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A REPRESENTATION FOR ALGEBRAIC K-THEORY OF

QUASI-COHERENT MODULES OVER AFFINE SPECTRAL

SCHEMES

Mariko Ohara

Abstract. In this paper, we study K-theory of spectral schemes by
using locally free sheaves. Let us regard the K-theory as a functor K

on affine spectral schemes. Then, we prove that the group completion
ΩBG(BG

GL) represents the sheafification of K with respect to Zariski
(resp. Nisnevich) topology G, where B

G
GL is a classifying space of a

colimit of affine spectral schemes GLn.

1. Introduction

An ∞-category is a notion of categories up to coherent homotopy. The
spectral algebraic geometry in terms of ∞-category, introduced by Lurie [15]
[16], is a generalization of algebraic geometry.

In this paper, we study the K-theory on spectral schemes. For the K-
theory of a category of projective modules of finite rank in the sense of spec-
tral algebraic geometry, we construct an object in the ∞-category which
represents the K-theory. The main theorem (Theorem 1.1) is a generaliza-
tion of the representation theorem of the K-theory in the classical algebraic
geometry proved by Morel and Voevodsky [20, Proposition 3.9].

1.1. Statement of the main theorem. By an ∞-category with w∞-
cofibrations we mean a pointed∞-category with a class of morphisms (called
w∞-cofibrations) satisfying certain conditions (see Definition 5.1 for details).
Let C be an ∞-category with w∞-cofibrations. We define the algebraic K-
theory space of C by

K(C) = Ω|S•(C)|,

where S• is the S-construction (cf. [6]) and |− | is the geometric realization.
We say that a spectrum E is connective if πnE ≃ 0 for n < 0. Let R be

a connective E∞-ring, and CAlgcn the ∞-category of connective E∞-rings.

Let Mod∞proj
R be an∞-category of projective R-modules of finite rank which

we recall in Definition 2.1. It becomes an ∞-category with w∞-cofibrations
by Definition 5.3.

We denote by CAlgG an opposite ∞-category (CAlgcn)op equipped with
either the Zariski topology or the Nisnevich topology G, and by Spec GR
an object in the essential image of Yoneda functor CAlgG → Shv(CAlgG),
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where Shv(CAlgG) is the ∞-category of sheaves on CAlgG given in Section
2. Here, we denote by (−)op the opposite ∞-category.

Let Ŝ be the ∞-category of not-necessary small spaces. We define a
functor

(1.1) K : (CAlgG)op → Ŝ

which carries a spectral scheme Spec GR to the K-theory K(Mod∞proj
R ).

We denote by (̃−)
G
the sheafification from the ∞-category of functors on

(CAlgG)op to Shv(CAlgG) which we recall in Definition 2.4.
Let GLn be the affine group spectral scheme of general linear group in

Shv(CAlgG). Let BGGL =
∐

n∈NBGGLn be the coproduct of the classifying

sheaf BGGLn of GLn, where B
G is a functor given by taking classifying sheaf

which we recall in Section 4. Let ΩBG be a functor on Shv(CAlgG) defined
in Definition 3.15. We denote by ΩBG(BGGL) the group completion (cf.
Definition 4.15).

Theorem 1.1 (cf. Theorem 6.2). Let MapShv
Ŝ
(CAlgG)(−,−) denote the

mapping space of the ∞-category Shv
Ŝ
(CAlgG) which we recall in Defini-

tion 3.8. There is an equivalence

MapShv
Ŝ
(CAlgG)(Spec

GR, ΩBG(BGGL)) ≃ K̃G(Mod∞proj
R ).

Remarks for Theorem 1.1. It is known that the sheaf K̃G is representable
by an object in ShvŜ(CAlg

G) by the brown representability theorem in the
sense of ∞-category [11, Proposition 5.5.2.7]. The importance is that we

give a concrete object which represents K̃G .
Morel and Voevodsky used the cofinality theorem in Quillen’s K-theory

in the proof of [20, Proposition 3.9]. Since the cofinality theorem is not
established in theK-theory of∞-categories, their proof cannot be applied to

our case directly. To avoid this problem, we treat an ∞-category Mod∞proj
R

instead of the finitely generated projective modules.

1.2. Outline of this paper. This paper is organized as follows. In Section
2, we introduce the terminology of an∞-category endowed with Grothendieck
topology and sheaves on it. In Section 3, we characterize the group com-
pletion functor on Shv(CAlgG) explicitly in Proposition 3.16, which is one
of the important lemmas in this paper. In Section 4, we show the corre-
spondence between the value of the affine group scheme GLn on S and the
automorphisms of Sn, where S is an E∞-ring in Proposition 4.8. We also
demonstrate that the classifying sheaf BGGLn is equivalent to the sheaf
of projective modules of finite rank in Proposition 4.21. We also define
the notion of Zariski connectedness and relate a certain mapping space of
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BGGLn is equivalent to the sheaf of projective modules of finite rank in
Proposition 4.26. In Section 5, we recall the several notion and proposition
with respect to K-theory. In Section 6, by using these results, we prove
Theorem 6.2.

Acknowledgement. The author would like to express deeply her thanks to
Professor Nobuo Tsuzuki for his valuable advice and checking this paper.
The author would like to express her thanks to Professor Satoshi Mochizuki
for his valuable comments on algebraic K-theory, especially the resolution
theorem and the cofinality, and for reading this paper. The author also
would like to express her thanks to Professor Yuki Kato for valuable com-
ments to the author. Finally, the author would like to thank the anonymous
referees for detailed comments and corrections which substantially improved
this paper.

2. Preliminary

We fix the universe U such that N ∈ U. We define the Cat∞ by U-small
∞-category, which is locally U-small.

Although there are a lot of languages of higher category theory, we use
the same notation in Lurie’s book [11] and papers [12], [15] and [13].

Let Fun(−, −) be an ∞-category of functors. For a pair of functors f :
C → D and g : D → C between ∞-categories, according to [11, Proposition
5.2.2.8], we say that the functor f is a left adjoint to g (resp. g is a right
adjoint to f) if there exists a unit map u : idC → g ◦f given in [11, Defnition
5.2.2.7].

For an E∞-ring R, we have the ∞-category ModR of R-modules [12, Sec-
tion 4.2]. Since the tensor product on the ∞-category of spectra is compat-
ible with the geometric realizations [12, Corollary 4.8.2.19], ModR becomes
the symmetric monoidal ∞-category by [12, Theorem 4.5.2.1]. We denote
by ⊗R the tensor product on ModR.

Let R be an E∞-ring and a ∈ π0R an element. The localization of R with
respect to a, which is denoted by R[a−1], is an E∞-ring (see [16, Remark
2.9] and [12, 7.2.4]).

Definition 2.1. Let R be a connective E∞-ring and M an R-module.

(i) We say that M is free of rank n if M ≃ R⊕n.
(ii) We say that M is finitely generated projective if there exists n ∈ N

such that M is a retract free R-module of rank n.
(iii) We say that M is projective of rank n if it is finitely generated pro-

jective and we can choose elements x1, · · · , xm ∈ π0R such that they
generate the unit ideal and all of the localization M [x−1

i ] are free mod-

ules of rank n over R[x−1
i ].
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(iv) We say that M is projective of finite rank if there exists n ∈ N such
that M is projective of rank n.

We denote by ModnfreeR (resp. ModnprojR ) an ∞-category of free

(resp. projective) R-modules of rank n. We denote by ModprojR (resp.

