,«_l,s_1> o (61"—1,5 U Cer—l,s—l)
—1

-1

o W;k—l,s—1
~ (Isx, UCe,_15-1) Lo (Bf1 U Clso, 1) o (er—1,sUCer_15-1)
o(er_15UCe—_15-1)" "0 (%1'7"_178_1)_1
o (Swr_15-1) "o (1x, , AT(S*,81) ™!
= (Inx, UCer_1,5-1) " o (Sfr1 UCIne, ) o (W, )7
o (Sw—1,61) "o (Ix, , AT(S",8) !
= (Igx, UCer_1,5-1)" "o (lb}r_lsfl)_l oS(frmi UCLe,,, )
o (Swr_15-1) " o (1x, , AT(S",8") ™!
— e toX(fri"UCLe, )0 (Swr1s1) o (Ix, , AT(S*7,8M) !
~ ep b o S((Fra U 0o,y ) 0wy oy o (x, AT(877,81) ™
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= e;; o Xgrso (1x,_, A T(Ss_la Sl))_l-
Set

a3, = (5, UC(Lx, . AT(S"71,8N)) 0 (1, )™ 0 Dag,s 0 3,641

93,s

10341 2C3,Ug CEX° X35 (s=1,2).

* * * : * * .
Then A3 = {aj,,a3,} is a reduced structure on 83. Indeed, a3 ; = leg, s
obvious and, from the commutative diagram below for r = s = 3, we have
a% o 0 Jao = Lo
329732 = g3 ,-

(6.3.3)
€r,s—1
:,5—1 ECf?“,s—l
j:,sfl Ej?",s—l
€r,s
C:,s ECT‘,S
a;k"sfl Ear,s—l
* s—2 s—2
Cr,s—l Ug:’571 cx ZXT_5+1 E(CT;S_l Ugr,s—l (@)Y XT—S+1)
(g, . )"
el UC(lx AT(S5T st et
r,s—1 r—s+1 ’

EC/{*’S_]_ U CZZS_2XT_S+1
Hence 83 is an iterated mapping cone with a reduced structure A3 and a
reduced quasi-structure Q(A3) = {w3 ;s = 1,2}, where w3 , = q;§ o (a3 U

Clcékys). We are going to prove
wis = (1x, , AT(S*TIASY,SY)) 0 Bws s 09, o (e3,541 U Cess)
:C5 1 UCCs, —» 357 15X3, (s =1,2),

that is, we are going to prove that the following diagram is commutative
when r = 3.

€r,s+1 Ucer,s

C:,s+1 U CC:,S 2jcfr,s—l-l U CZCT’,S
a:’,sUC]'C;“’S ;r,s
(6.3.4) (Crs Ugr, CE57IBX, ) UCCY, Y (Crs11UCCy)
q;i s Ewr,s
(EXs-HmX SIS X,

ik AT(stTAShSY)
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Recall that

Wr.s = Q;Tvs % (ar,s U ClCr7s)

: Crot1 U, OCrs = (Crs Uy, O 1X, U  CCpy — EX 71X,

igr,s
Since C'Cy ¢ is mapped finally to * by the maps in the last diagram, it suffices
to show that the two maps from C} ¢, to (L2 XX, _, are the same, that
I8, qgz 0 ay s = (1x,_, A 7(S571 A8, SY)) 0 Bgy,., 0 Xay s 0 € 541. Since
ay . = (s U(lx,_, AT(S°7H8N) 0 (¢, )7 0 Dars 0 ersi
by the definition, it suffices to show
gz, © (ers UC(Lx,, AT(S"7H8Y) 0 (1, )7
= (Ix, , AT($ ' A8Y,8Y) 0 By,
: 8(Crs Uy, CEF1X, ) — S857I8X, .
The last equality is proved easily. Hence (6.3.4) is commutative when r = 3.
When n = 3, {8, f, A:|r = 2,3} is an §;-presentation of ¥.f and
fio 932 = Yfzoezz0 93,2
~ Y fsoeg0e550%Ng320 (1x, AT(S',8)7" (by (6.3.2))
=% (fs0g39) 0 (1x, AT(SH,81) L.

Hence S{f 1) c {SF1E) o (1x, A 7(SE,SY)).
When n > 4, we set 8§ = 85(f5,A%) and

1{*} S =
€5 = 1 : i
’ o1 © (1zx, UCess—1) s=1,2,3,4 * ’
3
F_ 2506473:013—>EX5 n=4
4 Zﬁoe4’4:CZ’4—>2X5 n>5

Then 8} is an iterated mapping cone, f5 is an extension of f; to Cj 5 or C} ,
according as n =4 or n > 5, and

ea1 = lux,, e€4s11005s=2Jasoeqs (s=0,1,2,3),
f_f =3 o ess (s =1,2,3),
f3 s=1 _9
=<2 XYY X, = CF
s {(f;s U C'lcg’sfl) o wg‘,s_l_l 5=2,3 A-s 45
We can prove

Gis=ertoNgrso(lx, , AT(S 1,8 (s =1,2,3)
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by the method which was used to prove (6.3.2) for r = 3. Set
ai,s = (el,i UC(lx, , A T(Ss_la Sl)) © (1@4,5)_1 0 24,5 O €4,541
: CZ,S—F]. — lek,s ngs CX°Xy_s (S = 1,2,3).
Then the diagrams (6.3.3) and (6.3.4) are commutative for » = 4, that

is, A} = {aj|1 < s < 3} is a reduced structure on 8} and, if we set
Q(A]) = {wis|1 < s <3}, then

UJZ’S = q;Z,s o (CLZLS U ClCﬁf,s)
= (Ix,_, AT(S°7'ASY,8Y) 0 Bwas 09, 0 (eqsp1 UCeyy).
When n = 4, {8, F, A* |2 < r < 4} is an §-presentation of ¥ and

f_i‘ o 913 ~Yfio0 €43 © eié oXgsz0(lx, A T(SQ, Sl))_1
= 3(fa0ga3) 0 (1x, AT(S%,s1) 7
Hence S{f }¥) c {SF 1) o (15, A 7(S2,81)).

By repeating the above process, we have an §;-presentation {8*, f*, A%|2 <

r <mn} of Efsuch that f* o Inn—1 = S(fnognm-1)o (Ix, AT(S"72,81))7 L
so that S{f 1) c {SF 16D o (1x, A7(S"2,81)). This completes the proof
of Theorem 6.3.1 for x = 5. [

6.4. Homotopy invariance of higher Toda brackets. We prove the
following which is (1.6) (cf. [7, Theorem 3.4] for {f }(9)) and allows us to
use the notation {& }*) instead of {f }*) for every .

Theorem 6.4.1. If f, f' € Rep(&), then {f}(*) = {f’}(*) for all x.

For f = (fa,...,f1) € Rep(@) and i € {1,2,...,n}, let f; € Rep(&)
denote a sequence obtained from f by replacing f; with f/ such that f ~ f;,
for example fo = (fn,..., f3, f}, f1) with f} ~ fo.

