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NECESSARY AND SUFFICIENT TAUBERIAN

CONDITIONS FOR THE Ar METHOD OF SUMMABILITY

Özer Talo and Feyzi Başar

Abstract. Móricz and Rhoades determined the necessary and suffi-
cient Tauberian conditions for certain weighted mean methods of summa-
bility in [Acta. Math. Hungar. 102(4) (2004), 279–285]. In the present
paper, we deal with the necessary and sufficient Tauberian conditions
for the Ar method which was introduced by Başar in [Fırat Üniv. Fen
& Müh. Bil. Dergisi 5(1)(1993), 113–117].

1. Introduction

By a sequence space, we understand a linear subspace of the space ω = CN

of all complex sequences which contains ϕ, the set of all finitely non-zero
sequences, where C denotes the complex field and N = {0, 1, 2, . . .}. We
write c for the space of all convergent sequences.

Let λ, µ be any two sequence spaces and A = (ank) be an infinite matrix
of complex numbers ank, where n, k ∈ N. Then, we write Ax =

{
(Ax)n

}
, the

A-transform of the sequence x = (xk) ∈ λ, if (Ax)n =
∑

k ankxk converges
for each n ∈ N. For simplicity in notation, here and in what follows, the
summation without limits runs from 0 to ∞. If x ∈ λ implies that Ax ∈ µ
then we say that A defines a matrix transformation from λ into µ and denote
it by A : λ → µ. By (λ : µ), we mean the class of all infinite matrices A
such that A : λ → µ.

Definition 1. [11, pp. 222–223] Suppose that A = (ank) is any infinite
matrix of complex numbers and λ is any sequence space. Then, by λA we
denote all those x = (xk) ∈ ω such that the A-transform of x exists and is
in λ. In the case λ = c we have cA = {x = (xk) ∈ ω : Ax ∈ c} and cA is
called the convergence domain of the matrix A.

Definition 2. (cf. Boos [7, p. 167]) For given matrix methods A and B
with cB ⊂ cA, by a Tauberian condition we mean the determination of a
subset L of ω, such that x ∈ L ∩ cA implies x ∈ cB.

Essentially, we consider the case that B = I; that is, we aim to conclude
from x ∈ L ∩ cA that x ∈ c.
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2. Ar Matrices

In this section, we summarize the required knowledge on the Ar matrices.
Let 0 < r < 1. Then the class Ar = (arnk) of Toeplitz matrices, introduced
by Başar [6], is given by

arnk =

{
1+rk

n+1 , 0 ≤ k ≤ n,

0 , k > n,

for all k, n ∈ N. A straightforward calculation shows that the inverse matrix
Br = (brnk) of the matrix Ar = (arnk) is given by

brnk =

{
(−1)n−k(k+1)

1+rn , n− 1 ≤ k ≤ n,

0 , 0 ≤ k ≤ n− 2 or k > n,

for all k, n ∈ N.

Definition 3. (cf. Başar [6]) The Ar-transform of a sequence (xk)k∈N ∈ ω
is defined by

(Arx)n = σr
n =

1

n+ 1

n∑
k=0

(1 + rk)xk

for all n ∈ N. We say that (xk) is summable Ar to l if

lim
n→∞

σr
n = l.(2.1)

We assume unless stated otherwise that 0 < r < 1. We should note here
that a number of papers were published on the sequence spaces defined by
the domain of the Ar matrices in some normed and paranormed sequence
spaces, (see Aydın and Başar [1, 2, 3, 4, 5]).

Example 2.1. Define the sequence x = (xk) by xk = (−1)k/(1+ rk) for all
k ∈ N. Then, it is easy to see that

(Arx)n = σr
n =

1

n+ 1

n∑
k=0

(1 + rk)
(−1)k

1 + rk
= 0

for all n ∈ N. It is immediate that (xk) is A
r-summable to zero while it does

not converge to 0.

3. Main results

In the present section, we give the necessary and sufficient Tauberian
conditions for the Ar method. Throughout this section, by λn we denote
the integral part of the product λn, i.e. λn := [λn].

