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ON THE PROFINITE ABELIAN
BECKMANN-BLACK PROBLEM

NouR GHAZI

ABSTRACT. The main topic of this paper is to generalize the problem
of Beckmann-Black for profinite groups. We introduce the Beckmann-
Black problem for complete systems of finite groups and for unramified
extensions. We prove that every Galois extension of profinite abelian
group over a -free field is the specialization of some tower of regular
Galois extensions of the same group.

1. PRESENTATION

1.1. Notation and definitions. Let K be a field and (G, s,),cy be a
complete system, i.e., a projective system of finite groups G,, (n € N) and
epimorphisms s,, : G, = Gp—1 (n > 0).

An abelian complete system is a complete system (G, 5p),,cy Such that
G, is an abelian group for every n € N.

Denote by K an algebraic closure of K and let G, be the absolute Galois
group of K. Denote by K(T') the field of rational functions in one variable
T with coefficients in K.

A finite extension F/K(T) is said to be a regular Galois extension of
group G if F/K(T) is a Galois extension of group G and the function field
F/K is regular. Recall that regular means FN K = K.

In this paper, we want to generalize one of open questions in Inverse Galois
Theory known as the Beckmann-Black problem. More precisely, if K is a
field and G is a finite group, then the Beckmann-Black problem asks whether
each Galois extension E/K of group G is the specialization of some regular
Galois extension F/K(T) of group G at some unramified point to € P1(K).

The Beckmann-Black problem for finite groups is known to have a positive
answer in some situations. For example:

e (G is a symmetric group (Beckmann [Be] if K is a number field,
Black [BI2] for an arbitrary field).

e (G is the dihedral group D, of order 2n when n is odd (Black [Bl1]).

e (G is an abelian group (Beckmann [Be] and Black [Bll] if K is a
number field, and Debes [D1] if K is an arbitrary field).
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e (G is a finite group and K is P(seudo) A(lgebraically) C(losed)
(Débes [D1]).
Throughout this paper, we assume K is a perfect field.

1.2. Profinite Beckmann-Black Problem. Let K be a field and
(Gny5n)peny be a complete system. Fix a tower of Galois extensions
(En/K),cn of group (Gp,sp),cn; this means that £,/K is a Galois ex-
tension of group G, (n = 0) such that Ekertn) — B for every n > 1.
The question of Profinite Beckmann-Black over K asks to find:
(i) a tower of regular Galois extensions (F,/K(T)),cy realizing the
complete system (G, Sn),cn-
(ii) an unramified point tq € P!(K) such that the specialization (Fn)g/ K
of F,,/K(T) at this point ty is a Galois extension isomorphic to E,, /K
for every n € N.
Note that the specialization of F,,/ K (T') is independent of the selected point
over the point ¢yg. So we can define, without problem, the specialization of
a tower of regular Galois extensions at the point tg.

1.3. Main result. Our purpose in this paper is to study the Profinite
Beckmann-Black Problem for abelian complete systems. We will prove, in
§3, the following result.

Theorem 1.1. Let K be an uncountable regular -free field and let

(G 8n)pen be an abelian complete system. For every tower of Galois ex-
tensions (En/K),cn of group (Gn,sn),cn, there exists a tower of regu-
lar Galois extensions (FF/K(T)), ey (geometrically) unramified at a point
T =ty € PYK) with specialization ((FnE)tO/K(T))
tower (Ep/K)

neN isomorphic to the

neN-

A typical example of K satisfying the assumption of the above theorem
is the field of formal Laurent series Q*"((x)). See §2.1 below.

2. PRELIMINARY REMINDERS

2.1. Regular i-free field. A field K is said to be a regular v -free field
if, for every complete system (G, 5,),cy, there exists a tower of regular
Galois extensions (F,/K(T)),cy realizing regularly the complete system
(G, 8n)pen- This means that, for every n € N, there exists a regular Galois
extension F,,/K(T') of group G,, such that there exists an epimorphism

en: Gal(F,/K(T)) — Gy

1Recall that a field K is PAC if each geometrically irreducible variety V' defined over
K has infinitely many K-rational points.
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making the following diagram commute:

Gal(Fya1/K(T)) — Gal(E, /K(T))

Sn41
Gn+1 Gn

Moreover, if K is a henselian field of characteristic 0 such that [K (uoo) :
K| < oo, then K is a regular 1-free field [DD2, theorem (3.4)].

