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PRIMARY DECOMPOSITIONS IN ABELIAN

R-CATEGORIES

Kenichi Sato and Yuji Yoshino

Abstract. We shall generalize the theory of primary decomposition
and associated prime ideals of finitely generated modules over a noe-
therian ring to general objects in an abelian R-category where R is a
noetherian commutative ring.

1. Introduction

The primary decomposition theorem is a well-known theorem in commu-
tative algebra, which asserts that every ideal in a noetherian commutative
ring is an intersection of finitely many primary ideals. The theorem was
proved by E.Lasker for polynomial rings and convergent power series rings
in 1905, and was proved for general noetherian rings by E.Noether in 1921.
This has been extended to modules, namely, every submodule of a finitely
generated module over a noetherian commutative ring is a finite intersection
of primary submodule. See [7, Section 6], for example.

In addition, the analogous decomposition theorem has been studied by
many authors. Firstly D.Kirby [5] proved it for artinian modules, and later
R.Y.Sharp [9] showed it for injective modules. One can also see some of
their applications in [6] and [10].

The main purpose of this paper is to show how we can extend such primary
decomposition theorem for general objects in an abelian R-category, where
R is a commutative noetherian ring.

In Section 2 we shall recall some definitions and general facts from the
theory of abelian categories, which are to prepare for later usage.

The first task to do is to define the ’associated prime ideals’ for objects
in an abelian R-category, which will be done in Section 3. For an object X
in an abelian R-category C, we will be able to define the set AssR(X) as
a subset of Spec(R), whose element we call an associated prime to X. Of
course, if X is an R-module regarded as an object in the abelian category of
all R-modules, AssR(X) agrees with the set AssR(X) of ordinary associated
primes. The basic properties for AssR(X) are discussed in Section 3.

We say that a noetherian object Y is primary if AssR(Y ) consists of a
single element. In Section 5 we prove that, given a noetherian object X
in an abelian R-category, the zero subobject of X is a finite intersection of
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subobjects Y where X/Y is primary. In such a sense the primary decom-
position theorem holds true in wider context. See Theorem 4.7 for more
detail.

Let S be a Serre subcategory of an abelian R-category C. Then we can
consider the quotient category C/S with natural quotient functor C → C/S
sending an object X to XS . It is natural and interesting as well to ask
how the associated primes AssR(X) or the primary decomposition of X ∈ C
behaves under this functor. We are able to give a complete answer to this
question in Theorem 8.3 in Section 8. The proof of this final theorem is
not hard but needs some preliminaries. First of all we have to clarify how
objects in C/S can be noetherian. This is partially answered in Section 5
and some examples are given in Section 6. Next we need to know how the
associated primes behave under the localization by a prime ideal. If p is a
prime ideal of R, we can consider the localized abelian Rp-category Cp with
natural localization functor C → Cp sending an object X to Xp. We shall
show in Theorem 7.3 the equality AssRp(Xp) = {qRp | q ∈ AssR(X) and q ⊆
p}. After these preliminaries, we show in Theorem 8.3 how we can get the
primary decomposition of XS ∈ C/S from that of X ∈ C.

2. Preliminary from category theory

We collect, in this section, necessary definitions and some known facts
from the theory of categories. The most part of this section is well known,
but the use of terminology sometimes depends on literatures. Thus the aim
of this section is to fix the notation and the terminology used in this paper.
See, for example, [3], [4] or [8] as general references of this section.

Let C be a category, where we denote by Ob(C) the object class and by
C(X,Y ) the set of morphisms for objects X,Y ∈ Ob(C). By definition, the
composition of morphisms in C satisfies the associative law; (fg)h = f(gh),
and there is the identity morphism 1X for any X ∈ Ob(C).

Recall that C is called a preadditive category provided C(X,Y ) is an
abelian group for X,Y ∈ Ob(C) and the composition of morphisms is bilin-
ear, i.e. f(g+h) = fg+fh, (g+h)f ′ = gf ′+hf ′ and moreover there exists
the null object 0 in C.

An additive category is, by definition, a preadditive category with finite
coproducts.

An additive category C is called an abelian category if the kernel and the
cokernel exist for any morphism f and moreover the equality Cok(ker(f)) =
Ker(cok(f)) holds.

We recall how to construct an ideal quotient of a category.

2.1. Localization. ([4, 7.1],[8, 2.1],[3, chapter 1.3]) Let C be an additive
category and let S be a collection of morphisms in C. We say that S is a
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(saturated) multiplicative system in C if the following conditions are satis-
fied:

(1) 1X ∈ S for all X ∈ Ob(C) and if s, t ∈ S then st ∈ S whenever the
composition is possible.

(2) For morphisms Y
f←− X

s−→ X ′ with s ∈ S, there exist morphisms

Y
t−→ Y ′ g←− X ′ with t ∈ S such that tf = gs.

(3) For morphisms Y
t−→ Y ′ g←− X ′ with t ∈ S, there exist morphisms

Y
f←− X

s−→ X ′ with s ∈ S such that tf = gs.
(4) fs = 0 for some s ∈ S if and only if tf = 0 for some t ∈ S.
(5) (the saturation condition) Let st ∈ S. Then s ∈ S if and only if

t ∈ S.

Now let C be an additive category and let S be a multiplicative system.
Then we define the localization S−1C as follows : The object class is the
same as C, i.e. Ob(S−1C) = Ob(C). For objects X,Y , we consider a diagram

X
s← X ′ f→ Y for some object X ′ and we denote it by fs−1. The morphism

set in S−1C is

S−1C(X,Y ) = {fs−1| s ∈ S}/ ∼,
where the equivalence relation ∼ is generated by fs−1 ∼ (fu)(su)−1 for a
morphism u : X ′′ → X ′ in S. The composition of morphisms in S−1C is
defined as (gt−1)(fs−1) = (gf ′)(st′)−1 where f ′ and t′ ∈ S are morphisms
satisfying ft′ = tf ′.

