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ON THE CLASSIFICATION OF RULED MINIMAL

SURFACES IN PSEUDO-EUCLIDEAN SPACE

Yuichiro Sato

Abstract. This paper gives, in generic situations, a complete classifica-
tion of ruled minimal surfaces in pseudo-Euclidean space with arbitrary
index. In addition, we discuss the condition for ruled minimal surfaces
to exist, and give a counter-example on the problem of Bernstein type.

1. INTRODUCTION

In surface theory, research of ruled surfaces has a long history. In par-
ticular, there are many results on ruled minimal surfaces. For example,
E. Catalan [4] proved that the non-planar, ruled minimal surface is a heli-
coid only in three dimensional Euclidean space. Recently, submanifolds of
pseudo-Riemannian manifolds, for instance Lorentzian manifolds, are stud-
ied actively. They are focused not only in geometry but also in physics.
Pseudo-Euclidean space is one of pseudo-Riemannian manifolds, and in-
cludes non-trivial ruled minimal surfaces besides helicoids. O. Kobayashi [8]
classified spacelike ruled minimal surfaces in three dimensional Minkowski
space, and I. van de Woestijne [11] classified timelike ruled minimal surfaces
in three dimensional Minkowski space. Thus, the classification for three di-
mensional Minkowski space was completed. More generally, H. Anciaux [1]
studied on ruled minimal surfaces in pseudo-Euclidean space with arbitrary
index. He claimed that there is no new ruled minimal surface except for
ones stated above. However, his proof is incomplete. We are motivated
by his consequence and start to research. We constructed new examples of
ruled minimal surfaces in four dimensional Minkowski space (see also [7]).
These examples are not isometric to any ruled minimal surface which has
been obtained already.

In this paper, we are inspired by Anciaux’s proof, and give a complete
classification of ruled minimal surfaces in n-dimensional pseudo-Euclidean
space with arbitrary index p (Theorem 6). Moreover, we give the condi-
tion of ambient spaces for classified ruled minimal surfaces to exist in the
space (Remark 10). Summing up these facts, we see that there are very
fruitful ruled minimal surfaces in four dimensional Minkowski space or four
dimensional pseudo-Euclidean space with neutral metric having index 2. In

Mathematics Subject Classification. Primary 53A10; Secondary 53B30.
Key words and phrases. minimal surface, ruled surface, pseudo-Euclidean space.

173



174 Y. SATO

particular, it should be remarkable that some of those ruled minimal sur-
faces are embedded in three dimensional subspace with degenerate metric
of pseudo-Euclidean space (Remark 11). This is one of the interesting re-
sults. We expect and hope that the study of spaces with degenerate metrics
becomes important more and more. Moreover, in pseudo-Euclidean space
whose dimension is greater than or equal to four, we remark that the prob-
lem of Bernstein type does not hold in a sense.

In the section two, we give fundamental definitions and notations and
state the necessary proposition to classify. In the section three, we classify
ruled minimal surfaces in pseudo-Euclidean space. To classify, we consider
cases of the cylinder type and non-cylinder type respectively. Here we discuss
the existence of these surfaces and the problem of Bernstein type.

2. PRELIMINARIES

Let I ⊂ R be an open interval including 0 ∈ R. Assume that γ : I →
Rn \ {0} is a C∞-curve and x : I → Rn is a C∞-regular curve. Then, we
define a mapping f by the following

f : I × R ∋ (s, t) −→ γ(s)t+ x(s) ∈ Rn.

From now on, we assume that f is an immersion. The image S := {γ(s)t+
x(s) ∈ Rn | (s, t) ∈ I ×R} of this mapping f is called a ruled surface in Rn.
Moreover we define the curve γ as a direction curve on S, and the curve
x as a base curve on S. In particular, if the direction curve is parallel, i.e.
γ(s) ≡ γ0 : constant, then we say that a given ruled surface is cylinder. If
not so, we say that it is non-cylinder.

As the ambient space, we consider pseudo-Euclidean space

Rn
p :=

Rn, ⟨· , · ⟩p = −
p∑

i=1

dx2i +

n∑
j=p+1

dx2j

 ,

where n ≥ 3 and 0 ≤ p ≤ q := [n2 ]. For each vector v ∈ Rn
p , we should

remark that the number ⟨v, v⟩p is not necessarily non-negative. We define
causal characters for a non-zero vector v ∈ Rn

p .