Mod∞proj
R ) the ∞-category of finitely generated projective R-modules

(resp. projective R-modules of finite rank).

Remark 2.2. In general, Mod∞proj
R and ModprojR is not equivalent.

As in [11], [12] and [4], to treat certain size of limits and colimits, we need
to enlarge the universe and fix the size of universes properly.

We adopt the axiom of universes which allows us to consider that every
cardinal can be strictly upper bounded by a strongly inaccessible cardinal.
Then, there exists a bijection between strongly inaccessible cardinals and
universes, and thus we can take a suitable enlargement of universe which we
need.

By the axiom of universe, there exists an enlargement of universes U ∈ V

such that every U-small object is also V-small, so that Cat∞ becomes a
V-small category.

In this paper, sometimes we need to treat the ∞-category CAlg as small,
and to regard the maximal ∞-groupoid (ModR)

≃ of ModR as a space. We
also need to treat the size of limits and colimits. In these cases, we enlarge
the universe as the following definition and proceed the arguments.

Definition 2.3. Let S be the ∞-category of U-small spaces. Throughout
this paper, we enlarge the universe U ∈ V such that ModR is a V-small ∞-

category. We use the notation Ŝ for S and Ĉat∞ for Cat∞ after changing
the universe from U to V.

2.1. Sheaves and spectral affine schemes. Let us take X as an ∞-
category equipped with a Grothendieck topology as in [11, Definition 6.2.2.1]
and C an ∞-category which admits limits. We denote by ShvC(X ) an ∞-
category of C-valued sheaves on X in [11, Definition 6.2.2.6].

Definition 2.4. Let (̃−) : Fun(X op,S) → ShvS(X ) be an localization de-
fined in [11, Definition 6.2.2.6], which is a left adjoint of the inclusion. For

an object F of Fun(X ,S), we say that F̃ is a sheafification of F .

Remark 2.5 ([11] Construction 6.2.2.9, Remark 6.2.2.12). For an∞-category
C equipped with a Grothendieck topology, and a presheaf F on C, the sheafi-

fication F̃ of F is given by the following formula: for any C ∈ C,

F̃ (C) = colim
C
(0)
/C

lim
C′∈C

(0)
/C

F (C ′),
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where the first limit is the limit of the simplicial diagram associated to
C ′ → C [11, Corollary 6.2.3.5] and the second colimit is taken over the
collection of covering sieves on C.

Here is a list of morphisms of E∞-rings.

• Let f : A → B be a morphism of E∞-rings. Recall that f : A →
B is said to be flat if π0B is flat π0A-module and the underlying
map of commutative rings π0A → π0B induces the isomorphism
(πiA)⊗π0A (π0B) ≃ πiB for every integer i.

• Let f : A → B be a morphism of E∞-rings. f : A → B is said to be
étale if it is flat and the underlying map of commutative rings π0A →
π0B is étale. The class of étale morphisms on (CAlgcn)op satisfies
the axiom of admissible morphisms by [15, Proposition 2.4.17].

• We say that a morphism f : A → B of E∞-rings is faithfully flat if
it is flat morphism and the underlying map of commutative rings
π0A → π0B is faithfully flat. By a class of faithfully flat mor-
phisms, Grothendieck topology is defined on CAlgop, which is called
flat topology [16, Definition 5.2, Proposition 5.4].

Let S be a sphere spectrum. Recall the Grothendieck topology given
by the admissibility on covering sieves from [15, Definition 1.2.1]. Let

GSp
Zar(S) be an ∞-category with Grothendieck topology given as [16, Defini-

tion2.10]. We denote by CAlgZar an ∞-category Ind(GSp
Zar(S)

op)op equipped
with Zariski topology [15, Notation 2.2.6]. Moreover, this Zariski geome-
try is finitary [15, Remark 2.2.8] by the definition. (For the base change
assumption, see [15, Remark 1.2.4]).

Let A be a connective E∞-ring. Let CAlgetA be an ∞-category spanned by
connective étale algebras over A. Let C ⊂ (CAlgetA)

op be a sieve containing
A. We say that C is a Nisnevich covering sieve on A if it contains a collec-
tion of morphisms A → Aa such that their underlying maps of commutative
rings π0A → π0Aa determine a Nisnevich covering defined in [14, Definition
1.1]. Let A be a connective E∞-ring. We define the admissible morphisms in
(CAlgcn)op by the morphisms corresponding to étale morphisms in CAlgcn,
and the collection of admissible morphisms A → Aa generates a covering
sieve on A if and only if it corresponds to a Nisnevich covering sieve. Then,
it generates a Grothendieck topology on (CAlgcn)op, which is called the Nis-

nevich topology. We denote by CAlgNis an opposite ∞-category (CAlgcn)op

endowed with the Nisnevich topology.
Let CAlgG denote either CAlgZar or CAlgNis. Let us denote an object in

the essential image of Yoneda functor CAlgG → ShvS(CAlg
G) by Spec GR,

and we call the object an affine spectral scheme.
The following proposition is a special case of [16, Proposition 5.7].



6 M. OHARA

Proposition 2.6. Let us consider CAlgop endowed with the flat topology.
Then, in the case of ∞-topos CAlgop with flat topology, a functor F is a sheaf
if, it preserves finite products and for any covering X → Y in (CAlg)op,

F (Y ) → lim∆F (X•)

is an equivalence. Here, X• → Y is the simplicial object associated to X →
Y , and the notation lim∆ in the right hand side is a limit taken over the
simplicial diagram X•.

Lemma 2.7. (i) A Zariski covering sieve is a Nisnevich covering sieve
on (CAlgcn)op.

(ii) A Zariski covering sieve and a Nisnevich covering sieve are covering
sieves on the flat topology on (CAlgcn)op.

Proof. Let R be a connective E∞-ring and f1, · · · , fn elements in π0R which
generate the unit ideal of π0R. To prove (i), we show that each R → R[f−1

i ]

is flat for all n and {π0R → π0R[f−1
i ]} is an ordinary Nisnevich covering

of π0R. Since each R → R[f−1
i ] is flat by [16, Remark 2.9] and {π0R →

π0R[f−1
i ]} is an ordinary Zariski covering of π0R, so that it is a Nisnevich

covering of π0R [14, Remark 1.13].
To show (ii), we show that, for any collection of morphisms {R → Ra}

such that their underlying maps of commutative rings {π0R → π0Ra} form
a Nisnevich covering, R →

∏
αRα is faithfully flat. Note that we can assume

that this Nisnevich covering is a finite collection of morphisms [14, Remark
1.6].

Since each R → Rα is étale, it is flat. It follows that R →
∏

α Rα is
also flat. By [14, Remark 1.12], π0R → π0(

∏
α Rα) ∼=

∏
α π0Rα is faithfully

flat. �

3. Group completion in an ∞-topos

Definition 3.1. Let C be an ∞-category with finite products, and O⊗ be ei-
ther the∞-operad N∆(Assoc⊗) given in [12, Definition 4.1.1.3] or N∆(F in∗).
Note that we have a natural map ρ : N∆(Assoc⊗) → N∆(F in∗) by forgetting
linear orderings (cf. [12, Remark 4.1.1.4]).

(i) An ∞-monoid in C is a functor M : N∆(Assoc⊗) → C such that the
morphism M(〈n〉) → M(〈1〉) induced by the inert maps σi : 〈n〉 →
〈1〉 with linear orderings in each 1 ≤ i ≤ n induces an equivalence
M(〈n〉) ≃ M(〈1〉)n for all n ∈ N.

