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REVIEW ON HIGHER HOMOTOPIES IN THE THEORY
OF H-SPACES

YUTAKA HEMMI

ABSTRACT. Higher homotopy in the theory of H-spaces started from
the works by Sugawara in the 1950th. In this paper we review the de-
velopment of the theory of H-spaces associated with it. Mainly there
are two types of higher homotopies, homotopy associativity and homo-
topy commutativity. We give explanations of the polytopes used as the
parameter spaces of those higher forms.

1. INTRODUCTION

This paper is prepared for the 60th special edition of Mathematical Jour-
nal of Okayama University. In the journal many important articles have
been published, and among them, Sugawara’s paper on H-spaces [56, 57,
58, 60, 59, 61] published in the 50th exerted a significant degree of influence
on development of the homotopy theory. In particular, the concept of group-
like space introduced in 1957 was rearranged to A,-space by Stasheff [53],
and developed to operad by May [45], which has played an important role
not only in mathematics but also in physics. This paper includes a variety
of higher homotopies, organized as follows.

In the next section, we first give the definition of H-space, the concept of
which appeared after the paper by Hopf [23]. It is sometimes called Hopf
space. As far as the author knows, the term “Hopf space” was first used
in the paper by Moore and Smith [50] as homotopy associative H-space.
Zabrodsky [69] and Kane [33] used the same term in their books. But it
appeared only in their titles. Kane writes in introduction as follows:

The use of the term “Hopf space” in the cover title was pri-
marily designed to make the subject matter of the book as
clear as possible to non topologists.

In this paper, we only use the term H-space.

We also recall the theorems by Hopf [23] and Borel [7] on the cohomology
of H-space. Moreover, as specific examples, we treat spheres and the Hopf
invariant problem associated with them. As an example of finite H-space,
the Hilton-Roitberg manifold, the total space of a principal S3-bundle over
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S7, is significant. This is a counter example of the homotopy version of
the Hilbert’s fifth problem since it has the homotopy type of a topological
group, but not the homotopy type of a Lie group.

From section 3 we review higher homotopy in the theory of H-space. In
general, any higher homotopy describing a structure of H-spaces is given
as a family of maps {h;: £; X Xt — Y }i<n. These are called as A,-form,
Cy-form and so on. Here, £; is a polytope, which is homeomorphic to an
interval if ¢ is small as 2 or 3. Thus in this case the corresponding map ho
or hg is just an ordinary homotopy. For greater i, the parameter space £; is
homeomorphic to a higher dimensional disk, whose boundary is covered by
the facets. Each facet is homeomorphic to lower dimensional £js (j < i),
and the restriction of h; to each facet is represented by lower hjs (j < 7).
This property expresses the compatibility of the family {h;}i<n.

We need a variety of parameter spaces £; depending on higher homotopies
such as associahedra, multiplihedra, permutohedra, resultohedra, permuto-
associahedra and cyclohedra. The construction of these polytopes as subsets
of the euclidean space is an important theme, and there are many attempts
for it. But, in this paper, we focus on the combinatorial properties of these
polytopes. Readers who are interested in the realization of them should refer
to the original papers.

Section 3 recalls A,-form, which represents higher homotopy associativ-
ity. We first deal with the A, -form on spaces in 3.2. The parameter spaces
used here are called associahedra. From the homotopy theoretic view point,
topological group, topological monoid and loop space are equivalent con-
cepts. Any space having the homotopy type of such a space admits a homo-
topy associative H-structure. Contrarily, the converse does not hold. The
concept of group-like space by Sugawara was introduced as a property for
an H-space to have the homotopy type of a topological group. A..-space by
Stasheff is equivalent to group-like space

In 3.2, we review A,-form on maps. A homomorphism between topo-
logical monoids induces a map between their classifying spaces. This is
a homotopy invariant property. Then Sugawara [62] introduced the con-
cept of strongly homotopy-multiplicative such that maps between topologi-
cal monoids with this property induce maps between their classifying spaces.
This is expressed as a form of higher homotopy, and later Stasheff [55] reor-
ganized as A,-form on maps between topological monoids. The parameter
spaces used for the definition are cubes.

Then Stasheff extended the definition of A,-form for the case that the
sources of the maps are A,-spaces. Extending the definition to maps between
Ap-spaces is naturally required. However, the parameter spaces for it are
very complicated. In fact, Stasheff says in [55, p.53] as follows:
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“It is also possible to consider maps of A,-spaces which re-
spect the structure up to homotopy, but the details are too
complicated to mention completely here.”

The parameter spaces of A,-form for the case that only the sources of the
maps are A,-spaces are associahedra.

The definition of A,-form on maps between A,,-spaces is due to Iwase [26].
Later it appeared in the paper [30] by Iwase and Mimura. The parameter
spaces used in it are called multiplihedra.

Homotopy commutativity comes in section 4. If X is an H-space, then
the loop multiplication of QX is homotopy commutative. On the other
hand, the converse does not hold. Sugawara [62] considered on what ho-
motopical conditions for a topological monoid X the classifying space BX
of X admits an H-space structure. The property he introduced is a higher
homotopy commutativity called strong homotopy-commutativity. This con-
cept is closely related to the strong homotopy-multiplicative. In fact, if
a monoid X is strong homotopy-commutative, then the multiplication X
is strong homotopy-multiplicative, and so we have a multiplication of BX
as BX x BX ~ B(X x X) —» BX. We review in 4.1 strong homotopy-
multiplicative and Sugawara C),-form defined by McGibbon [46].

In 4.2, we review another higher homotopy commutativity introduced by
Williams [64]. This is defined as a family of higher homotopies between maps
defined by using the action of permutations. The nth parameter space is
called n-permutohedron, which has vertexes corresponding to all permuta-
tions of n letters. This family of polytopes was introduced by Milgram [47]
for the study of iterated loop spaces. We call this type of form as Williams
Cpr-form to distinguish it from Sugawara C),-form.

Williams C,-form seems natural since defined by considering all permuta-
tions. However, it is weaker than Sugawara C),-form so that for any Williams
Cw-space X, the classifying space BX of X is not necessarily an H-space.
Another form with a similar property to Sugawara C,-form was defined by
Hemmi and Kawamoto [21] and Kishimoto and Kono [41] by using shuffles.
The polytopes used as parameter spaces of their higher form are subsets of
permutohedra with vertexes corresponding to some shuffles, and are home-
omorphic to polytopes called resultohedra.

The higher homotopy commutativity stated so far are all defined on topo-
logical monoids. On the other hand, in definition of Williams C,,-form, we
only consider the product of at most n elements. Thus, the definition can be
generalized to A,-spaces. But, to do so, we need polytopes which is hybrid
of the associahedra and the permutohedra. In 4.3, we mention the polytopes
called permuto-associahedra. Incidentally, since resultohedra are realized as
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subsets of permutohedra, we can consider similar hybrid spaces for resulto-
hedra. Kawamoto [38] showed that some of such spaces are homeomorphic
to cyclohedra.

An interesting fact valids for finite H-spaces is the torus theorem proved
by Hubbuck [24]: any connected finite H-space with homotopy commutative
multiplication has the homotopy type of a torus. Prior to Hubbuck, weaker
forms of the above theorem have been obtained by several authors. Araki,
James and Thomas [4] first proved in the case that X is a compact connected
Lie group with group multiplication. James [32] extended the result to
compact connected Lie groups with any multiplications.

Lin [42] showed that the torus theorem is essentially on the mod 2 struc-
ture of the H-space. He showed that for a simply connected H-space X
with finite Fo-cohomology H*(X;Fs), if X admits a homotopy commuta-
tive multiplication then H*(X;Fs) is acyclic. This theorem is called the
mod 2 torus theorem. The torus theorem by Hubbuck can be proved from
the mod 2 torus theorem.

Then, it is natural to consider corresponding theorems for odd primes.
Unfortunately, this is not so easy. In fact, Iriye and Kono [25, Theorem 1.3]
showed that if p is an odd prime, then any p-localized H-space admits a
homotopy commutative multiplication. In contrast with the result by Iriye-
Kono, several authors have shewn theorems called mod p torus theorem for
odd primes p. To get them. the H-space must have some sort of higher
homotopy commutativity. We review it in 4.4.

2. H-SPACE

There are two versions of definition of H-space. The two are different in
the strictness of the unit. One version is that a space X with base point
* is called an H-space if there is a continuous map pux: X x X — X such
that ux(x,e) = pux(x,2) = x for any z € X. In other words, the base
point * is the strict unit of the multiplication px. The other version is that
the base point is only assumed to be a homotopy unit, that is, both maps
x+— px(x, %) and x — px (%, ) are homotopic to the identity on X.

Usually the difference of these two definitions is not so serious. In fact,
the existence of the strict unit means that ux|X V X equals to the holding
map V: X VX — X, and the existence of the homotopy unit means that
x| X V X is homotopic to V. Thus, if the pair (X x X, X V X) has the
homotopy extension property for X, then any multiplication with homotopy
unit can be deformed to a multiplication with strict unit. For example, if X
is a CW-complex, both definitions for X are considered to be equivalent.
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From now on, H-space means a pointed space X equipped with a contin-
uous multiplication with strict unit. We usually denote the multiplication
of X by pux, and px(z,y) is abbreviated as zy.

The associativity of the multiplication and the existence of the inverse
are not assumed for the definition of H-space. Even though, H-space en-
joys many interesting properties. In particular, the cohomology ring with
the coefficient in a field has a natural Hopf algebra structure. Here, the
coassociativity of the coproduct is not assumed for Hopf algebra.

