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A NON-SYMMETRIC DIFFUSION PROCESS

ON THE WIENER SPACE

Ichiro Shigekawa

Abstract. We discuss a non-symmetric diffusion process on theWiener
space. The process we consider is generated by A = L+ b, L being the
Ornstein-Uhlenbeck operator and b being a vector field. Under suitable
integrability condition for b, we show the existence of associated diffu-
sion process. We also investigate the domain of the generator. Further
we consider a similar problem in the finite dimensional Euclidean space.

1. Introduction

We construct a non-symmetric diffusion process on an abstract Wiener
space (B,H, µ). Here B is a real separable Banach space, µ is a Gaussian
measure with a reproducing kernel Hilbert space H. The generator of the
diffusion process we consider is of the form A = L + b, where L is the
Ornstein-Uhlenbeck operator and b is an H-valued function. We regard b
as a first order differential operator and so our generator A is, using the
H-derivative D, given by

(1.1) Af = Lf + ⟨b,Df⟩.
We assume the following condition:

(A.1) exp{|b|2} ∈ L2+(µ) :=
∪
p>2

Lp(µ).

We construct a diffusion process in the framework of Dirichlet form (to be
precise, semi-Dirichlet form). In our case, the bilinear form E is given by

(1.2) E(f, g) = (−Af, g) =

∫
B
{(Df,Dg)H∗ − ⟨Df, gb⟩}dµ.

To show the existence, we appeal to the general theory of Ma-Overbeck-
Röckner [4] which ensure the existence of diffusion processes associated with
non-symmetric semi-Dirichlet forms. We also discuss an issue of the domain
of the generator. Further we consider a similar problem in the finite dimen-
sional Euclidean space.

The organization of this paper is as follows. We review non-symmetric
diffusion processes in the section 2. We recall conditions to ensure the
existence of diffusion processes. We will check all conditions for our diffusion
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process. A main point is to see the equivalence between our bilinear form and
that of the Ornstein-Uhlenbeck process. In the section 3, we determine the
domain of the generator. We invoke the perturbation theorem and see that
the domain coincides with the domain of the Ornstein-Uhlenbeck operator.
Our main tool is the logarithmic Sobolev inequality. In the finite dimensional
case, we can make use of the Sobolev inequality and so we consider similar
problem in the finite dimensional Euclidean space in the section 4.

2. Non-symmetric diffusion

We first recall necessary notions from Ma-Overbeck-Röckner [4] which
ensure the existence of diffusion processes.

Since our space is a separable Banach space, it is a good space as a topo-
logical space, i.e, a Polish space. We need to check the following conditions:

(1) There exists a constant γ ≥ 0 so that Ẽγ = Ẽ + γ(· , ·) is positive

definite and closed. Here ( , ) is the inner product in L2(µ) and Ẽ is
the symmetric part of E :

Ẽ(f, g) = 1

2

{
E(f, g) + E(g, f)

}
.

(2) There exists a constant K ≥ 1 such that

|E(f, g)| ≤ KẼγ(f, f)1/2Ẽγ(g, g)1/2.

(3) If f ∈ Dom(E), then f+ ∧ 1 ∈ Dom(E) and

E(f + f+ ∧ 1, f − f+ ∧ 1) ≥ 0.

(4) Each element of Dom(E) admits a quasi-continuous version.
(5) Eγ-capacity is tight.

Even though the case γ = 0 was treated in [4], there is no essential difference.
We now turn to our case A = L + b. The associated bilinear form E is

given by (1.2). We use a perturbation method. Our basic generator is the
Ornstein-Uhlenbeck operator and so we need several facts for the Ornstein-
Uhlenbeck operator L. We denote the bilinear form associated with the
Ornstein-Uhlenbeck operator by EO-U, i.e.,

(2.1) EO-U(f, g) =

∫
B
(Df,Dg)H∗dµ.

Our main tool is the following logarithmic Sobolev inequality (due to
Gross [2]): for f ∈ Dom(EO-U),

(2.2)

∫
B
|f |2 log{|f |/∥f∥2}dµ ≤

∫
B
|Df |2dµ.
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Here ∥ · ∥2 denotes the L2 norm. When p ≥ 2, by substituting f by

|f |p/2 sgn(f), we easily have

(2.3)

∫
B
|f |p log{|f |/∥f∥p}dµ ≤ p

2

∫
B
|Df |2|f |p−2dµ.