(ii) A commutative ∞-monoid in C is a functor M : N∆(F in∗) → C such
that the morphism M(〈n〉) → M(〈1〉) induced by the inert maps σi :
〈n〉 → 〈1〉 induces an equivalence M(〈n〉) ≃ M(〈1〉)n for all n ∈ N.
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(iii) An ∞-monoid is an ∞-group if its image in hC is a group object.
Also, a commutative ∞-monoid is a commutative ∞-group if its image
in hC is a commutative group object. We denote by Mon(C) and
nMon(C) an ∞-category of commutative ∞-monoids in C and not-
neccesary commutative ∞-monoids in C respectively. We also denote
by Gp(C) and nGp(C) an ∞-category of commutative ∞-groups in C
and not-neccesary commutative ∞-groups in C respectively (cf. [9,
Proposition 1.1]).

Note that we have a diagram

Gp(C)
ρ∗ //

��

nGp(C)

��
Mon(C)

ρ∗ //nMon(C),

where the horizontal morphisms are induced from ρ : N∆(Assoc⊗) → N∆(F in∗)
and the vertical morphisms are obtained by regarding ∞-groups as ∞-
monoids.

Remark 3.2. In terminology of [9], a commutative ∞-monoid is called
an E∞-monoid, and a commutative ∞-group is called an E∞-group by
[9, Proposition 1.1]. We adopt the terminology, and also describe the
not-necessary commutative case in the terminology since we apply the not-
necessary commutative case to the group completion on the ∞-category S
of spaces in the following Lemma 3.9.

3.1. The group completion functor. We consider morphisms which go
to the other direction to the vertical morphisms in the diagram in Defini-
tion 3.1.

Definition 3.3. Let C be an ∞-category with finite products as in Defini-
tion 3.1. We say that a functor Mon(C) → Gp(C) is group completion on C
if it is the left adjoint to the inclusion functor Gp(C) → Mon(C) given in the
diagram in Definition 3.1. We also say that a functor nMon(C) → nGp(C)
is group completion on C if it is the left adjoint to the inclusion functor
nGp(C) → nMon(C). By the universal property of adjoint functors, the
group completion functor is uniquely determined up to equivalence [11, Re-
mark 5.2.2.2].

Definition 3.4. (i) Let Fun
∏
(C, D) denote an ∞-category of functors

which preserve the finite products.
(ii) We define the product on Fun

∏
(C, D) by taking the objectwise product

in D.
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Lemma 3.5 ([9] Lemma 1.6). Let C and D are ∞-categories with finite prod-

ucts. Let us take Fun
∏
(C, D) as an ∞-category of functors which preserve

the finite products. Then, we have

Mon(Fun
∏
(C, D)) ≃ Fun

∏
(C, Mon(D)),

and

Gp(Fun
∏
(C, D)) ≃ Fun

∏
(C, Gp(D)).

�

Definition 3.6 (cf. [11] 6.1.2.7). Let C be an ∞-topos. For an ∞-monoid
object G, there exists a colimit of the simplicial homotopy diagram by [12,
Lemma 5.2.2.6]

· · · ////////
//G×G×G // //////G×G //////G ////1.

where the face map is given by the multiplication on G and the degeneracy
map is given by the unit morphism. We define BG is a colimit of the
simplicial homotopy diagram.

Remark 3.7. Let S be the symmetric cartesian monoidal ∞-category of
spaces. In terminology of topology, an object M in S is grouplike if π0M is a
group object in hS [12, Example 5.2.6.4]. A grouplike object in S is just an
∞-group in S by Definition 3.1. If C is a symmetric cartesian monoidal model
category, an ∞-monoid object can be regarded as an associative algebra
object by [12, Proposition 2.4.2.5].

3.2. Characterization of the group completion on S. For a simplicial
set S and its vertexes x and y, recall that a simplicial set MapS(x, y) is
defined as follows. This construction is due to Joyal.

Definition 3.8. [cf. [11] 1.2.2.2, Corollary 4.2.1.8] Let Set∆ be the category

of simplicial sets. Let S be a simplicial set and S∆1
a simplicial set which

sends [n] to HomSet∆(∆
1×∆n, S), where ∆n is the n-simplex for n ≥ 0 and

HomSet∆(−, −) is the hom-set of Set∆. Let s, t : [0] → [1] be maps defined
by s(0) = 0 and t(0) = 1.

(i) Take vertexes x, y ∈ S. The mapping space MapS(x, y) from x to y is
defined by the pullback

MapS(x, y) //

��

S∆1

(s,t)

��
∗

(x,y) //S × S,

where the morphism (s, t) is induced by s and t, e.g., it sends HomSet∆({0}×
∆n, S) to the n-simplices Sn of the first factor and HomSet∆({1} ×
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∆n, S) to the n-simplices Sn of the second factor, and the morphism
(x, y) sends ∗ to (x, y) ∈ S × S.

(ii) If S is an ∞-category, MapS(x, y) becomes a Kan complex by [11,
Proposition 1.2.2.3]. For an ∞-category S and objects x, y ∈ S, we say
that MapS(x, y) is the mapping space between x and y.

Let S be the ∞-category of spaces, and S∗ the pointed ∞-category of
spaces (cf. [12, Notation 5.2.6.11]).

For a space X, we define the loop space of X by Map(S1, X), where S1

is a simplicial circle ∆1/∆0.
There is the group completion theorem on simplicial monoids due to

Quillen, which is given by taking classifying space and loop space. By
taking the simplicial localization [7] of categories, we have an equivalence
from the∞-category of connected spaces to the∞-category of not-neccesary
commutative ∞-groups in S obtained by restricting the adjoint functors
B : nMon(S) ⇄ S∗ : Ω, which includes the case arising from commutative
topological monoids [19]. There is also an equivalence from the ∞-category
Spcn to Gp(S) obtained by B and Ω. Moreover, we have the following
lemma.

Lemma 3.9. Let S be an ∞-category of spaces. Let i : nGp(S) → nMon(S)
be the forgetfull functor. With the previous notations, we have the adjunction

ΩB : nMon(S) ⇄ nGp(S) : i,

where i is the forgetfull functor. In other words, ΩB is the group completion
on S.

�

We can also take the left adjoint of the inclusion i : Gp(S) → Mon(S)
restricted in commutative case, so that it is also the restriction of the left
adjoint in Lemma 3.9. Note that, since sifted colimits commute with finite
products, ΩB commutes with finite products by the definition of B.

3.3. Characterization of the group completion on Fun
∏
((CAlgG)op, Ŝ).

We characterize the group completion functor on Fun
∏
((CAlgG)op, Ŝ) by us-

ing Ω and B.

Definition 3.10. (i) In this paper, we will also denote by ΩB the left
adjoint functor given by ΩB : Mon(S) ⇄ Gp(S) after Lemma 3.9.

(ii) We also denote by ΩB the functor

Fun((CAlgG)op,Mon(Ŝ)) → Fun((CAlgG)op, Ŝ)

which sends a presheaf F to a presheaf given by R 7→ ΩB(F (R)).
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We will give an explicit description of the group completion functor for
the ∞-category of presheaves which preserves finite products.

Definition 3.11. We define a functor

ΩB
∏

: Mon(Fun
∏
((CAlgG)op, Ŝ)) → Gp(Fun

∏
((CAlgG)op, Ŝ))

by the restriction of ΩB, i.e., ΩB
∏

is the functor which satisfies the following
commutative diagram

Mon(Fun((CAlgG)op, Ŝ))
ΩB //Gp(Fun((CAlgG)op, Ŝ))

Mon(Fun
∏
((CAlgG)op, Ŝ))

OO

ΩB
∏

//Gp(Fun
∏
((CAlgG)op, Ŝ))

OO ,

where the vertical morphisms are inclusions.