If X is a connected H-space, then for any field F, the cohomology ring
H*(X;F) together with the cup product H*(X;F) ® H*(X;F) —» H*(X;F)
and p% : H*(X;F) - H*(X;F) x H*(X;F) is a Hopf algebra. In particular,
for the rational cohomology, we have the following theorem by Hopf [23].

Theorem 2.1. Let X be a connected H-space. If the rational cohomology
H*(X;Q) is finite type, i.e., H"(X;Q) is finite dimensional for any n, then
as algebras we have

H*(X’Q) gA(l‘l,l‘g,...)®Q[y1,y2,...],

for some odd dimensional generators x1,x2,... and even dimensional gen-
erators yi,yz, . . . .
In particular, if X is a finite CW -complex, then

H*(Xa Q) = A(ZIS‘1,LL‘2, v 7$k)7
for some finitely many odd dimensional generators x1,xo,...,xk.

An H-space with the homotopy type of a finite CW-complex is called a
finite H-space. For finite H-spaces, many similar terminologies to Lie groups
are used. For example, if H*(X;Q) = A(z1,x9,...,zk), then the number of
generators k is called the rank of X, and the sequence (degxy,...,degxy)
is called the type of X, where we assume that degx;_1 < degx; for any i.

If we take the prime field ), of characteristic p instead of Q, where p is a
prime, then we have the following theorem by Borel [7].

Theorem 2.2. Let X be a connected H -space.
(1) If the Fy-cohomology H*(X;F3) is finite type, then as an algebra

H*(X;FQ) %Fg[wl,xg,...]/(le,a:g”,...),

for some generators x1,xa, ..., where m; is a power of 2 or co.
In particular, if X is a finite CW -complex, then
H*(X;F2) = Folwy, xa, ..., ap)/(a]" 25", .. 2™,

for some finitely many generators x1,xo,...,Tr with m; a power of 2.
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(2) If the Fp,-cohomology H*(X;F)) is finite type for an odd prime p, then
as an algebra

H*(X;Fp) = A(z1,22,...) @Fply1,y2, ... 1/ (Wit 32, - ),

for some odd dimensional generators x1,x2,... and even dimensional gen-
erators yi,ya2, - -., where s; is a power of p or oo.
In particular, if X is a finite CW -complex, then

H*(XvFP) = A(ﬂl’l,l‘g, cee 7$k) ®]Fp[y17y2a cee 7yl]/(yi17y§27 cee 7y;l)7

for some finitely many generators x1,xo,...,xr and finitely many even di-
mensional generators yi,yo, ...,y with s; a power of p.

Typical examples of H-space are topological groups. In particular, S!
and S are H-spaces since they are Lie groups: the spaces of unit vectors
in the complex numbers and in the quaternions, respectively. Moreover, S*
is an H-space, which is the space of unit vectors of the Cayley numbers.
The problem of which sphere is an H-space is one of the main problems in
homotopy theory in the 50th since it is closely related to the Hopf invariant
one problem.

For any map p: X xY — Z, the Hopf construction of x is a map h(p): X *
Y — ¥Z. Here, X xY isthe jomof X and Y. If X =Y = Z = 5", then
we have an element in the homotopy group ma,+1(S™™!). Moreover, if u
is of type (mq,m2), that is, the degree of the maps S™ — S™ defined by
x — p(z,*) and x — p(x,z) are my and mag, respectively, then the Hopf
invariant of h(u) is mime. This shows that the existence of an H-space
structure on S™ implies the existence of an element of Hopf invariant one in
Ton+1(S™H).

Moreover, this problem is related to many other interesting problems.
Adams [1] remarked that the following statements are all equivalent:

(1) S™ admits an H-space structure.

(2) R™*! has a structure of a division algebra over the real.

(3) S™ has a differential structure of parallelizable.

(4) There is an element of Hopf invariant one in o, 1(S™T1).

(5) There is a two cell complex Y = S"T1Ue?"*2 such that H*(Y;Fy) =
Fo[z]/(23) with degz = n + 1.

(6) There is a two cell complex Y = S™ U e™*™"*! such that S¢"*! is
non trivial in H*(Y;Fy)

Here, S¢"™! in (6) is the Steenrod squaring operation acting on Fo-
cohomology: HF( - ;Fy) — HF"+1( . :F,). The operations {Sq¢'} obey
well known relation called the Adem relation, and by using this relation, it
can be proved that if n + 1 is not a power of 2, then S¢™*! decomposes as
Sqg"tt =37, 8q%Sq" 1% for some a;. This implies that S¢"™! = 0 in (6) if
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n~+1 is not a power of 2, and so if S™ admits an H-space structure, then n+1
should be a power of 2. From this observation, the first problem whether
the sphere S™ admits and H-space structure or not is the case that n = 15.
Toda [63] showed that S'® does not admit any H-space structures. To show
this, Toda introduced a secondary composition method called Toda bracket,
which has been considered as a very useful method for the calculation of
homotopy groups.
For the remaining cases, Adams [1] finally showed the following

Theorem 2.3. The sphere S™ (n > 1) is an H-space if and only if n =1,3
orT.

Adams proved the above theorem by introducing some higher order co-
homology operations. The method to construct the operations extended to
the method to calculate the stable homotopy groups, which is now called
the Adams spectral sequence.

Beside the 7-sphere S7, finite H-spaces with non Lie type have not been
found for long time. It was conjectured that any finite H-space is of the
homotopy type of the product of a Lie group and finitely many seven spheres.

The first example of a finite H-space except for such spaces was found
by Hilton and Roitberg [22]. In the study of cancellation problem, they
considered principal S3-bundles over S7. Let M) be the total space of the
principal S3-bundle over S7 associated with Aw, where w is the generator
of m7(BS3) = Z/127Z such that M; = Sp(2). They showed that M7 x
S3 ~ Sp(2) x §3. Since My ~ Mjs if and only if A = 46 mod 12, M; and
Sp(2) are of different homotopy types, which gives a counter example of
the cancellation problem. Moreover, this result implies that My x S3 is an
H-space, and so M7 is an H-space not having the homotopy type of the
produce of a Lie group and finitely many 7-spheres.

This example is interesting for another reason. Stasheff [54] showed that
M7 has the homotopy type of a topological group. Hilbert’s fifth problem
implies that any topological manifold which is also a finite dimensional man-
ifold is a Lie group. Since M7 is a 10-dimensional differential manifold, his
result indicates that the answer of the homotopical version of the Hilbert’s
fifth problem is negative.

The theorem Stasheff proved for the spaces M) is as follows:

Theorem 2.4 (Stasheff [54, Theorem 2|). For the space My, the followings
hold:
(1) My is of homotopy type of a Lie group if and only if A = £1 mod 12.
(2) My is of homotopy type of a topological group if and only if X =
+1,45 mod 12.
(3) My is an H-space if and only if A Z 2 mod 4.
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The construction by Hilton-Roitberg is easily generalized. In fact, after
their discussion, many finite H-spaces have been found in the total spaces
of principal bundles. Let G(n,d) = SO(n),SU(n) or Sp(n) according as
d =1,2 or 4. Then we have the principal G(n — 1, d) bundle

G(n—1,d) —= G(n,d) —= G(n,d)/G(n — 1,d) = §¥~!

Let My(n, d) be the total space of the principal G(n—1, d)-bundle induced
from the above principal bundle by the map on S9! of degree A\. Then
the following facts are proved by Curtis and Mislin [10], Zabrodsky [67, 65]
and Hemmi [15, 16].

Theorem 2.5. (1) If n is even, then My(n,1) is an H-space if and only if
n=2,4,8 or X is odd. On the other hand, if n is odd, then My(n,1) is an
H-space if and only if A = +1.

(2) Mx(n,2) is an H-space if and only if n = 2,4 or X is odd.

(3) Mx(2,4) is an H-space if and only if X £ 2mod 4. If n # 2, then
My (n,4) is an H-space if and only if \ is odd.

(4) My(n,d) has the homotopy type of a topological manifold if and only
if X% 0 mod p for any prime p with 2p < dn.

For the homotopy types of the spaces My (n, d), Zabrodsky [68, 66] proved
the following fact. Here, k(n,d) = (dn/2 — 1)! for d = 2,4. Note that the
order of the cyclic group mg,—2(G(n — 1,d)) is k(n,d) if d = 2 or n is odd,
and 2k(d,n) if d = 4 and n is even.

Theorem 2.6. (1) If My(n,d) ~ M,(n,d), then A = £n mod k(n,d).
(2) Suppose that A = £nmod k(n,d) if d = 2 or n is odd, and \ =
+n mod 2k(n,d) if d =4 and n is even. Then My(n,d) ~ M,(n,d).

3. HOMOTOPY ASSOCIATIVITY

Since the existence of the inverse of the multiplication is not assumed for
H-space, topological monoids are also H-spaces. Moreover, the loop space
QY is an H-space. The loop multiplication has only homotopy unit, but as
is noted, there is a multiplication with strict unit which is homotopic to the
loop multiplication. Moreover, as a space of the same homotopy type of the
loop space, one can consider the Moore loop space, which is a space of loops
with length. The loop multiplication of the Moore loop space has a strict
unit and is strictly associative.

Three concepts, topological group, topological monoid and loop space,
are equivalent from the homotopy theoretic view point. In fact we have the
following

Theorem 3.1. For a space X, the following three conditions are equivalent.
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(1) X has the homotopy type of a topological group.
(2) X has the homotopy type of a topological monoid.
(3) X has the homotopy type of a loop space.

The fact that any topological group has the homotopy type of a loop
space is proved by Milnor [48]. For a topological group G, he constructed
the universal principal G-bundle p: EG — BG with p~!(x) = G. Then we
have a homotopy fibration Q(BG) — G — EG. Since EG is contractible,
the map Q(BG) — G induces isomorphisms on the homotopy groups, and
so G has the homotopy type of the loop space Q(BG).