• A vector v is called spacelike if ⟨v, v⟩p > 0.
• A vector v is called timelike if ⟨v, v⟩p < 0.
• A vector v is called null or lightlike if ⟨v, v⟩p = 0.

A C∞-regular curve c in Rn
p is called a null curve if for any s ∈ I, it holds

the condition ⟨c′(s), c′(s)⟩p = 0. Finally, a ruled surface S in Rn
p is minimal

if the induced metric g on S is non-degenerate, and the mean curvature
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vector field H⃗ of S is identically vanishing,

i.e. det g = g11g22 − g212 ̸= 0, H⃗ =
1

2

g11h22 − 2g12h12 + g22h11
det g

≡ 0,

where gij are the coefficients of the induced metric g and hij are the co-
efficients of the second fundamental form h with respect to the coordinate
system (u1, u2) = (s, t). A non-degenerate submanifold in Rn

p is totally geo-
desic if its second fundamental form vanishes identically. The classification
of totally geodesic submanifolds in pseudo-Euclidean space was completed.

Proposition 1. [1, Proposition 4, p. 13] The totally geodesic submanifolds
of the pseudo-Euclidean space Rn

p equipped with the above metric ⟨· , · ⟩p are
the open subsets of its non-degenerate affine subspaces.

From now on, we use the following notations:
O.S. : orthogonal system, O.N.S. : orthonormal system, and O.N.F. : or-
thonormal frame.

3. CLASSIFICATION

In this section, we classify ruled minimal surfaces in Rn
p .

Theorem 2. [1, Theorem 8, p. 45] Let S be a cylinder ruled surface. If S
is minimal, then it is an open subset of one of the following surfaces:

1. a plane,
2. a minimal cylinder,

where minimal cylinders satisfy that γ0 is a null vector and x(s) is a null
curve such that ⟨γ0, x′(s)⟩p ̸= 0.

Next, we classify non-cylinder ruled minimal surfaces.

Proposition 3. [1, Lemma 5, p. 41] Suppose that a direction curve γ sat-
isfies that ⟨γ(s), γ(s)⟩p ≡ 0 and γ is not parallel. Then, the ruled surface S
is not minimal.

In this paper, we classify non-cylinder ruled minimal surfaces in generic
situations. Here, a ruled surface is said to be singular at a point s0 ∈ I if it
satisfies that,

(i) for any of functions ⟨γ, γ⟩p, ⟨γ′, γ′⟩p, ⟨x′, x′⟩p and ⟨γ′, x′⟩p, it is zero
at s0 and it is not a zero-function on an arbitrary neighborhood at
s0,

or

(ii) vectors γ′, x′ are linearly dependent at s0 and they are linearly in-
dependent at a point on an arbitrary neighborhood at s0.
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A ruled surface is in generic situations if it is not singular at any point
s ∈ I. Hereinafter, we make some preparation to classify. We can normalize
⟨γ(s), γ(s)⟩p = ϵ = ±1 by Proposition 3 to be in generic situations.

When the direction curve γ(s) is not a null curve, let s be the arc length
parameter for γ. Then, we define

η := ⟨γ′, γ′⟩p = ±1, 0.

When γ(s) is a null curve and the base curve x(s) is not a null curve, let s
be the arc length parameter for x. Then, we define

δ := ⟨x′, x′⟩p = ±1, 0.

Moreover, for non-cylinder ruled minimal surfaces, we may assume g12 =
0. In fact, set x̃(s) := x(s) + λ(s)γ(s) (λ(s) : a real function), consider a
mapping f(s, t) = γ(s)t+ x̃(s). Then, since we compute

fs(s, t) = γ′(s)t+ x̃′(s) = γ′(s)t+ x′(s) + λ′(s)γ(s) + λ(s)γ′(s),

ft(s, t) = γ(s),

note that ⟨γ(s), γ′(s)⟩p = 1
2

d
ds⟨γ(s), γ(s)⟩p = 0, we compute g12 = ⟨fs, ft⟩p =

⟨γ(s), x′(s)⟩p + ϵλ′(s). Again, we define λ(s) as

λ(s) = −ϵ

∫ s

0
⟨γ(u), x′(u)⟩pdu.

