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COMPLEX INTERPOLATION OF SMOOTHNESS
TRIEBEL-LIZORKIN-MORREY SPACES

DENNY IVANAL HAKIM, TORU NOGAYAMA AND YOSHIHIRO SAWANO

ABSTRACT. This paper extends the result in [8] to Triebel-Lizorkin-
Morrey spaces which contains 4 parameters p,q,r,s. This paper rein-
forces our earlier paper [8] by Nakamura, the first and the third authors
in two different directions. First, we include the smoothness parameter
s and the second smoothness parameter r. In [8] we assumed s = 0 and
r = 2. Here we relax the conditions on sand rtos € Rand 1 < r < co.
Second, we apply a formula obtained by Bergh in 1978 to prove our
main theorem without using the underlying sequence spaces.

1. INTRODUCTION

In [38], Yuan, Sickel and Yang defined the diamond subspace of the
smoothness Morrey spaces. The smoothness Morrey spaces are (recent)
generic names of Besov—Morrey spaces and Triebel-Lizorkin—-Morrey spaces.
We aim to decribe the complex interpolation of a class of subspaces of
smoothness Morrey spaces defined in [38], which extend the results in [8].
Let 1 < ¢ <p < 0. For an Lilo ~function f, its Morrey norm is defined by:

q

1 1

) = s (BaRP [ )
z€R™, R>0 B(z,R)

where B(z, R) denotes the ball centered at x € R™ of radius R > 0. The
Morrey space MY is the set of all L%-locally integrable functions f for which
the norm || f||y is finite. We recall the definition of Triebel-Lizorkin—
Morrey spaces as follows. Let 1 < ¢ < p < oo, 1 <r <ooands e R.
Choose ¢ € S so that xp(2) < ¢ < xp(3) holds. Set

(1.2) o= p
and
(1.3) pj = p(277) —p(277)

for j € N. Note that ¢; satisfies

(1.4) D =1
j=0
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Next, we write
pi(D)g = F 'p;F9g)

where F and F~! denote the Fourier transform and its inverse, defined by

Fo(€) = () / g(x)e"Edr (€€ R)

n

_n

Flga)=(m)3 [ g©)e™de (xR,

Rn
for g € L}(R™). Now, for f € &', we define

o] r

(15)  fleg, = lenlD)flagg + ||| 32" les (DI

j=1

My

The Triebel-Lizorkin-Morrey space &, is the set of all f € S’ for which
the norm || f||gs, s finite. The parameters r and s are sometimes called the
second smoothness parameter and the smoothness parameter, respectively.
Remark that the definition of &7/, does not depend on the choice of the
function ¢ (see [20, Theorem 1.4] or [29]).

We are interested in the following closed subspace of &5,

Definition 1. [38, Definition 2.23](smoothness space) Let 1 < ¢ < p < oo

o
and 1 <7 < oco. The space £, denotes the closure with respect to &3, of

the set of all smooth functions f such that 9°f € &, for all multi-indices
a.

i
We characterize £, in terms of the Littlewood-Paley decomposition,
which is a starting point of this paper.

Theorem 1.1. Let 1 <g<p<oo, 1 <r <o, and f € E,,. Then f isin

<&
Epqrs if and only if Z;V:o @j(D)f converges to f as N — oo in Ey,.

We seek to describe the first and the second complex interpolation spaces

< <
of £30.r, and €51, ., where the parameters po, p1, qo, q1, 70,71 satisfy

po>pi, 1<qo<po<oo, 1<q<p <o,

Po _ 1

qo0 B qa

Here, we may assume py > p; due to symmetry between pg and p;. To

state our main result, we need the following notation. Let (X, X7) be a
compatible couple of Banach spaces. Let [Xo, X1]p and [Xo, X1]? be the

(1.6) 1< rg,r < oo,
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first and second Calderén complex interpolation space whose definition we
recall in Section 2. For € € (0, 1), define p, ¢, r and s by:

(1.7)
1 1-— 1 1-— 1 1-—
— = o ﬂ, — = 0 ﬁ, — = 0+£, s:=(1—60)sp+0s1.
p Po b1 q 40 T r 70 71
A direct consequence of (1.6) and (1.7) is
(1.8) P_Bo_n
9 d0 @1

For f € &', we define

S(fir,s) : Z\zﬂs% il

00 r

S(f;a,J,r,8) = Xjaa-1(S(fir:5)) [ D 127°0;(D)fI"
j=J
Based on this notation, we state our main results as follows:

Theorem 1.2. Suppose that we have 13 parameters po, p1, P, 4o, q1,q, T 70, 71,
S, 80, 81, and 0 satisfying (1.6) and (1.7).

(1) We have
<o
(1'9) {61830%7"07 g;iqﬂ“l]e - 515711T [gSOQOro’glfllQ1T1]
(2) If ro =11 and so = s1, then
(1. 10)
Etarn G = () {7 €€ Jim 180, 0r 9l =0}
0<a<l1

Theorem 1.3. Suppose that we have 13 parameters pg, P1, P, 40, q1,q, 7570, 1,
s, 80, 81, and 0 satisfying (1.6) and (1.7). Then we have

(1.11) (g0 g 10 = g8

PoqoTo’ TP1q1T1 pgr
with equivalence of norms.