We look at the construction of the universal bundle in a little more detail.
Milnor constructed a sequences of principal G-bundles p;: E;G — B;G (i >
0):

] -

Here E,G is the n-fold join G * --- x G of G, BgG = *, B1G = ¥G, and
By 11G = B,G U, C(E,G). Moreover, the fiber G of p, is contractible in
E, G for any n. Then the universal G-bundle is given by EG = J,, EG,, —
BG =, BnG.

Dold and Lashoff [11] generalized the above construction to topological
monoids. Milnor used the inverse of a topological group for the construction,
but Dold and Lashoff showed a similar construction can be given without
the inverse.

Let M be a topological monoid. Put E1M = M U,,, M x CM and
Bi1M = M. Then the map E1M — BjM induced by the projection
M xCM — CM followed by the natural map CM — 3 M is a quasifibration
with fiber M. Moreover, they used the associativity of the multiplication of
M to define an action of M on E1M, and by using this action they showed
that the quasifibration 1M — B1M can be extended to a quasifibration
FEoM — ByM. They continued this process and constructed a sequences
of principal quasifibrations p;: E;M — B;M (i > 0) similar to Milnor’s
construction:

Then the universal quasifibration EM = J,, EM,, - BM = J,, B,M with
fiber M is constructed, and since EM is contractible, we have M ~ Q(BM).
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Later, Milnor also showed in [49] that any loop space QY has the homo-
topy type of a topological group under some minor conditions on Y. From
these results, we have Theorem 3.1.

Now for any based space Y, the path space LY is the space of all paths
w: I — Y with w(0) the base point in Y. Then the map p: LY — Y defined
by p(w) = w(1) is a fibration with the fiber QY. Since LY is contractible,
this fact together with the results by Milnor and Dold-Lashoff shows the
following

Theorem 3.2 (Spanier and Whitehead [52]). A space X is of homotopy
type of a loop space if and only if X is the homotopy fiber of a fibration of
which the total space is contractible.

Sugawara studied corresponding conditions for H-spaces. The first step
of the Dold-Lashoff constriction does not use the associativity of the mul-
tiplication. Thus a quasifibration F1 X — B;X for any H-space X can
be constructed such that the fiber X is contractible in F1X. Incidentally,
the Hopf construction h(ux): X * X — XX of the multiplication pyx is
also a quasifibration such that the fiber X is contractible in the total space
X * X ([60, Theorem 4]). Moreover, if the multiplication of X is homotopy
associative, i.e., the following diagram is homotopy commutative:

px Xid

XXX xX—XxX

iquxl lﬂX

X xX X

then he showed that one more step of the Dold-Lashoff construction can be
achieved. His results are stated as follows:

Theorem 3.3 (Sugawara [60, Theorem 1], [61]). A pointed space X admits
an H-space structure if and only if there is a quasifibration p1: B — By
with fiber X such that X is contractible in E;.

Moreover, X admits a homotopy associative H-space structure if and only
if p1 can be extended to a quasifibrations pa: Es — By with fiber X such that
FE4 s contractible in Es.

Here, we note that there is a difference between the admitting a homotopy
associative H-structure and the having the homotopy type of a topological
monoid. If X has the homotopy type of a topological monoid G. then by
using the multiplication ug: G x G — G, X admits a multiplication which
is homotopy associative as follows:

px: X x X ~GxG-1% G ~X.
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On the other hand, even if X admits a homotopy associative multiplication,
X is not necessarily having the homotopy type of a topological monoid.
In fact, if p is a prime with p > 5, then p-localized odd sphere 5(2;371 has
a homotopy associative multiplication, but it has the homotopy type of a
topological group only if n divides p — 1.

Sugawara explored homotopical conditions to construct the full step of the
Dold-Lashoff construction. Then he reached the concept of higher homotopy
associativity of infinite order. He called this condition group-like [59]. Later
Stasheff [53] rearranged this concept as A,-space such that group-like space
is equivalent to A..-space. We explain the definitions of A,-space and group
like space later, and here we just state the theorem by Sugawara.

Theorem 3.4 (Sugawara [59, Theorem 1.1]). A pointed space X is group-
like if and only if there is a quasifibration E — B with fiber X such that
E is contractible. Thus in particular, X has the homotopy type of the loop
space QB.

3.1. A,-form on spaces. We follow the argument by Stasheff [53]. He first
considered the Milnor or the Dold-Lasheff type construction.

Definition 3.5. Let n be an integer with n > 2. Then an A,-structure of
a based space X is an n-tuple of maps p;: E; — B; (1 <i<n):

X—FE —FE— - —E,
lpl ip2 lpn
¥ — Bl c BQ C T c Bn

such that the inclusion X — E; is homotopy equivalent to the homotopy
fiber of p;, and there is a contracting homotopy h: CE,_1 — FE, with
h(CE;_1) C E; for any i.

By Theorem 3.3, a space with an As-structure is an H-space, and a space
with an As-structure is a homotopy associative H-space.

Next, we define a higher homotopy which is equivalent to an A,-structure.
Stasheff called this homotopy the A,-form on a space X.

An A,-form on a space X is a family of maps {M;: K; x X* — X }aci<n.
Here, the parameter space K, is called i-associahedron and is homeomorphic
to the ¢ — 2 dimensional disk. We consider the structure of X; for ¢ = 2, 3, 4.

An As-form on X, which is just a map My: Ko x X? — X, should be an
H-space multiplication. Thus K5 consists of only one point, and

(3.1) My (%, 2, %) = Ma(*,%,2) =2 for any = € X.

Now, As-form {M;: K; x X* — X }o<i<3 should represent a homotopy
associativity of the multiplication of X. Since M, is the multiplication,
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Ms: K3 x X3 — X should be an associating homotopy: the homotopy
between My o (Ms x id) and Ms o (id x Ms). Thus X3 is an interval, which
consists of two vertexes and one edge. We represent two vertexes by (z1x2)x3
and x1(x9z3), and then, the edge is represented by xjxoz3.

L1X2T3

($1Q?2)$3 1'1(132$3)
Incidentally, we represent the one point space Ko by x1xo.

Next we consider the map My: K4 x X 4 5 X in the definition of the
Ay-form. The space K4 is represented by the word z1x9x324, such that the
vertexes of it are represented by inserting two meaningful pairs of paren-
theses into the word as follows: ((z1x2)x3)zs, (x1(x223))xs, T1((T223)T4),
z1(x2(x3xs)) and (z1x2)(x3x4). The edges connecting two of these vertexes
are illustrated in the following figure:

(x12223) 24
((v172)23)74 (z1(2273))74

(r122)x324 z1(zom3) s

(3.2) (z122)(z324) z1((w223)24)

x1x2(2324) z1(xowsamy)
x1(x2(x324))

In general, the face poset of the n-associahedron X,, is isomorphic to the
set of all sequences z1x> ...z, inserted meaningful parentheses. For the or-
der, w; < wy means that w; is given by removing some pairs of meaningful
parentheses from wo. Thus, the maximum element is the word z1zs ...z,
with no parentheses, and a k dimensional face of K,, corresponds to the se-
quence inserted n—2— k pairs of parentheses. In particular, each facet corre-

sponds to a sequence with one parenthesis as 12 . .. Tx—1(Tk - . . Thts—1)Thts - -

for k > 1 and 2 < s < n—1. This facet is homeomorphic to X, x X, where
r+s=n+1, and denoted by Ky (r, s). Then we have a natural homeomor-
phism, called a face operator

O =8 (r,s): Ky x Ky = Kp(r,s) C Kp.
The family of maps {M;} should satisfies
(33) M’L(aljcc(n 3)(9, U)v L1y ,.’L‘i)
= Mr(07 L1y Tp—1, MS(Ua Lis - - - 7xk+8—1)7 Lhtsy--- axi)

for pe K, 0 € K withr+s=14+ 1.

. Xy
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The intersection of two facets are of the forms 1 ... (z;... (Tj4-1..)--.) ...
or 1...(xk...)...(j4s—1..).... By using the face operators we can ex-
press the intersection as follows:

0 o (id x ) = 97 j_1 0 (9 x id)

s 10 (OF xid) = O o (9 xid) o (xT)
where T: K; x Ky — K x Ky is the switching map.

Next we consider the effect of the unit element. The map M3: K3 x X3 —
X is a homotopy between (z1x2)x3 and z1(zex3). If one of the three element
is the unit, for example, if 1 = *, then we have (z129)x3 = x1(z273) = T273.
Thus, the restriction of the homotopy M3 to K3 x * x X? can be the constant
homotopy, which means that M3(p, *, x9, x3) = Ma(*, x2, x3) for any p € K.

For the case of K4, the figure (3.2) with z; = * is illustrated as follows:

($2SU3)$4 ($2$3)1‘4

xg(x3x4) ($2x3)x4

xo(z3y)

Thus My(p, *,x2,x3,24) (p € Ky) reduces to Mg(S:{C(p),:EQ,ﬁg,[&l) for a
map s7: Ky — Kz with s¥((v12023)4) = 57 (21(2273)24) = (122)73 and
s¥(z1m2(2324)) = 21 (2223).

In general, degeneracy operations sgc: Ki — Ki—q for 1 < j < ¢ are
defined to satisfy the following relation:

(3.4) M,-(T,xl,. . .,.CCZ') = Mi_l(sgc(T),wl, oo ,i‘j, ‘e ,a:i) if Ty = *.