Lemma 3.12. The functor ΩB
∏

gives the group completion on the ∞-

category Fun
∏
((CAlgG)op, Ŝ) up to equivalences.

Proof. Let Fun
∏
((CAlgG)op, Ŝ) be an ∞-category of presheaves on CAlgG

which preserve the finite products. This ∞-category has the pointwise finite
products. By Lemma 3.5, we have the equivalences

Mon(Fun
∏
((CAlgG)op, Ŝ)) ≃ Fun

∏
((CAlgG)op,Mon(Ŝ))

and
Gp(Fun

∏
((CAlgG)op, Ŝ)) ≃ Fun

∏
((CAlgG)op, Gp(Ŝ)).

Therefore, the group completion functor on Fun
∏
((CAlgG)op, Ŝ) is de-

termined by the point-wise values in S. The problem is reduced to the
group completion functor nMon(S) → nGp(S) for S, which is ΩB by
Lemma 3.9. �

3.4. Characterization of the group completion on ShvŜ(CAlg
G).

Definition 3.13 (cf. [16] Proposition 1.15). We define the product on
ShvŜ(CAlg

G) by the pointwise product, i.e., the product induced from the
formation of product in S under the sheafification.

Since a finite limit of sheaves are again a sheaf, the pointwise product

on Shv
Ŝ
(CAlgG) is the restriction of the product on Fun

∏
((CAlgG)op, Ŝ) in

Definition 3.4.

Lemma 3.14. We have Shv
Gp(Ŝ)(CAlg

G) ⊂ Gp(ShvŜ(CAlg
G)).

Proof. By definition, the objectwise products of presheaves becomes point-
wise products of sheaves after sheafification. Since the sheafification is left
exact [11, Definition 5.3.2.1], it commutes with the finite products. There-
fore, we have Shv

Gp(Ŝ)
(CAlgG) ⊂ Gp(Shv

Ŝ
(CAlgG)). �
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Definition 3.15. We define the functor

ΩBG : Mon(ShvŜ(CAlg
G)) → Gp(ShvŜ(CAlg

G)

by the composition of the inclusion

i′ : Mon(Shv
Ŝ
(CAlgG)) → Mon(Fun

∏
((CAlgG)op, Ŝ))

with

Mon(Fun
∏
((CAlgG)op, Ŝ)) → Gp(Fun

∏
((CAlgG)op, Ŝ)) → Shv

Gp(Ŝ)
(CAlgG),

where the first functor is the functor which is induced from the pointwise

group completion ΩB
∏

: Mon(Fun
∏
((CAlgG)op, Ŝ)) → Gp(Fun

∏
((CAlgG)op, Ŝ)),

and the second functor is obtained by the equivalence in Lemma 3.5 and

the sheafification ˜(−) : Fun
∏
((CAlgG)op, Gp(Ŝ)) → Shv

Gp(Ŝ)(CAlg
G). Note

that, we have Shv
Gp(Ŝ)(CAlg

G) ⊂ Gp(ShvŜ(CAlg
G)) by Lemma 3.14.

Proposition 3.16. Let CAlgG be the ∞-category equipped with the Grothendieck
topology which is defined in Section 2. Then, ΩBG is the group completion
on ShvŜ(CAlg

G).

Proof. Let us take F andG fromMon(Shv
Ŝ
(CAlgG)) andGp(Shv

Ŝ
(CAlgG))

respectively. By the adjunction in Lemma 3.9 and the definition of ΩBG,
we have

Map(ΩBGF, G) ≃ Map((−)≃ ◦ ΩB
∏
◦ i′(F ), G) ≃ Map(ΩBiF, iG) ≃ Map(F, iG),

where the left two mapping spaces are taken in Gp(ShvŜ(CAlg
G)), the third

and the last are in Gp(Fun
∏
((CAlgG)op, Ŝ)) and Mon(Fun

∏
((CAlgG)op, Ŝ))

respectively. Since F and G are already sheaves and the sheafification com-
mutes with finite products, we can regard the last mapping space as that
taken in Mon(Shv

Ŝ
(CAlgG)). �

4. Classifying sheaf of GL and projective modules of finite

rank

4.1. The affine spectral scheme GLn.

Definition 4.1 ([12] Notation 3.1.3.8). Let R be an E∞-ring, and CAlgR
the ∞-category of R-algebras.

(i) We define a functor SymR : ModR → CAlgR the left adjoint of the
forgetful functor CAlgR → ModR which sends an R-algebra S to an
R-module S.
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(ii) For a free R-module R⊕n2
of rank n2, π0SymRR

⊕n2
is isomorphic

to the polynomial ring (π0R)[x11, · · · , xnn] over π0R. Let us denote

SymRR
⊕n2

by R{x11, · · · , xnn}, where each xij is the representative of
the indeterminants of the polynomial ring over π0R.

Definition 4.2. (i) For an objectX in a symmetric monoidal∞-category,
an endomorphism object End(X) is an object equipped with the evalu-
ation morphism e : End(X)⊗X → X which induces a weak homotopy
equivalence Map(Y ⊗X, X) ≃ Map(Y, End(X)) for every Y .

(ii) Let R be an E∞-ring. We have the endomorphism object of R⊕n in
ModR. Let us denote it by EndR(R

n).

The following lemma is explained in [12, Remark 7.1.2.2].

Lemma 4.3. We have an isomorphism

π∗EndR(R
⊕n) ∼= π∗MapModR(R

⊕n, R⊕n)

�

The object R⊕n2
of ModR satisfies the universal property of endomor-

phism, we have an equivalence R⊕n2
≃ EndR(R

⊕n). Since we have R⊕n2
≃

EndR(R
⊕n), we have an equivalence SymREndR(R

⊕n) ≃ R{x11, · · · , xnn}
by Definition 4.1 (ii).

Definition 4.4. LetR be an E∞-ring. Let us denote Spec ZarSymREndR(R
⊕n)

by Mn,R in ShvS(CAlg
Zar).

(i) Under the equivalence SymREndR(R
⊕n) ≃ R{x11, · · · , xnn}, we define

the element (det) ∈ π0Mn,R by the determinant relation Στ∈Snsgn(τ)
∏

xi,τ(i)
of xijs.

(ii) We define an affine scheme GLn,R by inverting the determinant element
of Mn,R.

(iii) In the case that the base scheme R is the sphere spectrum S, we denote
Mn,R and GLn,S by Mn and GLn.

Let us take S as an R-algebra. We denote by Mn,R(S) and GLn,R(S) the
mapping spaces

MapCAlgR
(SymREndR(R

⊕n), S)

and
MapCAlgR

(SymREndR(R
⊕n)[(det)−1], S)

respectively.

Remark 4.5. Since GLn is corepresented by an E∞-ring, it is flat sheaf
by [16, VII, Theorem 5.15], so that it is already a Nisnevich sheaf. We also
use the notation GLn for the image in ShvS(CAlg

Nis) under the sheafifica-
tion.
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4.2. The equivalence GLn(R) ≃ Aut(Rn) as ∞-groups.