Having stated the main result in this paper, let us investigate its relation
with the existing results. The corresponding results for the first complex in-
terpolation of Triebel-Lizorkin—-Morrey spaces was obtained by Yang, Yuan
and Zhuo (see [35, Corollary 1.11]). They proved the following theorem.

Theorem 1.4. [35, Corollary 1.11] Suppose that we have 13 parameters py,
P1, D, 9o, q1, 4, 7', To, T1, S, S0, S1, and 0 satisfying (1.6) and (1.7). Then
(1.12) [E50 et e &S

PoqoTo’ pl‘h?"l pqr:
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Remark that (1.12) will be used in the proof of Theorem 1.3. As a corol-
lary of (2.4) to follow and Theorem 1.3, we have the corresponding result
for the first complex interpolation of Tribel-Lizorkin—-Morrey spaces which
refines (1.12).

Theorem 1.5. Suppose that we have 13 parameters py, p1, P, 9o, G1, ¢, T,
To, T1, S, S0, S1, and 0 satisfying (1.6) and (1.7). Then

ES
(1.13) [Epoaoror Epiqr )0 = Epoaoro N Eptarr ™"

pPogqoTo’ TP1q1T1

Meanwhile, Nakamura, the first and the third authors obtained the de-
scription of the interpolation of diamond Morrey spaces in [8], which we

<&
describe below. Let 1 < ¢ < p < co. The space M} denotes the closure
with respect to M} of the set of all smooth functions f such that 9*f € M}
for all multi-indices « [38].
Due to the result by Mazzucato [17, Proposition 4.1], we see that

p _ o0
ME = Ep-

<& <&
Thus, quQ = MY with norm equivalence and Theorem 1.2 recaptures the

< <
interpolation of M%) and ML} as the special case of rg = 71 = r = 2 and
sp = s1 = s = 0. Thus, we see that Theorem 1.2 extends [8, Theorem 1.9]

<&

One of the difficulties in dealing with the space M} with 1 < ¢ < p < 00
is that this closed subspace does not enjoy the lattice property unlike many
other important subspaces defined in [6, 27, 38].

Let us now recall some progress in interpolation theory of Morrey spaces.
The earlier result about the interpolation of Morrey spaces can be traced
back in [28]. In [7, p. 35] Cobos, Peetre, and Persson pointed out that

(MG, Mo € ME,
whenever 1 < g < pg <00, 1 <q1 <p; <00, and 1 < ¢ < p < oo satisfy
(.14 EEUINUI W CY NS
p Po b1 q do0 a1
A counterexample by Blasco, Ruiz, and Vega [3, 22|, shows that if we
assume (1.14) only, then there exists a bounded linear operator T' from
MEE(R™) (k= 0,1) to L*(R"), but T is unbounded from Mb(R") to
L'(R™). By using the counterexample by Ruiz and Vega in [22], Lemarié-
Rieusset [14, Theorem 3(ii)] showed that if an interpolation functor F' sat-
isfies FIME), M) = MY under the condition (1.14), then

D _n
Pbo b1

(1.15)
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holds. Lemarié-Rieusset [14, 15] also showed that Morrey space is closed
under the second complex interpolation method, namely,

0
(1.16) [MEe, MO = M,

0"
Meanwhile, as for the interpolation result under (1.14) and (1.15) by us-
ing the first Calderén complex interpolation functor, Lu, Yang, and Yuan
obtained the following description:

MP

(1.17) Mo, ME ]y = M M
in [16, Theorem 1.2]. Their result is in the setting of a metric measure space.
The generalization of the result of Lu et. al and Lemarié-Rieusset in the
setting of generalized Morrey spaces and generalized Orlicz—Morrey spaces
can be seen in [9]. The first and third authors [10] also obtain a refinement
of (1.17) as follows:

g0’

18) (Mg Mgl = {F €05+ i 10— - (50D gy = 0}

The complex interpolation of variable exponent Morrey spaces can be
found in [18]. As for the real interpolation results, Burenkov and Nursul-
tanov obtained an interpolation result in local Morrey spaces [4] and their
results are generalized by Nakai and Sobukawa to By, setting [19]. In [35],
Yang, Yuan, and Zhuo considered the interpolation of smoothness Morrey
spaces considered in [11, 12, 13, 17, 20, 23, 26, 29, 32, 33, 36, 37, 38].

If we compare this paper with the work, we believe that the main tool
is Lemma 2.9, where the function “log” plays the key role. An experience
obtained in [9] shows that the function “log” is essential when we consider
the complex interpolation functor.

Let us explain why the interpolation of Morrey spaces are complicated un-
like Lebesgue spaces. From (1.16) and (1.18) we learn that the first complex
interpolation functor behaves differently from Lebesgue spaces. This prob-
lem comes basically from the fact that the Morrey norm MY involves the
supremum over all balls B(x, R). Due to this fact, we have many difficulties
when 1 < ¢ < p < 00, namely:

(1) The Morrey space M} is not included in L' + L°; see [10, Section
6].

(2) T]he Morrey space MY is not reflexive; see [27, Example 5.2] and [34,
Theorem 1.3].

(3) Let po,p1,p,qo, q1,q satisfy (1.6). Let ¢ < ¢ < p. The spaces C°,
/Vlg, MY N MY are not dense in MPE; see [31, Proposition 2.16],
[24] and [9, 38], respectively.

(4) The Morrey space MY is not separable; see [31, Proposition 2.16].

lim ||
a—0t
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These facts prevent us from using many theorems in the textbook in [1].