For the face of X; represented by a parenthetical words w of xy...z;41,
S;K(w) is given by first removing z; from w, then renumbering x;.; for
1 <t<i—j+1toxj—1, and finally removing unnecessary pairs of
parentheses.

For the relations these operations obey see [53].

Now we give the definition of A,-form by Stasheff [53].

Definition 3.6. Let n be an integer with n > 2. An A,-form on a space
X is a family of maps {M;: K; x X* — X }a<;<y, such that (3.1), (3.3) and
(3.4) are satisfied. An A-form on X is defined as a family {M;}2<; with
(3.1), (3.3) and (3.4). An A,-space is a space X equipped with an A, -form.
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Any topological monoid X has the trivial As-form {M;}2<; defined as
Mi(p,:(}l,. . .,xi) =T1-..,T4.

Stasheff remarked that the condition (3.4) of the definition of A,-form is
technically, and is no restriction. In fact, he did not assume (3.4) for the
definition of A,-form in [55, Definition 11.2]. He claimed that if X admits
an Ay,_1-form {M;}i«, and if M) : K, x X" — X is a map just satisfying
the conditions (3.3) in the definition of the A,-form then there is a map
M,: X, x X™ — X such that {M,}a<;<n satisfies all the conditions in the
definition of the A,-form ([53, Lemma 7]).

However, it is not clear that only the above argument is enough for the
existence of a family of maps {M;};<, with all the conditions from the exis-
tence of {M/}i<,, with (3.1) and (3.3). A detail about this problem is seen
in Iwase [29]. In particular, to get the above form {M;};<, from {M/};p,
Iwase reconstructed associahedra as a convex polytopes with piecewise lin-
early decomposed faces. As is noted in [29], there are several attempts to
realize the associahedra and multiplihedra as convex polytopes.

Now we give another description of the associahedra by using planar
rooted trees introduced by Boardman and Vogt [6]. Here, a planar rooted
tree is an oriented planar graph with no circuit. Moreover, the degree of any
vertex is one or greater than 2. There is only one special vertex, called the
root vertex. This is a vertex of degree one, and the edge connecting with it,
which is called the root edge, is incoming edge. Other than the root vertex,
a vertex with degree one is called a leaf vertex, and the edge connecting with
it is called a leaf edge which is outgoing. There are at least two leaves in
any planar rooted tree. The vertexes with degree greater that 2 are called
inner nodes. Any inner node has only one outgoing edge and at least two
incoming edges. Any planar rooted tree is embedded in the zy-plane with
the root at the bottom and leaves at the top.

The set of planar rooted trees with n leaves corresponds to the face
poset of n-associahedron X,. For example, the vertexes zixe, (r1z2)x3
and z(x9z3) and an edge xjxoxs are represented as follows:

Y Y YooY

T1T2 (.%'1932).%‘3 1'1(.7321'3) T1T2x3
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The 4-associahedron Xy is represented as follows:

In general, the n-associahedron X, is represented by a planar rooted tree
with only one inner node and n leaves, which is called the n-corolla. We
denote the n-corolla by C,. Moreover, vertexes of K,, are represented by
binary trees with n leaves whose inner nodes have degree 3.

For any planar rooted tree with n leaves, we assign the numbers 1,2,...,n
to the leaves from the left. Let 77 and 7> be planar rooted trees representing
faces of K, and Xy, respectively. Then 95 (r, s)(T1,Ts) is given by grafting
the root of Ty to the kth leaf of T, which means that we first remove the
kth leaf vertex of 17 and root vertex of 15, then the kth leaf edge of T7 and
the root edge of T5 are identified. We denote the resulting tree as T o Tb.
In particular, any facet of X,, is represented by C, o Cs for £ > 1 and
2<s<n-—1.

On the other hand, sg.c(T ) for a planar rooted tree T is given by removing
the jth leaf vertex v and the jth leaf edge e. Moreover, if the inner node
connecting with e has only one incoming edge except for e, then we remove
this node and identify two edges connecting this node.

Now, Stasheff proved that the A,-form is a homotopical representation
of the A,-structure. In fact, he showed the following theorem, which is the
same as Theorem 3.4 if n = oo.

Theorem 3.7 (Stasheff [53, Theorem 5]). A space X admits an A,,-structure
if and only if it admits an A, -form,

For an A,-space X, Stasheff defined a space P, X for 0 < i < n called
the projective i-space of X. If X is an A.,-space, then the family of spaces
{P;X} is a filtration of the classifying space of X so that Q(PX) ~ X
for P, X = Ul P, X. Moreover, P;X is the base space B;;+1 of the i +
1th quasifibration E;11 — B;11 in Definition 3.5 constructed by a specific
method from the given A,-form. These spaces satisfy that PpX = %, P| X =
YX, P,1X C PX and PX/P,_1X ~ Y (X A--- A X) (the suspension of
the i-fold smash product of X). Incidentally, if X = SY S! or S3, then P, X
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is the real, the complex or the quaternionic projective i-space. If X = 87,
then P> X is the Cayley projective plane.

Now, as examples of A,-space, we recall the sphere extensions described
in section 2: M) (n,d) is the total space of the principal G(n — 1, d)-bundle
induced from the principal bundle G(n — 1,d) — G(n,d) — S¥~! by the
map on S™1 of degree A. In the following theorem, we consider two cases
G(n,2) = SU(n) and G(n,4) = Sp(n).

Theorem 3.8 (Iwase and Mimura [30, Theorem, 6.5, Corollary 6.6]). Let k
be a positive integer with k > 2. If X is prime to k!, then My(n,d) admits an
Ap-form. Moreover, for the case of k = 3, the converse is also true provided
that n does not divide 2 - 3*.

At the end of this section, we give brief comments on two topics related
to the higher homotopy associativity of H-spaces. One is the A,-algebra.
As is described in section 2, the cohomology algebra of an H-space with
coefficients in a filed has natural Hopf algebra structure. Stasheff [53] showed
that the singular chain complex of an A,-space has an extra structure called
Ap-algebra. This structure is useful for the study of the cohomology of
the projective spaces of given A,-space. Now a days, the theory of A,-
algebra has become an important subject on its own. We don’t give the
explicit definition of the A,-algebra here. For readers who are interested in
it, Keller’s paper [40] is a good reference.

The second one is the higher Hopf invariant introduced by Iwase [28],
which is a further generalization of the generalized Hopf invariant defined
by Berstein and Hilton [5]. This invariant relates to the higher homotopy
associativity of H-spaces. In fact, Iwase [28, Example 2.7] showed that if
X is an A,-space, then there is a map f: Fp11X — P, X with higher Hopf
invariant one, where {p;+1: E;1+1X — P, X} is the A,-structure given from
the A,,-form on X. It is also shown that the converse is true if X is a sphere,
and he conjectured that the converse is true in general ([28, Conjecture 2.8]).
Moreover, this invariant relates to the theory of LS category. Here, the LS
category of a space X, cat(X), is the least number m such that there is a
covering of X by m + 1 closed subsets of X, each of which is contractible in
X. Indeed, Iwase [27] used the concept of higher Hopf invariant to construct
counter examples of the Ganea conjecture, which asserts that cat(X x S™) =
cat(X) + 1 for any space X and n > 1.

3.2. A,-form on maps.

For the case of maps between topological monoids: Next problem we have
to consider is to find homotopical conditions on which maps between topo-
logical monoids induce maps between classifying spaces.
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If f: X — Y is a homomorphism between topological monoids. Then
it induces a map Bf: BX — BY such that Q(Bf) is homotopic f by
identifying Q(BX) with X and Q(BY) with Y. If g: X — Y is homotopic
to the homomorphism f, Q(Bf) is homotopic g, and so we can say g induces
a map between classifying spaces.

Sugawara [62] described the condition as a higher homotopy, called strongly
homotopy multiplicative. Later Stasheff [53] defined A,-map between topo-
logical monoids, which is the same as strongly homotopy multiplicative map
if n = oc.

As in the case of spaces, we need suitable parameter spaces to define
Ap-form on maps. The parameter spaces for this case are the cubes: An
Ap-form of a map f: X — Y is a family {F;: I'"! x X* - Y}1<;<,,. The
map Fi is identified with f, and F5 is a homotopy between f o ux and
py o (f x f):

Fy(0,21,22) = f(w122),  Fa(l,21,29) = f(x1)f(22)
The map F3 represents the higher homotopy between two homotopies

f(zrxoms) ~ f(x1) f(woxs) ~ f(21)f(22) f(x3) and f(z1m223) ~ f(2122) f(23) ~
f(z1)f(z2) f(x3). Thus, this map is illustrated as follows:

f(z122) f(23) f(z1)f(x2) f(3)

(3.5)

f(z12273) f(x1) f(z223)

In this way, the idea is very easy to understand. In particular, F; should
satisfy the following equations for 1 < k <i¢—1:

(3.6)

Fi(tl, e ,ti_l,:cl, e ,xi)

= i—l(t17' . .,fk,.. . ,ti_l,xl,...,xkajkﬂ,. . .,Jii) for t, = 0
= Fp(ty, ..ot 21, o ) B (g1, - b1, Tpger, -y 2q) for £, =1
Moreover, if z; = * for 1 < j <4, then we need
(3.7)
Fi(tl,...,ti,1,$1,...,l'i)

= ’L’*l(t27"'ati717$27"'7$i) fOI'j: 1
= 1',1(251,...,maX{tjfl,tj},...,ti,1,$1,...,i‘j,...,l’i) forl<j<i
=F_1(t1,... . ti2,®1,...,m_1) for j =1

Definition 3.9 (Sugawara [62], Stasheff [53]). Let n be a positive integer.
An A,-form on a map f: X — Y of topological monoids X and Y is a
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family of maps {F;: I'"! x X? — Y }i<i<n such that Fy = f by identifying
I° x X with X, and (3.6) and (3.7) are satisfied:. An Ay-form on f is a
family {F;}1<; satisfying the above conditions.