Definition 4.6. We define the space AutR(S
n) by the following pullback

of simplicial sets

AutR(S
n) //

��

MapModR(S
n, Sn)

π0

��
(π0MapModR(S

n, Sn))× //π0MapModR(S
n, Sn),

where we regard (π0MapModR(R
n, Rn))× and π0MapModR(R

n, Rn) as con-

stant simplicial sets and (π0MapModR(R
n, Rn))× is the invertible objects in

π0MapModR(R
n, Rn).

Remark 4.7. Note that the constant simplicial sets which appear in the
diagram of Definition 4.6 are also Kan complexes since the homotopy set
of the mapping space is made from the same mapping space by replacing
1-simplices with isomorphism. (Note that any 1-simplex in a Kan complex
is invertible. )

Proposition 4.8. For an R-algebra S, we have an equivalence GLn,R(S) ≃
AutR(S

n) as ∞-groups in S, which is functorial with respect to R-algebra
S.

Proof. Note that the right vertical morphism π0 in the diagram in Defini-
tion 4.6 is a Kan fibration.

Since GLn,R(S) is formulated by the following pullback of simplicial sets

(4.1) GLn,R(S) //

��

Mn,R(S)

π0

��
(π0Mn,R(S))

× //π0Mn,R(S),

where we regard π0Mn,R(S) as a constant simplicial set and (π0Mn,R(S))
×

is the invertible objects in π0Mn,R(S), and by the coglueing lemma (cf. [11]
A.2.4.3), it suffices to construct the two morphismsMn,R(S) → MapModR(S

n, Sn)
and π0Mn,R(S) → π0MapModR(S

n, Sn) which preserve the multiplication
and show that the following diagram is commutative:
(4.2)

(π0Mn,R(S))
× //

��

π0Mn,R(S)

��

Mn,R(S)

��

π0

oo

(π0MapModR(S
n, Sn))× //π0MapModR(S

n, Sn) MapModR(S
n, Sn).

π0

oo

Note that objects in the diagram (4.1) are Kan complexes by the same reason
of Remark 4.7
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An element of Mn,R(S) is a morphism SymREndR(R
⊕n) → S of R-

algebras for an R-algebra S. By the adjointness of SymR, the morphism
of R-algebras is corresponding to a morphism of R-modules

R⊕n2
≃ EndR(R

⊕n) → S.

On the other hand, we have an equivalence R⊕n2
≃ EndR(R

⊕n) obtained by

evaluating the each factor of Rn. Therefore, if we regard S ⊗R R⊕n2
as an

S-module, the above morphism corresponds to a morphism S⊗RR⊕n2
→ S

of S-modules. This gives an identification Mn,R(S) ≃ EndS(S
⊕n) as S-

modules.
To show that GLn,R(S) → AutR(S

n) is a morphism of ∞-groups, we fix

the choice of the second equivalence : MapModS(S
⊕n2

, S) ≃ MapModS
(S, S)⊕n2

≃
MapModS(S

n, Sn). Then, by the composition of S-module endomorphisms

on S⊕n, EndS(S
⊕n) has a canonical ∞-monoid structure for each S defined

in Definition 3.1, the spectral scheme Mn,R is an ∞-monoid.
We can identify the discrete group π0Mn,R(S)

× with the class of π0S-
algebra morphisms π0SymREndR(R

⊕n)[det−1] → π0S. Here, det is the de-
terminant element given by the determinant relation of xijs in π0R[x11, · · · , xnn].
By ordinary theory of affine group schemes, these morphisms correspond to

(π0EndS(S
⊕n))× by a similar choice Hom(π0S, π0S)

⊕n2 ∼= Hom(π0S
n, π0S

n)
of isomorphism. Since 2-morphisms are invertible, this induces an equiva-
lence between AutR(S

n) and SymREndR(R
⊕n)[det−1] → S by the above

pullback.
Since we fix the choice of equivalences in the proof, GLn,R is an ∞-group

scheme with respect to the monoid structure of MapModR(R
n, Rn). �

4.3. The Ĉat∞-valued functor (nProj). In this subsection, we show that

the functor (nProj) : CAlgcn → Ĉat∞ defined by sending an E∞-ring R to

the maximal Kan complex of ∞-category ModnprojR of projective modules of
rank n is a sheaf.

Definition 4.9 ([13] Definition 2.6.14). Let P be a property for objects
(A,M) in an ∞-category CAlgcn ×CAlg Mod. We say that P is local for the
flat topology if the following conditions are satisfied:

(i) Let f : A → B be a flat morphism of connective E∞-rings, and M
an A-module. If (A,M) has the property P , (B,B ⊗A M) has the
property P . If f is faithfully flat, the converse holds.

(ii) For any finite collection (Ai,Mi) of the objects in CAlgcn ×CAlg Mod
such that each (Ai,Mi) has the property P , the product (

∏
Ai,

∏
Mi)

has the property P .
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Theorem 4.10 ([16] Corollary 6.13, Lemma 6.17). A functor CAlgcn →

Ĉat∞ given by R 7→ ModR is a sheaf.

Since (nProj) is a subfunctor of the sheaf R 7→ ModR, if ModnprojR con-
sisting of objects which satisfy the conditions in Definition 4.9 for each
connective E∞-ring, we note that (nProj) is also a sheaf by the similar
argument in [13, cf. Remark 1.5.3].

Lemma 4.11. Let (nProj) : CAlgcn → Ĉat∞ be a functor given by R 7→

ModnprojR . Then, the functor (nProj) is a sheaf with respect to flat topology.

Proof. Since a functor CAlgcn → Ĉat∞ given by R 7→ ModR is already a
sheaf By Theorem 4.10, it suffices to check that the projective modules of
rank n satisfy the condition of Definition 4.9 (i) and (ii).

By [13, Proposition 2.6.15 (1), (6), (9)], the condition of finitely generated
projective is flat local property. Since the tensor product preserves rank, the
projective modules of rank n satisfy the condition of Definition 4.9 (i).

We will check the condition (ii) of Definition 4.9. Assume that (Ai, Mi) is
a pair such that Ai is connective E∞-ring and Mi is a projective Ai-module
of rank n for 1 ≤ i ≤ m. To show that

∏
iMi is a projective

∏
iAi-module

of rank n, it suffices to show that there exists a finite set {ga}a of objects in∏
iAi such that each

∏
iMi[g

−1
a ] is a free

∏
iAi[g

−1
a ]-module of rank n. We

choose such {ga}a as follows.
For each i, we take fi1, · · · , fik ∈ π0Ai such that (Mi)[f

−1
il ] is a free

Ai[f
−1
il ]-module of rank n for 1 ≤ l ≤ k. Since

∏
iAi → Ai is flat and the

essential image is generated by the form
∏
(Ai⊗AAj)⊗Aj M and Ai⊗AAj ≃

0, Aj ⊗∏
i Ai

∏
iMi ≃ Mj .

From this, we have the equivalence
∏

iAi[f
−1
il ]⊗∏

i Ai

∏
iMi ≃

∏
iMi[f

−1
il ],

where
∏

iMi[f
−1
il ] is regarded as a

∏
iAi[f

−1
il ]-module and is free of rank

n. �

Corollary 4.12. (nProj) is a sheaf in Nisnevich topology and Zariski topol-
ogy.