Lemma 6.4.2. If f € Rep(&), then {f }*) = {£; }® for all x and i.
From the lemma, the theorem is proved as follows:
{f}(*) = {fna"'7f27f{}(*) = {fnv"'af?)vfé?f{}(*) = ..
= {3 = £,

Proof of Lemma 6.4.2. By Theorem 6.2.1, it suffices to prove the lemma
for the cases x = §¢,aq82,aq,q2. We consider only the case of x = &,
because other cases can be treated similarly or more easily. For simplicity
we abbreviate { 169 as { }. Let o € {f}, {8, fr, Ar |2 < 7 < n} an §-
presentation of f = (fny---, f1) such that o = f, 0 g1, Ar = {a,s|1 <
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s < r} with a,1 = 1¢,,, and Q(A, ) ={wrs|1 <s< r} We are going to
construct an §;-presentation {8’ f, ,A’ |12 <r<n}of f; with f,, o 9, 1=
a. If this is done, then { f} c{fi}, and by interchanging f with f; each
other we have {f;} C {f} so that {f} = {f;}.

We divide the proof into three cases: 1 =n;i=1;2<:<n—1.
First we consider the case: i = n. Let ﬂ = (f], fn-1,---, f1) with
" fp fl and set j = jpp—20---0Jn20jn1. Since j is a free cofibration,
there exists a map H : C,, n- 1 X I — X, 41 such that H o ch = E and

Ho(jx1y) = J". Let {8}, T AL|2 < r < n} be the collection obtained from
{8, fryAr|2 < r < n} by replacing f, with H;. Then the new collection
is an §;-presentation of f, such that it represents o = Hj 0 g, n—1 € {fn}

Hence (£} - (£} ﬁ
Secondly we consider the case: i = 1. Let f1 = (fn,..., f2, f1) with
: fi~ f{. Set
b= (X1; Xo, Xo Up CXy; flsign),
€20 = ®(f1, f1,1x,, 1xy5—J") : Chp = Xo Upy CXy — Cop = Xp Uy, CX,
e21=1x,, fo =fr0es2:Chy— X3, ah; = ley ,-
Then ez2 0 j; = Jj2,1, and wh; =~ e1y owyy = w0 (ez2 U Cez) by
Proposition 3.3(2). Set 8% = S’Q(E/,Aé). Then C3 , = C3 5 for s = 1,2 and
Js31 = Ja1- Set
e33=1x,UCeyo: Céjg = X3 UE/ C’C’é’g — C33 = X3 Uz CCs 9,
aumte, (=12, TR
We have €33 035 = j320e€32, 931 = g3,1, and
dho=(f2 UCLyx,) owhy = (f2UClx,) 0 (e22U Cly,) o why!
~ (fUCly,) o ng = g32.
Take K : g3 ~ g5, and set
D(K®) = ®(g32, 959, Iux,, Loy K2) 1 Cs2 Ug, , CEXy — Ch o Ugy , CZ X1,
a9 = ®(K%)oagpoess: C33 — Cs, Ug, , CXX1.

Then Af = {as1, aga} is a reduced structure on 8. We have W§,1 = w3 =
w310 (63,2 U 06371) and

/ / /
wyo =y o (az2UCley )
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- qlgé 2 © (CI)(K?’) U 0103,2) © (a3’2 U 0103,2) o (63,3 U 063,2)
~ (p, , 0 (a32UClg,,) o (e33UCez) (by Proposition 3.3(2))

=ws320 (e33UCeso).

When n = 3, {8.,F,, A\ |r = 2,3} is an §-presentation of (f3, fa, f1) such
that f3 © g3y ~ f30g32 and so {f} = {fi}. When n > 4, set 8, =
85 (EI,AQ). By repeating the above process we obtain {S;,EI,A; |12 <r<

n}, an §-presentation of fi, and e, : C). , ~ C, 5 such that

C;L,s = Cn,s: €n,s = 1C’n7S (1 <s<n-— 1);
a/',I’L,S = ana‘S’ w;L,s = wn,s (1 S S S n— 2);

/ .
Whnon—1 = Wpn—10° (en,n U Cen,n—l);
7! _ 7 ! ) / ~
fn - fn . nn—1 — Cn,n—l — Xn+17 gn,n—l = Ggnn—1

. _ . .
so that f, o g;l,n_l ~ fp 0 gnn—1 and hence {f } = {f1 }.

Thirdly we consider the case: 2 < ¢ < n—1. We prove only the case i = 2,
because other cases can be proved similarly. Let fo = (fn,..., f3, f4, f1) with

T2 fa e fo.

Step 1: Set 8,2 = 82 and .A’2 = .AQ. Then Cé,s = CQ’S, jé,l = jg,l = ifl? and
W/2,1 =wy = q}l. Set ez s = 1¢,, for s = 1,2. Since jo1 = iy, : Xo = Cop =
Xo Uy, CX; is a free cofibration, there exists H?: Ca2 x I — X3 such that
H2oig™ =Fy and H?o (ig, x 11) = J2. Set fo = H? : Chy = Con — Xa.

Step 2: Set

—
5=85(f2,A), aé,l = 105727
_/ —_—
es3 =P(fa, fo, 1cn,y, Lxy; —H?) 1 Ch 5 = X3 Uz CCyq —
C33 = X3 Ug; CCop,
€32 = P(fy, fo, 1xy, 1xgs —J7) 1 Chp = X3 Uy CXy — C39 = X3 Uy, C Xy,

f_{fC—>X n=3

QE— . /
es1 = lx, : C31 — C3 1, T\ Toess:Cle s Xy n>4
39 7 3,3 —

-/ . -/ . / / ~ _
Then ez 3073, =j320€32, 32073, =j310€31, and ez 1093 = fo~ fo=
93,1- We will prove
/ . —/ /1—1 _ —1
€320039 > gs2 4.6 €320 (fr UCLx,)owyy ~ (faUClx,)owy.

It suffices to prove e3 o o (E/ UCly,) ~ foUCly,, since wé’l = wy1. We
have

€32 0 (ﬁl UClx,)
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12

O(f}, fo: Lxas Lxas —J) 0 (i, f5, 1x,, J2 1 15;) (by Proposition 3.3(3))
Q(iy,, fo, 1X2,E/; ((—J2)611X2) e (11,,51y)) (by Proposition 3.3(1)(d))
q)(ifp f27 1X27£l; _JQ)

(by Proposition 3.3(5) and ((—J2)611X2) (11, 01y) = —J%).
We define Jt : Xo x I — X3 for t € I by JH(zg,u) = (=J?)(xa,t 4+ u — tu).
Then J: (—H?);0is ~ fo01lx, and so

O(if,, fo, 1xy, f2's —J2) = ®(if,, fo, Lxy, f2; 17,) (by Proposition 3.3(4))

~ fo U Cly, (by Proposition 3.3(3)).

12

12

Therefore e3 2 o (E/ UCly,) ~ fauU Clx, as desired.
Let egé : 032 — C3 5 be a homotopy inverse of e35. Take NV : 63:% oeg g
-1
9572' Take K3’2 . 637209372 ~ gé72

and set @(K&Q) = q)(g3,27gé723 12X1 ’ 65’%, K3’2) and
ag,Q = (I)(K3’2) ©agz20€33: C§,73 — Cé’g Ugé’Z CEXl

— 1. 5N i -1 ~
10:/)’72 and set L = 1Zgé 2O.Z\[ . 195’2063,2063’2 ~1

Then L : ag,z oj{i2 = igé ,© 63_% 0e39 ig/g )
there exists a homotopy M : C3 3x I — C3, Ugy , CXX1 such that Moy = as o
and Mo (js o x 11) = L. Set ag o = My, Az = {1¢; a3}, and Q5 = Q(A3).