We can take the base curve x of the immersion f which satisfies g12 = 0 by
this. This assumption is compatible with one that the curve γ(s), or x(s)
is reparametrized by the arc length parameter. And, since fss = γ′′(s)t +
x′′(s), fst = γ′(s), ftt = 0, by the mean curvature formula, we have

2H⃗(s, t) =
g22h11
g11g22

=
h11
g11

.(3.1)

By the formula (3.1), S is minimal if and only if h11(s, t) = 0 ((s, t) ∈ I×R).
In addition, from g11(s, t) = ηt2 + 2⟨γ′, x′⟩pt+ δ, we get the following cases:

η = ⟨γ′, γ′⟩p δ = ⟨x′, x′⟩p ⟨γ′, x′⟩p
±1 non-zero 0 (i)
±1 0 whatever (ii)
±1 non-zero non-zero (iii)
0 ±1 non-zero (iv)
0 ±1 0 (v)
0 0 non-zero (vi)
0 0 0 (vii)

Table 1
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In the case (vii), the conditions imply that the induced metric g ≡ 0.
Thus, the case (vii) is excluded. Now, h11(s, t) ≡ 0 implies fss(s, t) ∈
span{fs, ft}. Since g11 ̸= 0, g12 = 0, g22 = ϵ ̸= 0, we see that{

fs√
|⟨fs, fs⟩p|

,
ft√

|⟨ft, ft⟩p|

}
is an O.N.F. on S. Thus, we get

fss =
⟨fss, fs⟩p
⟨fs, fs⟩p

fs +
⟨fss, ft⟩p
⟨ft, ft⟩p

ft.

And, noting facts that ⟨γ′, γ′′⟩p = 1
2

d
ds⟨γ

′(s), γ′(s)⟩p = 0, ⟨γ, γ′⟩p = 0 and
d
ds⟨γ, γ

′⟩p = ⟨γ′, γ′⟩p + ⟨γ, γ′′⟩p = 0 lead to ⟨γ, γ′′⟩p = −η, we calculate

(3.2) fss = C(s, t)(γ′t+ x′) + ϵ(−ηt+ ⟨γ, x′′⟩p)γ,

where C(s, t) is defined as

C(s, t) :=
(⟨γ′′, x′⟩p + ⟨γ′, x′′⟩p)t+ ⟨x′′, x′⟩p

ηt2 + 2⟨γ′, x′⟩pt+ δ
.

On the other hand, we calculate directly

fss = γ′′(s)t+ x′′(s).(3.3)

Proposition 4. Let S be a non-cylinder ruled minimal surface. If γ′(s), x′(s)
are linearly independent for any s ∈ I, then C(s, t) does not depend on the
variable t, moreover C(s, t) ≡ 0 holds when η = ±1.

Proof. From (3.2) and (3.3), it holds

tC(s, t)γ′ + C(s, t)x′ − ϵηtγ + ϵ⟨γ, x′′⟩pγ = γ′′t+ x′′.(3.4)

Differentiating on both sides with respect to t,(
C(s, t) + t

∂C

∂t
(s, t)

)
γ′ +

∂C

∂t
(s, t)x′ − ϵηγ = γ′′.

Again, differentiating on both sides with respect to t, we compute(
t
∂2C

∂t2
(s, t) + 2

∂C

∂t
(s, t)

)
γ′ +

∂2C

∂t2
(s, t)x′ = 0.

Since γ′(s), x′(s) are linearly independent, we have

t
∂2C

∂t2
(s, t) + 2

∂C

∂t
(s, t) = 0,

∂2C

∂t2
(s, t) = 0.
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Therefore, we see ∂C
∂t (s, t) = 0, i.e. C(s, t) does not depend on t. When we

compare the coefficient of degree one for t and the constant coefficient on
both sides of (3.4), we get{

γ′′(s) = C(s)γ′(s)− ϵηγ(s),(3.5)

x′′(s) = C(s)x′(s) + ϵ⟨γ(s), x′′(s)⟩pγ(s),(3.6)

where we simply express C(s) because C(s, t) does not depend on t. If
η = ±1 holds, by the inner product of γ′(s) for the formula (3.5), then it
follows that C(s) ≡ 0. □

When η = 0, we prove the following proposition.

