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PASSAGE OF PROPERTY (Bw) FROM TWO OPERATORS
TO THEIR TENSOR PRODUCT

M.H.M.RASHID

ABSTRACT. A Banach space operator satisfies property (Bw) if the com-
plement of its B-Weyl spectrum in its the spectrum is the set of finite
multiplicity isolated eigenvalues of the operator. Property (Bw) does
not transfer from operators 7" and S to their tensor product T'® S.
We give necessary and /or sufficient conditions ensuring the passage of
property (Bw) from T and S to T®S. Perturbations by Riesz operators
are considered.

1. INTRODUCTION

Given Banach spaces X and Y, let X ® ) denote the completion (in some
reasonable uniform cross norm) of the tensor product of X and ). For Ba-
nach space operators T' € B(X') and S € B()), let T® S € B(X ®)) denote
the tensor product of T and S.

For a bounded linear operator S € B(X), let ker(S), R(S), o (S) and 04(S)
denote, respectively, the kernel, the range, the spectrum and the approxi-
mate point spectrum of S and if G C C, then isoG denote the isolated
points of G. Let «(S) and $(S) denote the nullity and the deficiency of S,
defined by a(S) = dimker(S) and 3(S) = codim R(S5).

If the range R(S) of S is closed and a(S) < oo (resp. [(S) < o0), then
S is called an upper semi-Fredholm (resp. a lower semi-Fredholm) op-
erator. If S € B(X) is either upper or lower semi-Fredholm, then S is
called a semi-Fredholm operator, and ind(S), the index of S, is then de-
fined by ind(S) = a(S) — B(5). If both «(S) and S(S) are finite, then S
is a Fredholm operator. The ascent, denoted a(S), and the descent, de-
noted d(S), of S are given by a(S) = inf {n € N: ker(5") = ker(S"*!},
d(S) =inf {n € N: R(5") = R(S" ™} (where the infimum is taken over the
set of non-negative integers); if no such integer n exists, then a(S) = oo,
respectively d(S) = 0.)

Let T € B(X). Define

op(T) ={A € C:ker(A—T) # {0} };
0(T)={Ae€C:ker(A=T) #{0}, RN —=T) =X but R\ - T) # X};

or(T)={AeC:ker(A—=T)={0}but R(A—T) # X'}.
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op(T),0.(T) and o,(T') are called respectively the point spectrum, the con-
tinuous spectrum and the residual spectrum of T'. Clearly, o,(T'),0.(T)
and o,(T) are disjoint and o(T") = o0,(T) U 0.(T) U 0,(T). Let 0,(T) =
{\N € o(T) : X — T isnot a Fredholm operator of index 0} be the Weyl
spectrum of 7', which is a subset of the whole spectrum o(T"). The set
00(T) = {\ € 0,(T) : R(A —T)is closed and a(A—T) = a(A—T*) < o}
is precisely the complement of the Weyl spectrum o,,(7") in the whole spec-
trum o (7). Hence

ow(T) = o(T) \ 00(T),
and so {0y, (T"),00(T)} forms another partition of the spectrum of o (7). Set
opr(T) = {\ € 0p(T) : a(A —T) < oo}; the set of all eigenvalues of finite
multiplicity, so that oo(T") C opp(T) and o, (T)Uo(T)U(op(T)\opr(T)) C
ow(T). Set

ENT) =isoa(T)Nopr(T) = {\ €isoa(T): 0 < a(A—T) < oo}

According to Coburn [6], Weyl’s theorem holds for T if A(T) = o(T) \
ow(T) = E°(T), or equivalently o¢(T) = E°(T) and that Browder’s theorem
holds for T'if A(T) = o(T)\ 0w (T) = 7°(T), or equivalently oo(T) C E°(T).
In this paper we prove that if T'and S are isoloid, obey property (Bw), and
the generalized Weyl identity holds, then T'® S obeys property (Bw).