Then Aj is a reduced structure on 84. We will prove

. Since jj 5 is a free cofibration,

Wi, ~wsgso(e3s11UCess) (s =1,2).

Since w1 0(e32UCe31) = e1y, ows; ~ wsy by Proposition 3.3(2), the case
of s = 1 holds. By the definition, we have M; o j3, = L; = ig,, © Nt for
every t € I. Set H' = Lagogy, o My o jé72 = ig , © Ny Since the function
Ciox I xI = C55Uy CEXy, (2,5,t) = H'(2,5) = M(j32(2)), is con-
tinuous, it follows from Proposition 3.3(4) that @(jé)Q,igéQ,No,Mo;Ho) ~
@(jg’z, ig, o N1, Ma; H'). By Proposition 3.3(3), we have

(35,2, g; ,» No, Mo; H) = Mo U CNo = a5 U Cleg 5 0 €3.2),

. . 1
D (j3 2, dgy , N1, M1s H') = MyUCNy = a5, U Cley
and so
Wy o = q;g),’Q o (ago U Cley,) =~ q;éz o (ago U C(e?:% °e€32))
= dqy o (B(K>?) UCes3) 0 (a32UCLey,) o (e33 U Ces)

~ q;3,2 o (asz o C’lc&z) o (e33UCe32) (by Proposition 3.3(2))
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= w320 (e33UCe32).

Step 3: When n = 3, {SQ,E/,A; |r = 2,3} is an §;-presentation of
- - ) " .,

(f3, f3, f1) such that f3 og3 o = fzoezn0g35 = fyogsa sothat {f } = {fz }

When n > 4, by repeating the above process, we have 8/ ﬁ/, and

: ! Cr s for 4 < r < n such that A is a reduced structure on 8’ and

r,s —

( 8;“ = Sé—l(ﬁlv"q;’—l))
er1=1x,, s =1x, UCer_1 41 : C’,’nys ~Crs (2<s5<7),
€r.s+1© j7/=,s = jr,s O €rs; w%s = Wr s © (er,s—l—l U Cer,s)7

s og;«,s ~ grs (1 <s<71),

r . / —
f—/ . {fn O en,n_l . C’I’L,’I’L—l — Xn+1 r=n
r =

ﬁoer,r:c;,r_)XT-i-l r<n

Then {8, f, ,A’ |2 < r < n} is an §-presentation of f2 such that fn o
Inn1 = = fnoenn_ 10 G- L2 fn 0 Gnn—1- Therefore{f} {fg} O

6.5. Relations with the J. Cohen’s higher Toda bracket. Let <f>
be the Cohen’s n-fold bracket of f which shall be recalled and denoted by

( f )™ in Appendix B. The purpose of this subsection is to prove the following
which is (1.7).

Theorem 6.5.1. {f }(a452) U {161 < (f).

Let a € {f Y32 u{f 1) Let {S,, f,, 22 <7 < n} and {8, f,, A, |2 <
r < n} be an agSs-presentation of f and an Ss;-presentation of f with
@ = fn 0 gnn1 according as a € {f}a%2) or o € {f1E). We prepare
two lemmas.

Lemma 6.5.2. C),,,—1 is a finitely filtered space of type (fn—1,..., f2) (see
Appendiz B for the definition).

Proof. We can assume that the free cofibration j, s : Cp s — Cj 541 is an
inclusion map. Then by setting Fy, = Cp, (0 < k < n — 1), where C), o =
{*}, we obtain the filtration of Cp, ,—1: Fy = {x} C F1 C F» C --- C
F,—1 = Cy n—1. By Proposition 6.1.4 and Lemma B.5, we have the canonical
homeomorphism

Frs1/Fr = Cppi1/Cop = S5 X, 1 (0<k<n-—2).
By this homeomorphism, we identify Fj,/F}, with ¥¥X,,_;.. We set
g, = (—1)k12an_k : Ean_k — Cn,k+l/Cn,k = Zan_k.
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The assertion we must prove is that the skew pentagon of the following
diagram is homotopy commutative for 1 < k <n — 2.

Zkfn—k
Ean—k:—l—l Ean—k

y

Fiy1/Fy

jnk

Sgr-1| LFy Frta : Fy
lz(/Fkl) /Fkll /Fkll

k k k—1 k-1
)Y Xn—k:—l—l XXk . by Cfn—k‘ < )Y Xn—k—l—l
3k fr b Ek_qunfk Ek_lifnik

Since lower two rows are cofibre sequences and three squares are homotopy
commutative, we have X(/Fj,_;)odogy ~ (=XF f,_p)ogr = (—=1)FT1Skf, . =
(—D)F1xkf, = Ygr_1 0o XFf,_;. Hence the skew pentagon of the above
diagram is homotopy commutative. This proves Lemma 6.5.2. ]

Lemma 6.5.3. The next square is homotopy commutative for 2 < r < n,
where q, 1s the quotient.

-9 gr,r—1
2" Xl Cr,r—l
Er2fll lQT:/Cr,r—Z

_ (=1)" e
T 2)(2 — X" 2X2 = CT,T—l/C’I’,T—Q

Proof. For r = 2, the square is commutative. We use an induction on r > 3.
The next diagram is homotopy commutative and g3 2 ~ (fo U Clx,) o Wy, %

X, >N X,
M pn [ . q§f1 ~
X, 0 Cf T Cp UCXy e (Cy, UCX,) UCCY,
H | f2UC1x, b(Eu(J’lXQ)UCf_Q =
L X3Up, OX, (X, UCX) UCX,
o qy, | ~
> X,

Then gy, 0 g320wa1 >~ qy, © (EU Clx,) ~ (=X f1) ows, and so gy, © g3 2 ~
—X f1. This proves the assertion for » = 3. Suppose that the assertion is
true for some r with 3 <r < n.
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First we consider the case of §;-presentation. Set Y = Cy, 1 Uy, _,
CY"~2X; and consider the following diagram.

_Eg'r‘ r—1
1 ,
T X1 ZC’I’,T—l
' /
= qgr,r—l = Zigr,r—l
7liig’r,’r‘fl
YUigrr71 CCr,T—l (YUCC,«’T_l) ucyYy
~|arr—1UCLle, o~ (ar,r—lLJClCT,r_l)UCGT,T 1
L /
ler,r—l jr,r—l
Cr,r Ujmn,l Ccr,r—l (Cr,r U CCT,?’—].) U CCr,r = EC’r,r—l
f_rUCICT 1 (EUCWCT’T_l)UCﬁ
p——— q/—r 1

Ir fr
X1 UET—l CCr,rfl - (XrJrl U CCr,r—l) UCX, 11 = ECr,r—l

Yqr l

q'r-l-l:/cr-i-l,r—l 1
sr-lx,

Cr—l—l,r

The diagram is commutative except the first square which is homotopy com-
mutative. It follows from definitions that w, 1 = qgr,r_ o(ar,—1UCg,,_,)
and grq1, o wrp—1 >~ fr UClg,,_, so that
( /OH—l,r—l)ogH-l,r OWryr—1= ( /Cr—kl,r—l) © (ﬁ U ClCm—1) =Ygy 0 45, r_1
~ 3gr o (=Xgrr—1) 0 Wy r—1
~ (=1)"ME" 1 1 0w, 1 (by the inductive assumption).