Proposition 5. Let S be a non-cylinder ruled minimal surface. If η = 0
and δ = ±1 hold, then we have C(s, t) ≡ 0.

Proof. From (3.2) and (3.3) in the case η = 0, it holds that

(⟨γ′′, x′⟩p + ⟨γ′, x′′⟩p)t+ ⟨x′′, x′⟩p
2⟨γ′, x′⟩pt+ δ

(γ′t+ x′) + ϵ⟨γ, x′′⟩pγ = γ′′t+ x′′.

Since ⟨γ′′, x′⟩p + ⟨γ′, x′′⟩p = d
ds⟨γ

′, x′⟩p, ⟨x′′, x′⟩p = 1
2

d
ds⟨x

′, x′⟩p = 0, we get(
d

ds
⟨γ′, x′⟩p

)
t(γ′t+x′)+ϵ⟨γ, x′′⟩p(2⟨γ′, x′⟩pt+δ)γ = (2⟨γ′, x′⟩pt+δ)(γ′′t+x′′).

When we compare the coefficient of degree one on both sides, it holds that

2ϵ⟨γ, x′′⟩p⟨γ′, x′⟩pγ +

(
d

ds
⟨γ′, x′⟩p

)
x′ = δγ′′ + 2⟨γ′, x′⟩px′′.(3.7)

Since g12 = ⟨γ, x′⟩p = 0, by the inner product of x′ for the formula (3.7), it
follows that

d

ds
⟨γ′, x′⟩pδ = δ⟨γ′′, x′⟩p,

hence

⟨γ′′, x′⟩p + ⟨γ′, x′′⟩p = ⟨γ′′, x′⟩p.
This implies that ⟨γ′, x′′⟩p = 0. By using this formula, if we consider the
inner product of γ′ for the formula (3.7), we obtain a differential equation(

d

ds
⟨γ′, x′⟩p

)
⟨γ′, x′⟩p = 0.

Thus, since we see ⟨γ′, x′⟩p = const, the numerator of C(s, t) is 0, i.e.
C(s, t) ≡ 0. □

Here, we go back to Table 1 and determine ruled minimal surfaces in the
cases (i)-(vi).



RULED MINIMAL SURFACES IN PSEUDO-EUCLIDEAN SPACE 179

Cases of (i), (ii). It is easy to prove that γ′, x′ are linearly independent.
Actually, we set

αγ′ + βx′ = 0 (α, β ∈ R).
If we consider the inner product of γ′ in the case (i), then we have α = 0.
And, x′ ̸= 0 leads to β = 0. In the case (ii), we consider the inner product
of γ′ if ⟨γ′, x′⟩p = 0 or the inner product of x′ if ⟨γ′, x′⟩p ̸= 0. Then, we
get α = 0, and we also get β = 0 because of regularity of the curve x, i.e.
the cases (i) and (ii) yield the linear independence. So, since we can apply
Proposition 4, we get the formulas (3.5), (3.6) in these cases. The condition
η = ±1 implies that {

γ′′(s) = −ϵηγ(s),(3.8)

x′′(s) = ϵ⟨γ(s), x′′(s)⟩pγ(s).(3.9)

We can determine the direction curve γ(s) and the base curve x(s) by the
formula (3.8) and (3.9). We get the following solutions by referring to [1,
pp. 44–45]

f(s, t) = (cos se1 + sin se2)t+ sv + x0 (if ϵη = 1);

f(s, t) = (cosh se1 + sinh se2)t+ sv + x0 (if ϵη = −1);

where e1 = γ(0), e2 = γ′(0), v = x′(0), x0 = x(0) ∈ Rn
p , and ei and v are

orthogonal to each other. Moreover, it holds that ⟨e1, e1⟩p = ⟨e2, e2⟩p = ±1
when ϵη = 1, and ⟨e1, e1⟩p = −⟨e2, e2⟩p = ±1 when ϵη = −1.