For given fs−1, gt−1 ∈ S−1C(X,Y ) we can make the fractions have a
common denominator. In fact, taking a morphism u with u = sa = tb for
some a and b in S, we have fs−1 = (fa)u−1 and gt−1 = (gb)u−1. Therefore
we can define the addition in S−1C(X,Y ) so that fs−1+gt−1 = (fa+gb)u−1.
It is easy to see that S−1C is again an additive category.

Note that fs−1 = 0 in S−1C if and only if fu = 0 in C for some u ∈ S if
and only if vf = 0 for some v ∈ S.

Note also that there is a natural functor ι : C → S−1C defined by ι(X) =
X and ι(f) = f1−1. It is clear that ι(s) is an isomorphism if s ∈ S.

It is known that if C is an abelian category, then S−1C is also an abelian
category for any multiplicative system S, cf. [4, Exercise 8.11]. Furthermore
the functor ι is exact.

2.2. Verdier quotient. Let C be an abelian category. Recall that a full
subcategory S of C is called a Serre subcategory if the following condition
(Σ) is satisfied:

(Σ) For any short exact sequence 0→ X → Y → Z → 0 in C, Y ∈ Ob(S)
if and only if X,Z ∈ Ob(S).
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Let S be a Serre subcategory of an abelian category C. We say that a
morphism f in C is a pseudo-isomorphism (with respect to S) if Ker(f) and
Cok(f) belong to S. Then the set S of all the pseudo-isomorphisms forms
a multiplicative system in C. We define the Verdier quotient C/S by

C/S = S−1C.
Note that C/S is an abelian category as well, and there is a natural exact
functor π : C → C/S. The Verdier quotient satisfies the following universal
property:

Let F : C → C′ be an exact functor of abelian categories satisfying F (X) =
0 for all X ∈ Ob(S). Then there is a unique exact functor G : C/S → C′
such that F = G · π.

It is easy to see the following

Remark 2.1. Let fs−1 be a morphism in C/S, so that f, s are morphisms
in C with s being a pseudo-isomorphism. Then, fs−1 is a monomorphism
in C/S if and only if Ker(f) belong to S. (In such a case we say that f is
a pseudo-monomorphism in C.) Similarly, fs−1 is a epimorphism in C/S if
and only if Cok(f) belong to S (i.e. f is a pseudo-epimorphism in C).

2.3. Abelian R-categories. Let R be a commutative ring and let C be an
additive category. We say that C is an R-category, or more precisely an
R-linear category, if the following conditions hold:

(1) C(X,Y ) has a structure of R-module for each X,Y ∈ Ob(C).
(2) The composition C(X,Y )× C(Y, Z)→ C(X,Z) is an R-bilinear, i.e.

(af)g = a(fg) = f(ag) for f ∈ C(X,Y ), g ∈ C(Y, Z) and a ∈ R.

Note that if C is an abelian R-category and if S is a Serre subcategory of
C, then the Verdier quotient C/S is an abelian R-category as well, and the
canonical functor C → C/S is R-linear, see [4, 8.5].

3. Associated Primes in abelian R-categories

In the rest of the paper R always denotes a commutative noetherian ring
and C is an abelian R-category.

Note that there is a unique identity morphism 1X ∈ C(X,X) for each
X ∈ Ob(C). Since C is an R-category, we may consider a morphism a1X ∈
C(X,X) for any a ∈ R.

Definition 1. For an object X ∈ Ob(C), set
annR(X) = {a ∈ R | a1X = 0},

and call it the annihilator of X.

It is quite easy to see the following.
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Remark 3.1. (1) The annihilator of an object in C is an ideal of R.
(2) For X ∈ Ob(C), annR(X) = R if and only if X = 0 in C.
(3) If X ∼= Y in C, then annR(X) = annR(Y ).

Example 3.2. Let S be a Serre subcategory of Mod(R), where Mod(R)
denotes the abelian R-category consisting of all R-modules and R-homomor-
phisms. We set C = Mod(R)/S. In this case, for an R-module M ∈ Ob(C),
annR(M) is the set of elements a of R with aM ∈ S as an object in Mod(R).

Definition 2. An object X of C is called a noetherian object in C if any
non-empty (small) set of subobjects of X has a maximal object, or more
precisely it satisfies the following condition :

For any class of monomorphisms {jλ : Yλ ↪→ X | λ ∈ Λ} indexed by a set
Λ, there is a λ0 ∈ Λ such that if there is a morphism fλ : Yλ0 → Yλ with
jλ0 = jλfλ, then fλ is an isomorphism.

We should remark that this condition is equivalent to the ascending chain
condition for subobjects of X.

Note that subobjects and quotient objects of a noetherian object are again
noetherian. Hence the class of noetherian objects is a Serre subcategory of
C. Now we define the associated prime ideals for an object in an abelian
R-category.

Definition 3. Let X ∈ Ob(C). We say that a prime ideal p of R is an associ-
ated prime ideal ofX if there is a noetherian object Y with a monomorphism
Y ↪→ X such that p = annR(Y ) holds. We denote by AssR(X) the set of all
associated prime ideals of X, that is,

AssR(X) := {p ∈ Spec(R) | p = annR(Y ) where Y is a noetherian object

and there is a monomonorphism Y ↪→ X}.

It is obvious from the definition that AssR(X
′) is a subset of AssR(X)

whenever there is a monomorphism X ′ ↪→ X.
The following proposition is a generalization of [7, theorem 6.1].

Proposition 3.3. For an object X ∈ Ob(C), AssR(X) is a non-empty set
if and only if X contains a non-zero noetherian subobject.

