STABLE SPLITTINGS OF THE COMPLEX CONNECTIVE $K ext{-THEORY OF }BSO(2n+1)$

TSUNG-HSUAN WU

ABSTRACT. We give the stable splittings of the complex connective K-theory of the classifying space BSO(2n+1), n > 1.

1. Introduction

In [6], E. Ossa has showed that

$$bu \wedge RP^{\infty} \wedge RP^{\infty} \simeq [\underset{0 < i,j}{\vee} \Sigma^{2i+2j-2} HZ/2] \vee [\Sigma^2 bu \wedge RP^{\infty}].$$

In [2], B. R. Burner and J. P. C. Greenless give some studies on $bu \wedge BG$ for some finite groups G. Also, W. Stephen Wilson and D. Y. Yan [7] split $bu \wedge BO(n)$ into the suspended copies of HZ/2, bu, and $bu \wedge RP^{\infty}$. Via these splittings, we are going to split $bu \wedge BSO(2n+1)$.

First let's recall the notations we need. Let bu be the complex connective K-theory, $H\mathbb{Z}/2$ be the $\mathbb{Z}/2$ Eilenberg-Mac Lane spectrum, $RP^{\infty} = BO(1)$ be the infinite real projective space, BO(n) be the classifying space of the n-th orthogonal group, BSO(n) be the classifying space of the n-th special orthogonal group. To simplify the notations, let $H^*(X) = H^*(X, \mathbb{Z}/2)$, $\tilde{H}^*(X) = \tilde{H}^*(X, \mathbb{Z}/2)$, $H_*(X) = H_*(X, \mathbb{Z}/2)$, and $\tilde{H}_*(X) = \tilde{H}_*(X, \mathbb{Z}/2)$. We also write \otimes instead of $\otimes_{\mathbb{Z}/2}$ and all the spaces, the spectra, and the homotopy equivalences are localized at prime 2.

Recall that $H^*(BO(n)) = \mathbb{Z}/2[w_1, w_2, \dots, w_n]$, where w_i is the i-th Stiefel-Whitney class. In particular, $H^*(RP^{\infty}) = H^*(BO(1)) = \mathbb{Z}/2[w_1]$. Then let $b_i \in H_i(RP^{\infty})$ be the dual class of $\mathbf{w}_1^i \in H^*(RP^{\infty})$, $i \geq 0$, hence $H_*(BO(n))$ is the $\mathbb{Z}/2$ -module generated by the monomials $b_{i_1}b_{i_2}\cdots b_{i_n}$, $\deg(b_{i_1}b_{i_2}\cdots b_{i_n}) = i_1+i_2+\cdots+i_n$, $b_{i_1}b_{i_2}\cdots b_{i_n} = f_*(b_{i_1}\otimes b_{i_2}\otimes \cdots \otimes b_{i_n})$, $0 \leq i_1 \leq i_2 \leq \cdots \leq i_n$, where $f: \underset{i=1}{\times} RP^{\infty} \longrightarrow BO(n)$ is the classifying map. Moreover, let $h_n: BSO(n) \longrightarrow BO(n)$ be the 2-folds map, then we have $H^*(BSO(n)) = \mathbb{Z}/2[\widehat{w_2}, \widehat{w_3}, \cdots, \widehat{w_n}]$, where $\widehat{w_i} = h_n^*(w_i)$, $2 \leq i \leq n$. Also recall that $bu_* = Z_{(2)}[v_1]$, where $\deg(v_1) = 2$, and $H^*(bu) \cong A//A(Q_0, Q_1) \cong A \otimes_E \mathbb{Z}/2$, where A is the mod 2 Steenrod algebra,

Mathematics Subject Classification. 55N20.

Key words and phrases. stable splitting, complex connective K-theory, classifying space, Adams spectral sequence.

This paper is written under Professor D. Y. Yan's advice.

 $A\left(Q_0,\,Q_1\right)$ is the ideal of A generated by $Q_0=Sq^1$ and $Q_1=Sq^3+Sq^2Sq^1$, and $E=\mathbb{Z}/2\,\langle Q_0,\,Q_1\rangle$, the exterior algebra on Q_0 and Q_1 , is a subalgebra of A. Then by the Cartan formula $Sq^i(xy)=\sum\limits_{j=0}^i Sq^j(x)Sq^{i-j}(y)$, we have $Q_k(xy)=Q_k(x)y+xQ_k(y),\ k=0$ or 1. Moreover, since for any space X, $\tilde{H}^*(X)$ is an E-module, we say an element x in $\tilde{H}^*(X)$ is decomposable if $x=Q_0(y)+Q_1(z)$ for some $y,\,z\in\tilde{H}^*(X)$, and we say an element is indecomposable if it is not decomposable.

For $n \geq 1$, let $T_{2n+1} = \{t_j \mid j \in \Lambda_{2n+1}\}$ be a largest *E*-linearly independent subset of $\tilde{H}^*(BSO(2n+1))$ such that each t_j is a monomial in $\tilde{H}^*(BSO(2n+1))$.

Now we state the main result of this paper.

Theorem A. For each $n \geq 1$, $\widetilde{H}^*(BSO(2n+1))$ is isomorphic to $D_{2n+1} \oplus M_{2n+1}$ as an E-module, where D_{2n+1} is an E-module with the $\mathbb{Z}/2$ -generators $\widehat{w_2}^{2m_1}\widehat{w_4}^{2m_2}\cdots\widehat{w_{2n}}^{2m_n}$, $\sum_{i=1}^n m_i > 0$, $m_i \geq 0$, each $\widehat{w_2}^{2m_1}\widehat{w_4}^{2m_2}\cdots\widehat{w_{2n}}^{2m_n}$ has the trivial E-action, and M_{2n+1} is a free E-module with the E-basis T_{2n+1} described as above.

Theorem B. For each $n \ge 1$, there is a stable splitting

$$bu \wedge BSO(2n+1) \simeq \left[\bigvee_{\alpha} \Sigma^{\alpha} H\mathbb{Z}/2\right] \vee \left[\bigvee_{\beta} \Sigma^{\beta} bu\right],$$

where $\alpha = \deg t_j$, $t_j \in T_{2n+1}$, the generators of M_{2n+1} , and the β , and their degrees, correspond to the generators of D_{2n+1} .

To prove the stable splitting of $bu \wedge BSO(2n+1)$ (Theorem B), we need to apply the stable splitting of $bu \wedge BO(n)$ [7] to decompose $\tilde{H}^*(BSO(2n+1))$ as a direct sum of an E-module D_{2n+1} and a free E-module M_{2n+1} (Theorem A). Then we construct the map

$$g = g_0 \vee g_1 : bu \wedge BSO(2n+1) \longrightarrow [\underset{\alpha}{\vee} \Sigma^{\alpha} H\mathbb{Z}/2] \vee [\underset{\beta}{\vee} \Sigma^{\beta} bu]$$

and prove that g induces an isomorphism on the mod 2 cohomology, hence g is a homotopy equivalence and Theorem A follows.

In fact, there is an algebraic splitting of $H^*(BSO(2n))$ as Theorem A, that is, $\tilde{H}^*(BSO(2n))$ is isomorphic to $D_{2n} \oplus M_{2n} \oplus B_{2n}$ as an E-module, $n \geq 1$. Unfortunately, I cannot find a suitable space or spectrum corresponding to the B_{2n} part.

The rest of paper is organized as follows: In Section 2, we will give some lemmas which link the Adams $E_2^{1,*}$ term of $\widetilde{bu}_*(X)$ to the decomposition of $\widetilde{H}^*(X)$. In Section 3, we will compute the Adams $E_2^{1,*}$ term of $\widetilde{bu}_*(BO(n))$.

