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ON THE PROFINITE ABELIAN

BECKMANN-BLACK PROBLEM

Nour Ghazi

Abstract. The main topic of this paper is to generalize the problem
of Beckmann-Black for profinite groups. We introduce the Beckmann-
Black problem for complete systems of finite groups and for unramified
extensions. We prove that every Galois extension of profinite abelian
group over a ψ-free field is the specialization of some tower of regular
Galois extensions of the same group.

1. Presentation

1.1. Notation and definitions. Let K be a field and (Gn, sn)n∈N be a
complete system, i.e., a projective system of finite groups Gn (n ∈ N) and
epimorphisms sn : Gn → Gn−1 (n > 0).

An abelian complete system is a complete system (Gn, sn)n∈N such that
Gn is an abelian group for every n ∈ N.

Denote by K an algebraic closure of K and let GK be the absolute Galois
group of K. Denote by K(T ) the field of rational functions in one variable
T with coefficients in K.

A finite extension F/K(T ) is said to be a regular Galois extension of
group G if F/K(T ) is a Galois extension of group G and the function field
F/K is regular. Recall that regular means F ∩K = K.

In this paper, we want to generalize one of open questions in Inverse Galois
Theory known as the Beckmann-Black problem. More precisely, if K is a
field and G is a finite group, then the Beckmann-Black problem asks whether
each Galois extension E/K of group G is the specialization of some regular
Galois extension F/K(T ) of group G at some unramified point t0 ∈ P1(K).

The Beckmann-Black problem for finite groups is known to have a positive
answer in some situations. For example:

• G is a symmetric group (Beckmann [Be] if K is a number field,
Black [Bl2] for an arbitrary field).

• G is the dihedral group Dn of order 2n when n is odd (Black [Bl1]).
• G is an abelian group (Beckmann [Be] and Black [Bl1] if K is a
number field, and Dèbes [D1] if K is an arbitrary field).
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• G is a finite group and K is P(seudo) A(lgebraically) C(losed)1

(Dèbes [D1]).

Throughout this paper, we assume K is a perfect field.

1.2. Profinite Beckmann-Black Problem. Let K be a field and
(Gn, sn)n∈N be a complete system. Fix a tower of Galois extensions
(En/K)n∈N of group (Gn, sn)n∈N; this means that En/K is a Galois ex-

tension of group Gn (n ⩾ 0) such that En
ker(sn) = En−1 for every n ⩾ 1.

The question of Profinite Beckmann-Black over K asks to find:

(i) a tower of regular Galois extensions (Fn/K(T ))n∈N realizing the
complete system (Gn, sn)n∈N.

(ii) an unramified point t0 ∈ P1(K) such that the specialization (Fn)t0/K
of Fn/K(T ) at this point t0 is a Galois extension isomorphic to En/K
for every n ∈ N.

Note that the specialization of Fn/K(T ) is independent of the selected point
over the point t0. So we can define, without problem, the specialization of
a tower of regular Galois extensions at the point t0.

1.3. Main result. Our purpose in this paper is to study the Profinite
Beckmann-Black Problem for abelian complete systems. We will prove, in
§3, the following result.

Theorem 1.1. Let K be an uncountable regular ψ-free field and let
(Gn, sn)n∈N be an abelian complete system. For every tower of Galois ex-
tensions (En/K)n∈N of group (Gn, sn)n∈N, there exists a tower of regu-

lar Galois extensions (FE
n /K(T ))n∈N (geometrically) unramified at a point

T = t0 ∈ P1(K) with specialization ((FE
n )t0/K(T ))

n∈N isomorphic to the

tower (En/K)n∈N.

A typical example of K satisfying the assumption of the above theorem
is the field of formal Laurent series Qab((x)). See §2.1 below.