2. PRELIMINARIES

For S € B(X) and a nonnegative integer n define Sy, to be the restric-
tion of S to R(S™) viewed as a map from R(S™) into R(S™) (in particular,
S = S ). If for some integer n the range space $(S™) is closed and S,
is an upper (a lower) semi-Fredholm operator, then S is called an upper
(a lower) semi-B-Fredholm operator. In this case the index of S is de-
fined as the index of the semi-B-Fredholm operator Sy, see [4] Moreover,
if S}, is a Fredholm operator, then S is called a B-Fredholm operator. A
semi- B-Fredholm operator is an upper or a lower semi-B-Fredholm opera-
tor. An operator S is said to be a B-Weyl operator [3, Definition 1.1] if
it is a B-Fredholm operator of index zero. The B-Weyl spectrum opw(S)
of S is defined by opw (S) ={A € C: S — Al is not a B-Weyl operator} .
An operator S € B(X) is called Drazin invertible if it has a finite ascent
and descent. The Drazin spectrum op(S) of an operator S is defined
by op(S) = {A€C:S— A isnot Drazin invertible} . Define also the
set LD(X) by LD(X) = {S € B(X) : a(S) < oo and R(T*5)*1) is closed }
and orp(S) = {A € C: S— X ¢ LD(X)}. Following [2], an operator
S € B(X) is said to be left Drazin invertible if S € LD(X). We say that
A € 04(T) is a left pole of S'if S —AI € LD(X), and that A € 0,(95) is a left
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pole of S of finite rank if A is a left pole of T" and a/(S — AI) < oo. Let 74(S)
denotes the set of all left poles of S and let 79(S) denotes the set of all left
poles of S of finite rank. From [2, Theorem 2.8] it follows that if S € B(X)
is left Drazin invertible, then S is an upper semi-B-Fredholm operator of
index less than or equal to 0. Note that 7,(S) = 04(S) \ op(S) and hence
A € mo(S) if and only if A ¢ orp(5).

According to [13], T' € B(X) satisfies Property (Bw) if o(T) \ opw(T') =
E°%(T). We say that T satisfies Property (Bb) if o(T) \ opw (T) = «°%(T)
[14]. Property (Bw) implies Weyl’s theorem but converse is not true also
Property (Bw) implies Property (Bb) but converse is not true [14]. Let
SBF(X) denote the class of all is upper B-Fredholm operators such that
ind(7") < 0. The upper B-Weyl spectrum o Fr (T') of T is defined by

ospp- (T) = A€ C:T =\ ¢ SBFL(X)}.

The operator T' € B(X') is said to have the single valued extension property
at A\g € C (abbreviated SVEP at \g) if for every open disc D centred at A,
the only analytic function f : D — which satisfies the equation (T'—\) f(\) =
0 for all A € D is the function f = 0. An operator T' € B(X) is said to have
SVEP if T has SVEP at every point A € C. Obviously, every T' € B(X)
has SVEP at the points of the resolvent p(T") := C\ o(T"). Moreover, from
the identity theorem for analytic function, it easily follows that T' € B(X),
as well as its dual 7%, has SVEP at every point of the boundary do(T) =
0o (T™*) of the spectrum o (7). In particular, both 7" and 7™ have SVEP at
every isolated point of the spectrum, see [1]. Let T' € B(X) and let s € N
then T has uniform descent for n > s if R(T") + ker(T™) = R(T") + ker(T*)
for all n > s. If in addition if R(7) + ker(7"®) is closed then T is said to
have topological descent for n > s [7]. Recall that an operator T is said to
be isoloid if A € isoo(T) implies A € 0,(T) and that T € B(X) is said to
be a-isoloid if A € isoo,(T) implies A € 0,(T). It is well-known that if T is
a-isoloid, then T' is isoloid but not conversely.

Lemma 2.1. ([8]) Let T € B(X) and S € B(Y). If T and S are isoloid,
then T ® S is isoloid.

Lemma 2.2. ([11]) If T and S are isoloid operators on infinite-dimensional
space, then

EYT®S) C E°(T)E°(S).
3. PROPERTY (Bw) AND TENSOR PRODUCT

The problem of transferring property (Bb), property (Sw), generalized
Weyl’s theorem and Property (b) from operators 7" and S to their tensor
product T'® S was considered in [16], [15], [17] and [18]. The main objective
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of this section is to study the transfer of property (Bw) from a bounded
linear operator T' acting on a Banach space X and a bounded linear operator
S acting on a Banach space ) to their tensor product T'® S.