Proof. The ’only if’ part is trivial. To prove the ’if’ part, it is enough to
show that AssR(X) ̸= ∅ if X is a noetherian object. Let X be a noetherian
object and consider a set of ideals

Λ = {I (̸= R) | I = annR(Y ) for a subobject Y ↪→ X}.
Taking a maximal element p = annR(Y0) among Λ, we have only to prove
that p is a prime ideal. Let a, b ∈ R and suppose that ab ∈ p and a ̸∈ p.
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Since a1Y0 ̸= 0, the image L := Im(a1Y0) is a non-zero subobject of Y0, hence
of X. Thus annR(L) belongs to Λ, and since annR(Y0) ⊆ annR(L), we have
the equality p = annR(L). On the other hand, since b(a1Y0) = (ab)1Y0 = 0,
it follows that b1L = 0, thus b ∈ annR(L) = p. □
Proposition 3.4. Let 0 → X → Y → Z → 0 be an exact sequence in C.
Then AssR(X) ⊆ AssR(Y ) ⊆ AssR(X) ∪ AssR(Z).

Proof. The first inclusion is trivial. To prove the second, assume p ∈
AssR(Y ), and thus there is a noetherian subobject Y ′ of Y with p =
annR(Y

′). Taking the pull-back diagram of Y ′ ↪→ Y and X → Y , we have
the commutative diagram of the following form where the rows are exact
and the vertical morphisms are monomorphisms:

0 −−−−→ X −−−−→ Y −−−−→ Z −−−−→ 0x x x
0 −−−−→ X ′ −−−−→ Y ′ −−−−→ Z ′ −−−−→ 0

Note that X ′ (resp. Z ′) is a noetherian subobject of X (resp. Z), and the
following inclusion relations hold:

p = annR(Y
′) ⊆ annR(X

′) ∩ annR(Z
′),

annR(X
′) · annR(Z ′) ⊆ p = annR(Y

′).

Since p is prime, it forces either p = annR(X
′) or p = annR(Z

′). Hence
p ∈ AssR(X) ∪ AssR(Z). □
Corollary 3.5. Let X1, . . . , Xn ∈ Ob(C).

Then AssR(
n⨿

i=1

Xi) =
n∪

i=1

AssR(Xi).

The following proposition is a generalization of [7, theorem 6.5].

Theorem 3.6. Let X be a noetherian object in C. Then AssR(X) is a finite
set.

To prove this theorem, we need a lemma.

Lemma 3.7. Under the same assumption in the theorem, let H be a subset
of AssR(X). Assume that any pair of elements in H has no inclusion rela-
tion, i.e. if p, q ∈ H and p ̸= q, then p ̸⊂ q and q ̸⊂ p. Then H is a finite
set.

Proof. Assume H is an infinite set and take a countably infinite elements
p1, p2, . . . , pn, . . . in H. For each n there is a subobject Yn of X with pn =
annR(Yn). Setting the subobject Zn of X to be the sum of Y1, Y2, . . . , Yn,
we have an ascending chain of subobjects Z1 ⊆ Z2 = Y1 + Y2 ⊆ Z3 =
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Y1 + Y2 + Y3 ⊆ · · · ⊆ X. Since X is noetherian, this sequence is stationary
after a large number n0. Thus Yn ⊆ Zn0 for any n. Therefore we have

n0∏
i=1

pi ⊆ annR(Zn0) ⊆ annR(Yn) = pn,

for every n. Hence, for every integer n, there is an integer i with 1 ≤ i ≤ n0

such that pi ⊆ pn. This contradicts the assumption on H. □

Now we prove Theorem 3.6. Let Hmax be a subset of AssR(X) consisting
of all maximal elements in AssR(X) with respect to inclusion relation. Then
it follows from the lemma that Hmax is a finite set. In particular, there is an
upper bound h for the set {ht p | p ∈ AssR(X)}. Thus setting Hn = {p ∈
AssR(X) | ht p = n}, we have AssR(X) =

∪h
n=0Hn, where each set Hn is

also a finite set by the lemma. □

Theorem 3.8. Let X be a noetherian object in C. Setting I = annR(X),
we have AssR(R/I) ⊆ AssR(X). In particular, if p is a minimal prime ideal
containing I, then p belongs to AssR(X).

Proof. Suppose p ∈ AssR(R/I). Then, by definition, there is an element
c ∈ R \ I such that p = (I :R c). Now let cX be the image of the morphism
c1X : X → X. Since c ̸∈ I, we have cX ̸= 0 that is a noetherian subobject
of X. Note that, since c p ⊆ I, we see that p(cX) = 0 hence p ⊆ annR(cX).
Conversely, if a ∈ annR(cX) then a(cX) = 0, therefore ac ∈ I = annR(X).
Thus we have a ∈ (I :R c) = p. As a result, we have p = annR(cX), and
hence p ∈ AssR(X). □

Let A =
⊕

λ∈Nr Aλ be a finitely generated Nr-graded commutative R-
algebra with A0 = R where 0 = (0, . . . , 0) ∈ Nr and let M =

⊕
λ∈Zr Mλ be

a finitely generated Zr-graded A-module. In such a case it is known that∪
λ∈Zr AssR(Mλ) is a finite set. Usually the proof of this fact goes as follows:

If p ∈ AssR(Mλ), then there is a graded prime ideal P of A that is associated
with the graded A-module M such that p = P ∩ R, and there are only a
finite number of such associated graded prime ideals P.

If A is a non-commutative graded R-algebra, such a proof does not work
but Theorem 3.6 assures that the same is true even if A is non-commutative
noetherian R-algebra.