In Section 4, we will study the map $Bg_{2n}: BO(2n) \longrightarrow BSO(2n+1)$. In Section 5, we will prove Theorem A. In Section 6, we will prove Theorem B.

2. The E-module structure of $\widetilde{H}^*(BO(n))$ and the Adams spectral sequences for $\widetilde{bu}_*(BSO(2n+1))$

In this section, we will recall the Adams spectral sequence and give some lemmas which link some useful information of the decomposition of $\widetilde{H}^*(X)$ to the Adams $E_2^{1,*}$ term of $\widetilde{bu}_*(X)$ for any spaces X.

Let $A_* = \mathbb{Z}/2[\xi_1, \xi_2, \xi_3, \cdots]$, where ξ_k are the Milnor's generators with $\deg(\xi_k) = 2^k - 1$, be the mod 2 dual Steenrod algebra with the coproduct $\Delta(\xi_k) = \sum_{i=0}^k \xi_{k-i}^{2^i} \otimes \xi_i$. Then recall that for any space or spectrum Y, the Adams spectral sequences [1]

$$Ext_A^{*,*}(H^*(X), \mathbb{Z}/2) \cong Ext_{A_*}^{*,*}(\mathbb{Z}/2, H_*(X)) \Longrightarrow \pi_*(X_{(2)})$$

can be used to compute $\widetilde{bu}_*(Y)$ when $X = bu \wedge Y$. By a well-known change-of-rings isomorphism [3], we can replace

$$Ext_A^{*,*}(H^*(bu \wedge Y), \mathbb{Z}/2)$$
 with $Ext_E^{*,*}(\tilde{H}^*(Y), \mathbb{Z}/2),$
 $Ext_{A_*}^{*,*}(\mathbb{Z}/2, H_*(bu \wedge Y))$ with $Ext_{E_*}^{*,*}(\mathbb{Z}/2, \tilde{H}_*(Y)),$

where $E_* = \mathbb{Z}/2 \langle \xi_1, \xi_2 \rangle$ is the exterior algebra on ξ_1 and ξ_2 . For simplicity of notations, let $E_2^{*,*}(Y)$ be $Ext_E^{*,*}(\tilde{H}^*(Y), \mathbb{Z}/2)$ and $\hat{E}_2^{*,*}(Y)$ be $Ext_{E_*}^{*,*}(\mathbb{Z}/2, \tilde{H}_*(Y))$. Also recall that $E_2^{*,*}(Y)$ is isomorphic to the homology of the bar complex

$$\tilde{H}^*(Y) \stackrel{\overline{d_1}}{\leftarrow} \overline{E} \otimes \tilde{H}^*(Y) \stackrel{\overline{d_2}}{\leftarrow} \overline{E} \otimes \overline{E} \otimes \tilde{H}^*(Y) \leftarrow \cdots$$

and $\hat{E}_{2}^{*,*}(Y)$ is isomorphic to the homology of the cobar complex

$$\tilde{H}_*(Y) \xrightarrow{\triangle_1} \overline{E}_* \otimes \tilde{H}_*(Y) \xrightarrow{\triangle_2} \overline{E}_* \otimes \overline{E}_* \otimes \tilde{H}_*(Y) \longrightarrow \cdots,$$

where $\overline{E} = E \setminus \{1\}$ and $\overline{E}_* = E_* \setminus \{1\}$.

Moreover, we have the Adams spectral sequences

$$\begin{array}{cccc} E_2^{*,*} & \cong & Ext_E^{*,*}(\mathbb{Z}/2, \ \mathbb{Z}/2) \cong \mathbb{Z}/2[\overline{v_0}, \ \overline{v_1}] \cong \\ \hat{E}_2^{*,*} & \cong & Ext_{E_*}^{*,*}(\mathbb{Z}/2, \ \mathbb{Z}/2) \cong \mathbb{Z}/2[\xi_1, \ \xi_2], \end{array}$$

where $\overline{v_0} \in E_2^{1,1}$ and $\overline{v_1} \in E_2^{1,3}$ are detected by Q_0 and Q_1 respectively, $\overline{v_0}^2$ is detected by $Q_0 \otimes Q_0$, $\overline{v_1}^2$ is detected by $Q_1 \otimes Q_1$, $\overline{v_0v_1}$ is detected by $Q_0 \otimes Q_1 + Q_1 \otimes Q_0$, $\xi_1 \in \hat{E}_2^{1,1}$, and $\xi_2 \in \hat{E}_2^{1,3}$ (here we use the ambiguous notations, that is, we use the same symbol ξ_i in the chain level and the homology level).

Let N^* be any E-module and $E_2^{1,*}(N^*)$ be the first line of the bar complex

$$N^* \stackrel{\overline{d_1}}{\leftarrow} \overline{E} \otimes N^* \stackrel{\overline{d_2}}{\leftarrow} \overline{E} \otimes \overline{E} \otimes N^* \leftarrow \cdots$$

Similarly, let N_* be any E_* -comodule and $\hat{E}_2^{1,*}(N_*)$ be the first line of the cobar complex

$$N_* \xrightarrow{\triangle_1} \overline{E}_* \otimes N_* \xrightarrow{\triangle_2} \overline{E}_* \otimes \overline{E}_* \otimes N_* \longrightarrow \cdots$$

Then we have the following lemmas.

Lemma 2.1. As *E*-modules, if $N^* \cong K^* \oplus L^*$, then $E_2^{1,*}(N^*) \cong E_2^{1,*}(K^*) \oplus E_2^{1,*}(L^*)$. As E_* -comodules, if $N_* \cong K_* \oplus L_*$, then $\hat{E}_2^{1,*}(N_*) \cong \hat{E}_2^{1,*}(K_*) \oplus \hat{E}_2^{1,*}(L_*)$.

Proof. This follows immediately from the definition of the bar and cobar complexes. \Box

Lemma 2.2. If $E_2^{1,*}(N^*) = 0$ and $Q_0(x) + Q_1(y) + Q_0Q_1(z) = 0$ for some $x, y, z \in N^*$, then x = 0 or x is decomposable, and y = 0 or y is decomposable.

Proof. Since $E_2^{1,*}(N^*)=0$ and $0=Q_0(x)+Q_1(y)+Q_0Q_1(z)=\overline{d_1}(Q_0\otimes x+Q_1\otimes y+Q_0Q_1\otimes z)$, there exists $a_1,\cdots,a_9\in N^*$ such that

$$\begin{array}{ll} Q_0 \otimes x + \ Q_1 \otimes y + \ Q_0 Q_1 \otimes z \\ = & \overline{d_2}(\ Q_0 \otimes Q_0 \otimes a_1 + Q_0 \otimes Q_1 \otimes a_2 + Q_0 \otimes Q_0 Q_1 \otimes a_3 \\ & + Q_1 \otimes Q_0 \otimes a_4 + Q_1 \otimes Q_1 \otimes a_5 + Q_1 \otimes Q_0 Q_1 \otimes a_6 \\ & + Q_0 Q_1 \otimes Q_0 \otimes a_7 + Q_0 Q_1 \otimes Q_1 \otimes a_8 + Q_0 Q_1 \otimes Q_0 Q_1 \otimes a_9) \\ = & Q_0 \otimes Q_0(a_1) + Q_0 Q_1 \otimes a_2 + Q_0 \otimes Q_1(a_2) + Q_0 \otimes Q_0 Q_1(a_3) \\ & + Q_1 Q_0 \otimes a_4 + Q_1 \otimes Q_0(a_4) + Q_1 \otimes Q_1(a_5) + Q_1 \otimes Q_0 Q_1(a_6) \\ & + Q_0 Q_1 \otimes Q_0(a_7) + Q_0 Q_1 \otimes Q_1(a_8) + Q_0 Q_1 \otimes Q_0 Q_1(a_9). \end{array}$$

Then we get

$$x = Q_0(a_1) + Q_1(a_2) + Q_0Q_1(a_3),$$

and $y = Q_0(a_4) + Q_1(a_5) + Q_0Q_1(a_6).$

This completes the proof.