Let BF, denote the set of upper semi B-Fredholm operators and let
OSBF, = {)\ eC: X\ ¢ BF+(X)} We write UBw(T) = {)\ eC: e OSBF,
or ind(T"— \) > 0}.

The quasinilpotent part Ho(7 — \) and the analytic core K (T — A\I) of
T — A are defined by

Ho(T = A):={z € X : lim (T~ A)"z|= = 0}.
and

K(T — \) = {x € X : there exists a sequence {z,} C X and ¢ >0

for which x = zo, (T — N)zpt1 = zpand ||z, || < 8"||z|/for all n=1,2,---}.

We note that Ho(T' — \) and K (T — \) are generally non-closed hyper-
invariant subspaces of 7' — A such that (7" — A\)7P(0) C Ho(T' — ) for all
p=0,1,--- and (T'—=A\)K(T'—\) = K(T'— \). Recall that if A € iso(a(T)),
then Ho(T — A\) = xr({\}), where x7({A}) is the glocal spectral subspace
consisting of all z € X for which there exists an analytic function f : C\
{A\} — X that satisfies (T'— u)f(p) = = for all p € C\ {\}.

Theorem 3.1. Let T € B(X). If T obeys property (Bb). Then the following
statements are equivalent.

(i) T obeys property (Bw);
(i1) opw(T) N E°(T) = 0;
(iii) E%(T) = n%(T).

Proof. (i)== (ii). Let A € o(T)\opw(T). Since T satisfies (Bb), A € 7%(T).

Thus A € o(T) \ 04(T") and hence o3(T") C opw (T'). Since the reverse inclu-

sion is always true, we have o,(T") = opw (7).

(ii)== (i¢). Assume that 0,(T) = opw(T') and we will establish that

AI(T) = 7%(T). Suppose A € AI(T). Then A € o(T) \ op(T). Hence

A € 7%T). Conversely suppose A € 7°(T). Since opw(T) = op(T),

A e AI(T).

(il)= (i1i). Let A € AY(T). Since opw (T') = op(T), A € U( )\U (T), i.e

A € 7%(T) which implies that A\ € E9(T). Thus opw (T) U E°(T) 2 o )

Since opw (T) U E°(T) C o(T), always we must have UBw( YU EYT) =

o(T).

(iii)== (4i). Suppose that E®(T) = 7°(T). As T obeys property (Bb)

then o(T)\ opw ( ) = 7%(T) and so o(T) \ opw(T) = E°(T). That is,
EXT)Nad(T) = u



PASSAGE OF PROPERTY (Bw) 191

The following result may be found in [16], we give the proof for complete-
ness.

Theorem 3.2. Let T € B(X). Then the following statements are equivalent.
(i) T satisfies property (Bb);

(i) opw(T) = ou(T);
(iii) opw (T)U EY(T) = o(T).

Proof. ()= (ii) Since the opposite inclusion opw (1) C op(T') is always
true, we have to show that o,(7") C opw(T)). Let A ¢ opw(T). Since T
satisfies property(Bb), A € 7°(T) .Hence, A ¢ o,(T)

(il)== (i) Assume that o4(T) = opw (T') and we will establish that o(T) \
opw(T) = 7%(T). Suppose A € o(T) \ ow(T). The hypothesis o4(T) =
opw(T) 1mphes that A € o(T) \ op(T). Hence A € 7%(T) and so o(T) \
opw(T) C 7%(T) Conversely suppose A € 7(T). Since ogw (T) = o3(T),
AE O'(T) \O‘Bw(T).

(il)= (i7i) Let A € o(T) \ opw(T). Since opw(T) = op(T), A € o(T) \
oy(T), that is, A € 7%(T) which implies that A € E°(T). Thus opw (T) U
E%T) D o(T). Since opw(T) U E°(T) C o(T), always we must have
opw (T) U EYT) = o(T).