We organize the remaining part of this paper as follows: Section 2 collects
some preliminary facts such as the property of the complex interpolation and
the maximal inequalities for Morrey spaces. We prove Theorems 1.2 and 1.3
in Section 3 except a key fact on G defined in Section 3. This fact will be
proved in Section 4.

2. PRELIMINARIES

2.1. Complex interpolation functors. Let E be a subset of C and X be
a Banach space, and define

BC(E, X)

2.1

2.1) = {f : E— X : f is continous and satisfies sup ||f(2)||x < oo} :
zelE

If F is an open set in C, then O(F, X) denotes the set of all holomorphic

functions on E whose value assumes X.

Definition 2. Let U := {2 € C : 0 < Re(z) < 1} and U be its closure.
We recall the definition of the complex interpolation functors as follows:

Definition 3 (Calderén’s first complex interpolation space, [1, 5]). Let
(X0, X1) be a compatible couple of Banach spaces.

(1) The space F(Xg, X1) is defined as the set of all functions F : U —
Xo + X7 such that
(a) F € BC(U, Xo + X1),
(b) FeOWU,Xo+ X1),
(c) the functions t € R — F(j 4 it) € X; are bounded and contin-
uous on R for j =0, 1.
The space F(Xo, X1) is equipped with the norm

1Nl 7 (x0,3,) := max {Sup [1E(it) | xo, sup [[F(1+ it)Hxl} :
teR teR

(2) Let 6 € (0,1). Define the complex interpolation space [Xo, X1]p with
respect to (Xo, X1) to be the set of all functions f € Xy + X3 such
that f = F(0) for some F € F(Xo,X1). The norm on [Xy, X1y is
defined by

£l ix0,x176 := {1 F'l| 7(x0,x1) : [ = F(0) for some F' € F(Xo, X1)}.

According to [5], [Xo, X1]g is a Banach space. See also [1, Theorem 4.1.2].
Now, we recall the definition of Calderén’s second complex interpolation
space. Let X be a Banach space. The space Lip(R, X) is defined to be the
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set of all functions F : R — X for which

F t —F S X
| FllLipr,x) :==  sup [F'(t) — F(s)|l cx
—oo<s<t<00 [t — s

Definition 4 (Calderén’s second complex interpolation space, [1, 5]). Sup-

pose that we have a pair (X, X7) is a compatible couple of Banach spaces.

(1) Define G(Xo, X1) as the set of all functions G : U — X + X3 such
that

(a) G is continuous on U and sup H G(z)
2eU

1+|z]

< 00,

Xo+X1
(b) G is holomorphic in U,
(c) the functions
teR—=G(j+it) —G(j) € X;
are Lipschitz continuous on R for j = 0, 1.
The space G(Xo, X1) is equipped with the norm
(2.2) 1Gllg(x0,x1) := max {|G(i-) [ Lipr, x0)s G+ i)||lLip®,x1) ) -

(2) Let 6 € (0,1). Define the complex interpolation space [Xg, X1]? with
respect to (Xo, X1) to be the set of all functions f € Xy + X3 such
that

23) f:G,(G):}%G(eM})L—G(e)

for some G € G(Xg, X1). The norm on [Xo, X1]% is defined by
£l x11e = f{IGllg(xo,x) + f = G'(0) for some G € G(Xo, X1)}.

The space [Xo, X1]? is called Calderén’s second complex interpola-
tion space, or the upper complex interpolation space of (X, X7).

One of the fundamental relations between the first and the second complex
interpolation functors is as follows:

(2.4) [Xo, X1]p = Xo N X010

according to the result by Bergh [2]. This relation explains why we start by
calculating the second interpolation in the proof of Theorems 1.3 and 1.5.
If we combine Lemmas 2.1 and 2.2 below, we see that (2.4) follows.

Lemma 2.1. 2] Let x € Xo N X1. Then [|z||1x, x,10 = 17/ x0,x1]6 -
Lemma 2.2. [1, Theorem 4.22 (a)] The space XoN X1 is dense in [Xo, X1]g.
A direct consequence of Lemma, 2.2 is:

Lemma 2.3. [Xo, X1)° € XonX; ° .
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Proof. We observe that [Xo, X1]? C [XO,X1]9X0+X1 from the definition of

[Xo, X1]%; see (2.3). In fact, for f € [Xo, X1]%, there exists G € G(Xo, X1)
such that f = G’(#). We define
G(z+ij~ ') - G(z)

ij 1
for j € Nand z € S. Then, F;(0) € [Xo, X1]p and according to (2.3), we
have

Fy(2) =

X0+ X
f S [X[),Xl]g 0 '
Since
[XOaXl]G =X, le[Xle]e - 7X0 ﬁlexo+X1
from Lemma 2.2, it follows that [XO,X1]9X0+X1 c XoN X1X0+X1. Putting
together these observations, we obtain the desired result. O

2.2. Operators on Morrey spaces. Let B denote the set of all balls in
R™. We recall the definition and the fundamental property of the Hardy-
Littlewood maximal operator M.

Definition 5 (Hardy-Littlewood maximal operator). For a measurable func-
tion f, define a function M f by:

(2.5) M f(x) = sup XE) /B ()] dy.

Bes |B]

The mapping M : f — M f is called the Hardy-Littlewood maximal opera-
tor.