2. Preliminary reminders

2.1. Regular ψ-free field. A field K is said to be a regular ψ-free field
if, for every complete system (Gn, sn)n∈N, there exists a tower of regular
Galois extensions (Fn/K(T ))n∈N realizing regularly the complete system
(Gn, sn)n∈N. This means that, for every n ∈ N, there exists a regular Galois
extension Fn/K(T ) of group Gn such that there exists an epimorphism

εn : Gal(Fn/K(T )) → Gn

1Recall that a field K is PAC if each geometrically irreducible variety V defined over
K has infinitely many K-rational points.
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making the following diagram commute:

Gal(Fn+1/K(T )) //

εn+1

��

Gal(Fn/K(T ))

εn

��
Gn+1

sn+1 // Gn .

Moreover, if K is a henselian field of characteristic 0 such that [K(µ∞) :
K] <∞, then K is a regular ψ-free field [DD2, theorem (3.4)].

2.2. Specialization. Let G be a finite group, K be a field and F/K(T ) be a
regular Galois extension of group G with a K-rational branch divisor t. This
extension corresponds to some epimorphism ϕ : π1(P1 \ t)K → G and the

extension FK/K(T ) corresponds to the restriction ϕ : π1(P1 \ t)K → G of
ϕ to π1(P1 \ t)K ; it is still surjective as F/K is a regular extension. Let t0 ∈
P1(K) \ t be a K-rational point and consider the section, st0 , corresponding
to this point.

1 // π1(P1 \ t )K
//

ϕ
��

π1(P1 \ t)K //

ϕ

��

GK
//

st0

��
1.

G G

The specialization, Ft0 , of F/K(T ) at T = t0 is the residue field of F
at some prime above t0 in the extension F/K(T ). The specialization Ft0

corresponds to the homomorphism ϕ ◦ st0 ([D2, proposition(2.1)]). More
precisely, Ft0 is the fixed field in K of ker(ϕ ◦ st0). In particular, the spe-
cialization Ft0/K is a Galois field extension of group Im(ϕ ◦ st0) ⊂ G. The
morphism ϕ ◦ st0 is called the specialization morphism of F/K(T ) at t0. For
more details, we refer to [D2, chapter 3] and to [D1].

3. Proof of theorem 1.1

Let K be an uncountable regular ψ-free field and (Gn, sn)n∈N be an
abelian complete system. Denote by K((T )) the field of formal Laurent
series in T with coefficients in K.

To prove our theorem, we have three stages. Firstly, we show that our
hypothesis implies that:

Proposition 3.1. There exist a point t0 ∈ P1(K) and a tower of regu-

lar Galois extensions (F̂n/K(T ))n∈N of group (Gn, sn)n∈N such that F̂n ⊂
K((T − t0)) for every n ∈ N.
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For second stage, let (Hn, γn)n∈N be a sub-system of (Gn, sn)n∈N; this
means that Hn is a sub-group of Gn and the restriction of sn on Hn is γn,
for each n ∈ N. We will prove that Proposition 3.1 implies the following
conclusion:

Proposition 3.2. Let (Gn, sn)n∈N be an abelian complete system and
(Hn, γn)n∈N be a sub-system of (Gn, sn)n∈N. For each tower of Galois exten-
sions (En/K)n∈N of group (Hn, γn)n∈N, there exists a tower of regular Galois

extensions (FE
n /K(T ))n∈N of group (Gn, sn)n∈N such that its specialization

at the point T = t0 is a tower of Galois extension of group (Hn, γn)n∈N
isomorphic to (En/K)n∈N.

At third stage, taking Hn = Gn in the proposition 3.2 gives the conclusion
of our result.

• 1st stage “Proof of Proposition 3.1”
As K is a regular ψ-free field, there exists a tower of regular Galois

extensions (Ln/K(T ))n∈N of group (Gn, sn)n∈N. Since there are at most
countably many branch points in

∪
nLn/K(T ), there is an unramified point

T = t0 ∈ P1(K) in the function field tower (Ln/K(T ))n∈N.

