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THE FACTORIZATION OF 2 AND 3 IN CYCLIC QUARTIC

FIELDS

This paper is dedicated to the memory of Dr. Blair K. Spearman who passed away on
October 1, 2017.

Stephen C. Brown and Chad T. Davis

Abstract. Due to a theorem of Dedekind, factoring ideals generated
by prime numbers in number fields is easily done given that said prime
number does not divide the index of the field. In this paper, we de-
termine the prime ideal factorizations of both 2 and 3 in cyclic quartic
fields whose index is divisible by one of or both of these primes.

1. Introduction

Let K be a number field with ring of integers OK and discriminant d(K).
For any primitive integer θ ∈ OK , the index of θ is defined as

i(θ) =

√
D(θ)

d(K)

where D(θ) denotes the discriminant of θ. It is well known that this quantity
is always a rational integer (see [4], page 45, exercise 27c). The index i(K)
of K is then defined to be

gcd
θ∈OK

(i(θ))

where the greatest common divisor is taken over all primitive integers θ ∈
OK . Let p ∈ Z be a rational prime and consider the ideal pOK ⊆ OK . A
theorem of Dedekind allows us to determine the prime ideal decomposition
of pOK , provided that p does not divide i(K) (see [4], page 79, Theorem 27).
If p divides i(K), no such general result is known. However, many specific
results on factorizations of pOK are known, for instance if p = 2 and K is a
pure quartic field (see [7]).

Suppose that K is a cyclic quartic field. It is well known that i(K) ∈
{1, 2, 3, 4, 6, 12} (see [1], page 234). In [2], it is shown that K can be ex-
pressed uniquely as

K = Q
(√

A(D +B
√
D)

)
where A,B,C,D are rational integers satisfying

(a1) A is squarefree and odd,
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(a2) D = B2 + C2 is squarefree and B,C > 0,
(a3) gcd(A,D) = 1.
In this paper, we determine explicitly the prime ideal factorizations of

both 2OK and 3OK when i(K) is divisible by either 2 or 3 (or both). In
[6], Spearman and Williams give exact congruence conditions on A,B,C,D
that specify the factorization of i(K) (see Theorem 1.3.2 on page 24 and
Theorems 1.3.9 and 1.3.10 on page 29 of [6]). In particular, it follows easily
that when 4 | i(K) (resp. 3 | i(K)), then exactly one of ±A is congruent to
C mod 4 (resp. exactly one of B or C is congruent to 0 mod 3). Our main
theorem is as follows.

Theorem 1. Let K be a cyclic quartic field, so that there exist integers

A,B,C,D satisfying conditions (a1)-(a3) above with K = Q
(√

A(D +B
√
D)

)
.

Set

(1.1) α =

√
A(D +B

√
D) β =

√
A(D −B

√
D).

Let σi : K ↪→ C, i = 1, 2, 3, 4 be the embeddings of K in C, and for any ideal
I ⊆ OK , set σi(I) = I(i). Then

(b1) If 2 || i(K), then 2OK = P1P2 where

P1 =

⟨
2,

1 +
√
D

2

⟩
, P2 =

⟨
2,

1−
√
D

2

⟩

(b2) If 4 | i(K), then 2OK =
4∏

i=1
P (i) where P = ⟨2, θ⟩, and

θ =


A+ C + 2

4
+

1

4
(1 +

√
D + α+ β) if A ≡ C (mod 4)

A− C + 2

4
+

1

4
(1 +

√
D + α− β) if A ≡ −C (mod 4)

(b3) If 3 | i(K), then 3OK =
4∏

i=1
Q(i) where Q = ⟨3, θ⟩ and

θ =

{√
D + α− β if A ≡ 1 (mod 3), B ≡ 0 (mod 3)√
D + α if A ≡ 2 (mod 3), C ≡ 0 (mod 3)

2. A Few Lemmas

The proof of Theorem 1 will follow from the following series of lemmas.
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Lemma 1. Let K be a cyclic quartic field so that K = Q
(√

A(D +B
√
D)

)
with A,B,C,D satisfying conditions (a1)-(a3) of §1. Suppose that 2 || i(K).
Then

2OK =

⟨
2,

1 +
√
D

2

⟩⟨
2,

1−
√
D

2

⟩
.

Proof. The table on page 234 of [1] implies that the prime ideal factorization
of 2OK is

2OK = P 2
1P2P3 or 2OK = P1P2.