An A,-map is amap f: X — Y equipped with an A,-form. An A,.-map
is also called strong homotopy-multiplicative.

We note that the condition (3.7) was not assumed in the original defini-
tions of A,-form and strong homotopy-multiplicative.

Stasheff showed that a map between topological monoid admits an A,-
form if and only if it induces a map between A,-structures constructed by
a specific method. This result is also proved by Sugawara for the case of
n = oo. More strongly we have the following

Theorem 3.10 (Stasheff [55, Theorem 8.4]). A map f: X — Y between
topological monoids is an An-map if and only if the map Xf: XX — XY
extends to a map of projective n-spaces P, f: P,X — P,Y.

For the case of maps from A,-spaces to topological monoids: Next we con-
sider the case of maps from A,-spaces to topological monoids. Let X be an
Ap-space with A, -form {M;}, and Y a topological monoid. We investigate
polytopes £; needed to define an A,-form {F;: £; x X* — Y}i<p on f.

To describe the combinatorial structure of the polytopes £; we use planar
rooted trees again. But, in this case we allow the 1-corolla which is a planar
rooted tree with only one edge. Moreover, we consider the one point union
T=T,VTyV- -V T of planar rooted trees T;, which is the union of T;
with identifying all the root vertexes of them. Thus T has one root vertex
and k root edges. The root edges are arranged such that the root edge of T;
is the ith root edge of T from the left. Thus the degree of the root vertex
of a planar rooted tree in this case can be greater than 1.

To avoid any unnecessarily confusion, we distinguish two types of trees
as follows. We call any tree representing a face of the associahedra as a tree
with one root edge. On the other hand, for the new type of trees we call
trees with multiple root edges. A tree with one root edge is also considered
as a tree with multiple root edges. Trees with multiple root edges with leaves
less than 4 is listed as follows:

YV YNV VNV

Now Fy: L1 x X — Y is identified with f, and so we have £1 = *. Since
As-maps are H-maps, Lo must be an interval such that Fb is a homotopy
between foux and pyo(fx f) as well as the case of maps between topological
monoids. The multiplication px is represented by the 2-corolla \/ in the
definition of A,-form on spaces, and so we also use the 2-corolla to represent
the vertex of Lo corresponding to fopux. In this notation, we consider that
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the root edge represents the operation of the map f. Thus the 1-corolla,
which is a line‘ , represents the map f, and the vertex of Lo corresponding to
wy o (f x f) is represented by the sequence of two 1-corollas €y, C; = ‘ , ‘ . We
remark that we don’t use any symbol representing the multiplication of Y.
This makes sense because Y is a topological monoid and so the multiplication
of any ¢ letters is unique. Then we represent the edge of Lo by C1 V€1 = \/

\%

Y |

The polytope £3 must be a pentagon, which is illustrated as follows:

f(zrm2)as) /. ¥ N [ (zaw3))
X/ VY
f(z122) f(x3) \/‘ ‘\/f (w1) f(wors3)

V| M AV

f(@1) f(z2) f(23)

In general, the wedge of i-copies of the 1-corolla €1 V ---V €1, which
we denote by F;, represents the maximum cell £;, and any face of it is
represented by a sequence of trees with multiple root edges such that the
total number of the leaves of the trees is 7.

We consider the dimension of the face. Let [(T") be the number of leaves
and v(7T) the number of inner vertexes of T. Then for V. =T} V --- V T}
with trees with one root edge T;,

dimV:Zdimn+k—1

—Z )—o(T) —1)+k—1
:Z(V)— o(V) = 1.

Moreover, for a sequence of trees with multiple root edges Vi,..., Vi, we

have
dim(Va,..., Vi) = > dimV; — k=Y (Vi) = > o(Vi) — k.
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In particular, dim £; = ¢ — 1, and so the dimension of a facet is i — 2.
Thus any facet is of the form C;, Fr VCs VF,__s or Fp., Fi_,.

Now we show that the polytope L; is isomorphic to the associahedron
Kit+1. To do so we give an isomorphism between the two face posets given
by Kishimoto and Kono [41]. For any tree with one root edge T representing
a face of K;;1, we remove the ¢ 4+ 1th (the right most) leaf vertex and the
root vertex together with the edges connecting these two vertexes. Then
the resulting sequence of trees with multiple root edges is the corresponding
one representing a face of £;. For example, the corresponding sequence of
the following left tree is the right one.

Y

By using the above correspondence, we can also express the facets of £;
from the facets of K;+1. A facet of K;41 is represented by a tree of the form
Cr0xCs (r+s = i+2) which has only one inner node. Then the corresponding
sequence of trees representing a facet of £; is given as follows:

Fr A VCsVF,_1_1 ifk<r
Fro1,Fs1 ifk=r
Note that if r = 2 and k£ = 1, then the first one is the corolla Cj.
From the above argument, we have the following boundary conditions:
(3.8)
E(a]gf(p7 U)7x17 sy xl)

= F,,_l(p,xl, R ,xk,l,MS(a,xk, .. .,xk+s,1),xk+s, e ,.%'Z') ifk<r

Y

= r_l(p,xl,...,a:r_l)Fs_l(a,xT,...,xi) ifk=r

The degeneracy maps of the associahedra already defined can be used for
Ap-form on maps, since they represent the case that one of the elements of
X is the unit. We remark that the degeneracy maps S;{ on X; is defined for
1 < j <4, but for this case we need for 1 < j < ¢ — 1. Thus we have the
following

(39) Fi(T,Jfl,. . .,JIZ') = E_l(sg{(T),xl, ‘e ,.f?j, ce ,xi) if Tj = *.

Now we give the definition of A,-form on maps from A,-spaces to topo-
logical monoids.

Definition 3.11. Let n be a positive integer. An A,-form onamap f: X —
Y from an A,-space X with A,-form {M;} to a topological monoid Y is a
family of maps {F;: K;11 x X* — Y }1<i<p such that Fy = f by identifying
Ko x X with X, and (3.8) and (3.9) are satisfied. An A-form on f is a
family {F;}1<; satisfying the above conditions.

An A,-map is amap f: X — Y equipped with an A,-form.
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If X is a topological monoid, then for the trivial A,-form on X, two
definitions of A,-form on a map f: X — Y are equivalent. In fact, there is
a projection 1;: K;y1 — I'~! such that for any A,-form {F;: I'"2 x X —
Y}lgign in Definition 310, {Fz o (LZ)Z X Zd) j<i+1 X XZ — Y}lgign is an
A,-form in Definition 3.11.

We note that Theorem 3.10 also holds for A,-maps from A,-spaces to
topological monoids. Moreover the following facts holds.

Theorem 3.12 (Stasheff [55, Theorem 11.10]). If X is an A,-space, then
the map X — QP,X, the adjoint of the inclusion XX — P,X, is an Ay,-
map.

For the case of maps between A,-spaces: Finally we consider maps between
Ap-spaces. The parameter spaces are constructed by Iwase [26], which are
called multiplihedra. Later the multiplihedra appeared in the paper [30] by
Iwase and Mimura. We denote the n-multiplihedron by J,,. As is noted
before, the construction of the multiplihedra is very complicated, but the
combinatorial structure can be easily imagine from the above discussion.

For a map from an A,-space to a topological monoid, the order of the
multiplication of elements of the topological monoid can be ignored. To
define the A,-form {F;: J; x X* — Y};<, on a map f: X — Y between
Ap-spaces, we have to take account the A,-structure of the target space.
Thus, a face of the i-multiplihedron J; is of the form T; V4, ..., V; or V. The
first one consists of trees with multiple root edges V; (1 < j < t) and a
tree with one root edge T'. The sequence Vi, ..., V; represents a sequence of
maps given by the A;-form of X and lower Fs, and T represents the A;-form
of Y such that the number of leaves of T is t. The second one V is a tree
with multiple root edges which represents a map given by the A;-form of X
followed by f. Iwase gave a different expression of the multiplihedra in [29)].
He used bearded trees, which are essentially equivalent to our expression.
In fact, from a sequence T; V1, ..., Vi, we can get a bearded tree by grafting
the root vertex of tree V; to the jth leaf vertex of 7', and put a beard at
each grafting point. For V, we put a beard at the root edge.

Now the dimension of the face of J; corresponding to T; V1, ..., V; is given
as

dimT;Vi,..., Vi =dimT + dimVi,..., V=i — [o(T)+ ) _o(Vj) | -1
j

Thus, if T;Vi,...,V; represents a facet, then v(T") + ZJU(VJ) = 1, which
means that V; = B‘}j for some i¢; > 1 and T' = C;. We denote this facet by
d(t;r1,...,7m), and we have a homeomorphism

83(t;7“1,...,rt): K X Jpy X oo X 3y = (571, ... ,1) C i
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On the other hand, if V represent a facet, then V = Fr_1 V Cs V F,_p,
where r+s =14+ 1 with 1 <k <r since dimV =i —v(V) — 1. We not that
if r =k =1, then V = C;. We denote this facet as Ji(r, s), and we have a
homeomorphism

A (r,s): 3r x Ks — Jx(r,5) C Ji.

These face operators are defined to satisfy the following

E(algg(ra S)(p, O-)a T1y--- 7:172')

(3 10) == ’r’—l(paxla"'7$k‘717Me;)((o-axlﬁ"'7xk+371)7xk+87"'7‘ri)
Fi (2 (t;r, . m) (T p1y ooy Pi)y 1y - e )
= Mt}/(Ta F’I”l(plvxlv [ 71:1”1)7 .. ‘7FTt(pt7x7‘1+m+Tt_1+1v L) 7$i)

for 7 + s = i + 2, where {M;X} and {MY} are A,-forms of X and Y,
respectively.