Denote by ϕn : π1(P1 \ tn)K → Gn the regular representation correspond-
ing to the regular Galois extension Ln/K(T ), where tn is the branch point
set of this extension. Let rn : π1(P1 \ tn)K → GK be the natural restric-
tion and st0,n : GK → π1(P1 \ tn)K the section corresponding to the point
T = t0.

On the other hand, for each n ∈ N, we have tn−1 ⊆ tn. So there exists a
natural morphism in : π1(P1 \ tn)K → π1(P1 \ tn−1)K such that in(x) = 1
for every x ∈ tn \ tn−1. The regular Galois extension Ln−1/K(T ) is an
unramified extension over tn \ tn−1, so the morphism sn ◦ϕn factors through
in to give sn ◦ ϕn = ϕn−1 ◦ in for every n ∈ N. Furthermore, we have
rn = rn−1 ◦ in and in ◦ st0,n = st0,n−1.

Fix n ∈ N. Let ϕ̂n : π1(P1 \ tn)K → Gn be a map defined as follows: for
x ∈ π1(P1 \ tn)K , we pose

ϕ̂n(x) = ϕn(x).(ϕn ◦ st0,n ◦ rn(x))−1.

This map ϕ̂n is a group homomorphism (because Gn is an abelian group)

with image group equal to Gn. Thus ϕ̂n defines a regular Galois extension

F̂n/K(T ) of group Gn. Furthermore, ϕ̂n and ϕn coincide over K(T ). this
implies that

LnK = F̂nK.

For every n ∈ N, we have:

sn ◦ ϕ̂n = sn ◦ (ϕn.(ϕn ◦ st0,n ◦ rn)−1)
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= (sn ◦ ϕn).(sn ◦ ϕn ◦ st0,n ◦ rn)−1

= (ϕn−1 ◦ in).(ϕn−1 ◦ in ◦ st0,n ◦ rn)−1

= (ϕn−1 ◦ in).(ϕn−1 ◦ st0,n−1 ◦ rn−1 ◦ in)−1

= ((ϕn−1).(ϕn−1 ◦ st0,n−1 ◦ rn−1)
−1) ◦ in = ϕ̂n−1 ◦ in.

Thus sn ◦ ϕ̂n = ϕ̂n−1 ◦ in. This implies that the extension F̂n/K(T ), n ∈ N,
form a tower of regular Galois extensions of group (Gn, sn)n∈N. Furthermore,

we have ϕ̂n ◦ st0,n = (ϕn ◦ st0,n).(ϕn ◦ st0,n)
−1 = 1, hence F̂n ⊆ K((T − t0))

for every n ∈ N.

• 2nd stage “Proof of Proposition 3.2”.
Let (Hn, γn)n∈N be any sub-system of (Gn, sn)n∈N. Suppose given a tower

of Galois extensions (En/K)n∈N of group (Hn, γn)n∈N. By virtue of Propo-

sition 3.1, we find a tower of regular Galois extension (F̂n/K(T ))n∈N of

group (Gn, sn)n∈N such that F̂n ⊆ K((T − t0)) for some unramified point

t0 ∈ K. We want to replace the above tower (F̂n/K(T ))n∈N by another

tower (FE
n /K(T ))n∈N of regular Galois extensions of group (Gn, sn)n∈N so

that its specialization at the point T = t0 is a tower of Galois extension of
group (Hn, γn)n∈N isomorphic to (En/K)n∈N.

We give two arguments. The first one uses a similar process as in first
stage. The second one is essentially equivalent but uses a different formalism.

[Argument 1.] Consider the representation ϕ̂n : π1(P1 \ tn)K → Gn cor-

responding to the regular Galois extension F̂n/K(T ). Recall that LnK =

F̂nK, in particular the branch point set of F̂n/K(T ) is tn and t0 is unrami-
fied.

Still denote by rn : π1(P1 \ tn)K → GK the natural restriction, by st0,n :
GK → π1(P1 \ tn)K the section corresponding to the point t0 and by in :
π1(P1 \ tn)K → π1(P1 \ tn−1)K the natural morphism given by tn−1 ⊆ tn.
Recall that sn ◦ ϕn = ϕn−1 ◦ in, rn = rn−1 ◦ in and in ◦ st0,n = st0,n−1, for
every n > 0.