Theorem 2.4. [25, Theorem 2.4], [29, Lemma 2.5] Suppose that the param-
eters p,q,r satisfy

l<g<p<ooandl<r<cc.
Then

2=
g [=

oo o0

(2.6) (M) SR
j=1 j=1
Mg Mg
for every sequence of measurable functions {fj}]o-’;o. When r = oo, then
(2.6) reads;

(2.7) sup M f;

JEZ

N
M

sup | f;|
JEZ

My

As a direct consequence of Theorem 2.4, we have the following lemma.
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Lemma 2.5. Let 1< g¢g<p<oo,1<r<oo, and J € N. Let{gj};?‘;J be a
sequence of measurable functions such that

T

o
Z |gj\r < 0.
j=J
Mg
Then
L :
o o o0
(2.8) > leuD) [ D ei(D)g; S gl
=1 j=J j=J
Mg Mg

Proof. Note that, for f € LL (R"), we have

loc

(2.9) lee(D)fI < M.
We use (2.9) and the fact that p;p; = 0 whenever |l — j| > 2 to obtain

T T
o0

STl [ DY eiDyg || < > > @uD)g;(D)g;
=7 =71

=1 I=J—-1 |j=max(l—1,J)
o) I+1
<> lp1(D) [0 (D) g;]]
I=J—1 j=max(l—1,J)
(2.10) S M(pi(D)g;)"
oy

By combining (2.9), (2.10), and Theorem 2.4 , we have

1 1
[e's] [e's) "\ r 00 T
D leD) [ D (D), S DD Mp(D)g))"
=1 j=J j=J
Mg Mg
1 1 1
0o T o] 00 r
SIS les(D)gsl” S Mgl SIS el
j=J j=J j=J ,
MG MG My

O

2.3. Some inequalities. We use the following inequality which improves
slightly the one in [30].
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Lemma 2.6. 21, Lemma 2.17] Fiz J € ZU {—oo}. Let {a;}32; be a non-
negative sequence and k > 0. Then

00 i r—1 %) "
1
2% (Zk> S D) | 2%

Here, we assume there is a non-zero a;.

When we consider the complex interpolation of the second kind of classical
Morrey spaces, we are faced with the function |log|f||~! in the proof; see
[9]. To take an advantage of this “log” factor fully, we will use the following
series of lemmas:

Lemma 2.7. Let 1 <r < 0o and z € C be such that Re(z) > 0. Then there
exists a constant C = C, > 0 such that

s —1 C 1 -1
2.11 < —1 -
(21 e < = (o +3))
for every s € (0,1) and

s*—1| _C AN
2.12 < — |1 -
222 o | = 7 (o5(++2))

for every s > 1.

Lemma 2.8. Let 1 < r < oo and firt € R. Then there exists a constant
Cy > 0 such that
Cy N\
< —llog|s+ - ,
r S

As we have mentioned, the function of the form |log|f||~! plays a cru-
cial role for later considerations. We will need some variant including the
logarithm. We use the functions defined by

(2.14)  Bu(t) = 1! <log <t+1>>_1, U (t) = /Otcpn({/;)?"ds

fort,k >0and 1 <r < 0.

st —1
log(s")
for all s > 0 with s # 1.

(2.13)

Lemma 2.9. Let 1 <r < oo and x > 0. Then we have

(2.15)

; [o¢]
for all nonnegative square summable sequences {aj}j:O'
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Proof. Assume first that x € (0,1). In this case,
(2.16) Pp(t1) 2 Pr(t2)

for every t; < ts. We observe

0 S2oa;"
v, (S ay :/ 7 (i) ds
=0 0

For the case k > 1, observe that ®,(t) satisfies
(2.17) D,.(2t) <27, ()
for all £ > 0. In addition, we also can choose Cs > 0 such that
(2.18) D, (t1) < Cody(t2)

for every t; < to. Write R := 3 "% a;". By combining (2.17) and (2.18), we
get

1 T
< 2R, ( VE)

< [ auwar s

R/4

oo
< \IIH Z ajr ’
§=0

as desired. O
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Lemma 2.10. Let 1 <r < oo, k>0 and a € (0,1). Then, we have

Q1) W) € o (av—lw + (1o (va+ }))) )

for every t € (0,a) U (a™!,0).

Proof. By the fundamental theorem on calculus, we have

T, (t7) = /Ot i <10g <(/§+ \}g»r ds

t" 1 -
+/ Pl (log ({/E—i— >) ds.
¢ Vs
For t > a™ !, we have

1 t 1 ot
V. (t") < T/ sl ds + (log (\T/%—i— )) / " s
)= Togay J, 7))
1 1 1\\ "
< 711,!{ - 1 T t’l”li
~ k(log2)" T <Og (\/6+ ﬁ))

(o (ol ) )

ot (0 () )

Meanwhile, using

vt = [ " (Y5 ds = / " (log(v& n 1[)) ds,

we have for 0 < t < a, we have

U, (t") < (10g (\”"ft+ ! )
<o (s (7))

ol ) )

as desired. O

For checking the holomorphicity of the second complex interpolation func-
tor, we invoke the following lemma:
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Lemma 2.11. [9, Lemma 3] Let h € C and ¢ > 0. Assume that € > 2|h|.
Then, there exists C: > 0 such that

exp(hlogt) — 1 ‘
2.20 sup t° — 1| < Cc|h
(2.20) ) hlogt < Celn
and
_.|exp(hlogt) — 1
2.21 t° — 1| < C.|h|.
221 = Mogt = el