Hence ( /Cri17-1)© Grg1,r (—1)"*1xr=1 . This completes the induction
and proves Lemma 6.5.3 for the case of §;-presentation.
Secondly we consider the case of aqss-presentation. It suffices to prove

(6.5.1) Gr1 0 Grytr 0 wrp 1> (1) goiy, o X frow,, 1.
We have
Qr+1°Gr+1,rOWrr—1 = Qr+10(ﬁU01Cr,r_1) = EQrOQ§T7T_1Oi¢jT’T_1 = X005,
and
(=) M g1y, o X" frowr g
~ ¥qr 0 (—Xgry—1) owrr—1 (by the inductive assumption)
o (=S(fr1UCL,_, ,5) 0 Byl 4 _p) 0wt
= 2¢r o (~S(fr1UCle, -y, —2) © B,y p) 0 w12
o (=E(fro1UCle,_,,_,) 0 Swly ,_y) 0 Bwr 1,2

>~ gy

= ZQT
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R U] AU ¢
= Eq'r © (_E(f""_l U Clcr—l,r—Q)) © qf 1UCf T 20 67
where
f: Crr UjTT 1 CCrr—l
(X U CCT 1,r— 1) UlX UC r—1,r—2 C<X Ufr— =2 CCT—LT—2)

(Xr Uer CXT‘) FriUCF 1~ 2 C(Cr—l,r—l UjT,LT,Q CCr—l,r—2)

is the homeomorphism defined in (5.3). Set

M = EQT ©qjyr_1>

N =2%g o(-E(fr-1UCl¢, ,, ,))0 Y uch e 3
Then (6.5.1) is equivalent to M ~ N. Let m denote the composite of

J'rr 1

Cr,r Ujr,r_l CCT‘,T—l

2q

ECT,« 1= E(X U—r—2 CCT_LT_Q)

frl

f’r—lr_Q
—

2207’—1,7"—2-
Define M, N' : £XC,_1, 5 — X" ' X, by
M (yntAu)=q_1(y) NtAT, NYAtAT) =qg_1(y) AN\UANT —L.

Since ¢, = Xq,_1 0 Gg—r—2s We have M = M'om and N = N om. Asis

easily seen, M’ ~ N’ so that we have M ~ N as desired. This completes
the induction and the proof of Lemma 6.5.3. [

Proof of Theorem 6.5.1. Under the notations of [3, 15| and Lemma 6.5.2,
we have

an,n_l Xp=F CF, 1= Cn,n—la

O-Cn,nfl :Cnan_le— /Fn 2Fn 1/Fn 2_27’1 2X ( 1) En 2X

By Lemma 6.5.3, we have the following homotopy commutative diagram.

En_2X1

In,n—1

Jc 1
- 2X2<—C 1 ~—— X,

UCn n—1
B /

Xn—|—1




UNSTABLE HIGHER TODA BRACKETS 71

Hence a = f,, 0 gnpn-1 € () and so {f }(04%2) U { 1) < (f). This proves
Theorem 6.5.1. O

6.6. 3-fold brackets. We denote the classical unstable Toda bracket of

f = (f3, fo, f1) by {F} or {fs, fo, f1} (see the end of Section 2). We have
(1.8) from Theorem 6.6.1 and Example 6.6.2 below.

Theorem 6.6.1. When n = 3, we have
(FYE0 = (F o) — (FY05) — (£}
C {f}(aq52) _ {f}(QSQ) _ {f}(qéz) _ {f}(aqéz) 0 &(XX1)
CAFY = (F))  (F)

so that systems { }(*) of unstable higher Toda brackets for x = ¢, aq8s, 8o
are normal, and there exist f and f’ such that { f }(Q) is empty, (f) is not

empty, and {f’}(q is a non-empty proper subset of (f’) so that the Cohen’s
system of unstable higher Toda brackets is not normal.

Proof. The relations {f }() = {f}(ag¥2) — [ }ad2) < {f}(@0) = {f1(a2) =
{f1@ 5 {f1las2) 5 {1 aas2) 5 f F£1(aa%2) old immediately from the defi-
nitions. We have {f }(@452) = {f1(0%2) o g(2X,) = {f 1452) = {f}(@%2) by
Theorem 6.2.1(2). The equality {f }(@%2) = { £} follows easily from (4.2).

Let p! : 8" — §* = HP! be the projection, where HP™ is the quaternionic
projective m-space, and & the trivial map §* — §3. Set f = (x}, p!, 253p1).
Then it follows from [15, Remark B.5] that (f) contains 0 and {f } is empty
so that {f}(q) is empty by Corollary 6.2.2(4).

Set f7 = (25, v5ms8,2t9) (see [25] for notations). Then, since 710(S%) =
Zo{vsn3} and {f}= {vsn3} by [25, Proposition 5.9, Theorem 13.4, Corol-
lary 3. 7], we have {f’}(@ = {vsn2} by Theorem 6.2.1(5). Also we have
(1) = mo(8°) by Remark B. 5(1) of [15]. Hence {f"}4 is a non-empty
proper subset of ( f’ ) so that the Cohen’s system of unstable higher Toda
brackets is not normal. This completes the proof of the theorem. [

Ezample 6.6.2. We use freely notations and results in [25].
(1) If £ > 8, then {Xfvs, 8upys, B0} = (—1)%Cpys,
(2405, 848, D10 112 = {¢p 15, —Coys} C mos16(STP) = Zs{Cors} © Zgs,

and the order of any element of {X‘vs, 81445, 210’ }(q) is a multiple
of 8.
(2) If £ > 7, then {Xfay(5), 21 (9), Xy (12)} = (—1)!B1(£ + 5),

{Zfa1(5), S0 a1(9), 201 (12)}9%2) = {B1 (£ + 5), —B1 (£ + 5)}
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C m415(S1%) = Z3{B1 (L + 5)} @ Zo,

and the order of any element of {~fay(5), ¢ (9), By (12)}@ is a
multiple of 3.

6.7. A 4-fold bracket. When & = (ay, a3, ag,a;) is admissible, we have
considered the next four non-empty subsets of [£2X7, X5] which are called
tertiary compositions [15]: {&}® c {a}M c {a@}® c {a}®). Here
{a}V = UfeRep(&){f 1) is the tertiary composition of Oguchi [14, 15],
and

{a@}® = ({5 [f3, A2, f2], (f2, A1, f1)}
(6.7.1) A

N {[f4a A3a f3]a (f37 A27 f2)7 _Efl})a
(6.7.2) (&} = J1fs, 43, fs],ig, 0 [fs, A, fo], (f2. AL, A1)},
A

where f = (f4, f3, f2, f1) is a representative of & and unions J ; are taken

over all A = (As, Aa, Ay) such that (f;A) is admissible. As remarked in
[15, p.56], the terms on right hand sides of (6.7.1) and (6.7.2) do not depend

on the choice of a representative f. The following theorem implies (1.9).