We use this inequality later to show that A is dissipative in Lp. Now let us
check the first condition (1). First of all, we have to give the domain of E .
By the following proposition, E is well-defined on Dom(EO-U).

Proposition 2.1. There exist γ > 0 and C > 0 such that

E(f, f) ≤ C{EO-U(f, f) + (f, f)},(2.4)

C−1EO-U(f, f) ≤ E(f, f) + γ(f, f).(2.5)

Proof. First we note

|(fb,Df)H∗ | ≤ 1

2
{|Df |2 + |f |2|b|2}.

To estimate the second term in the right hand side, we recall the Hausdorff-
Young inequality st ≤ s log s− s+ et. Using this, we have

|f |2|b|2 ≤ |f |2

2(1 + ε)
log

|f |2

2(1 + ε)
− |f |2

2(1 + ε)
+ e2(1+ε)|b|2 .

When ∥f∥2 = 1, we have∫
B
|f |2|b|2dµ ≤ 1

1 + ε

∫
B
|f |2 log |f |dµ− 1

2(1 + ε)

∫
B
|f |2 log 2(1 + ε)dµ

−
∫
B

|f |2

2(1 + ε)
dµ+ ∥e2(1+ε)|b|2∥1

≤ 1

1 + ε

∫
B
(Df,Df)H∗dµ

− 1

2(1 + ε)
{1 + log 2(1 + ε)}+ ∥e2(1+ε)|b|2∥1.

Hence, for general f ,∫
B
|f |2|b|2dµ ≤ 1

1 + ε

∫
B
(Df,Df)H∗dµ

+
{
∥e2(1+ε)|b|2∥1 −

1

2(1 + ε)
log 2e(1 + ε)

}
∥f∥22

≤ 1

1 + ε

∫
B
(Df,Df)H∗dµ+ 2γ∥f∥22

where we set

2γ = ∥e2(1+ε)|b|2∥1 −
1

2(1 + ε)
log 2e(1 + ε).
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Thus we have

E(f, f) ≥
∫
B
|Df |2dµ− 1

2

∫
B

(
|Df |2 + |f |2|b|2

)
dµ

≥
∫
B
|Df |2dµ− 1

2

∫
B
|Df |2dµ− 1

2(1 + ε)

∫
B
|Df |2dµ− γ∥f∥22

≥ ε

2(1 + ε)

∫
B
|Df |2dµ− γ∥f∥22.

From this

(2.6) E(f, f) + γ∥f∥22 ≥
ε

2(1 + ε)

∫
B
|Df |2dµ.

Similarly we have

E(f, f) ≤ 4 + 3ε

2(1 + ε)

∫
B
|Df |2dµ+ γ∥f∥22

which shows (2.4). □

By the above proposition, Ẽ is equivalent with the following form

EO-U
1 (f, g) =

∫
B
(Df,Dg)H∗dµ+ (f, g)L2 ,

but it is well known that this form is closed. Now we have shown that Ẽγ
with the domain Dom(EO-U) is positive definite and closed. This shows (1).

(2) is shown in the similar manner.
Instead of (3), we will show the following:

E(f+ ∧ 1, f − f+ ∧ 1) ≥ 0.

(Equivalence can be seen in [5, Theorem I.4.4].) Moreover it is enough to
show the following (see, e.g., [5, Proposition I.4.7]): for any ε > 0 there exists
φε : R → [−ε, 1 + ε] such that φε(t) = t for t ∈ [0, 1], 0 ≤ φε(t2)− φε(t1) ≤
t2 − t1 if t1 ≤ t2, φε(f) ∈ Dom(E) and

lim inf
ε→0

E(φε(f), f − φε(f)) ≥ 0.

We take any smooth function φε such that

φε(t) =
{ −ε, t ≤ −2ε,

1 + ε, t ≥ 1 + 2ε.

Now

E(φε(f), f − φε(f)) =

∫
B
(Dφε(f), D(f − φε(f)))H∗dµ

−
∫
B
(Dφε(f), b(f − φε(f)))H∗dµ
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=

∫
B
φ′
ε(f)(1− φ′

ε(f))|Df |2H∗dµ

−
∫
B
φ′
ε(f)(Df, b)H∗(f − φε(f))dµ.

On the other hand,∫
B
|φ′

ε(f)(Df, b)H∗(f − φε(f))|dµ ≤
∫
{−2ε≤f≤0}∪{1≤f≤1+2ε}

|Df ||b||f |dµ.