In fact, we can prove the following

Example 3.9. Let A =
⊕

λ∈Nr Aλ be a noetherian Nr-graded (not neces-
sarily commutative) R-algebra with A0 = R and let M =

⊕
λ∈Zr Mλ be a

finitely generated Zr-graded left A-module. Then
∪

λ∈Zr AssR(Mλ) is a finite
set.
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Proof. Consider the category C = modZ
r
(A) whose objects are finitely gen-

erated graded left A-modules and whose morphisms are degree-preserving
graded A-module homomorphisms. Then C is an abelian R-category and
every object of C is noetherian. Since M ∈ Ob(C), we see from Theorem
3.6 that AssR(M) is a finite set. Thus we have only to prove the equality
AssR(M) =

∪
λ∈Zr AssR(Mλ).

To prove this equality we first note that the equality annR(Ax) =
annR(Rx) holds for any homogeneous element x of M . In fact, since
Rx ⊆ Ax, it follows annR(Ax) ⊆ annR(Rx). On the other hand, if a ∈ R
and if ax = 0, then a(Ax) = A(ax) = 0 hence a ∈ annR(Ax).

Now let p ∈ AssR(M). Then there is a graded A-submodule Y of M with
p = annR(Y ). Let {x1, . . . , xs} be a set of homogeneous generators of Y .
Since p =

∩s
i=1 annR(Axi) and since p is prime, we have p = annR(Axi) for

some i. Therefore, as remarked above, p = annR(Rxi). Thus if xi belongs
to Mλ then p ∈ AssR(Mλ). This shows taht AssR(M) ⊆

∪
λ∈Zr AssR(Mλ).

To show the reverse inclusion let p ∈ AssR(Mλ) for λ ∈ Zr. Then there
is an element x ∈ Mλ with p = annR(Rx). Hence p = annR(Ax) and thus
p ∈ AssR(M). □

4. Primary decomposition

Recall that R is a commutative noetherian ring, and C is an abelian R-
category.

Definition 4. Let X ∈ Ob(C) and let a ∈ R. We say that a is an X-regular
element if a1X : X → X is a monomorphism.

Definition 5. An object X of C is called a primary object if the following
conditions are satisfied:

(1) X is a non-zero noetherian object in C.
(2) Let p =

√
annR(X). Then any element a ∈ R \ p is an X-regular

element.

Lemma 4.1. Let X be a primary object in C and set p =
√
annR(X). Then

p is a prime ideal. In this case we say that X is a p-primary object in C.
Proof. Let a, b ∈ R \ p. Then, since (ab)n1X = (an1X)(bn1X) is a monomor-
phism for any integer n, we have (ab)n1X ̸= 0 for any n, and hence ab ̸∈
p. □
Proposition 4.2. Let X be a noetherian object in C. Then the set
R \

∪
p∈AssR(X) p consists exactly of all the X-regular elements.

Proof. Suppose a ∈
∪

p∈AssR(X) p. Then there is a non-zero subobject Y of

X with a ∈ p = annR(Y ). Therefore Ker(a1X) contains the object Y , hence
a is not an X-regular element.
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Contrarily, assume that a is not an X-regular element. Then Z :=
Ker(a1X) is a non-zero subobject of X. Note that Z is noetherian as it is
a subobject of a noetherian object. Thus AssR(Z) is non-empty by Propo-
sition 3.3. Taking p ∈ AssR(Z), we find a subobject Y of Z such that
p = annR(Y ). Since a1Z = 0, we have a1Y = 0 and hence a ∈ p. Note that
AssR(Z) ⊆ AssR(X) since Z ↪→ X, and thus p ∈ AssR(X). □

The following lemma will be necessary to prove the next proposition.

Lemma 4.3. Let X be an object in an abelian R-category C and let a ∈ R.
For a positive integer n, we set Kn (resp. In) to be the kernel (resp. the
image) of the morphism an1X : X → X. If Kn = Kn+1 for an integer n,
then a is an In-regular element.

Proof. This is almost trivial from the following commutative diagram with
exact rows:

0 −−−−→ Kn −−−−→ X
an−−−−→ In −−−−→ 0∥∥∥ ∥∥∥ a1In

y
0 −−−−→ Kn+1 −−−−→ X

an+1

−−−−→ In.

□
The following proposition is a generalization of [7, theorem 6.6].

Proposition 4.4. Let X be a noetherian object in C. Then the following
conditions are equivalent:

(1) X is a p-primary object.
(2) AssR(X) = {p}.

Proof. (1)⇒ (2): Assume that X is a p-primary object. Recall from Propo-
sition 3.3 that AssR(X) ̸= ∅. Take any q ∈ AssR(X). Then there is a
subobject Y of X such that q = annR(Y ). Since annR(X) ⊆ annR(Y ) = q

and since q is prime, we have p =
√
annR(X) ⊆ q. Any element a ∈ R \ p

is an X-regular element, hence such an element a is Y -regular as well. This
forces that q ⊆ p, hence AssR(X) = {p}.

(2)⇒ (1): Assume that AssR(X) = {p} and let I = annR(X). There is a
subobject Y of X with p = annR(Y ). Hence I = annR(X) ⊆ annR(Y ) = p.

Since p is prime, it follows that
√
I ⊆ p. By virtue of Proposition 4.2 it

remains to prove the equality
√
I = p. To prove p ⊆

√
I, let a ∈ R \

√
I. Set

Kn := Ker(an1X) and In := Im(an1X) for any non-negative integer n. Since
K1 ↪→ K2 ↪→ · · · ↪→ Kn ↪→ · · · ↪→ X and since X is noetherian, the equality
Kn = Kn+1 holds for a large integer n. Then it follows from Lemma 4.3
that a is an In-regular element.
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Note that In ̸= 0, since an1X ̸= 0. Therefore AssR(In) ̸= ∅. However,
since AssR(In) ⊆ AssR(X) = {p}, we have AssR(In) = {p}. We have shown
that a is an In-regular element, hence Proposition 4.2 forces that a ̸∈ p. □

Let Y1 ↪→ X and Y2 ↪→ X be subobjects of an object X ∈ C. Then recall
that the intersection Y1∩Y2 ↪→ X is well-defined as a subobject of X by the
pull-back diagram;

Y1 ∩ Y2 −−−−→ Y1y y
Y2 −−−−→ X.