Theorem 6.7.1. The sequence & = (g, a3, a0,aq) is admissible if and
only if it is x-presentable for some and hence all x. If & is admissible and

—

f = (fa, f3, f2, f1) € Rep(a), then
(6.7.3)

(@} c{a}®) = {F1E) = | J{fa. [fs, Az, fo], (f2, A1, 1)} € {@},
where ) is taken over all A = (As, Ag, A1) such that (f; A) is admissible.

Corollary 6.7.2 (cf. Theorem 2.7 of [27]). Given a map fo : Xo — Xi, if
{F2 fr. fo} = {0}, then {fu, f5. fo, 1} 0 B2 fo C fao {fs, fo. fr. fo} ).

Proof of Theorem 6.7.1. First we suppose that & is admissible. Let f =
(f4, f3, f2, f1) be a representative of &. We are going to show

(6.7.4) {0 [f5, Az, £, (f2, Ar, f1)} € {F 1)

where ] is taken over all A = (As, Az, A;) such that (f: A) is admissible.
Let (f;A) be an admissible representative of &. Then [f4, A3, f3] o
(f3,Asa, f2) ~ x and [f3, Aa, f2] o (f2, A1, f1) =~ *, and it follows from [14,
Proposition (5.11)] (or [15, Lemma 3.6]) that
fao[fs, Az, fo] = [fa, A3, f3] 0igs o [f3, A2, fo

~ [f1, As, f3] o (f3, A2, f2) 0 qp, = *.
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Hence { f4, [f3, A2, fo], (f2, A1, f1)} is non-empty. Take « from it. Then there
exist F': fyo[f3, Az, fo] = * and Bs : [f3, A2, f2] o (fa, A1, f1) =~ * with

o = [f4aF7 [f37A25f2H o ([f37A27f2]7327 (f27A17f1))'

We are going to construct an §-presentation {S,, f,., A, |r = 2,3,4} of f
with f4 o ga3 = a. If this is done, then f is 5;-presentable and hence -
presentable for every x by Corollary 6.2.2(4), and (6.7.4) is proved.

Set

82 = (X1; Xo, Xo Up, CX1; frsif), f2 = [fo, Av, fil, A2 = {1x,u;, 0%}
83 = 82(57‘/42)'
Then g3 2 = (EUClXQ)oq}:l ~ (fa, A1, f1) by (4.2). Since js 2 is a homotopy

cofibre of g3 2, there exists a3 o : C33 >~ C32Ug; , CX X7 such that az20j32 =
igso- Set A3 = {1cy,,a32}. Take H : g32 ~ (f2, A1, f1) and set

D(H) = (93,2, (f2, A1, f1), 1sx,, 1oy 05 H)

1 C32Ugy, OXNX1 — C32Up, a,,1) CXX1,
J3 = [f3, A2, fa], B, (f2, A1, f1)] o ®(H) 0 a3 : C33 — Xy,
84 = 83(f3,A3).

Since Ez = f3 0432 = [f3, A2, f2], we can set
f1=[f1, F,[f3, Az, f2]] : Cu3 = X4 Up2 CCs2 = X5

Let Ay be any reduced structure on 84. Then {8, f., A, |r = 2,3,4} is an
S¢-presentation of f and

913 = (f3UClg,,) o W:a_%
~ ([[fs, A2, fo], B2, (f2, A1, f1)] U Cley,) o (P(H) U Clgy,)
o(az2UClg,,)o0 wg_%
~ ([[f3, A2, f2], B2, (f2, A1, f1)] U Clg,,) o (P(H) U Clgy,) 0 Q;;é
([Lf3, Az, fo], B, (fa, Av, f1)] U Cleg,) 0 a4, 4
(by Proposition 3.3(2))
~ ([f3, Az, fo], Ba, (f2, 41, f1))  (by (4.2)).

Hence Eog4,3 =~ [f47F7 [f37A27 f2]]o([f37 A27 f2]7 B27 (f27 A17 fl) Thus (674)
is proved.

Secondly suppose that & is §;-presentable. Then it has an §;-presentable
representative f = (f4, f3, f2, f1). We are going to show that f and & are

12
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admissible, and

(6.7.5) (L Fas [f3, Az, fol, (f2, AL, f1)} D {F 1),

where | J is taken over all A = (As, Ay, A1) such that (f; A) is admissible.
If this is done, then
(6.7.6) {F 18 = J{fa: Ufs, A2, fo], (f2, A1, f1)}

by (6.7.4) and (6.7.5).

Let a € {f 169 and {8,., f., A, |r = 2,3,4} an §;-presentation of f with
a = fyrogsz. Take A1 : foo fi ~ x and Ay : fz3 o fo ~ * such that
— -2 — _
f2 = [f2, Av, fi] and f3~ = [f3, Ag, fo]. We have gz = (f,UClx,) 0 ¢f " =~

—2 _ : .

(f2, A1, f1) and gap = (f3" UCly,) OCI}QI ~ (f3, A2, f2) by (4.2). Since j3z2
is a homotopy cofibre of g3 o and f3 is an extension of E2 on (33, we have

£2 0 g32 ~ * by Lemma 4.3(7). Hence
[f?)?A??fZ] o (f27A17f1) ~ xk.

Since E2 : XyUp, CX3 — X5 is an extension of fy, there exists Az : fyof3 ~ *
such that ﬁz = [f4, A3, f3]. Since j 2 is a homotopy cofibre of g4 2 and fy is
an extension of ﬁ2 on Cy 3, we have ﬁ2 0g42 =~ * by Lemma 4.3(7), that is,

[f47A37f3] o (f37A27f2) ~ xk,

Thus ( f, ff) is admissible. Since f4 is an extension of f4 on X4 Uf—32 CCsp,

there exists a homotopy D : f4 o %2 ~ x such that fy = [f4,D,%2]. Let
B : Ez 0 g32 = * be a homotopy such that f3 o agé = [ﬁz, B, g32]. Then
E U 0103,2) © WS_,%

943 = (
= (E U 0103,2) © (ai’:,% U 0103,2) © (a3,2 U 0103,2) © WB_,%
(

—_ _ _ —2 _
= (fsoazp0a32UCle,,)owsy = ([fs, B,gsaloazaUCle,,) ows,y

~ (3, B,gs2) (by (4.2)).

Hence we have

o = 5094,3 = [f4)D7E2] © (EQ7B79372)

€ {far 5932} = {1 [fs: Az, fal, (f2 A, f1)}

This proves (6.7.5) and (6.7.6) holds.
Therefore & is admissible if and only if it is §;-presentable and hence *-
presentable for every . Also if & is admissible, then (6.7.6) holds for every

representative f of a.
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In the rest of the proof we suppose that & is admissible and f € Rep(a).