Lemma 2.12. Suppose that we have 13 parameters
pbo,P1,P,490,41,4,7,70,71, S, S0, S1, 0

satisfying (1.6) and (1.7). Then 550 551 C 85

PogoTo Piqim1 par:
Proof. We take f € Spoqo,,o N Efgblrl Theorem 1.1 implies that
N
(2.22) F=> ¢i(D)f -0
=0 sk
Eppagry

as N — oo for £ = 0,1. By the Holder inequality, we have

(2.23)
N N 1-6 N 0
F=Y wiD)f|| < |fF=> wi(D)f F=Y @i(D)f
J:O g;‘l”' ]:0 515’8007”0 ]:0 g‘;%ql"ql
Combining (2.22) and (2.23), we obtain the desired result. O
3. PROOFS

3.1. Proof of Theorem 1.3. According to [35, Corollary 1.11], we have
(3.1) (E:00r0sEntarlo C E

PoqoTo’ plql"‘l pqr

with equivalence of norms. Based on (3.1), we shall establish (1.11) as
follows: First, if G € G(&5°, ., &1, .. ). Then

PoqoT0’ TP1q1T1
Fj(2) := —i2/ (G(z + 2774) — G(2))
belongs to F (&30, €ptq,r, ) and the norm is less than or equal to [|G||g g E2000m0

Poqoro’ “p1qiT1 prairy)’
According to (3.1), we have
1Elles,, S NG llgeze

quOTO7 P]_l117‘1)
Since F; — G(0) as j — oo in £,0, .+ &1, ., and hence in S'(R™), by the
Fatou property [|G(0)| s

par ™~ ”GHQ zooqoro7 P%qlrl).
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Conversely, let f € £, with norm 1. Define linear functions p1, p2, p3, p4
of the variable z € C uniquely by

r p
l):=s— — s, l):=———, [):=1-=—, l):=—,
p1(l) P p2(1) P p3(l) . pa(l) ”
for I = 0,1. Since pr(0) = (1 — 8)pr(0) + 0 pr(1), pp(d) = 0 for k£ =1,2,3
and p4(f) = 1. Define

Fy(z) := @, (D)

v

< (22O ST 200D | IFIE sen(en (D) f)lpu (D) 1)

i=1

= Z F,(z)
v=0

and

In Section 4, we prove

(3.2) Geg(Eo, E .

Pogoro’ TP191T1
So,

<
Hf”[gpoqoro’ P1q1T1]0 < HG Hg PO‘IOTO’gPiqlTl) ~ 1

3.2. Proof of Theorem 1.1. Suppose that Z;V:O i(D)f — fin &,
N — oco. Let a be a multiindex. Then since

N N N+1 N N+1
Y piD)f=> F! [Z Pk - @jff] =cn Y Y F lopxp(D)f
j=0 j=0 k=0 J=0 k=0
for some constant ¢, > 0, it follows that
g N N N+1
%Z —cnazzf Sok *@](D)f
j=0 §=0 k=0

Since F~1[¢%p,] € S € L' and p,q,r > 1, we have

or az% fegpqr

Thus f € Emr
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<&
Suppose instead that f € &£,.. Let € > 0 be arbitrary. Then by the

<
definition of &7, we can find g € &, such that 9%g € &5, and that

pgr pgr
lg — flles,, <e. Then for N > 3, we have

1
N 0 N "\ "
g—Y eiDg|  <2|[[ D2 |en(D) 9= wi(D)g
j=0 £s k=0 J=0
pgr Mlq’
From the size of the support condition, we obtain
1
N o N "\ T
9= @Dyl <2|| D 2" |ee(D) |9 - wi(D)g
J=0 £s k=N J=0
pqr Mjg

Since F Ly (€) = 2M2 F~1p(27%¢), we can use the Hardy-Littlewood maxi-
mal operator to have

N 00 %
9—> ¢i(D)yg|| <C (Z 2kSTM[SOk(D)9]T>
j=0

Esar k=N My
By Theorem 2.4, we have
N %) H
(3.3) g9->_ ¢iD)y|| <cC (Z 2’“’"Isok(D)g\’°>
Jj=0 ggqr k=N ./Vlg

Let us set

SL(E) = or-1(&) +‘<2pk]5§)2+ @k—l—l(‘s).

Then we have @i (D)g = —272k¢% (D)pr(D)[Ag]. Inserting this relation into
(3.3), we obtain

N ] %
g-Y ¢iD)yg| <cC <Z 2’“(5_2)T|902(D)s0k(D)[Ag]IT>
j=0

k=N
Esar MY

Again by using the convolution and the maximal operator, we obtain

<2V (fj 2o Af [sok(D)[Agn’“) T

k=N
Epar Mi

N
9= #i(D)g
=0
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1
T

Using Theorem 2.4 once more, we have
55

<027 (Z QkSTIsOk(D)[Ag]I’")
k=N

< 27| Agle, -
there exists Ny € N such that

N
9—Y_ ©i(D)g
Jj=0 Mf;

Since Ag € £y

N
9= ¢i(D)yg| <e
]_O Es
prgr

as long as N > Nj.
If we use Theorem 2.4, we obtain

N N
Y eiD)g = ei(D)f|| < Clf - gle,, <Ce.
Jj=0 Jj=0 Eur

Thus, if N > Ny, then we have

N
F=> @i(D)f
7= 3

N N N
<\f=glleg, +[lg=D @iy +|D_wiDg-> ¢;i(D)f

=0 PO =0
<240,

as required.