Definition 6. Let X ∈ C. We say that Y ↪→ X is irreducible if it satisfies
the following condition; If Y1∩Y2 = Y for subobjects Y1, Y2 of X, then either

Y1 = Y or Y2 = Y .

The following lemma is easily proved by using the noetherian induction.

Proposition 4.5. Assume that X is a noetherian object in C. Then there
are a finite number of subobjects Yi ↪→ X (1 ≤ i ≤ n) satisfying Y1∩· · ·∩Yn =
0 and that each Yi ↪→ X is irreducible for 1 ≤ i ≤ n.

Proposition 4.6. Let X be a non-zero noetherian object in C. Assume
0 ↪→ X is irreducible. Then X is primary.

Proof. Assuming AssR(X) contains two distinct primes p ̸= q, we prove
that 0 ↪→ X is not irreducible. There are subobjects Y, Z of X satisfying
p = annR(Y ) and q = annR(Z). After exchanging p and q if necessary, we
may assume that there is an element a ∈ q \ p. Setting Kn = Ker(an1Y ) and
In = Im(an1Y ) for positive integers n, we have the equality Kn = Kn+1 for
a large integer n, and hence a is an In-regular element by Lemma 4.3. Note
that an ̸∈ p, hence we have anY ̸= 0. Since a is an In ∩ Z-regular element
and since a annihilates In ∩ Z, we have In ∩ Z = 0. Hence 0 ↪→ X is not
irreducible. □

The following theorem shows the existence of primary decompositions.

Theorem 4.7. Let X be a noetherian object in an abelian R-category C.
Then there are subobjects Yi ↪→ X (1 ≤ i ≤ n) satisfying Y1∩· · ·∩Yn = 0 and
AssR(X/Yi) = {pi} (1 ≤ i ≤ n). Moreover one can take such decomposition
satisfying AssR(X) = {p1, . . . , pn}.

Proof. By the previous lemmas, we can show that there are irreducible
subobjects Yi ↪→ X (1 ≤ i ≤ n) satisfying Y1 ∩ · · · ∩ Yn = 0 and
AssR(X/Yi) = {pi} (1 ≤ i ≤ n). In this case we have a monomorphism
X ↪→

⨿n
i=1(X/Yi) and hence AssR(X) ⊆ {p1, . . . , pn}, by Proposition
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3.4 and Corollary 3.5. We have to show that one can choose such Yi so
that AssR(X) = {p1, . . . , pn}. Assume pi ∈ AssR(X) for 1 ≤ i ≤ m and
pi ̸∈ AssR(X) for m+ 1 ≤ i ≤ n. Then Y1 ∩ · · · ∩ Ym can be embedded into
the both X and X/(Ym+1 ∩ · · · ∩Yn). Hence AssR(Y1 ∩ · · · ∩Ym) is a subset
of both AssR(X) and AssR (X/(Ym+1 ∩ · · · ∩ Yn)), the latter of which is
contained in {pm+1, . . . , pn}. Hence we have AssR(Y1 ∩ · · · ∩ Ym) = ∅.
Thus it follows from Proposition 3.3 that Y1 ∩ · · · ∩ Ym = 0 and
AssR(X) = {p1, . . . , pm}. □

Recall that for an R-module M , a prime ideal p of R is said to be an
attached prime ideal of M if p = annR(M/N) for some submodule N of
M . We denote the set of attached prime ideals of M by AttR(M). A
secondary decomposition of M is, by definition, an expression as a finite sum
of secondary modules: M = N1+N2+ · · ·+Nn, where we say that a module
N is secondary if Att(N) consists of a single prime ideal. It is well-known
that if M is an artinian module, then it has a secondary decomposition (see
[7], [5] ).

We suppose that Cop is the opposite category of an abelian R-category C.
Cop is also an abelian R-category. In general X is a noetherian object in C if
and only if Xop is an artinian object in Cop, hence if M is an artinian module
in Mod(R) then Mop is a noetherian object in Mod(R)op. We recognize that
AttR(M) coincides with AssR(M

op), and secondary decomposition M =
N1 + N2 + · · · + Nn coincides with a primary decomposition in opposite
category Mod(R)op.

There are several other studies on primary decomposition such as by
Goldman [2] and Storrer [11]. In fact, Goldman considers the category
ModΛ where Λ is any ring, in which he proves primary decompositions
for noetherian modules, and Storrer develop Goldman’s theory in terms
of ‘atoms’. If Λ is an algebra over a commutative noetherian ring R, then
ModΛ is an R-linear category. Even in this case, our primary decomposition
(Theorem 4.7) induces a distinct one from Goldman’s. Actually, let R be
a field and Λ be the ring of 2 × 2 upper triangular matrices over R. Then
(0) is, as a submodule of Λ, decomposable into two primary components in
ModΛ in the sense of Goldman, but (0) is primary in our sense of Theorem
4.7 when we regard ModΛ as an R-linear category.

5. Remarks on noetherian objects in quotient categories

As before, R is always a noetherian commutative ring. Suppose we are
given an abelian R-category C and a Serre subcategory S of C. Then the
Verdier quotient category C/S is again an abelian R-category. Recall that
the object classes of C and C/S are identical, but, for an object X in C, we
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denote by XS the corresponding object of C/S, to make it clear in which
category we consider the object X.

Recall that a morphism s in C is called a pseudo-isomorphism (with re-
spect to S) if Ker(s) ∈ S and Cok(s) ∈ S. The morphisms in C/S are
the equivalent classes of fs−1 where s is a pseudo-isomorphism. Also recall
that the morphism fs−1 = 0 in C/S if and only if ft = 0 in C for some
pseudo-isomorphism t. (The last is equivalent to that uf = 0 in C for some
pseudo-isomorphism u.)