Then {&}® c {@}() = {f}) = U 1/, [f3, A2, f2], (f2, A1, f1)} by
(6.7.1), (6.7.6), and Theorem 6.5.1. Since fy = [f4, A3, f3] 0 iy,, it follows
from [25, Proposition 1.2 IIT)] that

{fa,[f3, A2, fal, (f2, A1, f1)} C {[fa, As, f3],ip, 0 [f3, A2, fol, (f2, A1, f1)}

so that {f 1) c {&@}® by (6.7.2). This completes the proof of Theo-
rem 6.7.1. [J

Proof of Corollary 6.7.2. By Theorem 6.7.1, we have

{f47f37f27f1}(§t) © 22f0 = U ({f47 [f37A27f2]? (anAlafl)} © Z2.](’0)7

where | is taken over all (As, Ay, A1) such that (fa, f3, fo, f1; As, Ao, A7) is
admissible. Take any such (As, Az, A1). By the assumption, f1 o fo ~ *
and for any Ao : fi o fo >~ *, we have [fa, A2, fi] o (f1, Ao, fo) =~ * so that
(fg, fo, f1, fo; Aa, A1, Ao) is admissible. Hence {fg, [fg, Aq, fl], (fl, Ay, f())} C

{f3, fa, f1, fo}¥9) by Theorem 6.7.1. Now we have
{f1: [f3: Az, fo), (fo, Av, f1)} 0 22 fy
= —{f1,[f3, A2, f2], (f2, A1, f1)} 0 gy, o X(f1, Ao, fo)
(since gy, o (f1, Ao, fo) ~ =X fo)
C —{fa: [f3: A2, fol, (f2, A1, f1) © a5, } 0 B(f1, Ao, fo)
(by [25, Proposition 1.2(i)])
= —{f4,[f3, A2, fol, i, o [f2, A1, f1]} © B(f1, Ao, fo) (by [14, (5.11)])
C —{f1,[f3, A2, f2] o'iy,, [fo, A1, f1]} 0 B(f1, Ao, fo)
(by [25, Proposition 1.2(ii)])
= —{f4, f3,[f2, A1, f1]} o B(f1, Ao, fo)
= fao{f3,[f2, A1, f1], (f1, Ao, fo)} (by [25, Proposition 1.4]).

Hence we have the assertion. O

Remark 6.7.3. (1) It follows from Theorem 6.7.1, Theorem 6.5.1 and [15,
Proposition B.6] that if f = (f4, f3, f2, f1) is admissible, then

fH>U [{f4, [f3, A2, fol, (f2, Av, f1)} U{[fas As, f3), (f3,A2,f2)7—2f1}],

where | is taken over all A = (As, As, A1) such that (f; A) is admissible.
(2) When we work in TOP, it can be shown that the Walker’s 4-fold
product of & = (ay, ag, ag, ) is not empty if and only if & is admissible.
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6.8. Proof of (1.10). We prove the following which is the same as (1.10).

Proposition 6.8.1. (1) If {fo_1,..., f1}9D 3 0 and {fn,..., fr}(99%2)
= {0} for all k with 2 < k < n, then {fn,..., f1}®) is not empty for

all .
(2) (cf.[27, Lemma 2.2)) If {fn,..., fo}9 30 and {fs, ..., f1}(@9%2) =
{0} for all k with 2 < k < n, then {fn,..., f1}*) is not empty for

all .

Proof. When n = 3, the assertions hold by Theorem 6.6.1 and Corol-
lary 6.2.2(4). Hence we suppose n > 4.

(1) By Corollary 6.2.2(5) and the assumptions, there exists an ag$s-
presentation {8,, fr, .12 < r < n} of (fn-1,...,f1) such that f,_1 o
On—1n—2 =~ *. Since jp—1,—2 is a homotopy cofibre of g,_1,—2, there is
a homotopy equivalence € : Cp—1n-1 — Cpn1n-—2Ug, 4, _, CY"3X, such
that eo jp_1pn—2 = ign717n72' Let fn—ll : Cn—l,n—Q Ugn_1.n_2 CEn_gXl — X,
be an extension of f,—1. Set fr,_1 = fn—1 o€ : Cho1n-1 — Xp, Sp =

Sn_l(m*, Qp-1), and Q, = Q,,_1. Since f, o f,_1 =~ * by the assumption
{fn, fu_1}@8%2) = [0}, £, has an extension E2 :Cho=X,Uyp,  CXpq —
Xna1. Since ﬁ2 0 gno represents an element of {fy, fo_1, fn_2}(®%2) =
{0}, and since j,2 is a homotopy cofibre of g, 2, EZ has an extension

fn3 : O3 = Xy U2 CCp—12 — Xpy1. We inductively have a map

n—1

fn Cnn—1 =Xy Uﬁ*n—Z CCp—1,n—2 — Xp41 which is an extension of f,.

Then the collection obtained from {8, f,,Q,|2 < r < n} by replacing f,_1
with f,_1 is an ag$s-presentation of (frs---s f1). Thus {fn,..., fi}@5%2) ig
not empty and so {fn, ..., f1}*) is not empty for all « by Corollary 6.2.2(4).

(2) We set X! = X,o1 (1 <r <n)and f/ = fr41 (1 < r <n). By
the assumptions and Corollary 6.2.2(5), {f._1,..., f1}(29%2) contains 0. Let
(8", 1,9 |2 <r < n} be an agés-presentation of (f/_,,..., fi) with f/_ o
giz—l,n—2 ~ x. Set 89 = (Xl;XQ,XQ Ugp CXl;fl;ifl) and 9 = {q}l}. Let
fo: 02,2 = Xy Ugp CX7 — X3 be an extension of fy. Set 83 = SQ(fQ,QQ)
and Q3 = ﬁ; Then 03’5 = Cé,s (1 <s< 2), j371 = jé,l? g31 = 9/271, and Q3
contains 2. Set £2 = f_é : U302 — X4. By the assumptions, Ez 0g32 X *
so that EZ can be extended to a map f3 : C33 — X4 which is an extension
of f3. Set 84 = 83(f3,€23) and Q4 = Q3. Then Cps = C3, (1 <5< 3),
Jas = J3s (1 <8<2), gas =93, (1 <s<2), and Q4 contains Q3. When
n = 4, ﬁ = f_é : Cy3 — X5 is an extension of fs and we obtain agss-
presentation {S;, fr, Q|2 <7 < 4} of (f4,..., f1) so that {fs,..., f1}* is



UNSTABLE HIGHER TODA BRACKETS 7

not empty for all x. When n > 5, by repeating the above process, we have
an agéy-presentation of (f, ..., f1). Hence {fn,..., f1}*) is not empty for
all x. This completes the proof of Proposition 6.8.1. [J

6.9. Stable higher Toda brackets. A stable n-fold bracket for n > 3 was
defined in [3, 27] (cf. [10, 16]). We will give another definition which is a
generalization of [25, p.32]. We set {X,Y} = lim, [¥*X,¥*Y]. Given ; €
{X;, X1} (1 < i < n), we will define {Bp,...,0 }* c {Z" 22X, X,,.1}.
Take a non-negative integer m such that ; is represented by f/” : ¥™X; —
Y™ X, for all ¢ and set f7” = (f, ..., f{"). The following square is com-

n

mutative for every integer M > 0.
M
[EmEr2X,, Y X, ] = [EMEmEr-2X, sMymy, ]

(1X1AT(S"—2,S’“))*T T(lxlm(sn?,sm)msm*

(Sr-25m X X ]| e [EMEr-2ymy, wMymy, ]

We have

SMEF o (1x, AT(S™72,8™)))

= SM{F} 0 (1y, AT(S"72,8™) Adgur)

C M3 o (Lgmx, AT(S™%,8M)) 0 (Lx, AT(S"72,8™) Adgu)

(by (6.3.1))

= {SM ) o (Lx, AT(S" 72, 8™ ASY)).
Hence the sequence {{SM £} o (1x, A 7(S"72,8™ ASM))}ars0 defines a
subset of {¥"2X;, X,,41}. We denote it by {B,,...,5}*. It does not
depend on the choice of f?”. For another f*, there exist M, K such that
SMfm ~ Bk for all 4. In this case m + M = k + K and {ZM fm1(0) =
{SE £1) by Theorem 6.4.1. Hence {SM 710 o (1x, AT(S"2,8™ A SM))
= (DK R0 o (1x, AT(S2,8% ASK)). Thus {B,, ..., 1} is well-defined.