3.3. The description of the second interpolation spaces. We prove
<>s Os 0 s :
[EPgQOTo’gpllmTl] C ﬂ {f € EPQT : Jh_)nolo ||S(f;a, g, S)HMI; - 0}
0<a<1

in (1.10).
< o
Let f € [E30 gt 1% By Lemmas 2.3 and 2.12, we have

PoqoTo’ T P191T1

__ 50 s1
s €poaoroTEpiarr

N

feé&’

par
Therefore,
f=fe+ fro+ fr1
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where fj € qur, Tk0 € Eduoros i1 € Eptygyry for each k € N and

[ fr0llez0 <k

poqoro p1 ary T

For 0 < a <1 and b > 0, we see that

S(f;a,d,r,s)

= X[0,bS(f3r,5)] ZIWS% f’”) S(fia,J,r,s)

T X®S(fir,5),00) | A Z2j5<pj<D)fT) S(fia,Jr,s)

J=J

< bS(f> T, S) + X(ab,a=1] . Z ‘2js()0] fr) Z |2J890] f‘r
j=J

Thus,

limsup ||S(f;a, J, T, S)HM”

J—>oo

S0l flles,,

+ lim sup (| X (ab,a-1] Z 275¢;(D fr) Z 275p;(D) f|"

J—00

= M

Once we show that

(34)  lim |y | 7] D 127%05(D f’“) Z\ws% =0,
j=J j=J

Mg
then we have the desired result. By setting
P 4(t) :=max(0, (t — A) (AT —1))" (tER),

where A > 0, we have only to show that

J—o00

(3.5) lim || ®4 ijs% f|7“) =0
MP

in /\/lf; for all A > 0.
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By the mean-value theorem, we have

JZW%(D)W) ~oa [ {0 )
\i=

5

<amin |1, \IZW% )" = *ZW% )fel"

< min (1, & Z |2j580j(D)(f - fk)|r)

=7

=min |1, r 2\23580] )(fro+ fr0)|” ) .

We let

911X[A,A1](5(f;7",5))<1>A< ZWS% fT)

/‘5

B 1= X(4,4-1(S(f;7,8))Pa <\ Z |275¢;(D fkr)

So, we have

124 = B[ pz
1
o0 T
S ||X(a,a-1(S(f;7, s)) min Z 27°0;(D) frol” | 51
(3.6) =7 ME
1
[e'e) i
+ 1Ix[a,4-1(S(f; 7, 5)) min 2\235% ,1
— e
Recall that we are assuming r9 = r; = r and sp = s; = s. By using

qo > q > qi, Z = P20 — P and the Holder inequality, we get

qo0 q1
[
(Z 1275, f’“)
PO

(RIS V
MES M

(Z |2J80 fkom)
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+ Z 2705 (D) fia "
i

3.7 Zallfrollggo Hf”gs g + [ /%, 1|| L

PO4907T0

Consequently,

X(a,4-1(S(fir,5))Pa Z’QJS% M

Mg
<alfvollggg,  I1fle5 b Z 250, (D) ful"
My
By letting J — 0o, we obtain
oo
limsup [|[®4 | 7 Z|275g0j(D)f\r

J—00 ._

]_J Mp
Sl fkollgzo Hngs w 4 1 f, 1H

P040"0

Finally letting £k — oo, we obtain (3.4).
We prove the reverse inclusion in (1.10), namely,

€ Rl () {f € &y }E&HS(f;a,J,r,s)HMg—0}.

0<a<1
Let f € &, be such that hm 1S(fsa,J,r,8)||pmp = 0 for all 0 < a < 1.

We suppose that f has qur norm 1. Choose ¢ € § so that ¢ > 0 and

XB2) < ¢ < XB(3)- Write po := ¢ and ¢, = Vpo(279)2 — o (279+1)2 for
J € N. We may assume each ¢; is smooth if we choose ¢ suitably. Then,
{0152, satisfies

o0
> e =1
j=0

For each v € NU {0}, define

3=

v

Vo(f) = D 127%0; (D) fI"

J=0
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For z € U, we define
38 FE) =Y ) (v 8 o)
v=0

and

We prove in Section 4 that

(39) G € g( poqor()’g;lqlrl) HG” s rg 1
(gpoqoro 78:0141"1)

From (3.9) and f = G'(0), we conclude that f € [ 55 19, as desired.