(iii)==(ii) Suppose A € o(T) \ opw(T). Since opw (T) U EX(T) = o(T),
A € E%T). In particular X is an isolated point of o(T). Then by [3,
Theorem 4.2] that A ¢ op(T) and this implies that A € «(T) and so
a(T — ) = d(T — \) < oo. So, it follows from [1, Theorem 3.4] that
B(T — \) = a(T — \) < co. Hence A € 7%(T). Therefore, A ¢ o,(T). Since
the other inclusion is always verified, we have TsBr; (T) = op(T"). This
completes the proof. [ |

Ezxample 3.3. Let T be a non-zero nilpotent operator and let .S be a quasinilpo-
tent which is not nilpotent. Then it easy to see that

U(T) = {0},O'Bw(T) = @ and O'(S) = O'Bw(S) = {0}

Hence T and S satisfy property (Bw). Since T'® S is nilpotent, we have
opw (T ® S) = 0. Hence T'® S satisfies property (Bw). However,

O’Bw(T)U(S) U UBw(S)O'(T> = {0} #* O'Bw(T (9 S)

Here 0 € isoo(T' ® S) and 0 is a pole. Moreover, we note that 7',S and
T ® S satisfies generalized a-Browder’s theorem

Lemma 3.4. [16, Lemma 3.1] Let A € B(X) and B € B(Y). Then
opw(A® B) Copw(A)o(B)Uopw(B)o(A) C oy(A)o(B) Uoy(B)o(A)
Cop(A)o(B)Uoy(B)o(A) = op(A® B).



192 M.H.M.RASHID

Lemma 3.5. [16, Lemma 3.2] Let T € B(X) and S € B(Y) obey prop-
erty (Bb). Then T ® S obeys property (Bb) if and only if opw (T ® S) =
opw(T)o(S) Uapw (S)a(T).

In [11], Kubrusly and Duggal studied the stability of Weyl’s theorem
under tensor product in the infinite dimensional space setting. Rashid [15]
studied the stability of generalized Weyl’s theorem under tensor product in
the infinite dimensional Banach space. The following main theorem shows if
isoloid operators T" and S satisfies property (Bw) and the equality opw (T'®
S) =opw(T)o(S)Uopw (S)o(T), then T'® S satisfies property (Bw) in the
infinite dimensional space setting. Let opp(T) = {X € 0,(T) : a(T — \) <
x}={AeC:0<a(T —\) < oo}

Definition 1. An operator 7" € B(X) is said to be finitely isoloid if all
the isolated points of its spectrum are eigenvalues of finite multiplicity i.e.
isoo(T) C E°T). An operator T € B(X) is said to be finitely polaroid

(resp., polaroid) if all the isolated points of its spectrum are poles of finite
rank i.e. isoo(T) C 7%(T), (resp., isoo(T) C 7(T)).

Theorem 3.6. Let T € B(X) and S € B(Y) such that T and S are finite-
isoloid and 0 ¢ isoo(T ® S). If property (Bw) holds for T and S, then the
following statements are equivalent.

(a) T ® S satisfies property (Bw).

(b) O'Bw(T X S) = O'BVV(T)O'(S) U O'(T)UB[/V(S).
Proof. (a)== (b): Assume that T"® S satisfies property (Bw). Let

AE EO(T ®S)=0(T)opw(S)Uopw(T)o(S).
Since 0 ¢ isoo(T ® S), then A\ # 0. Hence \ € iso(T ® S) = iso(T)iso(S).
That is, A = pv with p € iso(T) and v € iso(S). Since T and S are finite-
isoloid, then u € E%(T) = o(T) \ opw (T) and v € E°(S) = o(5) \ opw (S),
and hence A = uv ¢ opw (T)o(S)Ua(T)opw(S). Thus
opw(T)o(S)Ua(T)opw(S) C opw(T ® S).

Conversely, let A € o(T®S)\ (opw (T)o(S)Uo(T)opw(S)), then for A = pv
we have that yu € o(T) and v € o(S), hence u € E°(T) and v € E°(S). Thus
A=uv € EX(T®S)=0(T®S)\ opw(T ®S). Therefore,

opw (T ® S) = opw(T)o(S)Ua(T)opw(S).
(b)== (a): Since T" and S obey property (Bw), then
o(T)\ opw(T) = E°(T) and o(S) \ opw(S) = E°(S).
Assume that
opw (T ® S) = opw(T)o(S)Ua(T)opw(S).
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Let A € E9(T ® S). Then there exists p € iso(T) and v € iso(S) such that
A = pv. Since T and S are finite-isoloid, then u € E%(T) and v € E°(S).
Hence p ¢ opw (T) and v ¢ opw(S). Then A ¢ opw (T ® S). Thus

ENT®8)Ca(T®S)\opw(T®S).