We need the following lemmas in proving our theorems.
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Lemma 3.1. Let us define ⟨λ⟩ for every λ > 0 by ⟨λ⟩ = λ− [λ]. Then, the
following statements hold:

(i) If λ > 1, then λn > n for each n ∈ N \ {0} with n ≥ ⟨λ⟩−1.
(ii) If 0 < λ < 1, then λn < n for each n ∈ N \ {0}.

Proof. Obviously, 0 ≤ ⟨λ⟩ < 1. For every λ > 0 and each n ∈ N, we have

λn = [λn] = n[λ] + [n⟨λ⟩].(3.1)

Since λ = [λ] + ⟨λ⟩ and λn = n[λ] + n⟨λ⟩.
Let us suppose that λ > 1. In the case λ ≥ 2, the relation (3.1) leads to

the inequalities, λn ≥ n[λ] ≥ 2n ≥ n. In the case 1 < λ < 2, we have [λ] = 1
and 0 < ⟨λ⟩ < 1. So, we can assume n ≥ ⟨λ⟩−1. Thus, it follows from (3.1)
that λn = n+ [n⟨λ⟩] ≥ n+ 1 ≥ n.

Let 0 < λ < 1. Then we have λ = ⟨λ⟩. This implies that λn = ⟨λ⟩n < n.
Meanwhile, we have

λn = [λn] + ⟨λn⟩ ≥ [λn] = λn.

As a result, we reach the desired inequality: λn < n for each n ∈ N\{0}. □
Lemma 3.2. We have the following statements:

(i) Let λ > 1. For each n ∈ N \ {0} with n ≥ (3λ − 1)/λ(λ − 1) , we
have

λ

λ− 1
<

λn + 1

λn − n
<

2λ

λ− 1
.(3.2)

(ii) If 0 < λ < 1, for each n ∈ N \ {0} with n > λ−1 we have

0 <
λn + 1

n− λn
<

2λ

1− λ
.(3.3)

Proof. (i) Let λ > 1 and for each n ∈ N \ {0}

n ≥ 3λ− 1

λ(λ− 1)
.(3.4)

This implies

n ≥ λ+ (2λ− 1)

λ(λ− 1)
≥ 1

λ− 1
.(3.5)

So

2λ

λ− 1
− λn+ 1

λn− n− 1
=

λ

λn− n− 1

(
n− 3λ− 1

λ(λ− 1)

)
≥ 0.

Since for n ≥ ⟨λ⟩−1, n ≤ [λn] ≤ λn and 0 ≤ ⟨λn⟩ < 1, we have the following
inequality:

λ

λ− 1
=

λn

λn− n
≤ λn

[λn]− n
=

[λn] + ⟨λn⟩
[λn]− n

<
λn + 1

λn − n
.(3.6)
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on the other hand we note that ⟨λn⟩ − 1 < 0 and by the inequalities (3.5)
we have

[λn]− n+ (⟨λn⟩ − 1) = λn− n− 1 = (λ− 1)n− 1 > 0.

Thus, we conclude the inequality

λn + 1

λn − 1
=

[λn] + 1

[λn]− n
<

λn + 1

λn − n+ (⟨λn⟩ − 1)
=

λn+ 1

λn− n− 1
.

(ii) Let 0 < λ < 1 and n ∈ N \ {0} with n > λ−1. The straightforward
computation leads to

2λ

1− λ
− λn+ 1

n− λn
=

λn− 1

n(1− λ)
> 0,

which implies that

λn+ 1

n− λn
<

2λ

1− λ
.

Additionally, since 0 ≤ ⟨λn⟩ < 1, we have

λn + 1

n− λn
=

[λn] + 1

n− [λn]
=

λn− ⟨λn⟩+ 1

n− λn+ ⟨λn⟩
≤ λn+ 1

n− λn+ ⟨λn⟩
≤ λn+ 1

n− λn
.