Note that for an object X ∈ Ob(C), it holds XS = 0 in C/S if and only if
X ∈ Ob(S). In fact, since 1XS = 1X1−1

X in C/S, it follows that XS = 0 ⇔
1X1−1

X = 0 ⇔ there is a pseudo-isomorphism t : Y → X with t = 0 ⇔
X ∈ Ob(S).

The following observation will be necessary to argue about subobjects in
the quotient categories.

Lemma 5.1. Let X ∈ Ob(C) and assume that a subobject fs−1 : YS ↪→ XS
in C/S is given for an object XS . Then there is a subobject j : X ′ ↪→ X in
C with the following commutative diagram :

YS
fs−1

−−−−→ XS∥∥∥ j1−1

x
YS

gs−1

−−−−→
≃

X ′
S

In other words, every subobject of XS in the quotient category C/S comes
from a subobject of X in C. The same is true as well for quotient objects.

Proof. Let fs−1 = [Y
s← Y ′ f→ X]. Setting X ′ = Im(f) that is a subobject

of X, it is easy to see that there is a pseudo-isomorphism g : Y ′ → X ′, hence
gs−1 : YS → X ′

S is an isomorphism in C/S. □

As a result of this lemma we can show the following proposition holds.

Proposition 5.2. If X ∈ Ob(C) is a noetherian object in C, then XS is a
noetherian object in C/S.

Proof. Suppose there is an ascending sequence of subobjects of XS in C/S:

(Y1)S ↪→ (Y2)S ↪→ · · · ↪→ (Yn)S ↪→ (Yn+1)S ↪→ · · · ↪→ XS

Then each XS/(Yn+1)S is a quotient object of XS/(Yn)S . Thus it follows
from the previous lemma that there is an ascending sequence of subobjects
of X in C; Y ′

1 ↪→ Y ′
2 ↪→ · · · ↪→ Y ′

n ↪→ Y ′
n+1 ↪→ · · · ↪→ X such that there is

an isomorphism XS/(Yn)S ∼= XS/(Y
′
n)S for each n that makes the following
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diagram commutative:

XS/(Yn)S −−−−→ XS/(Yn+1)S

∼=
y ∼=

y
XS/(Y

′
n)S −−−−→ XS/(Y

′
n+1)S

Since the sequence {Y ′
n} is stationary for large n, the same is true for the

sequence {(Yn)S}. □

6. Examples

There is an abelian R-category C having a non-zero object that contains
no non-zero notherian subobjects.

Example 6.1. Let R = k be a field and let Mod(k) be the abelian k-category
consisting of all k-modules and k-homomorphisms. Let S = mod(k) be the
Serre subcategory of Mod(k) consisting of all finite dimensional k-vector
spaces, and set C = Mod(k)/S. If V is a k-vector space of countably infinite
dimension. Since V ̸∈ S, we have VS ̸= 0 in C. Note that every subobject US
of VS comes from the subspace U of V , and US is either 0 or isomorphic to
VS (in non-natural way) according to that the dimension of U is finite or not.
Thus it is easy to see that any non-zero subobject of VS is not noetherian.

This is an example in which VS ̸= 0 but Assk(VS) = ∅.

There is an abelian R-category C and its Serre subcategory S such that
there is a noetherian object in the quotient category C/S that never comes
from a noetherian object of C.

Example 6.2. Let (R,m) be a commutative noetherian complete local do-
main of dimension one. Denote by Mod(R) the abelian R-category of all R-
modules and R-homomorphisms. Let S be the Serre subcategory of Mod(R)
consisting of all R-modules of finite length.

We claim the following hold.

(1) The object ES of Mod(R)/S is simple, so that ES contains no proper
subobject other than 0. In particular, ES is a noetherian object in
Mod(R)/S.

(2) There is no noetherian R-module M with ES ∼= MS in Mod(R)/S.
Therefore this example shows that the converse of Proposition 5.2 does

not hold in general.
To prove (1), it is enough to prove that if M ⫋ E is an R-submodule, then

M is of finite length over R. Denoting the Matlis dual HomR( , E) by ( )∨, we
have a non-isomorphic surjective R-homomorphism R = E∨ → M∨. Thus
M∨ ∼= R/I where I ̸= (0). Since R is an integral domain of dimension one,
we have that the length of R/I is finite, hence so is M ∼= (R/I)∨.
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To prove (2), assume that there is a finitely generated R-module M with
the isomorphism ES → MS . Then there are pseudo-isomorphism f, g with

E
f← X

g→ M for some X ∈ Mod(R). By the proof of (1), we see that f
is a surjective R-homomorphism. In particular, X is not finitely generated
R-module. On the other hand, in the exact sequence

0→ Ker(g)→ X
f→M → Cok(g)→ 0,

we have that Ker(g) and Cok(g) belong to S, hence finitely generated. It
thus follows that M is not a finitely generated R-module, hence it is not a
noetherian object in Mod(R).

This is also an example that shows that Nakayama’s lemma does not holds
in our context. In fact, ES is a non-zero noetherian object in the abelian
R-category Mod(R)/S and (R,m) is a local ring. However, the morphism
a1ES : ES → ES is an epimorphism for any non-zero element a ∈ m.

7. Localization at a prime ideal

As before let C be an abelian R-category, where R is a noetherian commu-
tative ring. Given a prime ideal p of R, we have the multiplicative system in
C consisting of all morphisms f satisfying that sf = tg for some s, t ∈ R\p
and an isomorphism g. Then we denote by Cp the localization of C by this
multiplicative system. By definition, Ob(Cp) = Ob(C), while the morphisms
from X to Y in Cp are the elements of C(X,Y )p(:= C(X,Y )⊗RRp). Thus it
is easy to see that Cp is an abelian Rp-category. For an object X ∈ Ob(C) we
denote by Xp the corresponding object of Cp. Recall that there is a natural
exact functor ι : C → Cp, by which ι(X) = Xp for an object X ∈ Ob(C).