Hence

lim sup
ε→0

∫
B
|φ′

ε(f)(Df, b)H∗(f − φε(f))|dµ ≤
∫
{f=0}∪{f=1}

|Df ||b||f |dµ = 0.

Here we used that for any constant c,∫
{f=c}

|Df |dµ = 0.

Thus we have

lim inf
ε→0

E(φε(f), f − φε(f)) ≥ 0

as desired.
(4) can be shown by a standard method because Dom(E)∩C(B) is dense

in Dom(E).
Lastly we show (5), the tightness of the capacity. Before proving this

let us review the capacity. In the following, we take α > γ so that Ẽα is
equivalent with EO-U. Hence Ẽα is positive definite and the resolvent Gα

exists for α > γ. For any function h on B and an open set U , set

(2.7) Lh,U = {w ∈ Dom(E) |w ≥ h a.e. on U}.

Then it holds that (see Ma-Röckner [5, Chapter III.1.])

i) there exists a unique hU ∈ Lh,U such that

(2.8) Eα(hU , w) ≥ Eα(hU , hU ) ∀w ∈ Lh,U .

ii) hU is α-excessive and if w ∈ Dom(E) and w ≥ 0 a.e. on U , then
Eα(hU , w) ≥ 0.

iii) If, in addition, h is α-excessive, then

0 ≤ hU ≤ h, hU = h on U .

Using this notation, the capacity is defined as follows. We take any α-
excessive functions h, and co-α-excessive ĝ and fix them. For any open set
U , set

(2.9) Caph,g(U) := Eα(hU , ĝU ).
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In particular, take any ϕ ∈ L2 such that ϕ > 0 a.e., and set h = Gαϕ,
ĝ = Ĝαϕ. Then,

(2.10) Caph,g(U) = (hU , ϕ) = (ϕ, ĝU ) = Eα(hU , ĝ).
Here, we used that ĝU = ĝ a.e. on U .

In the following we take ϕ = 1 and we write Cap in place of Caph,g. Since
A1 = 0, we have αGα1 = 1, i.e., h = 1/α. Since the Ornstein-Uhlenbeck
operator is self-adjoint, the associated capacity is characterized as follows:

(2.11) CapO-U(U) = inf{EO-U
1 (w,w) ;w ≥ 1 a.e. on U}

This capacity can be extended for arbitrary sets as an outer capacity.

Proposition 2.2. There exists C > 0 such that for any set E,

(2.12) Cap(E)2 ≤ C CapO-U(E).

Proof. It is enough to show this for an open set U . First we note that

Cap(U) = Eα(hU , ĝ)

≤ KαEα(hU , hU )1/2Eα(ĝ, ĝ)1/2.
Here, for the inequality in the second line, see e.g., [7, (1.1.3)]. Further, for
any w ∈ Lh,U , i.e., w ≥ 1/α a.e. on U ,

Eα(hU , hU ) ≤ Eα(hU , w)

≤ KαEα(hU , hU )1/2Eα(w,w)1/2

which implies

Eα(hU , hU ) ≤ K2
αEα(w,w)

≤ K1

∫
B
(|Dw|2 + |w|2)dµ.

Thus we have
(2.13)

Cap(U)2 ≤ K2
αK1Eα(ĝ, ĝ) inf

{∫
B
(|Dw|2 + |w|2)dµ ;w ≥ 1/α a.e. on U

}
.

This means that Cap is dominated by the capacity associated with the
Ornstein-Uhlenbeck process up to constant. □

It is well-known that the capacity associated with the Ornstein-Uhlenbeck
process is tight. Now the tightness of our capacity follows.

The above proposition is sufficient to show the tightness. But one may
ask whether the reversed estimate holds and we have

Proposition 2.3. Cap and CapO-U have the common capacity zero sets,
i.e., Cap(V ) = 0 if and only if CapO-U(V ) = 0.
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Proof. We use a characterization of capacity zero sets by means of Dirichlet
form. An increasing sequence of closed set {Fn} is called a nest (precisely
to say Eγ+1-nest) if

∪
nDom(E)Fn is dense in Dom(E). Here, Dom(E)Fn is

a set of all elements in Dom E with support in Fn. Then, a set N is of zero
capacity if and only if there exists a nest {Fn} such that N ⊆

∩
n F

c
n.

Now the result follows easily since E and EO-U have the same domain and
the same topology. □

If we impose an additional condition, we can give a direct estimate be-
tween two capacities. To show this, we recall that the reduced function is
defined for an arbitrary set by using the quasi-continuous function. For any
set V and a function h, put

(2.14) Lh,V = {w ∈ Dom(E) |w̃ ≥ h Cap-q.e. on V }.