As K is normal over Q, the Corollary on page 71 of [4] implies that only the
latter case is permissible. By assumption, 2 || i(K), and so Theorem 1.4.2
of [6] implies that B ≡ 0 (mod 4). Furthermore, D = B2 + C2 and D is
square free, hence we see immediately that C must be odd whence D ≡ 1
(mod 8). The quadratic subfield of K is M = Q(

√
D), thus Theorem 25 of

[4] implies that 2OM factors in this quadratic subfield as

2OM =

⟨
2,

1 +
√
D

2

⟩⟨
2,

1−
√
D

2

⟩
.

Since 2OK = P1P2, this factorization lifts to the same one in OK which
proves the lemma. □

Lemma 2. Let K be a cyclic quartic field so that K = Q
(√

A(D +B
√
D)

)
with A,B,C,D satisfying conditions (a1)-(a3) of §1. Suppose that 4 | i(K).
Let θ be defined as in part (b2) of Theorem 1. Then ⟨2, θ⟩ ⊆ OK is prime.

Proof. As 4 | i(K), Theorem 1.3.10 of [6] implies that either A ≡ 1 (mod 8)
and B ≡ 0 (mod 8) or A ≡ 5 (mod 8) and B ≡ 4 (mod 8). As in Lemma
1, C must be odd, hence the Theorem on page 146 of [3] implies that θ is an
algebraic integer. There are then 4 possible cases for congruence conditions
on A,B, and C.
Case 1: Suppose that A ≡ 1 (mod 8), B ≡ 0 (mod 8), and A ≡ C (mod 4).
We have

θ =
A+ C + 2

4
+

1

4
(1 +

√
D + α+ β)

where α and β are given in Equation (1.1). We show that ⟨2, θ⟩ is prime.
Writing C = A+ 4k,A = 1 + 8ℓ, B = 8m for k, ℓ,m ∈ Z, we have

NK
Q (θ) ≡ 2 + 4k + 4ℓ+ 8kℓ+ 12ℓ2 + 4m2 (mod 16)

so that NK
Q (θ) ≡ 2 (mod 4). Thus N(θOK) ≡ 2 (mod 4) where N denotes

the ideal norm in OK .
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Write θOK = P1 . . . Pr where the Pi ⊆ OK , i = 1, . . . , r are prime ideals.
Since 2 || N(θOK), the multiplicativity of the norm implies that exactly one
of the Pi’s has norm equal to 2. Thus θOK is divisible by a prime ideal lying
over 2, and thus we deduce that this prime ideal also divides ⟨2, θ⟩ since it
clearly divides 2OK .

Now it follows from Corollary 2 on page 142 of [5] that N(⟨2, θ⟩) is equal
to the greatest common divisor of the norms of all its elements. Thus since
N(2OK) = 16 and N(θOK) ≡ 2 (mod 4), we deduce that either N(⟨2, θ⟩) =
1 or 2. The former case is impossible as ⟨2, θ⟩ is divisible by a proper prime
ideal in OK , thus N(⟨2, θ⟩) = 2 and hence ⟨2, θ⟩ is prime.
Case 2: Suppose that A ≡ 1 (mod 8), B ≡ 0 (mod 8) and A ≡ −C
(mod 4). We have

θ =
A− C + 2

4
+

1

4
(1 +

√
D + α− β).

As in Case 1, write C = −A+4k,A = 1+ 8ℓ, B = 8m for k, ℓ,m ∈ Z to get

NK
Q (θ) ≡ 2 + 12k + 4ℓ+ 8kl + 12ℓ2 + 4m2 (mod 16)

so that NK
Q (θ) ≡ 2 (mod 4). The same argument as in Case 1 implies that

P = ⟨2, θ⟩ is a proper prime ideal.
Case 3: Suppose that A ≡ 5 (mod 8), B ≡ 4 (mod 8), and A ≡ C (mod 4).
As in Case 1, write C = A + 4k,A = 5 + 8ℓ, B = 4 + 8m for k, ℓ,m ∈ Z to
get

NK
Q (θ + 2) ≡ 10 + 8k + 8ℓ+ 12m+ 8kℓ+ 4ℓ2 + 12m2 (mod 16)

so that NK
Q (θ + 2) ≡ 2 (mod 4). The same argument as in Case 1 implies

that P = ⟨2, θ + 2⟩ = ⟨2, θ⟩ is a proper prime ideal.
Case 4: Suppose that A ≡ 5 (mod 8), B ≡ 4 (mod 8) and A ≡ −C
(mod 4). As in Case 1, write C = −A + 4k,A = 5 + 8ℓ, B = 4 + 8m
for k, ℓ,m ∈ Z, to get