Lemma 7.1. Let X ∈ Ob(C).
(1) The equality annRp(Xp) = annR(X)Rp holds as ideals of Rp.
(2) Xp ̸= 0 if and only if annR(X) ⊆ p.

Proof. (1) For an element a/s ∈ Rp (a, s ∈ R, s ̸∈ p), a/s ∈ annRp(Xp) ⇔
(a/s)1Xp = (a/s)1X1−1

X = 0 in Cp ⇔ there is an element t ∈ R \ p such
that ta1X = 0 in C ⇔ a/s ∈ annR(X)Rp.

(2) follows from (1). □
Lemma 7.2. Let X be an object in C and let p be a prime ideal of R.

(1) If X is a noetherian object in C, then Xp is a notherian object in Cp.
(2) Let q be a prime ideal of R and suppose that X is a q-primary object

in C. If q ⊆ p, then Xp is a qRp-primary object in Cp. Otherwise,
Xp = 0 in Cp.

Proof. (1) Similarly to the proof of Lemma 5.1, one can see that any subob-
jects and quotients of Xp in Cp come from the subobjects and the quotients
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of X in C. Hence the proof goes through as in the same way of the proof of
Proposition 5.2.

(2) Assume q ⊆ p. It then follows from the previous lemma that√
annRp(Xp) =

√
annR(X)Rp = qRp. Let a/s ∈ Rp \ qRp where a ∈ R \ q.

Then, since a1X : X → X is a monomorphism, and since ι : C → Cp is
exact, we see that a/1, as well as a/s, is an Xp-regular element. Hence Xp

is a qRp-primary object. □
Theorem 7.3. Let X ∈ Ob(C) be a noetherian object in C and let p be a
prime ideal of R. Then AssRp(Xp) = {qRp | q ∈ AssR(X) and q ⊆ p}

Proof. Suppose that Y1 ∩ · · · ∩Yn = 0 is a primary decomposition of 0 ↪→ X
in C, so that AssR(X) = {p1, . . . , pn} and AssR(X/Yi) = {pi} for 1 ≤ i ≤ n.
Assume that pi ⊆ p for 1 ≤ i ≤ m and pi ̸⊆ p for m + 1 ≤ i ≤ n.
Note from Lemma 7.1 that (X/Yi)p = 0 for m + 1 ≤ i ≤ n. Since the
natural functor ι : C → Cp is exact, we have (Y1)p ∩ . . . ∩ (Ym)p = 0 and
it follows from Lemma 7.2 that AssRp(Xp/(Yi)p) = {piRp} for 1 ≤ i ≤ m.
Note that there is a monomorphism Xp ↪→

⨿m
i=1(X/Yi)p and hence we have

AssRp(Xp) ⊆ {p1Rp, . . . , pmRp}.
To show the reverse inclusion, take a subobject Zi of X with pi =

annR(Zi) for 1 ≤ i ≤ m. Then, by Lemma 7.1, (Zi)p is a non-zero subobject
of Xp and satisfies annRp((Zi)p) = piRp. Hence piRp ∈ AssRp(Xp). □
Example 7.4. Let Mod(R) (resp. mod(R)) be the category of all R-modules
(resp. all finitely generated R-modules) and R-homomorphisms. For a prime
ideal p of R, we compare Mod(R)p with Mod(Rp).

Note that there is a functor F : mod(R) → mod(Rp) defined by the
localization at p, i.e. F (−) = − ⊗R Rp. If s ∈ R \ p, then F (s1X) is
an isomorphism in mod(Rp), hence it follows from the universal property
of the localization of categories that it induces an Rp-linear functor Fp :
mod(R)p → mod(Rp). Clearly Fp is a dense functor, while since there is a
natural isomorphism HomR(M,N)p ∼= HomRp(Mp, Np) for M,N ∈ mod(R),
the functor Fp is fully faithful as well. Hence we have an equivalence of Rp-
categories; mod(R)p ≃ mod(Rp).

Similarly we can define a functor Fp : Mod(R)p → Mod(Rp). However

this is not an isomorphism in general. In fact, if X = R(N) is a free R-
module of countably infinite rank, then the natural map HomR(X,X)p →
HomRp(Xp, Xp) is not an isomorphism.

8. Comparison between C and C/S

As before R is always a noetherian commutative ring. Let C be an abelian
R-category and let S be a Serre subcategory of C. Considering the Verdier
quotient C/S, the aim of this section is to compare the associated prime
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ideals AssR(X) for an object X ∈ Ob(C) with AssR(XS) for the correspond-
ing object XS ∈ Ob(C/S).

Let us first remark the following observation.
If p is a prime ideal of R, then we can construct the subcategory of Cp as

a class of objects that are isomorphic in Cp to the objects in the class Ob(S).
We denote this subcategory by Sp. Recalling that every short exact sequence
in Cp is equivalent to the one that comes from a short exact sequence in C, it
is easy to see that Sp is a Serre subcategory of Cp. In such a case, localizing
the natural functor π : C → C/S by p, we have the exact Rp-linear functor
πp : Cp → (C/S)p. Note that πp(X) = 0 for all X ∈ Ob(Sp). Hence it induces
an exact Rp-linear functor πp : Cp/Sp → (C/S)p.

Theorem 8.1. Under the notation above, πp : Cp/Sp → (C/S)p is an equiv-
alence of categories for all prime ideals p.

Proof. From the definition, it holds that Ob(Cp/Sp) = Ob(C) = Ob((C/S)p),
hence πp gives is a bijection between the object classes.