Lemma 2.3. If $E_2^{1,*}(N^*) = 0$ and $Q_0Q_1(z) = 0$ for some $z \in N^*$, then z = 0 or z is decomposable.

Proof. As the proof of Lemma 2.2, where x = 0 and y = 0, there exists $a_1, \dots, a_9 \in N^*$ such that

$$0 = Q_0(a_1) + Q_1(a_2) + Q_0Q_1(a_3),$$

$$0 = Q_0(a_4) + Q_1(a_5) + Q_0Q_1(a_6),$$

$$z = a_2 + a_4 + Q_0(a_7) + Q_1(a_8) + Q_0Q_1(a_9).$$

Since $Q_0(a_1) + Q_1(a_2) + Q_0Q_1(a_3) = 0$ and $Q_0(a_4) + Q_1(a_5) + Q_0Q_1(a_6) = 0$, by Lemma 2.2, $a_2 = 0$ or a_2 is decomposable, and $a_4 = 0$ or a_4 is decomposable. As a result, z is also decomposable or z = 0. This completes the proof.

Lemma 2.4. Let $T = \{t_j \mid j \in \Lambda\}$ be a largest E-linearly independent subset of N^* . Then if $E_2^{1,*}(N^*) = 0$, N^* is a free E-module with the E-basis T.

Proof. Let $M \subseteq N^*$ be the free E-submodule generated by T. We are going to show that $M = N^*$.

For any $u \in N^*$, since T is a largest E-linearly independent subset of N^* , $Q_0Q_1(u)$ can be generated by T, hence there exists a finite sum a (a could be 0) of some $t_j \in T$ such that $Q_0Q_1(u) = Q_0Q_1(a)$. Therefore, by Lemma 2.3, $Q_0Q_1(u+a) = 0$ implies $u+a = Q_0(v) + Q_1(w)$ for some $v, w \in N^*$. As above u and a, there exists finite sums b, c of some $t_j \in T$ such that $Q_0Q_1(v) = Q_0Q_1(b)$ and $Q_0Q_1(w) = Q_0Q_1(c)$. Thus we have

$$Q_1(u+a) = Q_1Q_0(v) = Q_1Q_0(b)$$

and $Q_0(u+a) = Q_0Q_1(w) = Q_0Q_1(c)$,

which means

$$Q_1(u) = Q_1(a) + Q_1Q_0(b) \in M$$
 and $Q_0(u) = Q_0(a) + Q_0Q_1(c) \in M$.

These also apply to v and w, that is, both $Q_0(v)$ and $Q_1(w)$ are in M, hence $u = a + Q_0(v) + Q_1(w)$ follows. This completes the proof.

3. The $\hat{E}_2^{1,*}$ term of the Adams spectral sequences for $\widetilde{bu}_*(BO(n))$

To study the Adams $E_2^{1,*}$ term of $\widetilde{bu}_*(BSO(2n+1))$, we have to know the Adams $E_2^{1,*}$ term and $\widehat{E}_2^{1,*}$ term of $\widetilde{bu}_*(BO(n))$. So first we recall the result in [7].

Theorem 3.1. (Theorem 1.1 of [7]) As an E-module, $\tilde{H}^*(BO(n))$ is isomorphic to $D_1^* \oplus D_2^* \oplus M$, where D_1^* is a trivial E-module with E-generators

$$w_2^{2m_1}w_4^{2m_2}\cdots w_{2k}^{2m_k}$$
 such that $\sum_{i=1}^k m_i > 0$, $2k \le n$,

 D_2^* is an E-module, free over the exterior algebra on Q_0 , with E-generators

$$w_1^{2j+1}w_2^{2m_1}w_4^{2m_2}\cdots w_{2t}^{2m_t}$$
 such that $\sum_{i=1}^t m_i \ge 0, \ j \ge 0, \ 2t \le n-1,$

and

$$Q_1(w_1^{2j+1}w_2^{2m_1}w_4^{2m_2}\cdots w_{2t}^{2m_t}) = Q_0(w_1^{2j+3}w_2^{2m_1}w_4^{2m_2}\cdots w_{2t}^{2m_t}),$$
 and M is a free E -module.

Thus we can compute the Adams $E_2^{1,*}$ term and $\hat{E}_2^{1,*}$ term of $\widetilde{bu}_*(BO(n))$.

Lemma 3.2. In the Adams spectral sequence

$$Ext_{E^*}^{*,*}(\widetilde{H}^*(BO(n)), \mathbb{Z}/2) \Longrightarrow \widetilde{bu}_*(BO(n)),$$

as a $\mathbb{Z}/2$ -module, $E_2^{1,*}(BO(n))$ is generated by

$$\overline{v_0} \otimes w_2^{2m_1} w_4^{2m_2} \cdots w_{2k}^{2m_k}, \ \sum_{i=1}^k m_i > 0, \ 2k \le n,$$

$$\overline{v_1} \otimes w_2^{2m_1} w_4^{2m_2} \cdots w_{2k}^{2m_k}, \ \sum_{i=1}^k m_i > 0, \ 2k \le n,$$

$$\overline{v_0} \otimes w_1^{2j+3} w_2^{2m_1} w_4^{2m_2} \cdots w_{2t}^{2m_t} + \overline{v_1} \otimes w_1^{2j+1} w_2^{2m_1} w_4^{2m_2} \cdots w_{2t}^{2m_t},$$

$$\sum_{i=1}^t m_i \ge 0, \ j \ge 0, \ 2t \le n-1.$$

Proof. Since by Theorem 3.1, $\tilde{H}^*(BO(n))$ is isomorphic to $D_1^* \oplus D_2^* \oplus M$, by Lemma 2.1, we can compute $E_2^{1,*}(D_1^*)$, $E_2^{1,*}(D_2^*)$ and $E_2^{1,*}(M)$ separately. Then since D_1^* is a trivial E-module, it is clearly that $E_2^{1,*}(D_1^*)$ has the $\mathbb{Z}/2$ -generators

$$\overline{v_0} \otimes w_2^{2m_1} w_4^{2m_2} \cdots w_{2k}^{2m_k}, \sum_{i=1}^k m_i > 0, \ 2k \le n,$$

$$\overline{v_1} \otimes w_2^{2m_1} w_4^{2m_2} \cdots w_{2k}^{2m_k}, \sum_{i=1}^k m_i > 0, \ 2k \le n.$$