Here, w̃ denotes the quasi-continuous modification of w with respect to the
capacity Cap. We can show that there exists hV satisfying (2.8) as well (see
[5, Capter III Exercise 3.10 (ii)]). Moreover similar properties hold for hV
if we replace a.e. with q.e. We denote the reduced function with respect
to EO-U

1 by eV . Further we assume that ĝ is CapO-U-quasi-continuous and
hence Cap-quasi continuous by Proposition 2.2.

Proposition 2.4. There exists a constant C > 0 such that for any λ > 0
and any set U ,

(2.15) CapO-U(U ∩ {ĝ > λ}) ≤ Cλ−1Cap(U ∩ {ĝ > λ})

Proof. We recall that for any set V ,

Cap(V ) = Eα(hV , ĝ),
CapO-U(V ) = EO-U

1 (eV , eV ).

Setting Vλ = U ∩ {ĝ > λ}, we have

CapO-U(Vλ) = EO-U
1 (eVλ

, eVλ
)

≤ EO-U
1 (hVλ

, hVλ
) (∵ hVλ

≥ 1 q.e. on Vλ and

eVλ
is the minimizing element)

≤ C1Eα(hVλ
, hVλ

) (∵ Proposition 2.1)

≤ C1λ
−1Eα(hVλ

, ĝ) (∵ λ−1ĝ ≥ 1 on Vλ)

= C1λ
−1Cap(Vλ)

which completes the proof. □
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3. Domain of the generator

In this section, we determine the domain of the generator.
Let {Tt} be the semigroup associated with the semi-Dirichlet form E .

There exists γ ≥ 0 such that {e−γtTt} is a contraction semigroup in L2. By
the interpolation, {Tt} is also a strongly continuous contraction semigroup

in Lp. To specify the space, we denote the semigroup by {T (p)
t } and its

generator by A(p).

As before let EO-U be the Dirichlet form associated with the Ornstein-
Uhlenbeck operator defined by (2.1). {TO-U

t } and L denote the semigroup
and the generator. L(p) denotes the generator in Lp and we regard A(p) as
a perturbation of L(p).

Theorem 3.1. Under the condition (A.1), we have Dom(A(2)) = Dom(L(2))
and further if D ⊆ Dom(L(2)) is dense (with respect to the graph norm of
L(2)), the D is also dense in Dom(A(2)). When p > 2, there exists a constant

r = rp such that if e|b|
2 ∈ Lr+, then the above result holds for A(p).

To prove this theorem, we recall a general theory. Let S be a closed opera-
tor on a Banach space B. We assume that S is hyper-dissipative (sometimes
called m-dissipative) and hence generates a contraction semigroup. Here let
us explain what it means that S is hyper-dissipative. An operator S on a
Banach space B is called dissipative if for any u ∈ B and φ ∈ F (u) it holds
that

(3.1) ⟨Su, φ⟩ ≤ 0.

Here F is the duality mapping, i.e., F (u) is a set of all φ such that

⟨u, φ⟩ = ∥u∥2B = ∥φ∥2B∗ .

When B = Lp with p ∈ [0,+∞), F is given by F (u) = |u|p−1 sgn(u)∥u∥2−p
p .

Further, if Ran(1− S) = B, S is called hyper-dissipative.
Suppose we are given an operator T with Dom(T ) ⊇ Dom(S). Then the

following fact is well-known (e.g. Pazy [8, Theorem 3.3.2.]). Suppose that
T satisfies the followings:

(P.1) For any s ∈ [0, 1], (S + sT,Dom(S)) is dissipative.
(P.2) There exists positive constants a and b such that 0 < a < 1 and

(3.2) ∥Tx∥E ≤ a∥Sx∥E + b∥x∥E , ∀x ∈ Dom(S).

Then (S+T,Dom(S)) is hyper-dissipative. Further if D ⊆ Dom(S) is dense,
then D is dense in Dom(S + T ) with respect to the graph norm.