NK
Q (θ + 2) ≡ 10 + 8k + 8ℓ+ 12m+ 8kℓ+ 4ℓ2 + 12m2 (mod 16)

so that NK
Q (θ + 2) ≡ 2 (mod 4). The same argument as in Case 1 implies

that P = ⟨2, θ + 2⟩ = ⟨2, θ⟩ is a proper prime ideal. □

Lemma 3. Let K be a cyclic quartic field so that K = Q
(√

A(D +B
√
D)

)
with A,B,C,D satisfying conditions (a1)-(a3) of §1. Suppose that 3 | i(K).
Let θ be defined as in part (b3) of Theorem 1. Then ⟨3, θ⟩ ⊆ OK is prime.

Proof. By assumption, 3 | i(K), so that Theorem 1.3.9 of [6] implies either
A ≡ 1 (mod 3) and B ≡ 0 (mod 3) or A ≡ 2 (mod 3) and C ≡ 0 (mod 3).
As in the proof of Lemma 2, we proceed in cases.
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Case 1: Suppose that A ≡ 1 (mod 3) and B ≡ 0 (mod 3). Then C ̸≡ 0
(mod 3). Furthermore, the Theorem on page 146 of [3] implies that θ =√
D + α − β is an algebraic integer. Write A = 1 + 3k, B = 3ℓ where

k, ℓ ∈ Z. Suppose for the moment that k ̸≡ 2 (mod 3). Then we have

NK
Q (θ) ≡ 3C2(21 ℓ2 + 26C2 + 23C2k) (mod 81)

so that NK
Q (θ) ≡ 6C4(k + 1) (mod 9). As k ̸≡ 2 (mod 3) and C ̸≡ 0

(mod 3), we have that NK
Q (θ) ≡ ±3 (mod 9). The same argument as in

Lemma 2 then implies that ⟨3, θ⟩ is prime. If k ≡ 2 (mod 3), then

NK
Q (θ+3) ≡ 3C(18C3+15C3m+25C2+9C2m+18C+21Cℓ2+9ℓ2) (mod 81)

where m ∈ Z satisfies k = 2+3m. As C ̸≡ 0 (mod 3), we have NK
Q (θ+3) ≡

3C3 ≡ ±3 (mod 9) so that ⟨3, θ + 3⟩ = ⟨3, θ⟩ is proper and prime by the
same arguments as in Lemma 2.
Case 2: Suppose that A ≡ 2 (mod 3) and C ≡ 0 (mod 3). Then B ̸≡ 0
(mod 3). Furthermore the Theorem on page 146 of [3] implies that θ =√
D + α is an algebraic integer. Write A = 2 + 3k, C = 3ℓ where k, ℓ ∈ Z.

Suppose that k ̸≡ 1 (mod 3). Then we have

NK
Q (θ) ≡ 3B2(21ℓ2 + 26B2 + 25B2k) (mod 81)

so that NK
Q (θ) ≡ 3B4(2 + k) (mod 9). Since k ̸≡ 1 (mod 3) and B ̸≡ 0

(mod 3), we see that NK
Q (θ) ≡ ±3 (mod 9), and so the same argument as

in Lemma 2 implies that ⟨θ, 3⟩ is prime. If k ≡ 1 (mod 3), then

NK
Q (θ+3) ≡ 3B(24B3+21B3m+20B2+9B2m+18B+21Bℓ2+18ℓ2) (mod 81)

where m ∈ Z satisfies k = 1+ 3m. Since B ̸≡ 0 (mod 3), we then have that
NK

Q (θ + 3) ≡ 6B3 ≡ ±3 (mod 9). Thus the same argument as in Lemma 2

implies that ⟨θ + 3, 3⟩ = ⟨θ, 3⟩ is prime. □

3. Proof of Theorem 1

Proof. Part (a1) of the theorem is Lemma 1. Hence we suppose that 4 | i(K).
The table on page 234 of [1] implies that the prime ideal factorization of 2OK

is P1P2P3P4 for prime ideals Pi ⊆ OK , i = 1, . . . , 4. Lemma 2 implies that
P = ⟨2, θ⟩ is a prime ideal lying over 2, hence is one of the prime ideals
in the factorization of 2OK . Since K is a Galois extension of Q (as it is
cyclic), Theorem 23 on page 70 of [4] implies that the ideals in the prime
ideal factorization of 2OK are all conjugates of one another. Applying this
to the fact that P lies over 2, we have

2OK =
4∏

i=1

P (i)
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which is the desired factorization. The factorization of 3 follows similarly
from Lemma 3. □
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