It is obvious that v = x′(0) is non-null in the case (i). So, we express that

∃C0 ̸= 0 : const s.t. v = C0e3,

where e3 ∈ Rn
p is a unit vector, i.e. ⟨e3, e3⟩p = ±1. Finally, making a suitable

translation and scaling, we may set C0 = 1, x0 = 0. Thus, we obtain the
following two patterns:

f(s,t) = (cos se1 + sin se2)t+ se3,

where {e1, e2, e3} : O.N.S., ⟨e1, e1⟩p = ⟨e2, e2⟩p = ±1, ⟨e3, e3⟩p = ±1;

f(s,t) = (cosh se1 + sinh se2)t+ se3,

where {e1, e2, e3} : O.N.S., ⟨e1, e1⟩p = −⟨e2, e2⟩p = ±1, ⟨e3, e3⟩p = ±1;

where the the double signs are arbitrary. On the other hand, since we see v
is null in the case (ii), again we put e3 := v and we obtain the following two
patterns:

f(s,t) = (cos se1 + sin se2)t+ se3,

where {e1, e2, e3} : O.S., ⟨e1, e1⟩p = ⟨e2, e2⟩p = ±1, ⟨e3, e3⟩p = 0;

f(s,t) = (cosh se1 + sinh se2)t+ se3,

where {e1, e2, e3} : O.S., ⟨e1, e1⟩p = −⟨e2, e2⟩p = ±1, ⟨e3, e3⟩p = 0.
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Case of (iii). First, if we assume that γ′, x′ are linearly independent, since
we can apply Proposition 4, we do not obtain new results. In fact, since
we get C(s) = 0, ⟨x′, x′⟩p ̸= 0, they imply the reduction to the case of (i).
Therefore, we assume that γ′, x′ are linearly dependent on I, i.e. there exist
a function p(s) on the interval I such that

x′(s) = p(s)γ′(s).

Then we obtain

fs(s, t) = γ′(s)t+ x′(s) = (p(s) + t)γ′(s).

We remark that p(s)+ t ̸= 0 for each (s, t) ∈ I×R since the non-degeneracy
implies g11 = ⟨fs, fs⟩p = (p(s) + t)2η ̸= 0. However, the minimality implies
that the image of the immersion is a plane. Actually, the formula (3.1)
gives h11 = 0. And, we recall h22 = 0 for a general ruled surface f(s, t) =
γ(s)t+x(s). Therefore, it suffices to prove h12 = 0. We again compute that
fst(s, t) = γ′(s). By using p(s) + t ̸= 0, we see

fst(s, t) =
1

p(s) + t
fs(s, t) ∈ span{fs, ft}.

This leads to h12 = 0. Thus, it holds that second fundamental form h = 0.
It is a plane by Proposition 1. In summary, the case of (iii) is reduced to
the case of (i), or gives a plane.

Case of (iv). Since we can apply Proposition 5, we have C(s, t) = 0. Again,
from (3.2) and (3.3), it follows that

ϵ⟨γ, x′′⟩pγ = γ′′t+ x′′.

When we compare the coefficients on the both sides with respect to t, we
get {

γ′′(s) = 0,(3.10)

x′′(s) = ϵ⟨γ(s), x′′(s)⟩pγ(s).(3.11)

We get the following solution by referring to [1, pp. 44–45] again

f(s, t) =

(
t+

C1

2
s2
)
e1 +

√
|C1|
2

(
C1

2

s3

3
+ st− s

)
e2

+

√
|C1|
2

(
C1

2

s3

3
+ st+ s

)
e3 +

ϵ

2C1
⟨v, v⟩pe1 + x0,

where {e1, e2, e3} is an O.N.S., and v = x′(0), x0 = x(0). Moreover, C1

is a non-zero constant number given by C1 := −ϵ⟨γ′, x′⟩p, where ⟨γ′, x′⟩p is
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constant in this case. Finally, making a suitable translation and scaling, we
may set C1

2 = 1, x0 = − ϵ
2C1

⟨v, v⟩pe1. Thus, we obtain

f(s,t) = (t+ s2)e1 +

(
s3

3
+ st− s

)
e2 +

(
s3

3
+ st+ s

)
e3,

where {e1, e2, e3} : O.N.S., ⟨e1, e1⟩p = ⟨e2, e2⟩p = −⟨e3, e3⟩p = ±1.

Case of (v). Since we can apply Proposition 5, we have C(s, t) = 0. C1 =
−ϵ⟨γ′, x′⟩p = 0 implies that {

γ′′(s) = 0,

x′′(s) = 0.