Moreover, $E_2^{1,*}(M)=0$ since M is free. Therefore, it is only left $E_2^{1,*}(D_2^*)$. Since we have

$$Q_0(w_1^{2j+1}w_2^{2m_1}w_4^{2m_2}\cdots w_{2t}^{2m_t}) = w_1^{2j+2}w_2^{2m_1}w_4^{2m_2}\cdots w_{2t}^{2m_t}$$
 and
$$Q_1(w_1^{2j+1}w_2^{2m_1}w_4^{2m_2}\cdots w_{2t}^{2m_t}) = w_1^{2j+4}w_2^{2m_1}w_4^{2m_2}\cdots w_{2t}^{2m_t}$$

the $\mathbb{Z}/2$ -generators of ker $\overline{d_1}$ for the bar complex of D_2^* are

$$Q_{0} \otimes w_{1}^{2j+2} w_{2}^{2m_{1}} \cdots w_{2t}^{2m_{t}}, \quad \sum_{i=1}^{t} m_{i} \geq 0, \quad j \geq 0, \quad 2t \leq n-1,$$

$$Q_{1} \otimes w_{1}^{2j+2} w_{2}^{2m_{1}} \cdots w_{2t}^{2m_{t}}, \quad \sum_{i=1}^{t} m_{i} \geq 0, \quad j \geq 0, \quad 2t \leq n-1,$$

$$Q_{0} Q_{1} \otimes w_{1}^{s} w_{2}^{2m_{1}} \cdots w_{2t}^{2m_{t}}, \quad \sum_{i=1}^{t} m_{i} \geq 0, \quad s \geq 1, \quad 2t \leq n-1,$$
and
$$Q_{0} \otimes w_{1}^{2j+3} w_{2}^{2m_{1}} \cdots w_{2t}^{2m_{t}} + Q_{1} \otimes w_{1}^{2j+1} w_{2}^{2m_{1}} \cdots w_{2t}^{2m_{t}},$$

$$\sum_{i=1}^{t} m_{i} \geq 0, \quad j \geq 0, \quad 2t \leq n-1.$$

However, we also have

$$\overline{d_2}(Q_0 \otimes Q_0 \otimes w_1^{2j+1}) = Q_0 \otimes w_1^{2j+2}, \ j \ge 0,$$

$$\overline{d_2}(Q_1 \otimes Q_1 \otimes w_1^{2j-1}) = Q_1 \otimes w_1^{2j+2}, \ j \ge 1,$$

$$\overline{d_2}(Q_0 \otimes Q_1 \otimes w_1^{2j+2}) = Q_0 Q_1 \otimes w_1^{2j+2}, \ j \ge 0,$$

$$\overline{d_2}(Q_1 \otimes Q_0 \otimes w_1^1 + Q_0 \otimes Q_1 \otimes w_1^1 + Q_0 \otimes Q_0 \otimes w_1^3)
= Q_1 \otimes w_1^2 + Q_1 Q_0 \otimes w_1^1 + Q_0 Q_1 \otimes w_1^1 + Q_0 \otimes w_1^4 + Q_0 \otimes w_1^4 = Q_1 \otimes w_1^2,$$

$$\overline{d_2}(Q_0 \otimes Q_1 \otimes w_1^{2j+1} + Q_0 \otimes Q_0 \otimes w_1^{2j+3})$$

$$= Q_0Q_1 \otimes w_1^{2j+1} + Q_0 \otimes w_1^{2j+4} + Q_0 \otimes w_1^{2j+4} = Q_0Q_1 \otimes w_1^{2j+1}, \ j \geq 0,$$
and the fact that $Q_0 \otimes w_1^{2j+3}w_2^{2m_1} \cdots w_{2t}^{2m_t} + Q_1 \otimes w_1^{2j+1}w_2^{2m_1} \cdots w_{2t}^{2m_t}$ can not be an image of $\overline{d_2}$. This completes the proof.

Lemma 3.3. In the Adams spectral sequence

$$Ext_{E_*}^{*,*}(\mathbb{Z}/2, \ \widetilde{H}_*(BO(n))) \Longrightarrow \widetilde{bu}_*(BO(n)),$$

as a $\mathbb{Z}/2$ -module, $\hat{E}_{2}^{1,*}(BO(n))$ is generated by

$$\xi_1 \otimes b_{2j_1}^2 b_{2j_2}^2 \cdots b_{2j_k}^2, \ 1 \le j_1 \le j_2 \le \cdots \le j_k, \ 2k \le n,$$

$$\xi_2 \otimes b_{2j_1}^2 b_{2j_2}^2 \cdots b_{2j_k}^2, \ 1 \le j_1 \le j_2 \le \cdots \le j_k, \ 2k \le n,$$

$$\xi_1 \otimes b_{2i+1}b_{2j_1}^2b_{2j_2}^2 \cdots b_{2j_t}^2$$
, $0 \leq j_1 \leq j_2 \leq \cdots \leq j_t$, $2t \leq n-1$, $i \geq 0$, $\xi_2 \otimes b_{2i+1}b_{2j_1}^2b_{2j_2}^2 \cdots b_{2j_t}^2$, $0 \leq j_1 \leq j_2 \leq \cdots \leq j_t$, $2t \leq n-1$, $i \geq 0$, and subjects to the relations

$$\xi_1 \otimes b_{2i+3}b_{2j_1}^2b_{2j_2}^2\cdots b_{2j_t}^2 = \xi_2 \otimes b_{2i+1}b_{2j_1}^2b_{2j_2}^2\cdots b_{2j_t}^2$$

and
$$\xi_1 \otimes b_1 b_{2j_1}^2 b_{2j_2}^2 \cdots b_{2j_t}^2 = 0$$
.

Proof. First recall the coaction of $\tilde{H}_*(BO(n))$ over A_* is

$$\triangle(b_i) = \sum_{j=1}^{i} (\xi^j)_{i-j} \otimes b_j,$$

where $\xi = 1 + \xi_1 + \xi_2 + \xi_3 + \cdots$ [8], and we have the coproduct $\triangle(\xi_k) = \sum_{i=0}^k \xi_{k-i}^{2^i} \otimes \xi_i$. Thus the comodule stucture of $\tilde{H}_*(BO(n))$ over $\overline{E}_* = E_* \setminus \{1\}$ is generated by

$$\triangle(b_{2i}) = \xi_1 \otimes b_{2i-1} + \xi_2 \otimes b_{2i-3},$$

$$\triangle(b_{2i-1}) = 0,$$

$$\triangle(b_i^2) = 0,$$

where $i \geq 1$. Moreover, in \overline{E}_* , we have $\Delta(\xi_1) = 0$ and $\Delta(\xi_2) = 0$. So under the cobar complex

$$\tilde{H}_*(BO(n)) \xrightarrow{\Delta_1} \overline{E}_* \otimes \tilde{H}_*(BO(n)) \xrightarrow{\Delta_2} \overline{E}_* \otimes \overline{E}_* \otimes \tilde{H}_*(BO(n)) \longrightarrow \cdots,$$

we have

$$\triangle_{2}(\xi_{1} \otimes b_{2j_{1}}^{2}b_{2j_{2}}^{2} \cdots b_{2j_{k}}^{2}) = 0, \ 1 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{k}, \ 2k \leq n,$$

$$\triangle_{2}(\xi_{2} \otimes b_{2j_{1}}^{2}b_{2j_{2}}^{2} \cdots b_{2j_{k}}^{2}) = 0, \ 1 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{k}, \ 2k \leq n,$$

$$\Delta_2(\xi_1 \otimes b_{2i+1}b_{2j_1}^2 \cdots b_{2j_t}^2) = 0, \ 0 \leq j_1 \leq j_2 \leq \cdots \leq j_t, \ 2t \leq n-1, \ i \geq 0,$$

$$\Delta_2(\xi_2 \otimes b_{2i+1}b_{2j_1}^2 \cdots b_{2j_t}^2) = 0, \ 0 \leq j_1 \leq j_2 \leq \cdots \leq j_t, \ 2t \leq n-1, \ i \geq 0,$$

and under \triangle_1 , the only methods to produce the above elements are

$$\Delta_1(b_{2i+4}b_{2j_1}^2\cdots b_{2j_t}^2) = \xi_1 \otimes b_{2i+3}b_{2j_1}^2\cdots b_{2j_t}^2 + \xi_2 \otimes b_{2i+1}b_{2j_1}^2\cdots b_{2j_t}^2, \ i \ge 0,$$

$$\Delta_1(b_2b_{2j_1}^2\cdots b_{2j_t}^2) = \xi_1 \otimes b_1b_{2j_1}^2\cdots b_{2j_t}^2.$$

Therefore, $\hat{E}_{2}^{1,*}(BO(n))$ at least contains the generators described in the statement of this lemma. Then since as $\mathbb{Z}/2$ -modules,

$$\hat{E}_{2}^{1,*}(BO(n)) \cong E_{2}^{1,*}(BO(n)),$$

counting the generators of $\hat{E}_2^{1,k}(BO(n))$ we just found and the generators of $E_2^{1,k}(BO(n))$ in Lemma 3.2 for each $k \geq 1$, we can see that all the generators of $\hat{E}_2^{1,*}(BO(n))$ are found. This completes the proof.