Therefore, we eventually obtain the inequality (3.3). □
Lemma 3.3. If a sequence (xk) is summable Ar to a finite number l, then
for each λ > 1

lim
n→∞

1

λn − n

λn∑
k=n+1

(1 + rk)xk = l(3.7)

and for each 0 < λ < 1

lim
n→∞

1

n− λn

n∑
k=λn+1

(1 + rk)xk = l.(3.8)

Proof. (i) Let λ > 1. For each n ∈ N\{0} with n ≥ ⟨λ⟩−1 we have following
equality:

1

λn − n

λn∑
k=n+1

(1 + rk)xk = σr
n +

λn + 1

λn − n

(
σr
λn

− σr
n

)
.(3.9)

Now, (3.7) follows from (2.1) and (3.2).
(ii) Let 0 < λ < 1. In this situation, for each n ∈ N \ {0}, we make use of

the following equality:

1

n− λn

n∑
k=λn+1

(1 + rk)xk = σr
n +

λn + 1

n− λn

(
σr
n − σr

λn

)
(3.10)
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Now, (3.8) follows from (2.1) and (3.3). □
Theorem 3.4. Let (xk) be a sequence of real numbers which is summable
Ar to a finite limit l. Then

lim
n→∞

xn = l(3.11)

if and only if the following two conditions are satisfied:

sup
λ>1

lim inf
n→∞

1

λn − n

λn∑
k=n+1

[
(1 + rk)xk − xn

]
≥ 0,(3.12)

sup
0<λ<1

lim inf
n→∞

1

n− λn

n∑
k=λn+1

[
xn − (1 + rk)xk

]
≥ 0.(3.13)

Proof. Necessity. Assume that both (3.11) and (2.1) are satisfied. Then, an
application Lemma 3.3 yields (3.12) for all λ > 1 and (3.13) for all 0 < λ < 1.

Sufficiency. Assume that (2.1), (3.12) and (3.13) are satisfied.
First, we consider the case λ > 1. Given any ε > 0, by (3.12) there exists

λ > 1 such that

lim inf
n→∞

1

λn − n

λn∑
k=n+1

[
(1 + rk)xk − xn

]
≥ −ε.(3.14)

For each n ∈ N \ {0} with n ≥ ⟨λ⟩−1, it follows from (3.9) that

xn − σr
n =

λn + 1

λn − n

(
σr
λn

− σr
n

)
(3.15)

− 1

λn − n

λn∑
k=n+1

[
(1 + rk)xk − xn

]
.

On the other hand, by (3.2), we have∣∣∣∣λn + 1

λn − n

(
σr
λn

− σr
n

)∣∣∣∣ ≤ 2λ

λ− 1

∣∣σr
λn

− σr
n

∣∣
and so

lim
n→∞

λn + 1

λn − n

(
σr
λn

− σr
n

)
= 0.(3.16)

Combining (3.15)-(3.16) gives that

lim sup
n→∞

(xn − σr
n) ≤ lim sup

n→∞

λn + 1

λn − n

(
σr
λn

− σr
n

)
+ lim sup

n→∞

{
− 1

λn − n

λn∑
k=n+1

[(
1 + rk

)
xk − xn

]}
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≤ − lim inf
n→∞

{
1

λn − n

λn∑
k=n+1

[
(1 + rk)xk − xn

]}
≤ ε.

Consequently, for each ε > 0

lim sup
n→∞

xn ≤ l + ε.(3.17)

Second, we consider the case 0 < λ < 1. For each n ∈ N \ {0}, it follows
from (3.10) that

xn − σr
n =

λn + 1

n− λn

(
σr
n − σr

λn

)
(3.18)

+
1

n− λn

n∑
k=λn+1

[
xn − (1 + rk)xk

]
.

Using a similar argument as above, by virtue of (3.13) and (3.3), for any
ε > 0 we conclude that

lim inf
n→∞

(xn − σr
n) ≥ lim inf

n→∞

λn + 1

n− λn

(
σr
n − σr

λn

)
+ lim inf

n→∞

 1

n− λn

n∑
k=λn+1

[
xn − (1 + rk)xk

]
≥ −ε.