These formulas give that

γ(s) = se1 + e2, x(s) = se3 + x0,

where e1 = γ′(0), e2 = γ(0), e3 = x′(0), x0 = x(0) ∈ Rn
p . Thus, we have

f(s, t) = γ(s)t+ x(s) = ste1 + te2 + se3 + x0.

In particular, from the condition of (v), we calculate that ⟨e1, e1⟩p = 0,
⟨e2, e2⟩p = ϵ = ±1, ⟨e3, e3⟩p = δ = ±1, ⟨e1, e2⟩p = ⟨γ(0), γ′(0)⟩p = 0. The

facts that g12 = 0, ⟨e2, e3⟩p = 0 and d
dsg12 = 0 imply that ⟨e3, e1⟩p = 0.

Finally, making a suitable translation, we may set x0 = 0. Thus, we obtain

f(s,t) = ste1 + te2 + se3,

where {e1, e2, e3} : O.S., ⟨e1, e1⟩p = 0, ⟨e2, e2⟩p = ±1, ⟨e3, e3⟩p = ±1;

where the double signs are arbitrary.

Case of (vi). We will see C(s, t) directly since we can apply neither Propo-
sition 4 nor Proposition 5. We have

C(s, t) =
d
ds⟨γ

′, x′⟩pt
2⟨γ′, x′⟩pt

=
d
ds⟨γ

′, x′⟩p
2⟨γ′, x′⟩p

.

Therefore, from (3.2) and (3.3), it holds

d
ds⟨γ

′, x′⟩p
2⟨γ′, x′⟩p

(γ′t+ x′) + ϵ⟨γ, x′′⟩pγ = γ′′t+ x′′.(3.12)

We have not yet used the freedom that we enjoy in reparametrizing γ(s)
in the case (vi). By referring [1, p. 44], we know that C(u, t) = 0, where
u = u(s) is an another parameter. So, ⟨γ′, x′⟩p is a non-zero constant, i.e. the
reduction to the case in which the function ⟨γ′, x′⟩p is a non-zero constant.

If ⟨γ′, x′⟩p is a non-zero constant, using formula (3.12) from d
ds⟨γ

′, x′⟩p = 0,
we get

ϵ⟨γ, x′′⟩pγ = γ′′t+ x′′.
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This means immediately the reduction to the case (iv). Hence, we do not
get new results in this case. Summing up the cases from (i) to (vi), the
classification is completed by using Theorem 2 and Proposition 3.

Theorem 6. Let S be a non-planar, ruled minimal surface of pseudo-
Euclidean space Rn

p in generic situations. Then, S is locally homothetic
to an open subset of the following surfaces.

1. A minimal cylinder
f(s, t) = γ0t+ x(s),
where γ0 : null vector, x(s) : null curve s.t. ⟨γ0, x′(s)⟩p ̸= 0;

2. An elliptic helicoid of the first kind
f(s, t) = (cos se1 + sin se2)t+ se3,
where {e1, e2, e3} : O.N.S., ⟨e1, e1⟩p = ⟨e2, e2⟩p = ±1, ⟨e3, e3⟩p = ±1;

3. An elliptic helicoid of the second kind
f(s, t) = (cos se1 + sin se2)t+ se3,
where {e1, e2, e3} : O.S., ⟨e1, e1⟩p = ⟨e2, e2⟩p = ±1, ⟨e3, e3⟩p = 0;

4. A hyperbolic helicoid of the first kind
f(s, t) = (cosh se1 + sinh se2)t+ se3,
where {e1, e2, e3} : O.N.S., ⟨e1, e1⟩p = −⟨e2, e2⟩p = ±1, ⟨e3, e3⟩p = ±1;

5. A hyperbolic helicoid of the second kind
f(s, t) = (cosh se1 + sinh se2)t+ se3,
where {e1, e2, e3} : O.S., ⟨e1, e1⟩p = −⟨e2, e2⟩p = ±1, ⟨e3, e3⟩p = 0;

6. A parabolic helicoid

f(s, t) = (t+ s2)e1 +

(
s3

3
+ st− s

)
e2 +

(
s3

3
+ st+ s

)
e3,

where {e1, e2, e3} : O.N.S., ⟨e1, e1⟩p = ⟨e2, e2⟩p = −⟨e3, e3⟩p = ±1;
7. A minimal hyperbolic paraboloid

f(s, t) = ste1 + te2 + se3,
where {e1, e2, e3} : O.S., ⟨e1, e1⟩p = 0, ⟨e2, e2⟩p = ±1, ⟨e3, e3⟩p = ±1;

where the double signs are arbitrary.