To apply this fact, we first see that A(p) + γ = L(p) + b+ γ is dissipative
for some γ > 0. This fact was already shown when p = 2. In fact we
can take ε = 0 in (2.6). When p > 2, let q be the conjugate exponent
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of p, i.e., 1/p + 1/q = 1. By the logarithmic Sobolev inequality and the
Hausdorff-Young inequality st ≤ s log s− s+ et, we have∫

B
|f |p|b|2dµ ≤

∫
B

{2|f |p

q2
log

2|f |p

q2
− 2|f |p

q2
+ eq

2|b|2/2
}
dµ

≤ 2p

q2

∫
B
|f |p log |f | dµ

+

∫
B

{ 2

q2
log(2/q2)|f |p − 2

q2
|f |p + eq

2|b|2/2
}
dµ

≤ 2p

q2

∫
B
|f |p log(|f |/∥f∥p)dµ+

2p

q2
∥f∥pp log ∥f∥p

+ (
2

q2
log(2/q2)− 2

q2
)∥f∥pp + ∥eq2|b|2/2∥1

≤ p2

q2

∫
B
|Df |2|f |p−2dµ+

2p

q2
∥f∥pp log ∥f∥p

+ (
2

q2
log(2/q2)− 2

q2
)∥f∥pp + ∥eq2|b|2/2∥1. (∵ (2.3))

Hence, if ∥f∥p = 1, then, setting g = F (f) = |f |p−1 sgn(f)

−(Af, g) =

∫
B
(Df,Dg)H∗ dµ−

∫
B
⟨Df, gb⟩ dµ

= (p− 1)

∫
B
|Df |2|f |p−2dµ− ⟨Df, b|f |p−1 sgn(f)⟩

≥ (p− 1)

∫
B
|Df |2|f |p−2dµ− p

2q

∫
B
|Df |2|f |p−2dµ

−
∫
B

q

2p
|f |p|b|2dµ

= (p− 1− p

2q
)

∫
B
|Df |2|f |p−2dµ− q

2p

{p2

q2

∫
B
|Df |2|f |p−2dµ

+
2p

q2
∥f∥pp log ∥f∥p +

( 2

q2
log(2/q2)− 2

q2

)
∥f∥pp + ∥eq2|b|2/2∥1

}
= (p− 1− p

2q
− p

2q
)

∫
B
|Df |2|f |p−2dµ

+
{( 2

q2
log(2/q2)− 2

q2

)
+ ∥eq2|b|2/2∥1

}
≥ 2

q2
log(2/q2)− 2

q2
+ ∥eq2|b|2/2∥1.
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Therefore, for a general f ∈ Lp and g = F (f), it holds that

(3.3) (Af, g) +
{( 2

q2
log(2/q2)− 2

q2

)
+ ∥eq2|b|2/2∥1

}
(f, g) ≤ 0.

Now, it easily follows that A+ γ is dissipative where we set

(3.4) γ =
2

q2
log(2/q2)− 2

q2
+ ∥eq2|b|2/2∥1.

Next we see the condition (P.2). By the Hausdorff-Young inequality,

|⟨b,Df⟩|2 ≤ |Df |2|b|2 ≤ |Df |2

2(1 + ε)
log

|Df |2

2(1 + ε)
− |Df |2

2(1 + ε)
+ e2(1+ε)|b|2 .

When ∥Df∥2 = 1, we have∫
B
|⟨b,Df⟩|2dµ

≤ 1

2(1 + ε)

∫
B
|Df |2 log |Df |2dµ− 1

2(1 + ε)

∫
B
|Df |2 log 2(1 + ε)dµ

−
∫
B

|Df |2

2(1 + ε)
dµ+ ∥e2(1+ε)|b|2∥1

≤ 1

1 + ε

∫
B
(D2f,D2f)dµ− 1

2(1 + ε)
{1 + log 2(1 + ε)}+ ∥e2(1+ε)|b|2∥1

≤ 1

1 + ε

∫
B
|Lf |2dµ− 1

2(1 + ε)
{1 + log 2(1 + ε)}+ ∥e2(1+ε)|b|2∥1.

Here we used the Logarithmic Sobolev inequality (2.2) for H∗-valued func-
tion Df and the following inequality (see, e.g., [9, Proposition 4.5]):

(3.5)

∫
E
|D2f |2dµ ≤

∫
E
|Lf |2dµ.

We set

(3.6) 2γ = ∥e2(1+ε)|b|2∥1 −
1

2(1 + ε)
log 2e(1 + ε).

Then, for general f , we have∫
B
|⟨b,Df⟩|2dµ ≤ 1

1 + ε

∫
B
|Lf |2dµ+ 2γ∥Df∥22.

Now we note that there exists a constant K > 0 such that

2γ∥Df∥22 ≤
ε/2

1 + ε
∥Lf∥22 +K∥f∥22.