Consequently, for each ε > 0

lim inf
n→∞

xn ≥ l − ε.(3.19)

We conclude (3.11) by combining (3.17) and (3.19). □

Remark. From the proof of Theorem 3.4 it turns out that even more is true:
If the conditions (2.1) and (3.11) or equivalently, the conditions (2.1), (3.12)
and (3.13) are satisfied, then we necessarily have

lim
n→∞

1

λn − n

λn∑
k=n+1

[
(1 + rk)xk − xn

]
= 0(3.20)

for all λ > 1, and

lim
n→∞

1

n− λn

n∑
k=λn+1

[
xn − (1 + rk)xk

]
= 0(3.21)

for all 0 < λ < 1.
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Remark. The proof of Theorem 3.4 can be modified so that its conclusion
remains valid if the conditions (3.12) and (3.13) are replaced by the following
ones:

inf
λ>1

lim sup
n→∞

1

λn − n

λn∑
k=n+1

[
(1 + rk)xk − xn

]
≤ 0(3.22)

and

inf
0<λ<1

lim sup
n→∞

1

n− λn

n∑
k=λn+1

[
xn − (1 + rk)xk

]
≤ 0.(3.23)

Definition 4. A sequence (xk) of real numbers is said to be slowly decreas-
ing if

lim
λ→1+

lim inf
n→∞

min
n<k≤λn

[xk − xn] ≥ 0(3.24)

or equivalently

lim
λ→1−

lim inf
n→∞

min
λn<k≤n

[xn − xk] ≥ 0.(3.25)

The right-hand limit in (3.24) exists and can be equivalently replaced by
supλ>1. Historically, the notion of slow decrease (with respect to summabil-
ity C1) goes back to Schmidt [15].

Corollary 3.5. Let a sequence (xk) of real numbers be slowly decreasing (or
slowly incresing). Then,

lim
n→∞

σr
n = l implies lim

n→∞
xn = l.(3.26)

Proof. For λ > 1, for each n ∈ N \ {0} with n ≥ ⟨λ⟩−1 we have the following
inequality:

1

λn − n

λn∑
k=n+1

[
(1 + rk)xk − xn

]
≥ min

n<k≤λn

[
(1 + rk)xk − xn

]
= min

n<k≤λn

(
rkxk

)
+ min

n<k≤λn

(xk − xn) .

We have

xk =
(k + 1)σr

k − kσr
k−1

1 + rk
,

xk
k

=
σr
k − σr

k−1

1 + rk
+

σr
k

k(1 + rk)
.

On the other hand if (xk) is summable Ar, then we have xk/k → 0, as
k → ∞. Therefore rkxk → 0, as k → ∞. So, the condition (3.24) clearly
implies the condition (3.12). Similarly, (3.25) implies (3.13). By Theorem
3.4, we have the implication (3.26). □
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Theorem 3.6. Let (xk) be a sequence of complex numbers which is sum-
mable Ar. Then, (xk) converges to the same limit if and only if one of the
following two conditions is satisfied:

inf
λ>1

lim sup
n→∞

∣∣∣∣∣ 1

λn − n

λn∑
k=n+1

[
(1 + rk)xk − xn

]∣∣∣∣∣ = 0(3.27)

or

inf
0<λ<1

lim sup
n→∞

∣∣∣∣∣∣ 1

n− λn

n∑
k=λn+1

[
xn − (1 + rk)xk

]∣∣∣∣∣∣ = 0.(3.28)

Proof. Necessity. The proof is similar to the proof of necessity part of The-
orem 3.4.

Sufficiency. Assume that (2.1) and one of the conditions (3.27) and (3.28)
are satisfied. Let any ε > 0 be given. By (3.27), there exists λ > 1 such
that

lim sup
n→∞

∣∣∣∣∣ 1

λn − n

λn∑
k=n+1

[
(1 + rk)xk − xn

]∣∣∣∣∣ < ε.(3.29)

By (3.15), for each n ∈ N \ {0} with n ≥ ⟨λ⟩−1, we have

lim sup
n→∞

|xn − σr
n| ≤ lim sup

n→∞

λn + 1

λn − n

∣∣σr
λn

− σr
n

∣∣(3.30)