The degeneracy map s?: Ji — Ji—1 (1 < j < i) is essentially given by
removing the jth leaf so that the following conditions are satisfied.

(311) E(T,:L‘l,,$Z)ZFZ,1(S§(T),JI1,,jj,,f[}l) lf:L‘]:*

For the relations these operations obey see [30, 29].
Now we give the definition of A,-form on maps between A,-spaces.

Definition 3.13. Let n be a positive integer. An A,-form on a map f: X —
Y between A,,-spaces X with A,-form {M;X} and Y with A,-form {M}} is
a family of maps {F;: d; x X* — Y }1<;<, such that Fy = f by identifying
J1 x X with X and (3.10) and (3.11) are satisfied. An A-form on f is a
family {F;}1<; satisfying the above conditions.

An A,-map is amap f: X — Y equipped with an A,-form.

Iwase and Mimura defined A,,-structure of maps between A,,-spaces, which
is analogous to the one for spaces by Stasheff (Definition 3.5). To give an ex-
plicit definition, we fix a special A,-structure pX: F;X — PX (1 <i<n)
for an A,-space X derived from given A,-form on X. Note that P; X is the
projective i-space of X. Then, Stasheff showed that there are spaces D; X
with E;X C D;X C E;11X and maps 0;°: D; X — P X with pi% | |D; X =
0 such that (D;X,E;X) has the homotopy type of (CE;X,FE;X) and
(0, p%): (D:iX, E;X) — (Pi+1X, P;X) is a relative homeomorphism ([53,
Proposition 24]).

Definition 3.14. Let n be an integer with n > 2. Then an A,-structure of
amap f: X — Y between A,-spaces X and Y is a pair of n-tuples of maps
(Dif, Eif): (DiX, E;X) — (D;Y, E;Y) and (Pif, Pi-1f): (BX, Pio1X) —
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(PY,P,_1Y) (1 <i < n) such that the following diagram is commutative:

D;f,E;
(Di)(7 EZX) (f—f)> (DY, EZ-Y)

(o ,pf()l l(aiy,piy)
(Pir1 X, PX) (PiY, BY)

(Pit1f.Pif)
Then Iwase and Mimura showed the following

Theorem 3.15 ([30, Theorem 3.1]). A map f: X — Y between A, -spaces
X and Y admits an A, -structure if and only if f admits an A,-form.

For the corresponding fact to Theorem 3.10 for maps between A,,-spaces,
we need to be careful. In fact, we can only prove the following

Theorem 3.16 (Iwase and Mimura [30, Theorem 3.2], Hemmi [19, Theorem
7.2]). If a map f: X — Y between A,-spaces is an An-map, then the map
Yf: XX — XY extends to a map of projective n-spaces Ppf: P,X — P,Y.
The converse holds provided that the A,-form of Y can extend to an Api1-
form.

The extra assumption is needed to show the converse in the above the-
orem. In fact, we have the following fact for the retraction r: QXX — X,
which exists for any H-space X.

Theorem 3.17 (Iwase and Mimura [30, P10)], Hemmi [18, Theorem 1.3,
Theorem 3.1]). If X is an Ay-space, then Xr: XQXX — XX extends to a
map P,OQYXX — P,X. Moreover, if r is an A,-map, then the A,-form of X
can extend to an Ayni1-form,

As is the case noted in the last paragraph, if Y is a topological monoid,
then for the trivial A-form on Y, two definitions Definition 3.13 and Def-
inition 3.11 are equivalent. In fact, there is a projection ¢;: J; — K;11
such that for any A,-form {F;: K;4+1 x X* — Y }1<<, in Definition 3.11,
{F;0(¢; xid): §; x X* = Y }1<i<p is an A,-form in Definition 3.13.

4. HOMOTOPY COMMUTATIVITY

4.1. Strong homotopy-commutativity. If the classifying space BX is
an H-space, then the multiplication of a topological monoid X is homotopy
commutative. Contrarily, the converse is not true in general. Sugawara [62]
showed the following

Theorem 4.1. Let X be a topological monoid. The multiplication p: X X
X — X is an Aso-map if and only if X is an H-space.
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If the multiplication px is an As-map, then we have a map Bux : B(X x
X) — BX with Q(Bux) ~ px. Since B(X x X) = BX x BX, Bux gives
an H-space multiplication on BX.

Incidentally, Hemmi and Kawamoto [21, Proposition 4.2] showed that the
multiplication of X is an A,-map if and only if X is an H(n)-space. Here,
H (n)-space is introduced by Félix and Tanré [12]. The definition is given by
using the Ganea fibrations on X. From the definition, an H(1)-space is just
a space, and an H (co)-space is an H-space. They introduced this concept to
find conditions for the mapping space Map, (Y, Z) to be an H-space. They
showed that if the Lusternik-Schnirelman category of a space Y is less than
or equal to n and Z is an H(n)-space, then Map, (Y, Z) is an H-space ([12,
Proposition 1])

Sugawara showed that the condition that the multiplication px of a topo-
logical monoid X is an A.,-map is represented by a higher homotopy com-
mutativity of ux. He called the property strong homotopy-commutativity.
Associating his idea McGibbon [46] defined a concept of Sugawara C,,-form.
Sugawara Cso-form is just the strongly homotopy-commutativity.

Definition 4.2. Let n be a positive integer. Alsugawara C,-form on a
topological monoid X is a family of maps {C;: I' x X% — X}i<;<, such
that the following conditions are satisfied:
(1) C1(0,2,y) = zy and C1(1,z,y) = yz.
(2) If t, = 0, then
Ci(tl,...,ti,xl,... s Tis Y1y - - .,yi)
= achi_l(tg, ces by Ty o T Y1Y2, yz‘)

for k=1

- i—l(tlv'”7£k7"'7ti7$17”kaflxk?"w:r%yla”'7ykyk+17"'7yi)
forl<k<i

=Cic1(t1, o i1, T, o AT, Yl e s Yie1)Yi
for k=1

(3) If t =1, then
Ci(t1y ooty @1y e Ty YLy e+ Yi)
= Cho1(t1y e s b1, Ty e ooy T 1y YLy e ey e e s Yke1)YkTh
Cik (bt 1y s bis Tht 1y ooy Thy Ybt Ly e v vy oo+ Yi)

A Sugawara A-form on X is a family {C;}1<; satisfying the above condi-
tions.

A Sugawara Cj,-space is a topological monoid X equipped with a Sug-
awara Cp-form.
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The map C] is a commuting homotopy of the multiplication of X.

If a topological monoid X is strong homotopy-commutative, then the
family of maps {M;: I'"! x (X x X)* — X} defined as follows is an An.-
form on the multiplication of X:

Ml(*a (‘Tv y)) =Ty
M;(t, .. tio, (o1, 91)5 -5 (T4, 92))
= 2101t b1, Ty T YL, - Yie1)Yi

Thus by Theorem 4.1 we have the following

Theorem 4.3 (Sugawara [62, Theorem 4.2]). A topological monoid X is
Sugawara Cx-space if and only if the multiplication px: X x X — X is an
Aso-map in the sense of Definition 8.9. Thus, these properties are equivalent
to that the classifying space BX of X is an H-space.

The definition of Sugawara C),-form is not so easy to understand. For
example, the map C5, which is illustrated as follows, seems not so natural
in the sense of homotopy commutativity.

T1Y1Y2x2 Y1T1Y2x2

T1X2Y1Y2 Y1X122Y2

4.2. Homotopy commutativity by Permutohedra and Resultohe-
dra. Williams [64] considered another type of higher homotopy commuta-
tivity by considering all permuted multiplications. The ith parameter space
P; of his higher homotopy has vertexes corresponding to the all permuta-
tions §; on the i-letters {1,2,...,i}. Thus P2 is an interval, and P3 is a
hexagon.

He defined a C,-form on a topological monoid X as a family of maps
{Cl fPl X X% — X}lgign such that

C’i(v,xl, ce ,xi) = xa_1(1) .. .xJ_1(i).

for the vertex v of P; corresponding to a permutation o.

The polyhedron P,, is called the n-permutohedron, and first constructed
by Milgram [47] for the study of iterated loop spaces. This polytope can be
easily realized as follows.

Let n be a positive integer, and consider the point ¢, = (1,2,...,n)
in R™. The n-permutohedron P, is the convexhull of the set {og, =
(o(1),...,0(n)) | o € 8,}. By definition, P,, is homeomorphic to the n — 1
dimensional disk.
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The faces of P, are easily described by the ordered partitions of the

set z[n] = {x1,z2,...,x,}, which means a sequence a ... of nonempty
disjoint subsets of x[n] such that ay U--- U ap = z[n]. If a; consists of
n; elements, then the partition «; ...« is called of type (nq,...,n) with
length k.

For any ordered partition o ... of type (nq,...,ni), we consider the
subset 8(a ...aqy ) of 8, consisting of elements o € §,, such that
(4.1) o ') eay forng -y <j<ng+-o+ny

For example, if ajag = {2,4}{1,3}, then z,-1(1)Ts-1(2)T5-1(3)To-1(4) for all
o € 8(ayap) are as follows:

T2XL4L1X3, T2XT4T3T1, T4T2XT1T3, T4T2T3T].