Let φn : GK → Hn ⊂ Gn be a representation of the Galois extension
En/K (n ∈ N); we have En = (K)Ker(φn) and γn ◦ φn = φn−1.

Fix n ∈ N. Let ϕEn : π1(P1 \ tn)K → Gn be the map defined as follows:

ϕEn (x) = ϕ̂n(x).(φn ◦ rn(x))−1.
The map ϕEn is a group homomorphism (because Gn is abelian) with

image group equal to Gn, and coincides with ϕ̂n and so with ϕn as well on
π1(P1 \ tn)K . Thus ϕEn defines a regular Galois extension FE

n /K(T ) of group

Gn and such that FE
n K = FnK.
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For every n > 0, we have:

sn ◦ ϕEn = sn ◦ (ϕ̂n.(φn ◦ rn)−1)

= (sn ◦ ϕ̂n).(γn ◦ φn ◦ rn)−1

= (ϕ̂n−1 ◦ in).(φn−1 ◦ rn−1 ◦ in)−1

= (ϕ̂n−1.(φn−1 ◦ rn−1)
−1) ◦ in

= ϕEn−1 ◦ in.

Thus sn◦ϕEn = ϕEn−1◦in. This implies that the extensions FE
n /K(T ) (n ∈ N)

form a tower of regular Galois extensions of group (Gn, sn)n∈N. Further-

more, we have ϕEn ◦ st0,n = 1.φ−1
n = φ−1

n and so the specialized extension of

FE
n /K(T ) at t0 is K

ker(φ−1
n )

= En (n ∈ N).

Remark 3.3. Stage 1 and stage 2 could have been merged by defining
directly ϕEn in terms of ϕn as follows: for x ∈ π1(P1 \ tn)K ,

ϕEn (x) = ϕn(x) · (ϕn ◦ st0,n ◦ rn(x))−1 · (φn ◦ rn(x))−1 (n ∈ N).

[Argument 2.] Fix n ∈ N. Denote by φn,t0 : F̂n → K the K-place asso-

ciated to F̂n at the point t0. By an extension of scalars from K to En, the

extension F̂nEn/En(T ) is a regular Galois extension of group Gn. As En/K
is an algebraic extension, the point t0 is still unramified in the extension

F̂nEn/K(T ): EnF̂n ⊂ En((T − t0)) ⊂ K((T − t0)).

On the other hand, F̂n/K(T ) and En/K are two Galois extensions, so

F̂nEn/K(T ) is a Galois extension of group isomorphic to Gn×Hn, for every
n ∈ N. Consider the map ρn : Gn ×Hn → Gn given by ρn(g, h) = gh. This
map ρn is a group homomorphism because Gn is an abelian group (n ⩾ 0).

Fix n ∈ N. Denote by FE
n the subfield of EnF̂n fixed by Kerρn. Thus

FE
n /K(T ) is a Galois extension of group Gn. First we prove that F

E
n is a reg-

ular extension over K. This means that we must verify that [FE
n : K(T )] =

[FE
n K : K(T )]. In fact, the two extensions FE

n /K(T ) and En(T )/K(T ) are
linearly disjoint because

FE
n ∩ En(T ) = (EnF̂n)

Kerρn ∩ (EnF̂n)
Gn

= (EnF̂n)
Kerρn.Gn = (EnF̂n)

Gn×Hn = K(T ).