Recall that the morphisms in Cp are of the form fs−1 where f is a mor-
phism in C and s ∈ R \ p. It is easy to see that such a morphism fs−1

is a pseudo-isomorphism with respect to Sp if and only if f is a pseudo-
isomorphism with respect to S in C. Thus the morphisms in Cp/Sp are of
the form (fs−1)(gt−1)−1 where g is a pseudo-isomorphism with respect to
S in C and s, t ∈ R \ p. By the construction, πp maps this morphism to the
morphism (tfg−1)(s−1) in (C/S)p. By this observation it is easy to see that
πp is fully faithful. □

Lemma 8.2. Under the circumstance above, let X be a noetherian object
in C. Assume that X is a p-primary object in C for a prime ideal p. If
X ̸∈ Ob(S), then XS is a p-primary object in C/S.

Proof. Recall that XS = 0 in C/S if and only if X ∈ Ob(S). Assume that
X ̸∈ Ob(S). Since XS = π(X) for the natural exact functor π : C →
C/S, and since π is R-linear, we should note that annR(X) ⊆ annR(XS)

holds. Therefore p =
√
annR(X) ⊆

√
annR(XS). First we prove that this

inclusion is in fact an equality. To show this assume that there is an element
a ∈

√
annR(XS) \ p. Then there is an integer n such that an1XS = 0.

Setting the image of the morphism an1X : X → X in C as J , we must
have J ∈ Ob(S). However, since a ̸∈ p, the morphism an1X : X → X is a
monomorphism in C, and hence X ∼= J in C. Therefore we have X ∈ Ob(S),
a contradiction.

Since we have shown that p =
√

annR(XS), it remains to prove that every
element a ∈ R \ p is an XS-regular element. But this is obvious, because a
is an X-regular element and the natural functor π : C → C/S is exact. □
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Let X be a noetherian object in an abelian R-category C. Recall that
there is a primary decomposition of 0 ↪→ X in C as Y1 ∩ · · · ∩ Yn = 0 so
that AssR(X) = {p1, . . . , pn} and AssR(X/Yi) = {pi} for 1 ≤ i ≤ n. In
this case we remark that we can take such p1, . . . , pn as they are all distinct
prime ideals. In fact, if p1 = p2, then putting Y ′ = Y1 ∩ Y2, we see that
X/Y ′ ↪→ X/Y1 × X/Y2 and thus AssR(X/Y ′) ⊆ {p1}. Therefore X/Y ′ is
p1-primary and we can replace Y1 ∩ Y2 with Y ′.

Theorem 8.3. Let C be an abelian R-category and let S be a Serre sub-
category of C. Let X be a noetherian object in C and assume that there
is a primary decomposition of 0 ↪→ X in C as Y1 ∩ · · · ∩ Yn = 0 so that
AssR(X) = {p1, . . . , pn} and AssR(X/Yi) = {pi} for 1 ≤ i ≤ n. Moreover
we assume that pi ̸= pj if i ̸= j.

Under such circumstance, there is a unique minimal subset {i1, . . . , ir}
of {1, 2, . . . , n} satisfying (Yi1)S ∩ · · · ∩ (Yir)S = 0 in C/S and it holds that
AssR(XS) = {pi1 , . . . , pir}.

Proof. Assume that there are two subsets I, J of {1, 2, . . . , n} such that∩
i∈I(Yi)S = 0 and

∩
i∈J(Yi)S = 0. (We understand that if I = ∅ then∩

i∈I(Yi)S = XS .) In this case we can show that
∩

i∈I∩J(Yi)S = 0. In fact,
there is a monomorphism∩

i∈I∩J
(Yi)S ↪→ XS/

∩
i∈I \ J

(Yi)S ↪→
⨿

i∈I \ J

(X/Yi)S ,

hence AssR(
∩

i∈I∩J(Yi)S) ⊆ {pi | i ∈ I \ J}. Similarly we have
AssR(

∩
i∈I∩J(Yi)S) ⊆ {pi | i ∈ J \ I}. Therefore AssR(

∩
i∈I∩J(Yi)S) = ∅,

and hence
∩

i∈I∩J(Yi)S = 0.
This observation shows that there is a minimum subset I of {1, 2, . . . , n}

with
∩

i∈I(Yi)S = 0. In this case, since there is a monomorphism XS ↪→⨿
i∈I(X/Yi)S , we have AssR(XS) ⊆ {pi | i ∈ I}.
We show below that pi ∈ AssR(XS) if i ∈ I. Suppose pi ̸∈ AssR(XS)

for i ∈ I. Then
∩

j∈I, j ̸=i(Yj)S is embedded into both of XS and (X/Yi)S .

Thus it follows that AssR(
∩

i∈I, j ̸=i(Yi)S) = ∅, and thus
∩

i∈I, j ̸=i(Yi)S = 0.
This contradicts the minimality of I. Thus we have shown the equality
AssR(XS) = {pi | i ∈ I}. □

Example 8.4. In the theorem, AssR(XS) depends on the primary compo-
nents of X and it never be decided only by AssR(X).

For example, let (R,m) be a commutative noetherian complete local do-
main of dimension one. As in Example 6.2, we set as S the Serre subcategory
of Mod(R) consisting of all R-modules of finite length and we denote by C
the quotient category Mod(R)/S. As we have shown in Example 6.2 that
X = ES is a simple (hence noetherian) object in C, where E is the injective
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hull of the residue field R/m. It is easy to see that AssR(X) = {(0)}, hence
X is a (0)-primary object in C.

On the other hand, X ′ = RS is also a (0)-primary object in C.
Now let S ′ be the Serre subcategory of C consisting of all finitely generated

R-modules. Then, since XS′ ̸= 0, we have AssR(XS′) = {(0)}, while X ′
S′ =

0 hence AssR(X
′
S′) = ∅.
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