Conversely, assume that A ¢ o(T ® S) \ opw (T ® S), then there exists
peo(T)\opw(T) and v € o(S) \ opw(S) such that A = pv. Since

T®S=(T—p) @S+ ul®(S—v),
then we can see that A € E°(T'® S). Hence T ® S obeys property (Bw). W

Lemma 3.7. If T € B(X) and S € B(Y) are finitely polaroid, then so is
T®S.

Proof. If isoo(T) = isoo(S) = (), then isoo(T ® S) = (). Observe also that if
either of isoo (T') or isoo (S) is the empty set, say isoo(T') = (), then it follows
from [10, Proposition 3] that isoo(T'® S) C {0} and 0 € isoo(S). But then
0 € 7¥(S), which implies that 0 € 7%(T ® S). Let A € isoo(T ® S) be such
that A = pv, p € isoo(T) and v € isoo(S). Then pu € 7°(T) and v € 79(S).
Hence, we have A € 7%(T' ® S). [

T € B(X) polaroid implies T* polaroid. It is known that if 7" or 7™ has
SVEP and T is polaroid, then T" and T™* satisfy generalized Weyl’s theorem.
Note as well known is the fact, [13, Theorem 2.15] that if 7" or T has SVEP
and T is finitely polaroid, then T obeys property (Bw). The following
theorem is the tensor product analogue of this result.

Theorem 3.8. Suppose that T € B(X) and S € B(Y) are finitely polaroid.
If T and S have SVEP (or T* and S* have SVEP), then T ® S satisfies
property (Bw).

Proof. The hypotheses by [13, Theorem 2.15] imply that 7" and .S obey prop-
erty (Bw) and it then follows from Theorem 2.5 of [13] that 7" and S satisfy
generalized Browder’s theorem and 7(T) = E°(T) and 7(S) = E°(S). Hence
T ® S satisfies generalized Browder’s theorem. Thus generalized Browder’s

theorem transfer from T and S to T'® S. Hence
opw (T ® S) =o(T)opw(S)Ua(S)opw(T).

Evidently, T ® S is finitely polaroid (3.7); combining with T'® S satisfies
generalized Browder’s theorem, it follows that

o(T®S)\opw(T®S)=n(T®S)=E (T®S),
that is, T'® S obeys property (Bw). [ |
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Example 3.9. Let T, S € B(¢?) be defined by

1

T:3@I:<3 > and S = diag{1,2} & 61 = 2

d 61

so that

35
S

_ _ (35 _ S
T®S—3S@I®S—< I®S>_

Hence
o(T) =isoo(T) = {1,3}, o(S) =isoc(S) ={1,2,6},
EYT) = {3}, opw(T) = 0u(T) = {1}, E°(S) = {1,2}, opw(S) = 0u(S) = {6},
o(T®S)=iso(T®S)={1,2,3,6,18} and E°(T ® S) = {3}.
Since T, S and T'® S are self-adjoint, they all satisfy property (Bw).

We now give an example to show that property (Bw) does not transfer
from operators T and S to the tensor product T'® S.

Ezample 3.10. Let R be the backward shift operator on ¢2,
R: 0* = * defined by R(z1, 29, ) = (22,23, ).

It is known that R satisfies property (Bw). In fact ind(R—\) = 1 for |A\| < 1
and so

o(R) = 0w(R) = opw(R) =D, isooc(R) = E°(R) = 0.
Let P be a finite rank projection on 2. Then P satisfies property (Bw) and
O'(P) = {O, 1}, O'w(P) = UBW(P) = {0}
Consider operators
1 1
T:P®(§R—1) and S = (—P)@(iR*—i-l)
acting on the Hilbert space H = > @ 2. We have

o(T) = {01 U (3D~ 1) o(S) = {0, -1} U (zD +1)

7w(T) = o3w(T) = {0} U (5D~ 1) 0u(S) = omw(S) = {0} U (D + 1),

where D is the closed unit disc in the complex plane C. So, T and S* have
SVEP. Note that 7' and S both satisfy property (Bw). In particular T’
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and S satisfy generalized Browder’s theorem. Furthermore, 1 € o(T ® S) \
opw (T ® S). However, since

o(T® S) = {{0,1} U {%]D— 1}} . {{0,1} U {%]D)wt 1}}.

leacco(T®S)=1€0(T®S).
Then T'® S does not satisfy Browder’s theorem, and hence property (Bw).