Therefore, we have∫
B
|⟨b,Df⟩|2dµ ≤ 1 + ε/2

1 + ε
∥Lf∥22 +K∥f∥22.
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Thus we have{∫
B
|⟨b,Df⟩|2dµ

}1/2

≤
√

1 + ε/2

1 + ε
∥Lf∥2 +

√
K∥f∥2.

This completes the proof when p = 2.
When p > 2, we have to modify the above proof. We need the following

proposition:

Proposition 3.2. There exist positive constants β, K1 and K2 such that∫
B
|Df |p logp/2+ |Df |dµ(3.7)

≤ β∥(λ− L)f∥pp +K1∥Df∥pp log
p/2
+ ∥(λ− L)f∥p +K2∥Df∥pp

where log+ x = max{log x, 0}.

To prove this proposition, we recall the Orlicz space. Let Φ be a strictly
increasing convex function with Φ(0) = 0. We assume that Φ satisfies ∆2

condition (i.e., there exists a constant K such that Φ(2x) ≤ KΦ(x) for all
x ≥ 0). The Orlicz space LΦ is the set of all functions f satisfying∫

Φ(|f |)dµ < ∞

with the norm

(3.8) ∥f∥Φ := inf{λ > 0 ;

∫
Φ(|f |/λ)dµ ≤ 1}.

We take Φ to be equal to tp logp/2 t for large t > 0. In this case, the

space LΦ is denoted by Lp logp/2 L. We also assume that Φ(t) ≥ tp log
p/2
+ t

for t > 0. On the Wiener space, it is known (see, Bakry-Meyer [1]) that√
λ− L

−1
is a bounded operator from Lp(µ) into Lp logp/2 L(µ). This fact

also holds for a vector valued function. Therefore we have that there exists
a constant c such that

∥Df∥Φ ≤ c∥
√
λ− LDf∥p.

By combining this with Meyer’s inequality, we get

(3.9) ∥Df∥Φ ≤ κ∥(λ− L)f∥p
for some constant κ. Now we are ready to prove Proposition 3.2.

Proof of Proposition 3.2. From (3.9), if κ∥(λ− L)f∥p = 1,∫
B
|Df |p logp/2+ |Df |dµ ≤

∫
B
Φ(|Df |)dµ ≤ 1.
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For general f , taking f/κ∥(λ− L)f∥p in the above argument, we have∫
B

|Df |p

κp∥(λ− L)f∥pp
log

p/2
+

|Df |
κ∥(λ− L)f∥p

dµ ≤ 1.

Now we use the inequality log+ ab ≤ log+ a+log+ b. By the Hölder inequal-
ity, for any ε > 0, there exists a constant K such that

(3.10) (a+ b)p/2 ≤ (1 + ε)ap/2 +Kbp/2.

Together with this inequality, we have that for any ε > 0, there exists K
such that

log
p/2
+ ab ≤ (1 + ε) log

p/2
+ a+K log

p/2
+ b.

Using this inequality, we get

log
p/2
+ |Df | = log

p/2
+

{ |Df |
κ∥(λ− L)f∥p

κ∥(λ− L)f∥p
}

≤ (1 + ε) log
p/2
+

|Df |
κ∥(λ− L)f∥p

+K log
p/2
+ κ∥(λ− L)f∥p.

Hence we have∫
B

|Df |p

κp∥(λ− L)f∥pp

{ 1

1 + ε
log

p/2
+ |Df | − K

1 + ε
log

p/2
+ κ∥(λ− L)f∥p

}
dµ ≤ 1.

Thus we have∫
B
|Df |p logp/2+ |Df |dµ ≤ (1 + ε)κp∥(λ− L)f∥pp

+K∥Df∥pp{log+ ∥(λ− L)f∥p + log+ κ}p/2

which implies the desired result. □

Now we turn to the proof of Theorem 3.1 when p > 2. We take any
α ≤ 2e. By the Hausdorff-Young inequality, we have

|⟨b,Df⟩|2 ≤ |Df |2|b|2

≤ α|Df |2

2
log

α|Df |2

2
− α|Df |2

2
+ e2|b|

2/α

≤ α|Df |2 log |Df |+
{α

2
log(α/2)− α

2

}
|Df |2 + e2|b|

2/α.

Then we have

|⟨b,Df⟩|2 ≤ α|Df |2 log+ |Df |+ e2|b|
2/α.