Then the convexhull of {oq, | 0 € S(ay...ax)} is the face of P, cor-
responding to aq ...ag. This face, which we denote by Pp(ay...ay ), is
homeomorphic to P, x---xP,,, and so the dimension is ), n; —k = n—k.
In particular, a facet corresponds to an ordered partition with length 2.
Moreover, a vertex corresponds to the one of type (1,...,1) with length n,
and so is denoted by {zj }{z;,}...{z;,}. From now on if o; consists of
one letter, say a; = {x;}, then we identify oy with ;. Thus, any vertex is
represented by a sequence x;, xj, ... xj, with {j1,72,...,jn} ={1,2,...,n}.
Then Pj is illustrated as follows:

{w1, w223
T2T1T3
zo{z1, 23}
T2T3T1

12223

z1{xe, x3}
T1T3T2

{35‘1, 933}$2
312

{$2$3}$1
T3X2T1
z3{x1,x2}

We describe the facets of P,, more explicitly. Let [n] = {1,2,...,n}. Then
any increasing map f: [i] — [n] for i < n gives asubset {x (1), T¢2),- -, T}
of z[n]. This is one to one correspondence between the increasing maps
[i] — [n] and the subsets of z[n| with i elements, Thus for any subset
a C x[n] we use the same letter for the corresponding increasing map as
a: [i] = [n].

Let ajae be an ordered partition of z[n] of type (r,s) with r + s = n.
Then a homeomorphism 97 , : P, x Py — Pp(cyan) C P, is defined. In

a1
particular, for a vertex of P, x P, we have
a?

alaz(aglan...aﬁr,lexj2...abg)

== xal_l(i1)$al_l(i2) P xal_l(lr)l‘(lgl(jl)l‘agl(]2) P xag_l(js)‘
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Then the family of maps {C;}i<, should satisfy the following
Cl(agjﬁ(p? G)v L1y 7'172')
= Cr(p7 La=1(1)s - - 7l‘a*1(7‘))08(0-> La=1(1)s -+ xﬁfl(s))

for an ordered partition a8 of type (r,s) with t + s = n.
The degeneracy map S;P: P; — P;_1 is defined as follows. From any

(4.2)

ordered partition «; ... ay of z[i], we remove x; and then renumber z;, for
1 <t<i—j+1toxjp—1. Then the resulting partition is s?(al Ce Q).
We have

(4.3) Ci(T, Ty ,.I‘Z') = 02;1(83?(7‘),l‘1,. . .,i’j, e ,l‘i) if Ty = *.

This C),-form introduced by Williams [64] is referred to as Williams C,,-
form in this paper.

Definition 4.4. Let n be a positive integer. A Williams C),-form on a
topological monoid X is a family of maps {C;: P; x X% — X };<;<,, such that
Cy = id by identifying P; x X with X, and (4.2) and (4.3) are satisfied. A
Williams Co-form on X is a family {C;}1<; satisfying the above conditions.

A Williams C),-space is a topological monoid X equipped with a C,,-form.

If the classifying space BX of a topological monoid X is an H-space, then
X admits a Williams C-form. On the other hand, for any Williams C-
space X, BX is not necessarily an H-space. Thus, Williams Cy.-space is
exactly weaker than Sugawara Cy-space. In fact, if F is the two stage Post-
nikov space with k-invariant (/™! € H?*"W+20(K(7Z,2n);Z/pZ) for a prime
p, then E is not an H-space but QF admits a Williams Cyo-form (see [46,
Example 5]).

To characterize Williams C),-spaces, we recall the n-fold reduced product
Jn(X) of a space X defined by James [31]. J,(X) is an identification space
of n-fold product X", and Jo(X) has the homotopy type of QXX if X is a
connected C'W-complex.

Theorem 4.5 (Williams [64, Main Theorem 14]). For a topological monoid
X, the following conditions are equivalent.

(1) X admits a Williams Cy,-form.

(2) The Hopf construction for X extends to a principal quasifibration
p: E — B such that B is the homotopy type of Jp(XX).

(3) There is an Ap-map d: QJp(XX) — X such that d o j ~ id, where
j: X = QJp(XX) is the adjoint of the inclusion XX C J,(XX).

Consider the case of n = oo in the above theorem. Then in the third
property, the map j: X — QJoo(3X) ~ Q222X is homotopic to the double
suspension map. Thus we have the following
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Theorem 4.6 (Williams [64, Corollary 18]). A topological monoid X is a
Williams Cuo-space if and only if the double suspension map X — Q?32X
has the homotopy right inverse Q*Y2X — X which is an As-map.

Hemmi and Kawamoto [21] showed that the Williams’ approach can be
modified to get a criterion for the classifying space of a topological monoid
to be an H-space. Their approach is to use polytopes given by shuffles.

Let m and n be positive integers. An (m,n)-shuffle is an element o €
S8man such that

o(l)<o(2)<---<o(m) and o(m+1)<o(m+2)<---<o(m+n).

If o is an (m, n)-shuffle, then To-1(1)To-1(2) - - - To—1(m+n) TEPresents a prod-
uct such that x; appears before x;+1 if ¢ # m. To see it more easily we
replace Z,,+; by y; for 1 < j < n. Then the above product is a product
of x1,...,Zm,¥y1,-..,Yn such that x; appears before x;y; for 1 < i < m
and y; appears before y;;1 for 1 < j < mn. We call such a product as
an (m,n)-shuffle product of z1,...,Zm,y1,...,yn and denote the set of all
(m,n)-shuffle products by of {[z1,...,Zm],[y1,...,yn]}. For example, we
have the following

{[1‘1, 1’2],[y1, yQ]}
- {$1$2y1y2,$1y19€2y2, T1Y1Y222,Yy1X122Y2, Yy11Y222, y1y2$11’2}-

We omit the bracket if there in only one letter in the bracket. For example,
we just write as {[x122, x3],y1} instead for {[z122,x3], [11]}

Let 8,,.n be the subset of 8,y consisting of all (m,n)-shuffles. Gelfand
Kapranov and Zelevinsky [13] constructed a polytope in R™*"*2 whose
vertexes correspond to 8,,,. This polytope is called a resultohedron and
denoted by Ny, ,,. We can realize Ny, ,, as a subset of m + n-permutohedron
Pm+n by considering the convexhull of {o¢m4n | 0 € 8 p}. We put Ny g =
NO,” = *.

Now we consider the faces of N, ,. For the vertexes we only consider
(m,n)-shuffle products {[z1,...,2m], [y1,...,yn]}. But, for higher dimen-
sional faces we need to consider more complicated types.

Here, we just give some examples. N3 is a tetrahedron with vertexes:
V1 = T1T2T3Y1, V2 = T1T2y1T3, v3 = T1y1T2x3 and vy = y1r17273. The
edges v1v2, vous and vsvy are denoted by zize{xs,y1}, zi1{xe,y1}xs and
{1, y1}zoxs, respectively. On the other hand, the edges vivs, vivs and
vouy are denoted by zi{zexs,y1}, {z1x2x3,y1} and {x129,y1}xs3, respec-
tively. Moreover, the faces v1vov3, v1v2vy, V10304 and vov3vy are denoted by
zi{[za, w3],y1}, {[z122, w3], 1}, {[z1, w2w3], y1} and {[21, 2], y1 }23, respec-
tively. Then the whole space N3 ; is denoted by {[x1, z2, z3], y}.
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For Nao we have six vertexes vi = z1Z2y1y2, V2 = Z1Y1%2Y2, V3 =
Y1T1T2Y2, V4 = T1Y1Y2T2, Vs = Y1T1Y222 and vg = y1y2x172. There are
eleven edges v1vs, V13, V1V4, V1Vg, V2V3, V¥4, V3U5, U3V, V4V5, U4Us and v5vg.
Moreover, we have seven faces. The face v1v9vs is denoted by {[z1, z2].y1 }y2.
On the other hand, the face with vertexes wvs,vs, vy, v5 is denoted by a se-

quence {z1,y1 H{x2, Y2}
For more complicated case, the following sequence represents a 9 dimen-

sional face of Ngg
{z1, yiye H[wows, x4, x526], (Y3, yays) frr{s, [ys, yrys]}-

In general, any face of Ny, , is denoted by a sequence a ... such that
each oy is of the form {[&;—1)41,- - &)l [Ce—1)+15 - - - Gyl }, where &, is
a product of some x;s, and (p is a product of some ygs.
There are basically two types of facets. The first type is represented as
follows:
mn(0,%) 1 zi{[ze, ..., Tm], (Y1, -, Yn]}
mn (%)t Az, T, @) Y1,y 1< <m—1)
( ox) 0 Az, 1]y Y1, - Ynl b om
mn(*70) : yl{[xla"'7xm]7[y27'"7yn]}
Nown(,9) 0 Al zm), Wi, YY1, -] 1<ji<n—1)
N (,m) o {[z1, oo xml), Y1, - Yn—1]FUn

By definition we have homeomorphisms:

ANt N1 — Ny (3, %)

T,k *
ai\{j: Nm,n—l — Nm,n(*7j)
The other type is represented by the product of two shuffle products as

{[mh s 7xi]7 [yla oo ,yj]}{[-’ﬂprl, cee ,l’m], [yj+1a cee 7yﬂ]}

for 0 < i <mand 0 < j < n. We denote this facet by Ny, »(¢,7). By
definition we have a homeomorphism

82?2»: Nij X Nyp—in—j — Ninn(i; )

Moreover, degeneracy operations si\{*: N = N1 for 1 <k <m
and si\fl: Nin = Npp—1 for 1 <1 < n are defined corresponding to the
cases of x; = * and y; = *. For the relations these operations obey see [21,
Lemma 2.2].