We deduce that [FE
n : K(T )] = [FE

n En : En(T )]. But the field F
E
n En = F̂nEn

is regular over En, so [FE
n En : En(T )] = [FE

n En : En(T )]. As En/K is a
finite extension, then En = K. We conclude that

[FE
n : K(T )] = [FE

n En : En(T )] = [FE
n K : K(T )].
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Hence the finite extension FE
n /K(T ) is a regular Galois extension of group

Gn.
Furthermore, the following diagram:

Gn ×Hn
ρn //

(sn,γn)

��

Gn

sn
��

Gn−1 ×Hn−1 ρn−1

// Gn−1

is a commutative diagram because the restriction of sn on Hn is equal
to γn (n > 0). We deduce that the family of regular Galois extensions
(FE

n /K(T ))n∈N form a tower of regular Galois extensions of group
(Gn, sn)n∈N.

Now we must show that the specialization of (FE
n /K(T ))n∈N at the point

T = t0 is isomorphic to (En/K)n∈N.

Let us fix n ∈ N and we will study the specialization of FE
n /K(T )) at

the point T = t0. Firstly, as En ⊆ EnF̂n, so φt0(En) ⊆ φt0(EnF̂n). Now
En/K is an extension geometrically unramified at t0, so φt0(En) = En. Thus

En ⊆ φt0(EnF̂n). Denote by Dt0 the decomposition group of t0 in EnF̂n/K.

As En ⊆ φt0(EnF̂n), so |Dt0 | = [φt0(EnF̂n) : K] ⩾ [En : K] = |Hn|.
Furthermore, we know that (EnF̂n)

Hn
= F̂n, so φt0((EnF̂n)

Hn
) = φt0(F̂n).

Now φt0 being a K-place means that φt0(F̂n) = K. Thus φt0((EnF̂n)
Hn

) =
K.

As the point t0 is unramified in F̂nEn/K(T ), so denote by (EnF̂n)
Dt0 the

subfield of EnF̂n fixed by Dt0 . This field (EnF̂n)
Dt0 is the biggest subfield

of EnF̂n such that φt0((EnF̂n)
Dt0 ) = K.

Indeed φt0((EnF̂n)
Hn

) = K, then (EnF̂n)
Hn ⊆ (EnF̂n)

Dt0 . Thus

[F̂nEn : (EnF̂n)
Dt0 ] ⩽ [F̂nEn : (EnF̂n)

Hn
] = |Hn|.

Thus

[φt0(F̂nEn) : φt0((EnF̂n)
Dt0 )] ⩽ |Hn|

so [φt0(F̂nEn) : K] ⩽ |Hn|.
We deduce that |Dt0 | = [φt0(F̂nEn) : K] = |Hn| = [En : K] and En ⊆

φt0(F̂nEn). Thus En = φt0(F̂nEn), so the specialization of F̂nEn/K(T ) at
the point t0 is isomorphic to En/K and Dt0 = Gal(En/K) = Hn.

Finally, denote by φ̂t0 the restriction of φt0 on FE
n . The specialization

of FE
n /K(T ) at the point t0 is an intermediate extension of En/K (the

specialization extension of F̂nEn/K(T )) of group equal to ρn(Dt0). But
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ρn(Dt0) = ρn(Hn) = ρn({1} × Hn) = Hn. This implies that the special-
ization extension of FE

n /K(T ) at the point t0 is a Galois extension of group
Hn isomorphic to En/K.

To sum up, we find a tower of regular Galois extensions (FE
n /K(T ))n∈N of

group (Gn, sn)n∈N such that the tower of specialization at the point T = t0
is a Galois tower of group (Hn, γn)n∈N isomorphic to (En/K)n∈N.

• 3rd stage “Conclusion”.
Putting Gn = Hn for every n ∈ N in Proposition 3.2, we conclude that,

for each tower of Galois extensions (En/K)n∈N of group (Gn, sn)n∈N, there

exists a tower of regular Galois extensions (FE
n /K(T ))n∈N such that its

specialization at the point T = t0 is a tower of Galois extension isomorphic
to (En/K)n∈N.
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[D1] P. Dèbes, Galois Covers with Prescribed Fibers: The Beckmann-Black problem,

Ann. Scuola Norm. Sup. Paris, Cl. Sci. 28 (1999), 273-286.
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