Using the inequality (3.10),

|⟨b,Df⟩|p ≤ (1 + ε)αp/2|Df |p logp/2+ |Df |+Kep|b|
2/α.
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Now by Proposition 3.2,∫
B
|⟨b,Df⟩|pdµ ≤ (1 + ε)αp/2β∥(λ− L)f∥pp +K3∥Df∥pp log

p/2
+ ∥(λ− L)f∥p

+K4∥Df∥pp +K∥ep|b|2/α∥1.

Here β is the constant that appeared in (3.7). We can choose small δ > 0
so that

K3δ
p log

p/2
+ t ≤ εαp/2βtp, t ≥ 0.

Therefore if ∥Df∥p = δ, we have∫
B
|⟨b,Df⟩|pdµ ≤ (1 + 2ε)αp/2β∥(λ− L)f∥pp +K4δ

p +K∥ep|b|2/α∥1.

For general f , taking δf/∥Df∥p, we have∫
B
|⟨b, δDf/∥Df∥p⟩|pdµ ≤ (1 + 2ε)αp/2β∥(λ− L)δf/∥Df∥p∥pp

+K4δ
p +K∥ep|b|2/α∥1.

Thus we have,∫
B
|⟨b,Df⟩|pdµ ≤ (1+2ε)αp/2β∥(λ−L)f∥pp+∥Df∥pp(K4δ

p+K∥ep|b|2/α∥1)/δp.

If we take K5 sufficiently large, the following inequality holds

∥Df∥pp(K4δ
p +K∥ep|b|2/α∥1)/δp ≤ εαp/2β∥(λ− L)f∥pp +K5∥f∥pp.

This inequality is known as the moment inequality (see, e.g., [12, Chapter
VIII, Theorem 6]). So eventually we have∫

B
|⟨b,Df⟩|pdµ ≤ (1 + 3ε)αp/2β∥(λ− L)f∥pp +K5∥f∥pp.

If αp/2β < 1, then we can see that (3.2) holds. To assure this, it is sufficient

to assume that e|b|
2 ∈ Lpβ2/p+. This exponent depends on the constant in

Proposition 3.2.

4. Finite dimensional space

In this section, we consider a similar problem in the finite dimensional
Euclidean space and we determine the domain of the generator. The gener-
ator that we consider is of the form A = ∆ + b on the Euclidean space Rd

with d ≥ 3. Here, ∆ is the Laplacian and b is a vector field, i.e., first order
differential operator. The associated bilinear form E is given by

(4.1) E(f, g) =
∫
Rd

{(∇f,∇g)− (b,∇f)g}dx.
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We assume the following integrability condition for b:

(A.2) There exists q ∈ [d,∞] such that b ∈ Lq(Rd).

Under this condition, the form E defines a closed coercive semi-Dirichlet
form (see Lyons-Zhang [3]).

In this section, we will determine the domain of A. As before, we denote
the generator in Lp by A(p) (p ≥ 2).

Theorem 4.1. Under the condition (A.2), we have that for any p < q,
Dom(A(p)) = Dom(∆(p)) and further if D ⊆ Dom(∆(p)) is dense (with re-
spect to the graph norm of ∆(p)), then D is also dense in Dom(A(p)).

To prove this theorem, we need the following Sobolev inequality in Rd.
Let exponents p and r satisfy

1

p
− 1

d
≤ 1

r
≤ 1

p
.

Then there exists a constant C such that

(4.2) ∥u∥r ≤ C{∥∇u∥λp∥u∥1−λ
p + ∥u∥p}

where λ = d
(
1
p − 1

r

)
. If 1

r = 1
p − 1

d , then λ = 1 and (4.2) reads

(4.3) ∥u∥r ≤ C{∥∇u∥p + ∥u∥p}.

If 1
r > 1

p − 1
d , we have a stronger inequality: for any ε > 0 we can choose

large K so that

(4.4) ∥u∥r ≤ ε∥∇u∥p +K∥u∥p.

Even though this case is rather tractable, we use the Sobolev inequality of
the form (4.3) to include the case 1

r = 1
p −

1
d . We use the Sobolev inequality

in this form.
Take any f ∈ H1,p(Rd), i.e., f , ∇f ∈ Lp. Set

h = |f |p/2 sgn(f).

Then ∇h = p
2 |f |

(p/2)−1∇f and

∥h∥22 =
∫
Rd

|f |pdx,

∥∇h∥22 =
p2

4

∫
Rd

|f |p−2|∇f |2dx.