There are two definitions of higher homotopy commutativity by the re-
sultohedra: Cy(n)-form by Hemmi and Kawamoto [21], and C(k,)-form by
Kishimoto and Kono [41].
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Definition 4.7. Let X be a topological monoid. A family of maps {Q, s: Ny 5%
X5 — X} satisfying the following properties is called a Cy(n)-form on X

if the maps are defined for r,s > 0, 1 < r+ s <n and s < k, and called a
C(k,l)-form on X if the maps are defined for 0 <r <k and 0 < s <.

(1) Qro(x,z1,...,2p) =x1...2p and Qo s(*,y1,...,Ys) =Y1...Ys
(2) For 0 <i<m and 0 < j <n, we have

QT,S(ag:[*(a)vxlv oy Ty Y1, e e 7y8)

=21Qr—1s(a, T2, ..., T, Y1, -, Ys) ifi=0

=Qr—1s(a, 1, ..., i1, Ty Y1y -5 Ys) ifo<i<r

=Qr-1s(a, 21, ..., Tr_1,Y1,. .., Ys) Ty ifi=m
Qrvs(ai\fj(a),:cl,...,wr,yl,...,ys)

=y1Qrs—1(a, 1, ..., Tr,Y2,...,Ys) if =0

=Qrs—1(a, 1, ..., Tr, Y1, -, YjYjt1, " > Ys) ifo<j<s

= Qrs—1(0, 21, .., Tr, Y1, -, Ys—1)Ys ifj=n

(3) For 0 < i <m and 0 < j < n, we have
ers(agfj(a,b),xl,...,xr,yl,...,ys)
= Qij(a, 21, ., iy, Y)Qr—is—i (0, Ti1, - Ty Yjts e -5 Ys)
(4) If z; = % for 1 <i <r, then
Qrs(a,z1,...,Tr, Y1, -, Ys)
:Qr,m(sg\f*(a),xl,...,:%Z-,...,:Er,yl,...,ys)

and if y; = * for 1 < j < s, then

Qr,s(aamla ey Ty Y1, - '7ys)
= QT,S*l(Si\f‘j(a’)7x1’ ey Ty Y1, - 'ayja o 7ys)

A Ck(n)-space is a topological monoid X equipped with a Cx(n)-form, and
a C(k,l)-space is X equipped with a C(k,[)-form.

A homotopy commutative topological monoid is a Cy(2)-space with k =
1,2 and a C(1,1)-space. Moreover, any abelian monoid admits a Cu(00)-
form. The relation with the Williams C),-space is given as follows

Proposition 4.8 (Hemmi-Kawamoto [21, Proposition 4.5]). Any Ck(n)-
space is a Cp-space.

The above fact is proved by decomposing permutohedra by resultohedra.
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Now we describe properties that the classifying space of a Ck(n)-space
and a C(k,[)-space enjoy. A space X is called an H(k,)-space if there is an
axial map

p: Pr(QX) x P(QX) - X

so that u(x,*) = x(z) and p(*,y) = ts(y) for the inclusion ¢;: P;(QX) —
P (2X) ~ X. If there is an axial map

p: | Paos(QX) x P(QX) - X,
0<s<k

then X is called an Hy(n)-space. Both H(k, co)-space and Hy(oo)-space are
equivalent to Ty-space by Aguadé [2]. In particular, H-space, H (0o, 00)-
space and H.,(00)-space are all equivalent.

Then we have the following

Theorem 4.9 (Hemmi-Kawamoto [21, Theorem A, Corollary 1.1], Kishi-
moto-Kono [41, Theorem 1.6]). Let X be a connected topological monoid.

(1) X admits an Cx(n)-form if and only if BX is an Hy(n)-space.
(2) X admits an Cy(n)-form if and only if BX is an H(n)-space.
(3) X admits an C(k,l)-form if and only if BX is an H(k,l)-space.

Hasui, Kishimoto and Tsutaya [14] generalized the above concepts and
defined C'(ky, ..., k,)-space, which is a topological monoid X admitting an
axial map P, X X --- x P, X — BX.

4.3. Hybrid of associativity and commutativity. In the definition of
higher homotopy commutativity, we need to multiply only n-elements of
the space. Thus it is natural to think of extending the definition to A,-
spaces. To do so we need polytopes which are hybrid of associahedra and
permutohedra (or resultohedra).

The extension of Williams C,,-form to A,-spaces is given by Hemmi and
Kawamoto [20]. The parameter spaces used there are permuto-associahedra,
which are introduced by Kapranov [34]. On the other hand, the extension of
C1(n)-form to A,-spaces is given by Kawamoto [38], which is called B,,-form.
He showed that the parameter spaces for B,-form are homeomorphic to
cyclohedra, which are introduced by Bott and Taubes [8] to study topological
descriptions of self-linking invariants of knots. For Cj(n)-form with & > 1,
no papers have been published treating this theme.

In any cases, the poset structures for the polytopes are easy to imagine.
Any face of P, and N,,, are represented by a sequence ajog...cqy for
some q; suitably defined. Thus, to consider the case for A, -spaces, we just
insert some pairs of meaningful parentheses to ajas...ai. For example,



32 Y. HEMMI

from {x1, z5}xo{xs, x4} in P5, which is homeomorphic to Py x Py, we have
following sequences:

{z1, w5tao{ws, wa}, ({21, @s5tee){zs, 24}, {z1, 25} (v2{23, 24})

The first sequence represent a face homeomorphic to K3 x Py x Py, and the
other sequences represent two faces of the first one which are homeomorphic
to Ko x Py x Po.

The following are the hybrid polytopes given from P3 and Na ;.

{z1, 22}
(zom1)73 T122)x3
T2T1T3 T1T2X3
z1(x 1T 1%
zo(2123) 1 (223) 1(zay1) 217291 (T122)Y1
xof{x1, 3} x1{x9, x3} a1{z2,y1} 2129, y1]
352(503331) 131(333.%2
ToX3T1 T1T3T9 z1(y12) y1(z129)
(132:173)1131 (1211‘3)1‘2
{9, x3}11 (21, 23} 22 T1Y172 Y1122
(x3$2)ﬂz€>,1932w1 :rgxl(g;xl)m (z1y1)z2 {1, y1 oo (Y121) 22
xg(xQxl) $3($1l’2)
r3{z1, 22}

From the above argument, all faces of P,, represent all facets of the n-
permuto-associahedron I',,, and any lower dimensional face of ', is given
by inserting some pairs of parentheses in the sequence representing a face
of P,. Let ajaa ...y be an ordered partition of z[n] of type (ni,...,nk)
representing a face of P,. Then the facet of I',, corresponding to this se-
quence is homeomorphic to Xy x Pp, x --- x Pp,. We denote this facet as
(a1 ...ax), and we have a homeomorphism

851...0%: j{k S Fnl X oo X ]-_"n,k — Fn(Oé]_ .. Oék)

The degeneracy map sf: Iy, = 'y for 1 <4 < nis defined by removing
x; from z[n] and renumber x;,1 for j > i to x;. For example, we consider a
face ({x2}{x1,z4}){x3,25}. Then we have the following

st (Lo, wah) {wg, 25}) = (oM as) o, 2a} - ifi=1
= {1, z3}{x2, x4} ife=2
= ({2 Hz1, z3}) {24} ifi=3
= ({zoH{z1}){z3, 24} ifi=4
= ({z2H{x1, za}) {73} ifi=5
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For the relations these operations obey see [20, Propositions 2.1 and 2.2].
The extension of the Williams C),-form to A,-spaces is called AC),-form by
Hemmi-Kawamoto [20, Definition 3.1]. We skip the definition here.

On the other hand, in the case of C}(n)-form, the correspondence of the
parameter spaces to the cyclohedra is not so easy to imagine. We do not give
detail here, so readers who are interested in it should refer to the original
paper [38].

4.4. Homotopy commutative finite H-space. At the end of this paper,
we review the mod p torus theorems proved by several authors.

As is noted in the first section, Hubbuck’s torus theorem can be deduced
from the mod 2 torus theorem by Lin ([42]): for a simply connected H-
space X with finite Fo-cohomology H*(X;F3), if X admits a homotopy
commutative multiplication then H*(X;Fs) is acyclic. For an odd prime p,
Aguadé and Smith [3, Corollary] showed a similar result under some strong
assumption: if X is a topological monoid with finite exterior IF,-cohomology
algebra for a prime p such that the classifying space BX is an H-space, then
X is mod p equivalent to a torus. It is clear that the assumption of this
theorem seems too strong. Therefore, many authors have assumed higher
homotopy commutativity of order p in some sense, instead.

Assertion 4.10. Let X be a simply connected H -space with finite IF,,-cohomology
H*(X;F,) for an odd prime p. If X admits some kind of higher homotopy
commutativity of order p, then H*(X;F,) is acyclic,

The first one showed the above theorem is McGibbon [46, Theorem 3]. In
his theorem, the assumption of the higher homotopy commutativity of order
p was the Sugawara Cp,-form. Then, Hemmi [17, Theorem 1.1] used quasi C)-
form as the assumption. Here, a quasi C),-form on an A,-space X is a family
of maps {¢;: Ji(X) = P;(X)}1<i<n such that p; = id, p;|Ji—1(XX) =¢e;_10
wi—1 and p;op; ~ ZTGSZ, Tp;, where the symmetric group §; acts on the i-fold
smash product X/ as the permutation of the factors, and the summation
> res, TPi is defined by using the comultiplication of (XX W~ s (xl.
Moreover, many authors have extended the mod p torus theorem for H-
spaces with [F,-cohomology not necessarily finite, such as Slack [51], Lin and
Williams [44], Lin [43], Broto and Crespo [9], Kawamoto [35], [36], [37] and
Kawamoto and Lin [39].

Acknowledgements: The author would like to express his gratitude to
the referee for useful comments and suggestions.
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