APPENDIX A. PROOF OF PROPOSITION 2.2

Given a free space X, we set I'X = (X x I)/(X x {1}) which is called
the unpointed cone on X and whose point represented by (z,t) € X x [ is
denoted by x At. We regard X as a subspace of I'X by the identification
x=xAN0 (x € X). Weset SX = I'X/X which is called the unpointed
suspension of X and whose point represented by (z,t) € X x I is denoted
by zAt. Foramap f: X — Y, wedefinel'f :TX - TY and Sf: SX — SY
by I'f(zAt) = f(z)Atand Sf(zAt) = f(x) At, and we denote by Y U I'X



78 H. OSHIMA AND K. OSHIMA

the quotient space of Y 4+ I'X by the equivalence relation generated by the
relation f(x) ~ 2z A0 (x € X).

A
Given two free maps X «— A — Y, let X u+v Y denote the quotient
space of X +Y by the equivalence relation generated by the relation u(a) ~
v(a) (a € A). Let X 25 X +Y &~ Y be the inclusion maps and ¢ :

Av
X+Y - X u—l— Y the quotient map. Then the following is a push-out
diagram in TOP.

A—"— Y

(A.1) Ul lqoiy
qoix uAv

X — X +Y

" .
The space X u—l—z T'A which is induced from X <~ A C T'A is denoted by
X U, I'A and called the unpointed mapping cone of w.

Lemma A.1. Given the push-out diagram (A.1), if u is a free (resp. closed
free) cofibration, then qoiy is a free (resp. closed free) cofibration.

Proof. Suppose that u is a free cofibration. Then, as is well-known (for
example [4, (5.1.8)]), g o iy is a free cofibration. Since w is injective, the
equality ¢~!(q o iy (B)) = u(v~1(B)) + B holds for every subset B of Y.
Hence if u is closed then q o iy is closed. O

Note that, given a pointed map f : X — Y, we have the following com-
mutative diagram in which all maps are quotient maps.

Y+ XxI 22y rx 2oy u,rx

1y +q 1y U
k\ l qu

Y +0X —2>YU;CX

Proof of Proposition 2.2. We can suppose that j : A C X by [20, Theorem
1]. Consider the following commutative diagram.

Y4+ Ax T —" Y Up; TA—5Y Uy CA
L7
ey
Y+ X x0IUAXIT 1y ULy 1y UCj
i
Y4+ XX —2 YU TX —2>Y Uy CX
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where 71,72, q1, g2 are quotient maps, 7,4’ are inclusions, and ¢y is defined
by

Sof|Y - 7T1|Y7 @f(l’,O) = Wlf(x),
of(z,1) =mi(a,1) (a € A), @flaxr = mi|axr.

First we show that ¢ is continuous. By [21, Theorem 2], X x {0} U A x [
and X x {1} UA x I are retracts of X x I. Therefore, since ¢ is continuous
on the subspaces X x {0}, X x {1}, A x I of the space X x I, it follows
from [21, Lemma 3] that ¢ is continuous on the subspaces X x {0} UA x I,
X x {1} U A x I of the space X x I. Hence ¢y is continuous on the open
subspaces X x {0}UAx[0,1), X x {1}UAx (0, 1] of the space X x0IUAXI.
Therefore ¢y is continuous on X x {0} UA x [0,1)UX x {1} UA x (0,1] =
X x 0I' UA x I so that ¢y is continuous.

Secondly we show that (mo,1y UTj) is a push-out of (i',¢s) in TOP.

For any space Z and any maps Y + X x [ g ly Ufoj I'A such that
goi' = hogy, there exists only one map k: Y U T'X — Z with kom = g.
It is obvious that ko (1y UTj) = h. Hence (mg,1ly UTj) is a push-out of
(', ) in TOP.

Thirdly we show that 1y UIL'j is a free (resp. closed free) cofibration. By the
last assertion and Lemma A.1, it suffices to show that i’ is a free (resp. closed
free) cofibration. Since the inclusion 01 C I is a closed free cofibration, it
follows from [21, Theorem 6] that the inclusion X x 0l UA x I C X x [
is a free (resp.closed free) cofibration so that i’ is a free (resp. closed free)
cofibration.

Fourthly we show that 1y UCj : Y Uy CA — Y Uy CX is a free
(resp. closed free) cofibration. By Lemma A.1 it suffices to show that the
last square of the above diagram is a push-out in TOP. Let Z be any space
and Y U, TX % Z & Y Upo; CA any maps such that go (1y UT) = hog.
Then there is only one map k: Y Uy CX — Z with ko gy = g. It is obvious
that ko (1y U Cj) = h. Hence the last square of the above diagram is a
push-out in TOP. [

The following corollary overlaps with [9, (6.13)].

Corollary A.2. Ifj: A — X is a free (resp. closed free) cofibration, then
['j:TA—TX and Sj: SA — SX are free (resp. closed free) cofibrations.
If in addition j is pointed, then Cj: CA — CX 1is a free (resp. closed free)
cofibration.
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Proof. We can suppose that j : A C X. Consider the commutative diagram

q1

A+ AxI AU, TA=TA
i1 JUI'l 4
q2 /X
X+AxI X U A SA
e Pl
X+Xx0IUAXxIT 1x ULy Sj
13
a3 /X
X+ X x1 XU, X =TX — 5SX

where 41,142,173 are inclusions, g¢1,¢2,g3 are quotients, and ¢, is defined
as in the proof of Proposition 2.2. When we take off i3, the remaining
three squares of the diagram are push-outs in TOP. Since 71,i3 are free
(resp. closed free) cofibrations, it follows that j U T'l4,1x U Tj are free
(resp. closed free) cofibrations so that I'j = (1x UT'j) o (jUT'l4) and Sj are
free (resp. closed free) cofibrations.

Suppose that j is pointed. Consider the commutative diagram

AU, TA=TA—"> Au,,CA=CA

U1 4 JUC1 4
XU;TA T X U; CA

1x ULy 1xUCj
XU, TX —L XU, CX=CX

where q4,q5,q6 are quotients. Since the two squares of the diagram are
push-outs in TOP, Cj = (1x UCj) o (j UCly) is a free (resp. closed free)
cofibration by Lemma A.1. This completes the proof of Corollary A.2. [

APPENDIX B. J. COHEN’S HIGHER TODA BRACKETS

First we recall from [21, Theorem 2] that the inclusion j : X C Y is a free
cofibration if and only if there exists a retraction 7 : Y xI — Y x{0}UX x I.
When j is pointed, the pointed map ¢ : Y/X — XX which makes the
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following diagram to be commutative was called “canonical” in [3].

Y

Y L oV xT ">V x{0}UX x I

ﬁ |

Y/X - )3D'¢

Here ¢ is the quotient, p(Y x {0}) = x, and p(x,t) = z At. An important
property of d is the following.