Define r > 1 so that

(4.5)
1

r
=

1

2
− 1

q
.
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Since q ≥ d, it holds that 1
2 ≥ 1

r ≥ 1
2 − 1

d . Now, by the Sobolev inequality
(4.3), we have

∥h∥2r ≤ C{∥∇h∥22 + ∥h∥22}
which implies

(4.6)
{∫

Rd

|f |pr/2dx
}2/r

≤ C
{∫

Rd

|∇f |2|f |p−2dx+

∫
Rd

|f |pdx
}
.

Now we are ready to prove the dissipative property (P.1). For any f ∈
H2,p(Rd), g = |f |p−1 sgn(f), we have

−(Af, g) =

∫
Rd

{(∇f,∇g)− (∇f, b)|f |p−1 sgn(f)}dx

≥ (p− 1)

∫
Rd

|∇f |2|f |p−2dx−
∫
Rd

|∇f ||b||f |p−1dx

≥ (p− 1)

∫
Rd

|∇f |2|f |p−2dx

−
∫
Rd

√
p− 1

2
|∇f ||f |(p−2)/2 2√

p− 1
|b||f |p/2dx

≥ (p− 1)

∫
Rd

|∇f |2|f |p−2dx

− 2
{p− 1

4

∫
Rd

|∇f |2|f |p−2dx+
4

p− 1

∫
Rd

|b|2|f |pdx
}

≥ p− 1

2

∫
Rd

|∇f |2|f |p−2dx− 8

p− 1

∫
Rd

|b|2|f |pdx

≥ p− 1

2

∫
Rd

|∇f |2|f |p−2dx− 8N2

p− 1

∫
Rd

|f |pdx

− 8

p− 1

∫
Rd

|b|21{|b|>N}|f |pdx.

Since 1
r/2 + 1

q/2 = 1, we can apply the Hölder inequality. Hence, by (4.6)∫
Rd

|b|21{|b|>N}|f |pdx

≤
{∫

Rd

|b|2q/21{|b|>N}dx
}2/q{∫

Rd

|f |pr/2dx
}2/r

≤ C
{∫

Rd

|b|q1{|b|>N}dx
}2/q{∫

Rd

|f |p−2|∇f |2dx+

∫
Rd

|f |pdx
}
.

We take N to be large enough so that

8C

p− 1

{∫
Rd

|b|q1{|b|>N}dx
}2/q

≤ p− 1

4
.
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Thus we have

−(Af, g) ≥ p− 1

4

∫
Rd

|∇f |2|f |p−2dx−
{ 8N2

p− 1
+

p− 1

4

}∫
Rd

|f |pdx.

Set γ = 8N2

p−1 + p−1
4 . Then we eventually obtain

−(Af, g) + γ(f, g) ≥ p− 1

4

∫
Rd

|∇f |2|f |p−2dx ≥ 0

which implies that A− γ is dissipative.
Next we will see (P.2). We set 1

α = p
q and 1

β = 1 − p
q . Since p < q, we

have 1 < α, β. Note that

1

pβ
=

1

p
− 1

q
≥ 1

p
− 1

d
.

Hence, by the Sobolev inequality, we have{∫
Rd

|∇f |pβdx
}1/β

≤ C{∥∇2f∥pp + ∥∇f∥pp}

≤ C ′{∥∆f∥pp + ∥∇f∥pp}.
Now, by the Hölder inequality, we have∫

Rd

|(b,∇f)|pdx ≤
∫
Rd

|b|p1{|b|>N}|∇f |pdx+Np

∫
Rd

|∇f |pdx

≤
{∫

Rd

|b|pα1{|b|>N}dx
}1/α{∫

Rd

|∇f |pβdx
}1/β

+Np

∫
Rd

|∇f |pdx

≤ C ′
{∫

Rd

|b|q1{|b|>N}dx
}1/α

{∥∆f∥pp + ∥∇f∥pp}+Np∥∇f∥pp.

For any ε > 0, we take N to be large enough so that

C ′
{∫

Rd

|b|q1{|b|>N}dx
}1/α

≤ ε

Moreover, by the interpolation inequality, there exists a constant K such
that

(ε+Np)∥∇f∥pp ≤ ε∥∆f∥pp +K∥f∥pp.
Thus we have ∫

Rd

|(b,∇f)|pdx ≤ 2ε∥∆f∥pp +K∥f∥pp

which implies (P.2). This completes the proof.
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