2.2. Specialization. Let G be a finite group, K be a field and F'/K(T) be a
regular Galois extension of group G with a K-rational branch divisor t. This
extension corresponds to some epimorphism ¢ : 71 (P \ t),, — G and the
extension FK /K (T) corresponds to the restriction ¢ : (P \ t)z — G of
¢ to i (P \ t)5 it is still surjective as F/K is a regular extension. Let ¢ €
PY(K)\t be a K-rational point and consider the section, sy, corresponding
to this point.

StO

1—>m P\t ) —>m (P \ ), —> G —> 1.

i (i;

The specialization, Fy,, of F/K(T) at T" = to is the residue field of F
at some prime above ¢y in the extension F/K(T). The specialization Fy,
corresponds to the homomorphism ¢ o s, ([D2, proposition(2.1)]). More
precisely, Fy, is the fixed field in K of ker(¢ o s¢,). In particular, the spe-
cialization Fy,/K is a Galois field extension of group Im(¢ o s¢,) C G. The
morphism ¢ o s, is called the specialization morphism of F//K(T') at to. For
more details, we refer to [D2, chapter 3] and to [D1].

3. PROOF OF THEOREM 1.1

Let K be an uncountable regular v-free field and (Gy,5s,),cy be an
abelian complete system. Denote by K((T')) the field of formal Laurent
series in T" with coefficients in K.

To prove our theorem, we have three stages. Firstly, we show that our
hypothesis implies that:

Proposition 3.1. There exist a point to € PL(K) and a tower of regu-
lar Galois extensions (F,/K(T)),cy of group (Gn,sn),en such that F, C
K(T —tg)) for every n € N.
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For second stage, let (Hy,Vn),cy be a sub-system of (Gn,spn),cy; this
means that H, is a sub-group of GG, and the restriction of s, on H, is 7y,
for each n € N. We will prove that Proposition 3.1 implies the following
conclusion:

Proposition 3.2. Let (Gp,5,),cy be an abelian complete system and
(Hn, Yn)nen e a sub-system of (G, sn),cn- For each tower of Galois exten-
sions (En/K), ey of group (Hp, Yn),ens there exists a tower of regular Galois
extensions (FF /K(T)),en of group (Gn, sn),en Such that its specialization
at the point T = to is a tower of Galois extension of group (Hp,Vn),en
isomorphic to (En/K), cn-

At third stage, taking H,, = G, in the proposition 3.2 gives the conclusion
of our result.

e 15t stage “Proof of Proposition 3.1”

As K is a regular i-free field, there exists a tower of regular Galois
extensions (Ly,/K(T)),cn of group (G, sn),cn- Since there are at most
countably many branch points in |J,, L, /K (T'), there is an unramified point
T =ty € P(K) in the function field tower (L,,/K(T)),cn-

Denote by ¢y, : m1(PL\ ¢,) ;- — Gy, the regular representation correspond-
ing to the regular Galois extension L, /K (T'), where t, is the branch point
set of this extension. Let 7, : 71 (P*\ ¢,); — Gk be the natural restric-
tion and s4,, : Gx — 7y (P \ tn) 5 the section corresponding to the point
T = t.

On the other hand, for each n € N, we have t,,_1 C t,,. So there exists a
natural morphism i, : m (P \ ¢,) 5 — m (P \ tp—1) such that i,(z) = 1
for every x € t, \ ty,—1. The regular Galois extension L,_1/K(T) is an
unramified extension over ¢, \ t,—1, so the morphism s, o ¢,, factors through
in to give s, o ¢, = ¢n_1 0 iy for every n € N. Furthermore, we have
Tn = Tp—101n andzn O Stg,n = Stg,n—1-

Fix n € N. Let ¢y, : (P! \ t,) x — Gy be a map defined as follows: for
z € m (P \ t,), We pose

Pn(z) = dn(x).(Pn © Stgm © Tn(x))71~
This map qgn is a group homomorphism (because G,, is an abelian group)
with image group equal to G,. Thus q/gn defines a regular Galois extension
F,/K(T) of group G,. Furthermore, ¢, and ¢, coincide over K (T). this
implies that
L, K = [,K.
For every n € N, we have:

Sp O (gn =510 (¢n(¢n O Stg,n © rn)_l)
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Sn © an)-(sn o an O Sty,n © Tn)_l

= (

= (qbn—l o Zn)(¢n—1 04y O Sto,n © Tn)_l

= ((ﬁn—l o in)-(¢n—1 O Stg,n—1°Tn—-19 in)_l
=(

(¢n—1)-(¢)n—1 O Stg,n—1© rn—l)_l) 0ty = ¢n—1 O ip.