POQOTO ? T p14qir

3.4. The description of the first interpolation. We readily obtain the
inclusion by combining (1.10), (2.4), Lemma 2.12 and
[5;0(107'0’ g;u]ﬂ"l] [ESOQOTO ’ 5;1 (117'1]

We thus obtain one of the inclusions in (1.9). We concentrate on the opposite
direction. We choose 1) so that

supp(y) C B(8)
and define
= 0(277) =27,
Write ; = p(277+) as before.

iod
Let f € &5y N [Ep000r0> Eptarr Jo- Then since f € Spqr, we have
oo
D)f+> @i(D
j=1
in £, We write f; :=(D)f + Z ©;(D)f. By virtue of Theorem 1.3 and
fr =11 € &80 EptarrJo for any J J" € N, we can use (1.11) and (2.4) to
have
= L lgggagmg eitaresle = W7 = Frlliggs g stoymie ~ 1o = Frlleg,,
Since f;— fy €| poqoro,é';lqm]g and supp( (f7— fr)) is a compact set in

R™\ {0}, we can find F ; € ]:(5 55 ) such that

PogoTo’ T P1q1T1
Frp0)=fr—fr: F50llzegso S o= Folligso

S
5190‘107‘075191‘117‘1 pOQOT‘O’ p1q1r1]9
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Thus, it follows that

| fr— fJ’H %o 2o < |[|Fsr| 8oy

Poqorov P1¢I1T1}9 ‘F(Spoqoro? P149171

SNEy (8 )H[ EpgaoroEriarr o

Sy = frlles

pgr’
Here we used [35, Corollary 1. 11] for the last inequality. Hence {f;}52, is

a Cauchy sequence in [E 85 lg. Since {f7}52, converges to f in

PogoTo’ T P1g1T1
S0 s1 : S0 s1
EXworo T Eptaur - We see that {f;}52, converges to f in [Spoqom,é'plqlrl]

4. PROOF OF (3.2) AND (3.9)

Let po,p1,p,... be the same parameters as before. We check the condi-
5 51 ) by proving the following lemmas.

tions of membership of g( voqorer Epair

Lemma 4.1.

(1) Let f € &, Forz € U, we have G(2) € E2, . +EsL,. - Moreover,
G
4.1 su (2) < 00.
( p
zev 1+ 12 EpQagroTEriarry
(2) Let f € quT For z € U, we have G(z) € gZoqoro+g1solq1r1 Moreover,
G
(4.2) sup (2) . . < 00.
zev 11+ 2] Endagro+Epiarr

Proof. We concentrate on (4.2); the proof of (4.1) being simpler. For each
z € U, we define

=> wu(D) <Vu(f)”<lpoz+;l)1 ~ou(D)f - X{vu(f)<1}) :
v=0

Fi(z) := F(z)—Fo(z), Go(z) ::/ Fy(w) dw, and G1(z) ::/ Fi(w) dw.
0 0
We shall show that

(4.3) Go(z) € Sf)gqom
and that
(4.4) Gi(z) € 515,1%”
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Let J € NN[5,00). We use (2.6), (2.9), and the fact that ¢;¢; = 0 whenever

|l — j| > 2 to obtain

S0
SPOQOTO

(D [Zw )(270Go(2))

(4.5) - zjz

J

1

[ee] 70

N

%(D)(WS“Go(Z))T”)

j=J—1

Mo
Let Q :== £ — 2 Combining
> lei (D)2 G ()]

j=J—1
o

s 2 2”°’”°M(soj<D> [ij(f)qwj(z?)f-vg(fw’é‘l /9 Vi(f) de ,

j=J—1

(2.6), (2.9), and (4.5), we get

o0

(4.6) > (D) (Go(2)) S Ml avzo + 21 a2
&=J Epgaoro

where

I

o0

= Xiaa 1 (SU57.9)) (‘Z P DIIVOR [xnen [ VO du

I :=(1- X[a,(zfl](s(f; r,5)))

(Z 12750, (D) f"V;(f)7o "
j=J

1

1

T’o) o

pPo
Mg

)

1
T
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By virtue of Lemma 2.6, we get

(4.7)
e
1
o] ) e, "
S (4 12)) || Xjaa-1y (S(f37:8)) 127205 (D) fI"V5(f) Po
j=J—-1

Po
Mg

7o
rg (1 + ’Z’) Xla,a— 1] f Ty 3 ( Z ‘288()0@ f|r)
=

-2 MBS
p

<1+ [DIS(fia, T = 1,7, 9)] 15

We combine Lemmas 2.7, 2.9, and 2.10 to obtain

3=

I S (I_X[a,a 1] f,’f' S 2‘2]8 f’T(I)p ( (f))r

S (1= o ) (S(fi7,9))) (w% (S(fim9))7)

: (a;o(r_l) ' <1°g <ﬁ+ \}a»_) S(fir sy

Consequently,

(45) uIzHMggs<ap‘8“ + (10 (va+ f))> 1712 .

Therefore, by combing (4.6), (4.7) and (4.8), and then taking J — oo and
a — 07, we have

lim =0.
g;SqOTO
Thus, Gy(z) € 5;‘3 qro- BY @ similar argument, we also have
hm Z wi(D =0,
gls?llqlrl

Which implies (4.4). Since G(z) = Go(2) + G1(2), we have G(z) € € £

poqoro T
551

piqiry”
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The proof of (4.2) goes as follows. By virtue of (2.9) and Theorem 2.4,
we have

1Go(2)ll¢.,
PoaoTo
=Go(@)les,..
P z
< ‘ eo(D)F (N [ (P duxganen
0 g
+ <P1(D)f'V1(f)p°_1/ VI(F)®Y dwx v, (p)<1)
0 o
(4.9)
1
. ls Q "o\ o
+ <Z 2%ou(D) f - Vilf /Vl dwx vi(f)<1} )
= M2

Combining (4.9) and Lemma 2.6, we have

1Go(2)llg,, S+ IZ!)Hw(D)foTZg + (L4 12Dle1(D)FIlG

P090™0
L%
@+ | (S e )
Mg
(4.10) S+ EDIFIE,
By a similar argument
P
(4.11) 1Go(lg,, <+ DIAIE, -
Po40™0
Thus, (4.2) follows from (4.10) and (4.11). O
Lemma 4.2.
(1) Let f € &y,,. Then the function G : U — £, .+ E5L. . is contin-
Uous cmd G:U =&+ Eptgr 18 holomorphzc
(2) Let f € qur Then the functzon G:U— 5p0q07“0 +5§1q1” is contin-

wous and G : U — 55 + 551

ogoTo g 18 holomorphic.