4. PERTURBATIONS

Let [T,S] = T'S — ST denote the commutator of the operators 7" and
S. If Q1 € B(X) and Q2 € B(Y) are quasinilpotent operators such that
[Q1,T] = [Q2,S] = 0 for some operators T' € B(X) and S € B(Y), then

(T+@Q1)@(S+Q2)=(T®S)+Q,
where Q = Q15S+T®Q2+Q1®Q2 € B(X®Y) is quasinilpotent operator.

Theorem 4.1. Let T € B(X) and S € B(Y) having SVEP and let Q1 €
B(X) and Q2 € B(Y) be quasinilpotent operators such that [Q1,T] = [Q2,S] =
0. If T ® S is finitely isoloid, then T ® S satisfies property (Bw) implies
(T + Q1) ® (S + Q2) satisfies property (Sw).

Proof. Recall that o((T'+ Q1) ® (S + Q2)) = (T ® 5), opw (T + Q1) ®
(S +Q2) = opw(T' ®S) and that the perturbation of an operator by a
commuting quasinilpotent has SVEP if and only if the operator has SVEP.
If T'® S satisfies property (Bw), then

EXT®S)=0(T®S)\opw(T®S)
=o(T+ Q1)@ (S+Q2) \opw((T+ Q1) @ (5 + Q2)).

We prove that EY(T'® S) = E°((T + Q1) ® (S + Q2)). Observe that if X €
isoo(T'®S), then T*® S* has SVEP at \; equivalently, (T*+Q7)® (S*+ Q%)
has SVEP at \. Let A € E%(T®S); then A € o((T+Q1)®(S+Q2))\osw ((T+
Q1) ® (S + Q2)). Since (T + Q1)* ® (S + Q2)* has SVEP at A, it follows
that A ¢ 0, (T + Q1) ® (S + Q2)) and A € iso((T'+ Q1) ® (S + @Q2)). Thus
AEE((T+Q1)®(S+Q2)). Hence EX(T® S) C E°(T+ Q1) ® (S +Q2)).
Conversely, if A € E°(T 4+ Q1) ® (S + Q2)), then A € iso(T ® S), and
this, since T ® S is finitely isoloid, implies that A € E°(T ® S). Hence
EY(T+Q1)®(S+Q2) CEYT®S). u

From [5], we recall that an operator R € B(X) is said to be Riesz if R— I
is Fredholm for every non-zero complex number A. For a bounded operator
T on X, we denote by Eqr(T) the set of isolated points A of o(7") such that
ker(T'— A1) is finite-dimensional. Evidently, Eo(T) C Eos(T).
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Lemma 4.2. Let T be a bounded operator on X. If R is a Riesz operator
that commutes with T, then

Ey(T+ R)No(T) Cisoo(T).
Proof. Clearly,
Eo(T+ R)No(T) C Eof (T + R) N o(T).
and by Lemma 2.3 of [12] the last set contained in isoo (7). [ ]

Now we consider the perturbations by commuting Riesz operators. Let
T, R € B(X) be such that R is Riesz and [T, R] = 0; the tensor product T®R
is not a Riesz operator (the Fredholm spectrum op(T ® R) = o(T)op(R) U
or(T)o(R) = op(T)o(R) = {0} for a particular choice of T" only). However,
o (also, op) is stable under perturbation by commuting Riesz operators [19],
and so T satisfies Browder’s theorem if and only if T+ R satisfies Browder’s
theorem. Thus, if 0(T") = o(T + R) for a certain choice of operators T\, R €
B(X) (such that R is Riesz and [T, R] = 0), then

™(T) = o(T) \ 00(T) = o(T + R) \ 0s(T + R) = 7°(T + R),

where 79(T) is the set of A\ € isoo(T) which are finite rank poles of the
resolvent of T'. If we now suppose additionally that T satisfies property
(Bw), then

(4.1) E%T) = o(T)\ opw(T) = o(T) \ 0u(T) = o(T + R) \ 0w (T + R),

and a necessary and sufficient condition for 7'+ R to satisfy property (Bw)
is that E°(T + R) = E°(T). One such condition, namely 7 is finitely isoloid.