Proof. It follows from Lemma 2.7 and Lemma 4.11. �

Definition 4.13 ([11] Theorem 3.1.5.1). Let Ŝ be the ∞-category of spaces

and Ĉat∞ the ∞-category of ∞-categories defined in Definition 2.3 after
enlarging the universe respectively. We regard the Kan complexes as ∞-

categories, so that we have an inclusion functor i : Ŝ → Ĉat∞.
Since the inclusion preserves small colimits, by [11, Corollary 5.5.2.9],

there is an adjunction

(4.3) i : Ŝ ⇄ Ĉat∞ : (−)≃.
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Note that the right adjoint (−)≃ is given by taking the maximal ∞-
groupoid.

Lemma 4.14. The right adjoint in (4.3) induces a functor from Ĉat∞-

valued sheaves to Ŝ-valued sheaves.

Proof. Since (−)≃ is a right adjoint, it preserves limits. Especially, it pre-
serves the limits of simplicial diagrams in Proposition 2.6. Therefore, (−)≃

sends Ĉat∞-valued sheaves to Ŝ-valued sheaves. �

4.4. Comparison between B(GLn(R)) to (ModnfreeR )≃. Recall that the

notion of classifying object from Definition 3.6. We denote by BG the clas-
sifying functor on Shv

Ŝ
(CAlgG). Acording to Remark 4.5, we have GLn in

ShvS(CAlg
G).

Definition 4.15. (i) We use the notation B(GLn(R)) for the classifying
space of the value GLn(R) in S, and (BGGLn)(R) for the value at R

of the classifying sheaf of GLn in ShvS(CAlg
G).

(ii) We let (Modnfree(−) )≃ : CAlgcn → Ŝ be a functor which sends R to the

∞-groupoid (ModnfreeR )≃ of free R-modules of rank n.

Note thatGLn(R) ≃ AutR(R
⊕n), andB(GLn(R)) is not equal to (BGGLn)(R).

Remark 4.16. Apparently, the classifying sheafBGGLn ofGLn in ShvS(CAlg
G)

in Definition 4.15 depends the Grothendieck topology on CAlgG , but conse-
quently, we show that it is equivalent to the flat sheaf (nProj) in Proposi-
tion 4.21 below, BGGLn in Zariski topology is equivalent to that in Nisnevich
topology.

Lemma 4.17 (cf. [1] Section B.3). Let us regard (ModnfreeR )≃ as a sim-

plicial set, and take a vertex x ∈ (ModnfreeR )≃. Then, we have a morphism

B(AutR(x)) → (ModnfreeR )≃ of simplicial sets.

Proof. Since we have an equivalence

AutR(x) → Map
Modnfree

R
(x, x)≃,

which is induced from the inclusion in Definition 4.6. We note that this mor-
phism factors through the equivalence Map

(Modnfree
R )≃

(x, x) ≃ Map
Modnfree

R
(x, x)≃

and Map
(Modnfree

R )≃
(x, x) is 1-simplices of (ModnfreeR )≃ by taking x = y and

identifying the image in S×S with S in Definition 3.8. Since the morphism
AutR(x) → Map

(Modnfree
R )≃

(x, x) is obtained by the inclusion, it preserves

∞-groupoid structure, so that it preserves the monoid structure. Since

both B(AutR(x)) and (ModnfreeR )≃ are connected, the induced morphism

B(AutR(x)) → (ModnfreeR )≃ is an equivalence. �
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Let B(GLn(−)) : CAlgcn → Ŝ be a functor which sends R to the space
B(GLn(R)) defined in Definition 4.15. We will compare the functorB(GLn(−))
with a functor given in Definition 4.15(ii). The following proposition is ob-
tained by the similar arguments in the case [1, Section b.3] of rank 1.

Proposition 4.18. The functor B(GLn(−)) is equivalent to the functor

(Modnfree(−) )≃ defined in Definition 4.15(ii).

Proof. By taking x = y = Rn in Lemma 4.17, we have a morphism from

B(GLn(R)) → (ModnfreeR )≃ for each R ∈ CAlgcn.
By composing a morphism B(GLn(R)) ≃ BAutS(R

n) which we obtained

by Proposition 4.8 withB(AutS(R)) → (ModnfreeR )≃ obtained by Lemma 4.17,

we have a morphism B(GLn(R)) → (ModnfreeR )≃. It suffices to show that a

morphism B(GLn(R)) → (ModnfreeR )≃ is an equivalence and functorial with
respect to R.

By construction, we identify B(GLn(R)) with a full ∞-subgroupoid of

(ModnfreeR )≃ such that the object is only R⊕n and the class of morphisms
is identified with GLn(R) ≃ AutS(R

n) by Proposition 4.8, which is fully
faithfull functorial assignment with respect to R.

We show that it is essentially surjective. It suffices to show that (ModnfreeR )≃

is connected as a simplicial set. This is obvious since, for M ∈ ModnfreeR ,
we have M ≃ R⊕n. �

4.5. A natural transformation from B(GLn(−)) to (BGGLn)(−). We
construct a natural transformation from B(GLn(−)) to (BGGLn)(−) by
using the comparison between the sheaf of projective modules of rank n and
the sheafification of the functor of free modules of rank n.

For each R, we have the following colimit in Ŝ:

GLn(R) // //∗ //B(GLn(R)).

Note that the functor corresponds to this cofiber is not a sheaf since the
second condition of [13, Definition 2.6.14 (1)] fails. According to the notation

in Definition 2.4, we write ˜B(GLn(−)) for the sheafification of B(GLn(−)).

Remark 4.19. In the stable ∞-category of spectra, taking B is equivalent
to taking Σ by stability. So, although the notation Σ of the suspention can
be used, we use the notation B in the colimit of the above coequalizer since
objects appearing in the coequalizer are grouplike and can be regarded as
connective spectra via the equivalence from Gp(S) to Spcn which preserves
sifted colimits.

Lemma 4.20. We have the following cofiber sequence

GLn ////∗ // ˜B(GLn(−))
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in Shv
Ŝ
(CAlgG).

Proof. Since GLn is corepresented by an E∞-ring, it is flat sheaf by [16,
VII, Theorem 5.15], so that it is a Zariski (resp. Nisnevich) sheaf. Since
sheafification is left adjoint, it commutes with the cofiber sequence. �

For each A → R in CAlgcn, the natural inclusions induce the commutative
diagram

ModnfreeA
//

��

ModnprojA

��
ModnfreeR

//ModnprojR ,

in Ĉat∞, so that we have a natural transformation

(4.4) Modnfree(−) → Modnproj(−) .

By the adjointness of sheafification, we have a morphism ˜B(GLn(−)) →

(nProj)≃ of Ŝ-valued sheaves.

4.6. An equivalence BGGLn ≃ (nProj)≃. The weak homotopy eqiva-
lence in the following statement is written in [2, Proposition 5.1]. However,
we show it by a fortiori argument using morphisms induced by previous
subsection.

Proposition 4.21. The morphism (4.4) in the previous subsection gives an
equivalence BGGLn ≃ (nProj)≃ in Shv

Ŝ
(CAlgG).

Proof. From adjointness of a morphism f(−) : ˜B(GLn(−)) → (nProj)≃ of

Ŝ-valued sheaves, we have the following homotopy commutative diagram of

Ŝ-valued presheaves:

˜B(GLn(−))
f

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

B(GLn(−))

L

77♥♥♥♥♥♥♥♥♥♥♥♥♥ i //(nProj)≃,

where L is the morphism associated to the sheafification and i is induced
from the inclusion.