+ lim sup
n→∞

∣∣∣∣∣ 1

λn − n

λn∑
k=n+1

[
(1 + rk)xk − xn

]∣∣∣∣∣ .
In case 0 < λ < 1, on the other hand, by (3.28) there exists 0 < λ < 1

such that

lim sup
n→∞

∣∣∣∣∣∣ 1

n− λn

n∑
k=λn+1

[
xn − (1 + rk)xk

]∣∣∣∣∣∣ < ε.(3.31)

By (3.18), for each n ∈ N \ {0} with n > λ−1, we have

lim sup
n→∞

|xn − σr
n| ≤ lim sup

n→∞

λn + 1

n− λn

∣∣σr
n − σr

λn

∣∣(3.32)

+ lim sup
n→∞

∣∣∣∣∣∣ 1

n− λn

n∑
k=λn+1

[
xn − (1 + rk)xk

]∣∣∣∣∣∣ .
By (3.30) or (3.32), in either case we obtain

lim sup
n→∞

|xn − σr
n| = 0(3.33)
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whence it follows that

lim
n→∞

|xn − σr
n| = 0.(3.34)

Now, we conclude (3.11) from (2.1) and (3.34). □
We recall that a sequence (xk) of complex numbers is said to be slowly

oscillating

lim
λ→1+

lim sup
n→∞

max
n<k≤λn

|xk − xn| = 0(3.35)

or equivalently

lim
λ→1−

lim sup
n→∞

max
λn<k≤n

|xk − xn| = 0.(3.36)

The right-hand limit in (3.35) can be equivalently replaced by infλ>1.

Corollary 3.7. Let a sequence (xk) of complex numbers be slowly oscillat-
ing. Then, the implication (3.26) holds.

Proof. For λ > 1, for each n ∈ N\{0} with n ≥ ⟨λ⟩−1; we have the following
inequality:∣∣∣∣∣ 1

λn − n

λn∑
k=n+1

[
(1 + rk)xk − xn

]∣∣∣∣∣ ≤ max
n<k≤λn

∣∣∣(1 + rk)xk − xn

∣∣∣
≤ max

n<k≤λn

∣∣∣rkxk∣∣∣+ max
n<k≤λn

|xk − xn| .

On the other hand, if (xk) is summable Ar; then limk→∞(rkxk) = 0. So,
the condition (3.35) clearly implies the condition (3.27). Similarly, (3.36)
implies (3.28). By Theorem 3.6, we have the implication (3.26). □

4. Conclusion

In 1995, Móricz and Rhoades [12] obtained the necessary and sufficient
Tauberian conditions for weighted mean. In [12], Theorem 1 gives a one-
sided Tauberian result and Theorem 2 is an extension of Theorem 1 to
complex sequences. Later, Móricz and Rhoades derived the weaker Taube-
rian conditions under which convergence of the sequence (sn) follows from
its weighted mean (N, p). They firstly considered real sequences and gave a
one-sided Taberian theorem. Secondly, they considered complex sequences
and gave a two-sided Tauberian theorem. These are more general than The-
orem 1 and Theorem 2 of [13], respectively. In [10], Dik et al. introduce some
classical and neoclassical Tauberian-like conditions to retrieve subsequential
convergence of a real sequence (un) and some other sequences related to
it out of the boundedness of the sequence (un). In [8], Çanak and Totur
generalize a result of Č.V. Stanojević and V.B. Stanojević given in [16] for
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the general control modulo the oscillatory behavior of order m, where m is
any positive integer.

Following Móricz and Rhoades [12, 13], we have derived the necessary
and sufficient Tauberian conditions for the method Ar of summability in the
present work. Although Rhoades [14, Corollary 2.2] proved the equivalence
of the matrix Ar to the Cesàro matrix C1 of order one, the main results
are new since they are independently derived from the existing results. We
should note that as a natural continuation of this paper, it is meaningful to
obtain the necessary and sufficient Tauberian conditions for the Euler means
Er, the generalized difference matrix B(r, s) and factorable matrix G(u, v).
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[4] C. Aydın and F. Başar, Some new sequence spaces which include the spaces ℓp and ℓ∞,
Demonstratio Math. 38(3) (2005), 641–656.
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