4. The map
$$Bg_{2n}:BO(2n)\longrightarrow BSO(2n+1)$$

In this section, first we construct the map

$$Bg_{2n}: BO(2n) \longrightarrow BSO(2n+1),$$

which is the classifying map of $g_{2n}: O(2n) \longrightarrow SO(2n+1)$ defined by $g_{2n}(\alpha) = \det \alpha \oplus \alpha$. Then we will show that $(Bg_{2n})_*$ is surjective and compute its behavior.

Lemma 4.1. The map $(Bg_{2n})_*: \hat{E}_2^{1,*}(BO(2n)) \longrightarrow \hat{E}_2^{1,*}(BSO(2n+1))$ is surjective.

Proof. Since the fibre of $Bg_{2n}:BO(2n)\longrightarrow BSO(2n+1)$ is

$$SO(2n+1)/O(2n) = RP^{2n}$$

and the Eular characteristic $\chi(RP^{2n}) \equiv 1 \mod 2$, there exists a Becker-Gottlieb stable transfer

$$t: BSO(2n+1) \longrightarrow BO(2n)$$

such that $Bg_{2n} \circ t \simeq id$ (localized at prime 2). Hence the composite map

$$\hat{E}_{2}^{1,*}(BSO(2n+1)) \xrightarrow[1:1]{t_{*}} \hat{E}_{2}^{1,*}(BO(2n)) \xrightarrow[onto]{(Bg_{2n})_{*}} \hat{E}_{2}^{1,*}(BSO(2n+1))$$

is an isomorphism. This completes the proof.

Now we recall some results in [10]. We have the following commutative diagram

$$BO(2n) \quad \stackrel{Bg_{2n}}{\longrightarrow} \quad BSO(2n+1) \\ f_{2n} \searrow \quad \downarrow h_{2n+1} \\ BO(2n+1) \quad ,$$

where h_{2n+1} is the usual 2-fold map and f_{2n} is constructed similarly as Bg_{2n} . Then we have the following lemma.

Lemma 4.2. (Lemma 2.2 in [10]) In

$$(f_{2n})_*: H_*(BO(2n)) \longrightarrow H_*(BO(2n+1)),$$

we have

$$(f_{2n})_*(b_{m_1}b_{m_2}\cdots b_{m_{2n}}) = \sum \frac{\left(\sum\limits_{k=1}^{2n}i_k\right)!}{\prod\limits_{k=1}^{2n}i_k!} b_{\sum\limits_{k=1}^{2n}i_k} b_{m_1-i_1}b_{m_2-i_2}\cdots b_{m_{2n}-i_{2n}},$$

where the sum is taken over the sequence $(i_1, i_2, i_3, \dots, i_{2n}), 0 \le i_k \le m_k, m_k \ge 0, 1 \le k \le 2n.$

Thus we have the following important proposition of $(Bg_{2n})_*$.

Proposition 4.3. In

$$(Bg_{2n})_*: H_*(BO(2n)) \longrightarrow H_*(BSO(2n+1)),$$

we have

$$(Bg_{2n})_*(b_{2i+1}b_{m_1}^2b_{m_2}^2\cdots b_{m_{n-1}}^2)=0,$$

where $i \ge 0$, $m_k \ge 0$, $1 \le k \le n - 1$.

Before we prove Proposition 4.3, we need two lemmas.

Lemma 4.4. $\frac{(2n)!}{n!n!}$ is even for $n \geq 1$.

Proof. It follows immediately from the following equalities

$$\frac{(2n)!}{n!n!} = \frac{2n}{n} \cdot \frac{(2n-1)!}{n!(n-1)!} = 2\binom{2n-1}{n}.$$

This completes the proof.

Lemma 4.5. $\frac{(i_1 + \sum\limits_{k=1}^{n} 2j_k)!}{i_1! \prod\limits_{k=1}^{n} (j_k!)^2}$ is even for any $i_1 \geq 0$ and at least one $j_k \neq 0$.

Proof. Assume $j_1 \neq 0$. Then it follows from the equality

$$\frac{(i_1 + \sum_{k=1}^{n} 2j_k)!}{i_1! \prod_{k=1}^{n} (j_k!)^2} = \frac{(i_1 + \sum_{k=1}^{n} 2j_k)!}{i_1! (2j_1)! \prod_{k=2}^{n} (j_k!)^2} \cdot \frac{(2j_1)!}{(j_1!)^2}$$

since $\frac{(i_1 + \sum\limits_{k=1}^n 2j_k)!}{i_1!(2j_1)! \prod\limits_{k=2}^n (j_k!)^2}$ is an integer and $\frac{(2j_1)!}{(j_1!)^2}$ is even. This completes the proof.

Proof of Proposition 4.3. By Lemma 4.2, we have the following formula $(f_{2n})_*(b_{2i+1}b_{m_1}^2b_{m_2}^2\cdots b_{m_{n-1}}^2)$

$$=\sum \frac{\left(i_1+\sum\limits_{k=1}^{n-1}(j_{k,1}+j_{k,2})\right)!}{i_{1!}\prod\limits_{k=1}^{n-1}(j_{k,1}!j_{k,2}!)}b_{i_1+\sum\limits_{k=1}^{n-1}(j_{k,1}+j_{k,2})}b_{2i+1-i_1}\prod\limits_{k=1}^{n-1}(b_{m_k-j_{k,1}}b_{m_k-j_{k,2}}).$$

Note that for a fixed sequence $(i_1, j_{1,1}, j_{1,2}, \dots, j_{n-1,1}, j_{n-1,2})$ which contains exactly t couples $(j_{k,1}, j_{k,2})$ with $j_{k,1} \neq j_{k,2}$, there exists 2^t corresponding sequences which are got from interchanging $j_{k,1}$ and $j_{k,2}$ in some of those t

couples, hence there are 2^t identical terms in the above sum. Then since we are using the $\mathbb{Z}/2$ -coefficient, we have

$$(f_{2n})_*(b_{2i+1}b_{m_1}^2b_{m_2}^2\cdots b_{m_{n-1}}^2)$$

$$=\sum \frac{\left(i_1+2\sum\limits_{k=1}^{n-1}j_k\right)!}{i_{1!}\prod\limits_{k=1}^{n-1}(j_k!)^2}b_{i_1+2\sum\limits_{k=1}^{n-1}j_k}b_{2i+1-i_1}\prod\limits_{k=1}^{n-1}b_{m_k-j_k}^2,$$