Let us denote the limits of the following simplicial diagrams byB(GLn(A))R
:

B(GLn(A)) ////B(GLn(A⊗R A)) // //
// · · · ,

whereR → A is a faithfully flat morphism. By Remark 2.5, the sheafification
˜B(GLn(−)) is described by the term of B(GLn(−)), i.e., it is the colimit of

those B(GLn(A))R taken over the every covering sieve R → A .
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For fR : ˜B(GLn(R)) → (nProj)≃(R) and an object Q, i.e., a vertex in
(nProj)≃(R), let (Q)≃ denote the full ∞-subgroupoid spanned by Q. Since
Shv

Ŝ
(CAlgG) is locally presentable, there exists a corresponding combinato-

rial simplicial model category up to Quillen equivalences. We take it under

the consideration, and construct hR,Q : (Q)≃ → ˜B(GLn(R)) as follows.
We take a Zariski local A of R such that an object Q ∈ (nProj)≃(R) is

trivialized on A. Then, we naturally identified the ∞-groupoid spanned by

Q⊗ A with B(GLn(A)), so that we have an object in ˜B(GLn(R)). This is
the assignment under the morphisms of ∞-groupoids. By f ◦ L ≃ i in the
above diagram, we have fR ◦ hR,Q is homotopic to identity.

Conversely, for an object P in ˜B(GLn(R)), we take its value on the cover-
ing sieve R → R under the morphisms associated to the colimit, and denote
by P ′. Then, by an extension of the coefficients of P ′ gives an object in

˜B(GLn(R)), which is equivalent to P by the construction. This shows that
hR,f(P ) ◦ fR is homotopic to identity.

Since fR is obviously a Kan fibration and, by the above arguments, any
fiber of fR is contractible. By [11, Lemma 4.1.3.2, Corollary 4.1.2.6], it is a
weak homotopy equivalence. �

4.7. Zariski connected E∞-rings. Next, we consider the condition on a
connective E∞-ring R such that any finitely generated projective R-module
has finite constant rank.

Definition 4.22. (i) We say that an E∞-ring is Zariski non-connected if
there exists those objects f, g ∈ π0R such that R[f−1] ⊗R R[g−1] ≃ 0
and R ≃ R[f−1]×R[g−1].

(ii) We say that an E∞-ring is Zariski connected if it is not Zariski non-
connected.

Lemma 4.23. The following conditions are equivalent:

(i) R be an E∞-ring such that π0R has no non-trivial idempotent element.
(ii) R is Zariski connected.

(iii) Any P ∈ ModprojR has finite constant rank.

Proof. For proving (iii) from (i), let R be an E∞-ring such that π0R has

no non-trivial idempotent, and P ∈ ModprojR . Note that π0P is a finitely
generated projective π0R-module [12, Remark 7.2.2.20]. Then, there exists
f1, · · · , fm which generate the unit ideal of π0R such that each π0P [f−1

i ] is

free of finite rank ni over π0R[f−1
i ]. For an ordinary commutative ring π0R,

in this the condition (i) is equivalent to that nis are constant, and let us de-
note it by n. Since finitely generated free π0R[f−1

i ]-modules π0P [f−1
i ] can be

lifted by finitely generated R[f−1
i ]-modules P [f−1

i ] and a morphism between
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flat R-modules is an equivalence if and only if it induces an isomorphism on
π0 [12, Lemma 7.2.2.17], locally P has a constant rank.

Conversely, if π0R has a non-trivial idempotent element, we have that the
rank ni are not constant. In this case, the above argument shows that (iii)
implies (i).

We show that (i) implies (ii). Since π0 preserves finite products, if R is
Zariski non-connected, by passing to π0 and applying the ordinary commu-
tative ring theory, π0R has a non-trivial idempotent. Conversely, if π0R has
a non-trivial idempotent e, it also a non-trivial idempotent of π∗R. Since
the localization of an E∞-ring with one element commutes with π∗, we have
π∗(R[e−1]) ∼= (π∗R)[e−1] and π∗(R[(1 − e)−1]) ∼= (π∗R)[(1 − e)−1]. Since π∗
commutes with finite products, by taking π∗ of R[e−1] × R[(1 − e)−1], we
conclude that R is equivalent to R[e−1]×R[(1− e)−1], so that R is Zariski
non-connected. Thus, (ii) implies (i). �

4.8. Comparison between BGGL and Mod∞proj
R . Now, we will prove the

main proposition in this section by applying the following proposition.

Proposition 4.24 ([16] Lemma 3.21). Let C be an ∞-topos, I an index
set and {Xi}i∈I a collection of objects in C. For every subset J ⊂ I, let
XJ ≃

∐
i∈J Xi. Let C ∈ C be an object such that every covering of C has a

finite subcovering [16, Definition 3.1]. Then, the canonical morphism

colim
J⊂I

MapC(C, XJ ) → MapC(C, XI)

induces a homotopy equivalence. Here, the colimit in the left hand side is
run through the all finite subsets J ⊂ I.

�

Lemma 4.25. Let I ⊂ N be a finite index set. If R is Zariski connected,
the canonical morphism
∐

i∈I

MapShv
Ŝ
(CAlgG)(Spec

GR, BGGLi) → MapShv
Ŝ
(CAlgG)(Spec

GR,
∐

i∈I

BGGLi),

is an equivalence.

Proof. To check that the canonical morphism is an equivalence, it suffices to
show that, for any morphism φ in MapShv

Ŝ
(CAlgG)(Spec

GR,
∐

i∈I B
GGLi),

there exists an index j ∈ N which is uniquely determined by φ, the morphism
φ has the unique factorization

Spec GR → BGGLj →
∐

i∈I

BGGLi.
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Since the sheafification commutes with coproducts,
∐

i∈I B
GGLi is equiv-

alent to the sheafification of the presheaf given by R 7→
∐

i∈I(B
GGLi(R)).

(Note that the coproduct of sheaves are the sheafification of the objectwise
coproduct as presheaves, and an functor obtained by objectwise coproduct
of sheaves is not always a sheaf.) Therefore, an object of (

∐
i∈I B

GGLi)(R)
can be represented by a finitely generated projective R-module whose local
ranks are contained in I.

Let IModprojR be an ∞-category of finitely generated projective mod-
ules whose local rank is contained in I. Since R is Zariski connected, by

Lemma 4.23(iii), we deduce that IModprojR ≃
∐

{i∈I} ModiP roj
R . Therefore,

for any object of (
∐

i∈I B
GGLi)(R), there exists a unique j ∈ I such that

the object can be represented by a finitely generated projective R-module
of rank j.

By applying the Yoneda embedding [11, Section 5.1.3], we have that an
object of (

∐
i∈I B

GGLi)(R) represented by a finitely generated projective

R-module of rank j corresponds to the morphism Spec GR →
∐

i∈I B
GGLi

which has the unique factorization

Spec GR → BGGLj →
∐

i∈I

BGGLi.

�

We consider a decomposition of an E∞-ring R by using the idempotent
element in π0R.

Proposition 4.26. Let Spec GR : (CAlgG)op → Ŝ be a spectral scheme
and Spec GR → BGGLn a morphism in Shv

Ŝ
(CAlgG). Let BGGL be a

sheaf
∐

n∈NBGGLn. For I ⊂ J ⊂ N, we have the system
∐

i∈I B
GGLi →∐

j∈J B
GGLj given by inclusions. Then there is an equivalence of ∞-groupoids;

MapShv
Ŝ
(CAlgG)(Spec

GR, BGGL) ≃ (Mod∞proj
R )≃.

Proof. By Proposition 4.24, we have

colim
I⊂N

MapShv
Ŝ
(CAlgG)(Spec

GR,
∐

i∈I

BGGLi) ≃ MapShv
Ŝ
(CAlgG)(Spec

GR, BGGL).