Thus s,, o $n = QASn,l o i,. This implies that the extension F\n/K(T), neN,
form a tower of regular Galois extensions of group (G, sn),,cn- Furthermore,
we have ¢, 0 stg.n = (én © Stgn).(Pn © sto’n)_l =1, hence F,, C K((T — tp))
for every n € N.

e 27d stage “Proof of Proposition 3.2”.

Let (Hpn, Yn),en be any sub-system of (G, s,),,cn- Suppose given a tower
of Galois extensions (E,/K), oy of group (Hy,,n),cn- By virtue of Propo-
sition 3.1, we find a tower of regular Galois extension (ﬁn/K(T))neN of
group (G, Sn),cy such that F, C K((T — to)) for some unramified point
to € K. We want to replace the above tower (ﬁn/K(T))neN by another
tower (F.F/K(T)),en of regular Galois extensions of group (G, sn),cy SO
that its specialization at the point T' = g is a tower of Galois extension of
group (Hy,Yn),ey isomorphic to (Ey,/K), cy-

We give two arguments. The first one uses a similar process as in first
stage. The second one is essentially equivalent but uses a different formalism.

[Argument 1] Consider the representation ¢, : i (P! \tn) g — Gn cor-
responding to the regular Galois extension F,/K (T). Recall that L,K =
F, K, in particular the branch point set of F,, /K (T) is t, and t is unrami-
fied.

Still denote by r,, : my (P! \ tn)x — Gk the natural restriction, by s, :
Gr — m (P! \ t,), the section corresponding to the point ¢y and by iy, :
7y (Pt \tn) — 1 (P! \ tn—1)f the natural morphism given by t,_1 C t,.
Recall that s, o ¢y, = ¢p—1 0 ip, ™ = Ty—1 0%y, and iy 0 Sty.n = Sty m—1, for
every n > 0.

Let ¢, : Gk — H, C G, be a representation of the Galois extension
E,/K (n € N); we have E,, = (F)Ker(‘p") and Y, © Yn = Pn_1.

Fix n € N. Let ¢Z : m(P'\ t,) x — Gy be the map defined as follows:
(bf(a:) = ¢n()-(n 0 Tn(x))_l-

The map ¢Z is a group homomorphism (because G,, is abelian) with
image group equal to G,,, and coincides with an and so with ¢, as well on
71 (P! \ t,)7%. Thus ¢Z defines a regular Galois extension F,¥ /K (T') of group
G, and such that FFK = F, K.
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For every n > 0, we have:
500 03 = 800 (On-(pn 0 7a) ")
= (50,0 Gn)-(Wm 0 Pr o) !
= ($n-10n)-(¢n-1 0701 0dp) "
= (Gn-1.(Pn-107Tn-1)"") 0ip
=¢f | oip.
Thus sp0¢L = ¢~ | 0i,. This implies that the extensions X /K (T) (n € N)

form a tower of regular Galois extensions of group (Gp,sn),cy- Further-
more, we have ¢ o s, , = L., 1 = ;! and so the specialized extension of

—ker(pp*
FE/K(T) at to is K" ) = B, (n e N).

Remark 3.3. Stage 1 and stage 2 could have been merged by defining
directly ¢Z in terms of ¢,, as follows: for x € 71 (P! \ ) s

On (€) = Dn(2)  (én © St90 0 (7)) - (pnora(z))” (n€N).

[Argument 2.] Fix n € N. Denote by ¢, 4, : F, — K the K-place asso-
ciated to ﬁn at the point ¢y3. By an extension of scalars from K to E,, the
extension F, E,/E,(T) is a regular Galois extension of group Gp. As E, /K
is an algebraic extension, the point o is still unramified in the extension
F.E,/K(T): E,F, C EQ((T — 1) C K(T — tp)).

On the other hand, F,,/K(T) and E, /K are two Galois extensions, so
E,E, /K (T) is a Galois extension of group isomorphic to G,, x Hy, for every
n € N. Consider the map p,, : G, x H, — G, given by p,(g,h) = gh. This
map py, is a group homomorphism because G,, is an abelian group (n > 0).