where $j_k = j_{k,1} = j_{k,2}$. So by Lemma 4.5,

$$(f_{2n})_*(b_{2i+1}b_{m_1}^2b_{m_2}^2\cdots b_{m_{n-1}}^2)$$

$$= \sum_{i_{1=0}}^{2i+1} \frac{i_1!}{i_{1!}} b_{i_1}b_{2i+1-i_1}b_{m_1}^2b_{m_2}^2\cdots b_{m_{n-1}}^2$$

$$= b_{m_1}^2b_{m_2}^2\cdots b_{m_{n-1}}^2\sum_{i_{1=0}}^{2i+1} b_{i_1}b_{2i+1-i_1}$$

$$= b_{m_1}^2b_{m_2}^2\cdots b_{m_{n-1}}^2(b_0b_{2i+1} + b_1b_{2i} + \cdots + b_{2i}b_1 + b_{2i+1}b_0)$$

$$= 0.$$

Finally since we have the commutative diagram

$$BO(2n) \quad \stackrel{Bg_{2n}}{\longrightarrow} \quad BSO(2n+1) \\ f_{2n} \searrow \quad \downarrow h_{2n+1} \\ BO(2n+1) \quad ,$$

and since $(h_{2n+1})_*$ is injective, we also have $(Bg_{2n})_*(b_{2i+1}b_{m_1}^2b_{m_2}^2\cdots b_{m_{n-1}}^2)=0$. This completes the proof.

5. Proof of Theorem A

In this section, we will use Lemma 3.5, Lemma 4.1, Proposition 4.3 and the Wu formula [9] to compute the Adams $E_2^{1,*}$ term of $\widetilde{bu}_*(BSO(2n+1))$. Then we can prove Theorem B. First we recall the Wu formula.

Proposition 5.1. (Wu formula [9]) $Sq^k(w_m) = \sum_{t=0}^k {m-k+t-1 \choose t} w_{k-t} w_{m+t}$, where the binomial coefficient $\binom{a}{b} = \frac{a!}{b!(a-b)!}$ is taken mod 2.

Then let's find the Adams $E_2^{1,*}$ term of $\widetilde{bu}_*(BSO(2n+1))$.

Theorem 5.2. As a $\mathbb{Z}/2$ -module, $E_2^{1,*}(BSO(2n+1))$ is generated by $\overline{v_0} \otimes$ $\widehat{w_2}^{2m_1}\widehat{w_4}^{2m_2}\cdots\widehat{w_{2n}}^{2m_n}$ and $\overline{v_1}\otimes\widehat{w_2}^{2m_1}\widehat{w_4}^{2m_2}\cdots\widehat{w_{2n}}^{2m_n}$, where $\sum_{i=1}^n m_i > 0$,

Proof. By the Wu formula, in $\widetilde{H}^*(BSO(2n+1)) = \mathbb{Z}/2 \left[\widehat{w_2}, \widehat{w_3}, \cdots, \widehat{w_{2n+1}}\right]$, we use the following diagrams

$$\begin{array}{cccc} \widehat{w_{2k+1}} & \xrightarrow{Q_0} & 0 \\ Q_1 \downarrow & Q_1 \downarrow & , & 0 \leq k \leq n, \\ \widehat{w_3}\widehat{w_{2k+1}} & \xrightarrow{Q_0} & 0 \\ \\ \widehat{w_{2k}} & \xrightarrow{Q_0} & \widehat{w_{2k+1}} \\ Q_1 \downarrow & Q_1 \downarrow & , & 0 \leq k \leq n-1, \\ \widehat{w_3}\widehat{w_{2k}} + \widehat{w_{2k+3}} & \xrightarrow{Q_0} & \widehat{w_3}\widehat{w_{2k+1}} \\ \\ \widehat{w_{2n}} & \xrightarrow{Q_0} & \widehat{w_{3}}\widehat{w_{2k+1}} \\ \\ \widehat{w_2n} & \xrightarrow{Q_1} \downarrow & Q_1 \downarrow \\ \widehat{w_3}\widehat{w_{2n}} & \xrightarrow{Q_0} & \widehat{w_3}\widehat{w_{2n+1}} \end{array}$$

to indicate the E-actions. It follows that the E-actions on the generators of $\tilde{H}^*(BSO(2n+1))$ must be the sum of $\widehat{w_{odd}}w$, where w=1 or w is any monomial in $\tilde{H}^*(BSO(2n+1))$, hence the monomials $\widehat{w_2}^{2m_1}\widehat{w_4}^{2m_2}\cdots\widehat{w_{2n}}^{2m_n}$ are all indecomposable, $\sum_{i=1}^{n} m_i > 0$, $m_i \geq 0$. So

$$\overline{v_0} \otimes \widehat{w_2}^{2m_1} \widehat{w_4}^{2m_2} \cdots \widehat{w_{2n}}^{2m_n}, \sum_{i=1}^n m_i > 0, m_i \ge 0,$$
and $\overline{v_1} \otimes \widehat{w_2}^{2m_1} \widehat{w_4}^{2m_2} \cdots \widehat{w_{2n}}^{2m_n}, \sum_{i=1}^n m_i > 0, m_i \ge 0,$

must be part of the $\mathbb{Z}/2$ -generators of $E_2^{1,*}(BSO(2n+1))$. Then by Lemma 3.5, Lemma 4.1 and Proposition 4.3, $\hat{E}_2^{1,*}(BSO(2n+1))$ contains at most the $\mathbb{Z}/2$ -generators

$$(Bg_{2n})_*(\xi_1 \otimes b_{2j_1}^2 b_{2j_2}^2 \cdots b_{2j_k}^2), \ 1 \le j_1 \le j_2 \le \cdots \le j_k, \ 2k \le 2n,$$

and $(Bg_{2n})_*(\xi_2 \otimes b_{2j_1}^2 b_{2j_2}^2 \cdots b_{2j_k}^2), \ 1 \le j_1 \le j_2 \le \cdots \le j_k, \ 2k \le 2n,$

Thus, counting the rank of $\hat{E}_2^{1,k}(BSO(2n+1))$ and $E_2^{1,k}(BSO(2n+1))$ as $\mathbb{Z}/2$ -modules for each $k \geq 1$, we can see that all the generators of $E_2^{1,*}(BSO(2n+1))$ are found. This completes the proof.

Proof of Theorem A. For each $n \geq 1$, recall that D_{2n+1} is the E-module with the $\mathbb{Z}/2$ -generators $\widehat{w_2}^{2m_1}\widehat{w_4}^{2m_2}\cdots\widehat{w_{2n}}^{2m_n}$, $\sum_{i=1}^n m_i > 0$, $m_i \geq 0$, and M_{2n+1} is a free E-module with the E-basis $T_{2n+1} = \{t_j \mid j \in \Lambda_{2n+1}\}$ described in Section 1. Let N be the $\mathbb{Z}/2$ -submodule of $\widetilde{H}^*(BSO(2n+1))$ generated by all but this kind of monomials $\widehat{w_2}^{2m_1}\widehat{w_4}^{2m_2}\cdots\widehat{w_{2n}}^{2m_n}$, $\sum_{i=1}^n m_i > 0$, $m_i \geq 0$. Then since $\widehat{w_2}^{2m_1}\widehat{w_4}^{2m_2}\cdots\widehat{w_{2n}}^{2m_n}$ are indecomposable, N is an E-submodule and $\widetilde{H}^*(BSO(2n+1)) \cong D_{2n+1} \oplus N$, as E-modules. Note that T_{2n+1} is contained in N since $\widehat{w_2}^{2m_1}\widehat{w_4}^{2m_2}\cdots\widehat{w_{2n}}^{2m_n}$ can not be generated by T_{2n+1} .