By decomposing R with the Zariski connected E∞-rings (given by the
corresponding irreducible decomposition on π0) and applying Lemma 4.25,
for I = {1, · · · , n}, we have the equivalence

colim
I⊂N

∐

i∈I

MapShv
Ŝ
(CAlgG)(Spec

GR, BGGLi) ≃ colim
I⊂N

MapShv
Ŝ
(CAlgG)(Spec

GR,
∐

i∈I

BGGLi)
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By Proposition 4.21, we identify the left hand side with

colim
i∈N

(ModiprojR )≃ ≃ (Mod∞Proj
R )≃.

�

5. K-theory of Mod∞proj
R

Definition 5.1 (cf. [4] 1.2, [6] Definition 2.1). Let C be a pointed ∞-
category. A class of w∞-cofibrations is a class of morphisms in C which
satisfies the following conditions:

(i) ∗ → X is a w∞-cofibration for any object X,
(ii) The class of w∞-cofibrations includes weak equivalences,
(iii) Any composition of w∞-cofibrations is a w∞-cofibration,
(iv) For a w∞-cofibration X → Y and a morphism X → Z, there exists a

pushout square

X //

��

Y

��
Z

f
//W,

in which the morphism f is a w∞-cofibration.

We call such a pair of C and a w∞-cofibrations an ∞-category with w∞-
cofibrations.

In terminology of [5], a w∞-cofibration is called a cofibration. In termi-
nology of [3], a w∞-cofibration is called an igressive morphism.

Remark 5.2. We say that a w∞-cofibration is a split w∞-cofibration if it
is split as a morphism.

Definition 5.3. We make into Mod∞proj
R to be an ∞-category with w∞-

cofibrations as follows.
Declare a morphism f : P1 → P2 in Mod∞proj

R to be a w∞-cofibration if

it is a morphism in ModR and the cofiber of f is an object in Mod∞proj
R .

Then, ModprojR (resp. Mod∞proj
R ) is an ∞-category with w∞-cofibrations.

Lemma 5.4. (i) A w∞-cofibration in Mod∞proj
R is always split, e.g., it is

a split w∞-cofibration in Remark 5.2.
(ii) Let R1 → R2 be a morphism of connective E∞-rings. Then, a functor

Mod∞proj
R1

→ Mod∞proj
R2

given by the extension of coefficients is an
exact functor in the sence of K-theory.

Proof. By [12, Proposition 7.2.2.6 (5)], a cofiber sequence of finitely gener-
ated projective modules is always split up to homotopy. Thus, (i) holds.
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Since the tensor product commutes with the cofiber sequences and pre-
serves rank, the extension of coefficients is exact. �

Remark 5.5. In this paper, we consider the connective K-theory. We can
regard the K-theory spectrum as a K-theory space.

Let C be a pointed additive ∞-category.
Recall that the maximal ∞-groupoid C≃ of the additive ∞-category C

inherits the structure of ∞-monoid space by applying [9, Corollary 6.6] to
the functor Cat∞ → S given by taking maximal ∞-groupoid. Especially,

the additive ∞-category (Mod∞proj
R )≃ is a commutative ∞-monoid.

Note that the composition of the two lax symmetric monoidal functors
Mon(Cat∞) → Mon(S) and the group completion on the ∞-category of
spaces Mon(S) → Gp(S) in Lemma 3.9 is factored by the group completion
of Cat∞ with the natural inclusion Gp(S) → Gp(Cat∞) by [9, Proposition
8.14].

There is an ∞-version of the additivity theorem [21, Theorem 1.8.7] given
by [8]. We state the theorem as in Lurie’s unpublished note [17].

Recall the notion of a split w∞-cofibration from Remark 5.2. We will

apply the following theorem for Mod∞proj
R whose w∞-cofibrations defined in

Definition 5.3 are split w∞-cofibrations by Lemma 5.4.

Theorem 5.6 ([8], cf. [17] Theorem 10). Let C be a pointed additive ∞-
category with split w∞-cofibrations, and C≃ be the maximal ∞-groupoid of
C as in (4.3). Let K(C) be the algebraic K-theory and ΩB(C≃) the group
completion of C≃.

Then, there is an equivalence

(5.1) ΩB(C≃) → K(C)

of spases. Here, Ω and B are defined in Section 4.

Corollary 5.7. We have ΩB((Mod∞proj
R )≃) ≃ K(Mod∞proj

R ).

Proof. The ∞-category Mod∞proj
R (resp. ModprojR ) is additive, pointed by 0,

with split w∞-cofibrations. Thus, Theorem 5.6 can be applied. �

6. Proof of Theorem 1.1

Let us keep the notation explained in the previous sections. Now we prove
Theorem 1.1.

Let BGGL =
∐

n∈NBGGLn. Note that, the sheafification preserves co-

products and finite products. By Proposition 4.26, we can regard BGGL as

the sheaf (Mod∞proj
(−) )≃. Since, for an E∞-ring R, Mod∞proj

R is a symmet-

ric monoidal ∞-category with direct sum and with tensor product which
preserves direct sum in each variable separately. Moreover, since the direct
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sum commutes with the sheafification, the juxtaposition of BGGL arises
from that of B(GL(−)) which is obtained in objectwise manner. So, we
obtain the following proposition.

Proposition 6.1. Let BGGL =
∐

n∈NBGGLn. Then, BGGL becomes a
commutative ∞-monoid.

Theorem 6.2. Let CAlgG be the ∞-category (CAlgcn)op equipped with Zariski
or Nisnevich topology defined in Section 2. Let BGGL =

∐
n∈NBGGLn and

ΩBG(BGGL) the group completion as a sheaf on CAlgG. Note that BGGL
becomes a commutative ∞-monoid as in Proposition 6.1.

There is an equivalence of ∞-groupoids:

MapShv
Ŝ
(CAlgG)(Spec

GR, ΩBG(BGGL)) ≃ K̃G(Mod∞proj
R ),

where K̃G is the sheafification of K defined by (1.1).

Proof. By Proposition 4.21, we have an equivalence

ΩB(BGGL(R)) ≃ ΩB((Mod∞proj
R )≃),

where (−)≃ denotes the maximal∞-groupoid (4.3). Since all w∞-cofibrations

in Mod∞proj
R are split and the homotopy category of ModprojR is additive, by

Corollary 5.7, we obtain that ΩB((Mod∞proj
R )≃) is equivalent to the alge-

braic K-theory K(Mod∞proj
R ) given by S• construction.

On the other hand, we have an equivalence induced by Yoneda embedding

MapShv
Ŝ
(CAlgG)(Spec

GR, ΩBG(BGGL)) ≃ (ΩBGBGGL)(R).

By virtue of Proposition 6.1, we can apply Proposition 3.16 to the commu-
tative ∞-monoid sheaf BGGL. The sheafification of the objectwise group
completion functor R 7→ ΩB(BGGL(R)) is equivalent to the group comple-
tion of the sheaf given by the assignment R 7→ (ΩBGBGGL)(R). Thus, we
have an equivalence (ΩBGBGGL)(R) ≃ ΩB(BGGL(R)) after the sheafifica-
tion. �

Remark 6.3. Since Yoneda embedding and the sheafification preserve fi-
nite products, and since the functor (−)≃ taking maximal ∞-groupoid is
lax monoidal [9, Remark 8.7], the equivalence in Theorem 6.2 preserves
commutative ∞-group structure.
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