Fix n € N. Denote by Ff the subfield of Enﬁn fixed by Kerp,,. Thus
FE/K(T) is a Galois extension of group G,,. First we prove that F.Z is a reg-
ular extension over K. This means that we must verify that [F.F : K(T)] =
[FEK : K(T)]. In fact, the two extensions F*/K(T) and E,(T)/K(T) are
linearly disjoint because

FP N E,(T) = (B,F,)X"" 0 (E,F,)""
_ (Enﬁn)Kerpn.Gn _ (Enﬁn)anHn _ K(T)
We deduce that [FE : K(T)] = [FFE, : E,(T)]. But the field F¥E,, = F,E,
is regular over E,, so [FFE, : E,(T)] = [FFE, : E,(T)]. As E,/K is a
finite extension, then F,, = K. We conclude that

[FE . K(T)] = [FFE, : Eo(T)] = [FFK : K(T).
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Hence the finite extension F”/K(T) is a regular Galois extension of group
Gh.
Furthermore, the following diagram:

G, x Hy, G
(Sny'Yn)i l‘g”
Gn—l X Hn—l Gn—l

is a commutative diagram because the restriction of s, on H, is equal
to v, (n > 0). We deduce that the family of regular Galois extensions
(FF/K(T)),cy form a tower of regular Galois extensions of group
(Ghs 8n)pen-

Now we must show that the specialization of (F.¥ /K (T)),cy at the point
T =ty is isomorphic to (E,/K), c-

Let us fix n € N and we will study the specialization of FE/K( ) a
the point T = to. Firstly, as E, C E,F,, so Oto(En) € i, (En E,). Now
E, /K is an extension geometrically unramified at ¢, so ¢, (En) = Ey. Thus
E, C iy, (Enﬁn) Denote by Dy, the decomposition group of ¢y in Enﬁn/K
As B, C @to(Enﬁn)’ 50 | Dy, | = [‘Pto(Enﬁn) 1 K] 2 [En: K] = |Hyl.

~

Furthermore, we know that (E,F,,) "~ = Fp, 50 01, (EnFn) ") = 01, (Fr)-
)

~

Now ¢y, being a K-place means that ¢, (F;,) = K. Thus goto((EnFn)H
K.

As the point t( is unramified in ﬁnEn/K(T), so denote by (Enﬁn)Dto the
subfield of E,F, fixed by Dy,. This field (B, F,)"" is the biggest subfield
of E,F, such that Lpto((Enﬁn)DtO) =K.

Indeed @to((Enﬁn)Hn) = K, then (Enﬁn)Hn

- (Enﬁn)DtO . Thus

(FoBp s (EnEn) ) < [FuEn : (EnFo)'™] = |Hal.
Thus
(ro(FaEn) « o1 (EnFn) )] < |Hy|
50 [ty (FoBn) : K] < |Hy).
We deduce that |Dy,| = [(pto(F E,) : K| = |H,| = [E, :,\K] and E, C

gotD(F E,). Thus E, = gotO(F E,), so the specialization of F,,F,/K(T) at
the point ¢y is isomorphic to E,/K and Dy, = Gal(E,/K) = H,

Finally, denote by @, the restriction of ¢;, on FF. The specialization
of FF/K(T) at the point ¢y is an intermediate extension of E, /K (the
specialization extension of F,,E,/K(T)) of group equal to p(Dy,). But



240 N. GHAZI

pn(Dyy) = pn(Hyp) = pn({1} x H,) = H,. This implies that the special-
ization extension of F /K (T) at the point ty is a Galois extension of group
H,, isomorphic to E, /K.

To sum up, we find a tower of regular Galois extensions (F.Z/K(T)), oy of
group (G, 5n),cn such that the tower of specialization at the point T" = tg
is a Galois tower of group (Hp, V), ey isomorphic to (E,/K), cx-

e 34 stage “Conclusion”.

Putting G,, = H,, for every n € N in Proposition 3.2, we conclude that,
for each tower of Galois extensions (E,/K), .y of group (G, $5),c, there
exists a tower of regular Galois extensions (F)¥/K(T)),cy such that its
specialization at the point T = tg is a tower of Galois extension isomorphic

to (En/K)neN'
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