Then by Theorem 5.2 and Lemma 2.1, the $\mathbb{Z}/2$ -generators of $E_2^{1,k}(D_{2n+1})$ are

$$\overline{v_0} \otimes \widehat{w_2}^{2m_1} \widehat{w_4}^{2m_2} \cdots \widehat{w_{2n}}^{2m_n}, \sum_{i=1}^n m_i > 0, m_i \ge 0,$$
and
$$\overline{v_1} \otimes \widehat{w_2}^{2m_1} \widehat{w_4}^{2m_2} \cdots \widehat{w_{2n}}^{2m_n}, \sum_{i=1}^n m_i > 0, m_i \ge 0,$$

and $E_2^{1,k}(N) = 0$. Thus by Lemma 2.4, N is a free E-module with the E-basis T_{2n+1} , that is, $N = M_{2n+1}$. This completes the proof.

6. Proof of Theorem B

In this section, we are going to prove Theorem A. First we recall what we need in [3]. Suppose M and N are left A-modules with the actions μ_M and μ_N , then $M \otimes N$ is also a left A-module with the action defined by the composite map

 $A\otimes M\otimes N\stackrel{\psi\otimes M\otimes N}{\longrightarrow}A\otimes A\otimes M\otimes N\stackrel{A\otimes T\otimes N}{\longrightarrow}A\otimes M\otimes A\otimes N\stackrel{\mu_M\otimes \mu_N}{\longrightarrow}M\otimes N,$ where ψ is the diagonal map of A and $T(a\otimes b)=(-1)^{\dim a\dim b}(b\otimes a)$ is the twist map. We write $_D(M\otimes N)$ to indicate $M\otimes N$ with this left action. Similarly, $_L(M\otimes N)$ indicates the extended A-action over M. Then we have the following proposition.

If B is a Hopf subalgebra of A, then we know that $D(M \otimes N)$ is a left B-module and $A \otimes_B N$ is a left A-module with the extended action over A. Thus we have the following proposition.

Proposition 6.1. (Proposition 1.7 of [3]) If B is a Hopf subalgebra of A, M is a left A-module, and N is a left B-module, then

$$_{D}[M\otimes (A\otimes_{B}N)]\cong_{L}[A\otimes_{B}\ _{D}(M\otimes N)]$$

as left A-modules.

Remark 6.2. Remark 6.2. Let N be $\mathbb{Z}/2$ and B be E in Proposition 6.1. Since

$$_D[M \otimes (A \otimes_E \mathbb{Z}/2)] \cong_D [(A \otimes_E \mathbb{Z}/2) \otimes M] \text{ and } _D(M \otimes \mathbb{Z}/2) \cong M,$$

the isomorphism becomes

$$\theta:_L [A\otimes_E M] \cong_D [(A\otimes_E \mathbb{Z}/2)\otimes M]$$

and is given by $\theta(a \otimes x) = \sum a' \otimes 1 \otimes a''x$, with the inverse $\theta^{-1}(a \otimes 1 \otimes x) = \sum a' \otimes \chi(a'')x$, where $\psi(a) = \sum a' \otimes a''$ and χ is the conjugation map. (See [1] and Proposition 1.1 of [3] for the details.)

Recall that $H^*(bu) \cong A//A(Q_0, Q_1) \cong A \otimes_E \mathbb{Z}/2$ and the Künneth theorem gives the isomorphism

$$\phi: H^*\left(bu \wedge X\right) \cong H^*(bu) \otimes \tilde{H}^*(X) \cong A \otimes_E \mathbb{Z}/2 \otimes \tilde{H}^*(X) \stackrel{\theta^{-1}}{\cong} A \otimes_E \tilde{H}^*(X)$$

for any space or spectrum X. Then by Theorem A, we have

$$H^* (bu \wedge BSO(2n+1)) \stackrel{\phi}{\cong} A \otimes_E \tilde{H}^* (BSO(2n+1))$$
$$\cong A \otimes_E D_{2n+1} \oplus A \otimes_E M_{2n+1}$$

and

$$H^* (bu \wedge BO(n)) \stackrel{\phi}{\cong} A \otimes_E \tilde{H}^* (BO(n)).$$

Next, to construct the homotopy equivelnce we need, we have to recall the main result in [7]. Recall that in Theorem 3.1, we have

$$\tilde{H}^*(BO(n)) \cong D_1^* \oplus D_2^* \oplus M,$$

where D_1^* is a trivial *E*-module with the generators $w_2^{2m_1}w_4^{2m_2}\cdots w_{2k}^{2m_k}$, $\sum_{i=1}^k m_i > 0$, $2k \le n$. Note that in $\tilde{H}^*(BO(2n+1))$, $D_1^* \cong D_{2n+1}$.

Theorem 6.3. (Theorem 1.2 of [7]) For each $n \ge 1$, there is a stable splitting

$$bu \wedge BO(n) \simeq [\bigvee_{\alpha'} \Sigma^{\alpha'} H\mathbb{Z}/2] \vee [\bigvee_{\beta} \Sigma^{\beta} bu] \vee [\bigvee_{\gamma} \Sigma^{\gamma} bu \wedge RP^{\infty}],$$

where the α' , and their degrees, correspond to the generators of M, the β , and their degrees, correspond to the generators of D_1^* , the γ , and their degrees, correspond to the generators of D_2^* .

Remark 6.4. Let f be the above homotopy equivelnce. Then

$$f^*(0 \oplus (1 \otimes \Sigma^{\beta}1) \oplus 0) = 1 \otimes w_2^{2m_1} w_4^{2m_2} \cdots w_{2k}^{2m_k}$$

for each generator $w_2^{2m_1}w_4^{2m_2}\cdots w_{2k}^{2m_k}$ of D_1^* and the corresponding β , where $1\otimes \Sigma^{\beta}1\in A\otimes_E \tilde{H}^*(\bigvee_{\beta}S^{\beta})\cong H^*(\bigvee_{\beta}\Sigma^{\beta}bu)$. For the details on the map f, see the proof of Theorem 1.2 and Section 3 of [7].

Proof of Theorem B. First we construct the stable map

$$g: bu \wedge BSO(2n+1) \longrightarrow [\bigvee_{\alpha} \Sigma^{\alpha} H\mathbb{Z}/2] \vee [\bigvee_{\beta} \Sigma^{\beta} bu].$$

For each *E*-free generators $t_j \in \tilde{H}^{\alpha}(BSO(2n+1))$, $\deg t_j = \alpha$, $t_j \in T_{2n+1} = \{t_j \mid j \in \Lambda_{2n+1}\}$, let $g_{t_j} : BSO(2n+1) \longrightarrow \Sigma^{\alpha}H\mathbb{Z}/2$ represent t_j , which means $g_{t_j}^*(\Sigma^{\alpha}1) = t_j$. Let $i : bu \longrightarrow H\mathbb{Z}/2$ be the multiplicative canonical map and μ' be the ring structure map of $H\mathbb{Z}/2$. Then we define

$$g_0: bu \wedge BSO(2n+1) \overset{bu \wedge (\bigvee\limits_{t_j} g_{t_j})}{\longrightarrow} bu \wedge [\bigvee\limits_{\alpha} \Sigma^{\alpha} H\mathbb{Z}/2] \overset{\bigvee\limits_{t_j} \nu}{\longrightarrow} [\bigvee\limits_{\alpha} \Sigma^{\alpha} H\mathbb{Z}/2],$$