Proposition 4.3. Let T,R € B(X), where R is Riesz, [I,R] = 0 and T
is finitely isoloid. Then T satisfies property (Bw) implies T + R satisfies
property (Bw).

Proof. Observe that if T' obeys property (Bw), then identity (4.1) holds.
Let A € E°(T). Then it follows from Lemma 4.2 that A € E%(T) N o (T) =
E%T + R - R) C isoo(T + R) and so T* + R* has SVEP at \. Since
A€ o(T+R)\ ow(T+ R), T+ R* has SVEP at X implies T+ R — \ is
Fredholm of index 0 and so A € E*(T + R). Thus E°(T) C E°(T + R). Now
let A€ EO(T+R). Then A € E%(T+R)No(T+R) = E°(T+ R)No(T) C
isoo(T'), which by the finite isoloid property of T" implies A € E°(T). Hence
E%T + R) C EY(T). [

Theorem 4.4. Let T € B(X) and S € B(X) be finitely isoloid operators
which satisfy property (Bw). If Ry € B(X) and Ry € B(Y) are Riesz opera-
tors such that [T, R1] =[S, R2] = 0, o(T+R1) = o(T) and o(S+Rz2) = o(9),
then T ® S satisfies property (Bw) implies (T + R1) ® (S + R2) satisfies
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property (Bw) if and only if Browder’s theorem transforms from T+ Ry and
S + Ry to their tensor product.

Proof. The hypotheses imply (by Proposition 4.3) that both 7'+ R; and
S + R satisfy property (Bw). Suppose that T'® S satisfies property (Bw).
Then o(T®B)\opw (T®S) = E°(T®S). Evidently T®S satisfies Browder’s
theorem, and so the hypothesis T" and S satisfy property (Bw) implies that
Browder’s theorem transfers from 7" and S to T' ® S. Furthermore, since ,
o(T+ Ry)=0(T), 0(S+ R2) = 0(S), and oy, is stable under perturbations
by commuting Riesz operators,

opw(T®8)=0u,(T®S)=0(T)ow(S)Uaow(T)o(S)
=0(T + R1)ow(S + R2) Uow(T + Ry)o(S + Ra)
= U(T + Rl)UBw(S + R2) U UBI/V(T + Rl)U(S + Rg)

Suppose now that Browder’s theorem transfers from 7"+ Ry and S + Ry to
(T'+ R1) ® (S + Ry). Then

ow(T®S) =0u(T+ R1) ® (S + R2))
and
EY(T®S)=0((T+R)®(S+ R2))\ 0w((T + Ry) ® (S + Ry)).

Let A € E%(T®S). Then \ # 0, and hence there exist u € o(T+ R1)\ 0w (T+
Ry) and v € 0(S + R2) \ 0, (S + R2) such that A = uv. As observed above,
both T + Ry and S + Ry satisfy property (Bw); hence u € E°(S + Ry) and
v € EY(S+Rs). This, since A € 0(T®S) = o((T+R1)®(S+R2)), implies A €
EY((T+R1)®(S+Ry)). Conversely, if \ € E°((T+R1)®(S+Rz)), then X # 0
and there exist u € E°(T+R;) C isoo(T) and v € EY(S+Ry) C isoo(S) such
that A = uv. Recall that E°((T+ R1) @ (S+ R2)) € E°(T + R1)E°(S + Ry).
Since T and S are finite isoloid, u € E°(T) and v € E°(S). Hence, since
o(T+R)®(S+Ry))=0(T®S), \=uv e E°(T®S). To complete the
proof, we observe that if the implication of the statement of the theorem
holds, then (necessarily) (T + R1) ® (S + R2) satisfies Browder’s theorem.
This, since T'+ R; and S + R satisfy Browder’s theorem, implies Browder’s
theorem transfers from 7'+ Ry and S + Ry to (T'+ R1) ® (S + Ra). [ |
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