Remark 7. Among surfaces of Theorem 6, the surfaces of 3, 5 and 7 cannot
be constructed in the case n = 3. Actually, since the O.S. contains a null
vector, we cannot take the two or more linearly independent vectors which
orthogonal to it. But, it can be constructed when n ≥ 4, p ≥ 1. For instance,
In the case n = 4, p = 2, if we consider

e1 =


1
0
0
0

 , e2 =


0
0
1
0

 , e3 =


0
1
0
1

 ,

then this is an example of the hyperbolic helicoids of the second kind. More-
over, from the consequence of this theorem, the non-planar ruled minimal
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surfaces of the canonical Euclidean space (Rn, ⟨· , · ⟩0) is only the elliptic
helicoid of the first kind, that is, the classical helicoid.

Remark 8. We observe the non-degeneracy and the type change of each of
surfaces (see also [1, p. 46], [4]).

1. Regarding the minimal cylinder: Since det g = −g212 = − (⟨γ0, x′⟩p)2 < 0,
the surface is timelike.
2, 4. Regarding the elliptic or hyperbolic helicoid of the first kind: In this
case, we have det g =

(
⟨e2, e2⟩pt2 + ⟨e3, e3⟩p

)
⟨e1, e1⟩p.

• When ⟨e1, e1⟩p = ⟨e2, e2⟩p = ⟨e3, e3⟩p,
the corresponding surface is elliptic helicoid, and it is spacelike.

• When ⟨e1, e1⟩p = ⟨e2, e2⟩p = −⟨e3, e3⟩p,
the corresponding surface is elliptic helicoid, and it is timelike for
t2 < 1 and spacelike for t2 > 1.

• When ⟨e1, e1⟩p = −⟨e2, e2⟩p = −⟨e3, e3⟩p,
the corresponding surface is hyperbolic helicoid, and it is timelike.

• When ⟨e1, e1⟩p = −⟨e2, e2⟩p = ⟨e3, e3⟩p,
the corresponding surface is hyperbolic helicoid, and it is spacelike
for t2 < 1 and timelike for t2 > 1.

3, 5. Regarding the elliptic or hyperbolic helicoid of the second kind: In this
case, we have det g = ⟨e1, e1⟩p⟨e2, e2⟩pt2.

• When ⟨e1, e1⟩p = ⟨e2, e2⟩p,
the corresponding surface is elliptic helicoid, and it is spacelike for
t ̸= 0.

• When ⟨e1, e1⟩p = −⟨e2, e2⟩p,
the corresponding surface is hyperbolic helicoid, and it is timelike
for t ̸= 0.

6. Regarding the parabolic helicoid: In this case, we have det g = −4⟨e1, e1⟩pt.
• When ⟨e1, e1⟩p = 1,
it is timelike for t > 0 and spacelike for t < 0.

• When ⟨e1, e1⟩p = −1,
it is spacelike for t > 0 and timelike for t < 0.

7. Regarding the minimal hyperbolic paraboloid: In this case, we have
det g = ⟨e1, e1⟩p⟨e2, e2⟩p.
It is spacelike when ⟨e1, e1⟩p = ⟨e2, e2⟩p, and it is timelike when ⟨e1, e1⟩p =
−⟨e2, e2⟩p.

Theorem 9. There is no hyperbolic helicoid of the second kind in Minkowski
n-space Rn

1 . And, there is no elliptic helicoid of the second kind in four
dimensional pseudo-Euclidean space R4

2 with the neutral metric.
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Proof. The group of linear isometries of Rn
p preserving the orientation coin-

cides with the pseudo-rotation group SO(p, n − p), which is a subgroup of
pseudo-orthogonal group O(p, n− p) (refer to [9]).