where $\alpha = \deg t_j$ and $\nu : bu \wedge H\mathbb{Z}/2 \xrightarrow{i \wedge H\mathbb{Z}/2} H\mathbb{Z}/2 \wedge H\mathbb{Z}/2 \xrightarrow{\mu'} H\mathbb{Z}/2$. On the other hand, we define

$$g_1 : bu \wedge BSO(2n+1) \xrightarrow{bu \wedge h_{2n+1}} bu \wedge BO(2n+1) \stackrel{f}{\simeq} \\ [\bigvee_{\alpha'} \Sigma^{\alpha'} H\mathbb{Z}/2] \vee [\bigvee_{\beta} \Sigma^{\beta} bu] \vee [\bigvee_{\gamma} \Sigma^{\gamma} bu \wedge RP^{\infty}] \xrightarrow{p} [\bigvee_{\beta} \Sigma^{\beta} bu],$$

where p is the projection map. Then for each generator $\widehat{w_2}^{2m_1}\widehat{w_4}^{2m_2}\cdots\widehat{w_{2n}}^{2m_n}$ of D_{2n+1} , we have

$$g_1^*(\Sigma^{\beta}1) = (bu \wedge h_{2n+1})^* (1 \otimes w_2^{2m_1} w_4^{2m_2} \cdots w_{2n}^{2m_n})$$

= $1 \otimes \widehat{w_2}^{2m_1} \widehat{w_4}^{2m_2} \cdots \widehat{w_{2n}}^{2m_n}.$

Therefore, we have the stable map

$$g = g_0 \vee g_1 : bu \wedge BSO(2n+1) \longrightarrow [\bigvee_{\alpha} \Sigma^{\alpha} H\mathbb{Z}/2] \vee [\bigvee_{\beta} \Sigma^{\beta} bu].$$

Now we show that g induces an isomorphism on the mod 2 cohomology. Since for $1 \in A$, we have $\psi(1) = 1 \otimes 1$ and $\chi(1) = 1$, under the map

$$\Phi_{1} : A \otimes_{E} \tilde{H}^{*}(\vee S^{\beta}) \stackrel{\phi^{-1}}{\cong} H^{*}(\vee \Sigma^{\beta} bu) \xrightarrow{g_{1}^{*}} H^{*} (bu \wedge BSO(2n+1))$$

$$\cong (A \otimes_{E} D_{2n+1}) \oplus (A \otimes_{E} M_{2n+1}) \xrightarrow{p_{1}} A \otimes_{E} D_{2n+1},$$

where p_1 is the projection map, we have

$$\Phi_{1} : 1 \otimes \Sigma^{\beta} 1 \stackrel{\phi^{-1}}{\mapsto} 1 \otimes \Sigma^{\beta} 1 \stackrel{g_{1}^{*}}{\mapsto} 1 \otimes \widehat{w_{2}}^{2m_{1}} \widehat{w_{4}}^{2m_{2}} \cdots \widehat{w_{2n}}^{2m_{n}}$$

$$\mapsto (1 \otimes \widehat{w_{2}}^{2m_{1}} \widehat{w_{4}}^{2m_{2}} \cdots \widehat{w_{2n}}^{2m_{n}}) \oplus 0 \stackrel{p_{1}}{\mapsto} 1 \otimes \widehat{w_{2}}^{2m_{1}} \widehat{w_{4}}^{2m_{2}} \cdots \widehat{w_{2n}}^{2m_{n}}$$

Therefore, since the $\mathbb{Z}/2$ -basis of D_{2n+1} is consisted of the monomials $\widehat{w_2}^{2m_1}\cdots\widehat{w_{2n}}^{2m_n}$, which means D_{2n+1} is isomorphic to $\widetilde{H}^*(\vee S^{\beta})$ as E-modules, and since the A-action on $A\otimes_E D_{2n+1}$ is just on A, and so is $A\otimes_E \widetilde{H}^*(\vee S^{\beta})$, Φ_1 is an isomorphism and this implies g_1^* takes $H^*(\vee \Sigma^{\beta}bu)$ isomorphically onto $A\otimes_E D_{2n+1}$.

Similarly, under the map

$$\Phi_2 : H^*(\vee \Sigma^{\alpha} H\mathbb{Z}/2) \xrightarrow{g_0^*} H^* (bu \wedge BSO(2n+1)) \cong (A \otimes_E D_{2n+1}) \oplus (A \otimes_E M_{2n+1}) \xrightarrow{p_2} A \otimes_E M_{2n+1},$$

where p_2 is the projection map, we have

$$\Phi_2: \Sigma^{\alpha} 1 \stackrel{g_0^*}{\mapsto} 1 \otimes t_j \mapsto 0 \oplus (1 \otimes t_j) \stackrel{p_2}{\mapsto} 1 \otimes t_j$$

for each E-free generators t_j and the corresponding $\Sigma^{\alpha} 1 \in H^*(\vee \Sigma^{\alpha} H \mathbb{Z}/2)$. Thus Φ_2 is an isomorphism and this implies g_0^* takes the free A-module $H^*(\vee \Sigma^{\alpha} H \mathbb{Z}/2)$ isomorphically onto $A \otimes_E M_{2n+1}$.

As a result, we see that the composite homomorphism

$$H^*([\bigvee_{\alpha} \Sigma^{\alpha} H\mathbb{Z}/2] \vee [\bigvee_{\beta} \Sigma^{\beta} bu]) \stackrel{g^* = g_0^* \oplus g_1^*}{\longrightarrow} H^*(bu \wedge BSO(2n+1))$$
$$\cong (A \otimes_E D_{2n+1}) \oplus (A \otimes_E M_{2n+1})$$

is an isomorphism, hence g is an equivalence at prime 2. This completes the proof.

References

- [1] J. F. Adams, Stable homotopy and generalized homology, Chicago Lecture Notes in Math, University of Chicago Press, (1974).
- [2] B. R. Burner and J. P. C. Greenless, The connective K-theory of finite groups, (1991).
- [3] A. Liulevicius, The cohomology of Massey-Peterson algebras, Math. Zeitschr., 105, (1968), 226–256.
- [4] R. Ming, Yoneda products in the Cartan-Eilenberg change of rings spectral sequence with applications to BP_{*}BO(n), Trans. Amer. Math., 219, (1976), 235–252.
- [5] J. W. Milnor, The Steenrod algebra and its dual, Ann. of Math., 67, (1958), 150-171.
- [6] E. Ossa, Connective K-theory of elementary abelian groups, In: Kawakubo K. (eds) Transformation Groups. Springer Lecture Notes in Mathematics, vol 1375, (1989).
- [7] W. Stephen Wilson and D. Y. Yan, Stable splitting of the complex connective K-theory of BO(n), Topology and its Applications, **159**, (2012), 1409–1414.
- [8] R. M. Switzer, Homology comodules, Inventions, Math., 20, (1973), 97–102.
- [9] W. T. Wu, Classes caractéristiques et i-carrés d'une variété, Comptes Rendus, 230, (1950), 508-511.
- [10] D. Y. Yan, Stable splitting of the quotient spaces BO(2n)/BO(2n-2) and BU(np)/BU(np-p), Form Math., **11**, (1999), 211–227.
- [11] Y. C. Tseng and D. Y. Yan, Stable splitting of the complex connective K-theory of BG for some infinite groups G, Bulletin of the institute of Mathematics, Academis Sinica, 2, no. 3 (2007), 687–712.

TSUNG-HSUAN WU
DEPARTMENT OF MATHEMATICS
NATIONAL TSING HUA UNIVERSITY
HSINCHU, TAIWAN

 $e\text{-}mail\ address{:}\ thwu@math.nthu.edu.tw$

(Received April 13, 2016) (Accepted December 22, 2016)