Proof. We suppose f € qur The case of f € &, can be handled similarly.

Let 21,29 € U. By virtue of (2.9) and Theorem 2.4, we have
1Go(21) = Go(22)]].,

pOQOTO
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= ||Go(21) — Go(22)]|¢s0

P0o4907™0

cpo(D>f~Vo(f);J1/ IVO(f)Qw dwx gvo(f)<1}

z2

|

Po
Mg

+lleu(myf Vit / Vi) dwxg (<t

PO
Mg

i
To) 70
p

p P
1Go(21) = Go(z2)lls., S lo1 = 2llle(D)fIlGp + |21 = 22lllo1 (D) fll Gy

2y (D)f - Vi(f) 7o / ViH?® dwxn<ny

22

+(i

=1

pPo
Mg

Combining (4.12) and Lemma 2.6, we get

Po490™0
= |70
+ 21 — 2| (Z |2’Ssol(D>fV>
P

(4.13) Sz =2l f e,
Likewise,

P
(4.14) 1G1(21) = Gilz2)llo,,  Slor = 22l f]le

Splqlrl par

Therefore, (4.13) and (4.14) yield

(415)  [1G(z1) = G(=2)l

o
S0 S1
51?0 q070 +8P1 q171

3 P
Ster =l (1918, + 171, ).
This implies the continuity of G. Furthermore, for every z € U, we have
i3 i3
G'(z) = F(2) and F(z) € £+ &S O

PogoTo p1qiry’

Let k = 0,1 and t¢1,t2 € R. By a similar argument for obtaining (4.6), we
have

(4.16) Gk +it1) — G(k +it2) € Epyr,
if f € &y, and we have
<&
(4.17) G(k+ity) — G(k +it) € Epf,, .,
<&
it f € &3,

Lemma 4.3. Let k =0,1. Let f € &, with norm 1.
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(1) Then the function t € R+ G(k +it) — G(k) € EF, 0
continuous.
(2) Assume rg = r1 = r and sp = s1 = s. Let f € SW Then the

functiont € R — G(k+it) —G(k) € 2’

is Lipschitz

o aern 1S Lipschitz continuous.

<&
Proof. We suppose f € &, The case of f € £, can be handled similarly.
Let t1,t2 € R and let J € NN [5,00). By a similar argument for obtaining
(4.6), we have

(4.18) Z% Glit1) - Git2)) < I Eillpgzo + 1oz
858‘107"0

where

L= Xla,a=1] (S(fa T 5))

S =

t1 ) r
V() d

to

x ZIWS D)fI"Vi(f)m "

j=J-1

and
Iy = (1 - X[a,a*l](s(f; r,5)))

V(D2 —Vi()2e

X ZIWS% VFIVi(f)

2 loa(V; (/)
By virtue of Lemma 2.6, we get
(4.19)
11l
1
[e'e) s
S‘tl_t2| Xla,a~ 1] f,?” S ‘2]8903 f’r ( )
j=J—-1

PO
Mg
p

= o
S ‘tl - t2| aa—l] f,’l“ 5 2ZSSOK f’r
L

=J-1

Po
Mg

S‘tl_t2|||s(f’a7‘] 1,’/”,5)”/\/!
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We combine Lemmas 2.8, 2.9, and 2.10 to obtain

Sl

Iy S (1= Xjaa-1(S(fi7,9))) Z\%S D)fI"®2 (Vi(£))"

S =

S (1= Xaa-1(S(f37:8))) ¥ (S(fi75)")

- (ap%(r_l) - (1oe (va+ }))) S(firs)

Consequently,

@) bl s (o0 (s (Vi 1)) )1,

Therefore, by combining (4.18), (4.19) and (4.20), and then taking J — oo
and a — 0", we have
hm = 0.

Z 0o(D)(G(it1) — G(ity))

5;8907‘0
Thus, G(it;) —G(it2) € 518)?)(107"0
is similar.

Now we prove the second part of this lemma. From (2.9) and Theorem
2.4, it follows that

|Git1) - Glita)l,

The proof of G(1+it1) —G(1+its) € 5;)11q1r1

= |G(it) = Glits) g0,
< \ oo(D)f - V()P / Vol )@ dtH
to AAgg
(4.21) o |
+lerD)f-vapmt [ v dtH

t2 MES

p_ t1 .
250y (D) f - Vi(f)o t Vi(f)@ at

1
TO) 0

=1

)
- (Z
Mg

By virtue of Lemma 2.6, we get

1G (it1) = Go(it2)]l .,

P0o4907™0

P P
S [t = t2ll(D)fll G + It = talllor (D) fll G
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p

[e9) % PO P

it —tol | [ S 125D <l -l F2
=1 P
Mg

By a similar argument, we also have

P
IGQ +it) = Go(1 +ita)llo,, S 10—l IFIZ, .

P14917m1

as desired. O
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