Lemma B.1. The canonical map § is a connecting map in the cofibre se-
quence

X 2oy i y;x Covx Hyny 24

Proof. Consider the following diagram, where 7 is the usual homotopy equiv-
alence [17, Satz 2].
(B.1)

X Juy Uuyuex U yuox)u, oy

|-k s

y 45 y/x 2 nX T

We definew:I x I —1Tand H: (Y U; CX) x I — XX by

t t<1
M&ﬂ{i+ LS Hw=porun). Hlzhst)=znu(s).
Then H : q} oid;; ~ § om. Hence the second square of (B.1) is homotopy

commutative. Since the first square of (B.1) is commutative, this completes
the proof. O

J. Cohen [3] defined an n-fold bracket (f) in the category TOP*, where
f= (fn,---,f1) and fz.X —>XH_1 is a map in TOP* (1 <i <n; n>3).
We are going to modify (f) to (f)* (resp. (f ") by restricting TOP* to
its full-subcategory TOPY (resp. TOP¥).

Let ® denote *, w or clw.

By f: (fu,-.., f1) € TOP?®, we mean that f; : X; — X;;1 is in TOP®
for every 7. To avoid confusions, we paraphrase Cohen’s expression “X €
{fn=1,---, f2}” in “X is a finitely filtered space of type (fn—1,..., f2)” [15].
Given (fn,_1,..., f2) € TOP?® where f; : X; — X;11, a pointed space X is a
finitely filtered space of type (fn_1,..., f2) in TOP® if the following (1) and
(2) are satisfied.
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(1) The pointed space X has a filtration FopX = {x} C F1X C --- C
F,_1X = X such that the inclusion FpX C Fj11X is a free, free

or closed free cofibration for every k according as ® is *, w or clw.
(Hence X, F, X € TOPY.)

(2) There exists gy : XX, ~ Fp 1 X/F,X for 0 < k < n — 2 such
that the next diagram is homotopy commutative for 1 < k <n — 2.

Ek.fnfk

EZk_an-H—k Ean—k
<B2) ng_lj lgk
S(EeX/Freo1X) <5 SFX <5 Fen X/ FX

Under the above situation, we set
B3) ix 1 X, =39X, 2% X C X,
. —1
ox: X =F 1 X% Fy 1 X/Fy_oX 778 yn2x,,

We define (f)® for f € TOP® to be the set of all o € [S"2X7, Xp41]
such that there is a finitely filtered space X of type (fn_1,..., fe) in TOP®
and a couple of maps g, h which make the following diagram homotopy
commutative and « is the homotopy class of h o g.

En_2X1

Ey
g

(B.4) yn2x, X< _x,

ox
h
e

Xn—|—1

Note that (f)* is the bracket (f) defined by Cohen, (f)* = (f)* if f €
TOPY, and (f ) c (fY* = (f)* if £ € TOP. If f = (fn,...,f1) and
= (f.,...,f]) are in TOP® and satisfy f; ~ f/ for all i, and if X is a
finitely filtered space of type (fn_1,..., f2) in TOP®, then X is a finitely
filtered space of type (f._,,..., f3) in TOP® so that (f)® = (f7)®.

The following holds obviously from definitions.

Proposition B.2. Given a map fy: Xo — X1 in TOP®, we have
<fn7"'7fl>®ozn_2f0 C <fn7"'7f27flof0>®-
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Lemma B.3. Given j? € TOP?®, if X is a finitely filtered space of type
(fn1,...,f2) in TOP®, then XX is a finitely filtered space of type
(Efn—la .. .,Efg) in TOP® such that jEX = E]X : EXn — XX and oy x >~
(—1)"Yox : X — XX,

Proof. From the definitions, there is a filtration Fo X = {*} C F1X C --- C
F, 1X = X with F,_1X C F;, X a free or closed free cofibration for k& > 1
and maps jx,ox of (B.3). Define FpyXX = XF; X for 0 <k <n—1. Set
g; = Ygro (1x,_, A7(S',8%)) for 0 <k < n —2. Then g} is a homotopy
equivalence and g; ~ (—1)¥X g, under the identification (2.1): X*SX,,_; =
YY* X, _r. By suspending (B.2), the diagram

sznsz

SRS X1k DILDIP.

Ix, 1 pAT(ShS5 71 ASY) lx, _, AT(S'.8)

whklyx <~ W3k < WSkx g
n+l1—k /\T(Sk_l,Sl)/\lsl n+l1—k S n—k | 9k

. Xn+1—k
2951 S2gk_1 29k

2gp_10%8
S FL X/ F1 X) == Y2(F X/ F1 X) == Y(F1 X/ F X)

is homotopy commutative for 1 < k < n — 2, where ;. is a connecting map
of the cofibre sequence Fj. X JCk Fp1 X 9K Fp 1 X/Fp X and g1 : Fp X —
F X/F,_1X is the quotient map. Set

0F = =S0 : Fr1 X/ FEX = X(F1 X/ FpeX) = SFEX = 220X

C . _5 -5
which is a connecting map of the cofibre sequence Fj,>X By fop 120X 4

F 12X/ F32X. We have
$%qk-1 00 0 gp = N2qr—1 0 (—20) 0 g
~ (—Ls(Rex/F 5X)) © B qk—10 S0k 0 g}
~ (—lg(pex/F,5x)) © 220k-10 (1x, ., AT(S', 8" T ASY)) 0S¥ f
= (—IsFsx/F5x) © S0k 1 0 (Lx,py, AT(SPH, 8N Algr)
o(1x,,, » AT(S,S " ASYH) o BFE L,y
~ gty 0 (—lsgsr-isy) o (Ix,,,, AT(SH7H, 8N A lg)
o(1x, 1 » A (St SFLAsh) o 2ESf,
~ ¥g_q0 SFY f k.
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Hence Y X is a finitely filtered space of type (Xfn—1,...,2f2) such that
jex = Xjx and onx = g:;:%oEqn_g ~ (—1)”_2Eggi202qn_2 = (—1)"Yox.
L]

Theorem B.4. X(f)® C (=1)"(Sf)®.

Proof. Take a € ( f )®. Then there is a finitely filtered space X of type
(fa_1,---, f2) in TOP® and the homotopy commutative diagram (B.4) with
a = hog. Suspending (B.4), we have the next homotopy commutative
diagram, where 7 = 1x, A 7(S"2,S1).

Y2y X,

1x, AT(S,8"72)

NS

Xg

Sn29 X, < NYNn2X, NX <X wx.
T Yox
>h
Yfn
EXTH-l

Since XX is a finitely filtered space of type (Xfn_1,...,2f2) in TOP®, we
have 7 0o Yox ~ oxnx and Xjx = jux by Lemma B.3. It follows from the
homotopy commutativity of the above diagram that

oxx o Xgo (1x, AT(SH,8"?)) ~ X" 28 f,
(—1)"Sa =ThoXgo (1x, A7(s',8"%) € (Sf)*,
and so Ya € (—1)"(Sf)®. This completes the proof. O

The following lemma was used in the proof of Lemma 6.4.2. It can be
proved easily, so we omit details.

Lemma B.5. Let j : A C X be a pointed inclusion map which is a free
cofibration, and f : X — 'Y a pointed map. Then there are natural homeo-
morphisms

(Y Uy CX)/(Y Ufoj CA) = ZX/EA P~ E(X/A)
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