Regarding the former, we prove the non-existence of the hyperbolic heli-
coid of the second kind by contradiction : we assume that there is a hyper-
bolic helicoid of the second kind. Let {e1, e2, e3} be an O.S. on Rn

1 , which
realizes a hyperbolic helicoid of the second kind. Using the transitivity of
SO(p, n− p), we may set e1 = (1, 0, · · · , 0). Since {e1, e2, e3} are orthogonal
to each other, we can put e2 = (0, a2, · · · , an), e3 = (0, b2, · · · , bn). Since
⟨e3, e3⟩1 = 0 implies b22+ · · ·+b2n = 0, we obtain e3 = 0. But this contradicts
that e3 is a null vector.

Regarding the latter, from Remark 7, we can see the existence of hyper-
bolic helicoid of the second kind. Similarly, we prove the non-existence of
the elliptic helicoid of the second kind by contradiction. Let {e1, e2, e3} be
an O.S. on R4

2, which realizes an elliptic helicoid of the second kind. In case
that ⟨e1, e1⟩2 = ⟨e2, e2⟩2 = −1, we may assume that e1 = (1, 0, 0, 0). Then
we can express e2 = (0, a, b, c), e3 = (0, x, y, z). The fact that {e1, e2, e3} is
an O.S. gives equations 

−a2 + b2 + c2 = −1,(3.13)

−x2 + y2 + z2 = 0,(3.14)

−ax+ by + cz = 0.(3.15)

Since we have x ̸= 0 from (3.14), a =
by + cz

x
holds by (3.15). Substituting

the formula (3.13) for this,

−
(
by + cz

x

)2

+ b2 + c2 =
x2 − y2

x2
b2 − 2yz

x2
bc+

x2 − z2

x2
c2

=
z2

x2
b2 − 2yz

x2
bc+

y2

x2
c2

=
b2z2 − 2bczy + c2y2

x2
=

(
bz − cy

x

)2

= −1.

This is a contradiction. In case that ⟨e1, e1⟩2 = ⟨e2, e2⟩2 = 1, we may assume
that e1 = (0, 0, 0, 1), and we can discuss as above. □

Remark 10. We can summarize the existence by the table indicated below.
Here, the numbers 1, . . . , 7 of this table correspond to that of Theorem 6, and
the symbols ⃝ and × express the existence and non-existence respectively.
Actually, since we have the explicit expressions for the surfaces 1, . . . , 7 from
Theorem 6, we can check the other existence by taking suitable vectors.
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1 2 3 4 5 6 7
Rn
0 (n ≥ 3) × ⃝ × × × × ×
R3
1 ⃝ ⃝ × ⃝ × ⃝ ×

R4
1 ⃝ ⃝ ⃝ ⃝ × ⃝ ⃝

R4
2 ⃝ ⃝ × ⃝ ⃝ ⃝ ⃝

Rn
1 (n ≥ 5) ⃝ ⃝ ⃝ ⃝ × ⃝ ⃝

Rn
p (n ≥ 5, 2 ≤ p ≤ q) ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

Table 2

Remark 11. The following surfaces are embedded in three dimensional
subspace with degenerate metric of pseudo-Euclidean space:

• an elliptic helicoid of the second kind,
• a hyperbolic helicoid of the second kind,
• a minimal hyperbolic paraboloid.

We call a manifold M singular semi-Riemannian if M is endowed with a de-
generate metric ([10]). O. C. Stoica mentions that singular semi-Riemannian
manifolds relate with General Relativity remarkably. The research of sub-
manifolds in singular semi-Riemannian manifolds is a few. One of the mo-
tivations to research these objects is the following results.

(A) Minimal entire graphs in R3
0 are planes only ([2]).

(B) Spacelike minimal entire graphs in R3
1 are also planes only ([3]).

(C) There exists non-trivial examples of timelike minimal entire graphs
in R3

1 ([5]).

Classically, these results are also known as problems of Bernstein type. The
study of their generalizations still continues. The minimal hyperbolic pa-
raboloid is a spacelike minimal surface when ⟨e2, e2⟩p = ⟨e3, e3⟩p = ±1. This
gives a non-trivial example of minimal entire graphs. In case of four dimen-
sional Minkowski space, A. Honda and S. Izumiya [6] proved these results
as the general form by another point of view.
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