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SCATTERING AND SEMI-CLASSICAL ASYMPTOTICS

FOR PERIODIC SCHRÖDINGER OPERATORS WITH

OSCILLATING DECAYING POTENTIAL

Mouez Dimassi and Anh Tuan Duong

Abstract. In the semi-classical regime (i.e., h↘ 0), we study the effect
of an oscillating decaying potential V (hy, y) on the periodic Schrödinger
operator H. The potential V (x, y) is assumed to be smooth, periodic
with respect to y and tends to zero as |x| → ∞. We prove the existence
of O(h−n) eigenvalues in each gap of the operator H + V (hy, y). We
also establish a Weyl type asymptotics formula of the counting function
of eigenvalues with optimal remainder estimate. We give a weak and
pointwise asymptotic expansions in powers of h of the spectral shift
function corresponding to the pair (H + V (hy, y), H). Finally, under
some analytic assumption on the potential V we prove the existence of
shape resonances, and we give their asymptotic expansions in powers of
h1/2. All our results depend on the Floquet eigenvalues corresponding to
the periodic Schrödinger operator H + V (x, y), (here x is a parameter).

1. Introduction

Consider the periodic Schrödinger operator in L2(Rn)

H = −∆ + V0(y),

where V0 is a smooth real-valued potential, periodic with respect to a lattice
Γ in Rn. It is well known (see e.g. [39]) that the spectrum of H is purely
absolutely continuous and has the band-gap structure:

σ(H) = σess(H) = ∪∞j=1Λj

where Λj := [aj , bj ] = µj(Rn/Γ∗) are closed bounded intervals called the
bands of the spectrum which may be pairwise disjoint or overlapping with
limj→∞ aj = +∞. Here (µj(·))j≥1 is the sequence of the Bloch eigenval-
ues associated to H (see Section 2) and Γ∗ denotes the dual lattice of Γ.
Introduce the self-adjoint perturbed operator acting on L2(Rn)

H(h) = H + V (hy, y), (h↘ 0),

with domain H2(Rn)- the Sobolev space of order 2, where h is a semi-
classical parameter and the external potential V (x, y) is assumed to be
smooth, Γ-periodic with respect to y and tends to zero as |x| → ∞. By
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the Weyl criterion, the essential spectra of H(h) and H are the same, and
discrete eigenvalues with finite multiplicities can arise in the gaps of H.
Moreover, the potential term may create embedded eigenvalues and reso-
nances.

In the case where the potential V is independent of the periodic variable
(i.e., V (x, y) = V (x)), a wide literature is devoted to the study of discrete
spectrum of H(1) = H + V (y) (see [1, 4, 3, 5, 33, 48] and the references
given there). The counting function of eigenvalues accumulating to an edge
of a gap of H was studied in [37]. The asymptotic behavior of the discrete
spectrum of the operator Hµ = −∆+V0(y)+µV (y) in a gap was well studied
for a strong coupling (i.e., µ → ∞), see [4, 3, 47]. The semi-classical case,
−∆ + V0(y) + V (hy), (h↘ 0) was considered in [14, 15].

Recently, there has been a growing interest in studying the Schrödinger
operator with decaying oscillating potential (see [38] and the references
given there). The asymptotic behaviour of the discrete spectrum of H(1) =
−∆+V (y, y) near the origin has been studied in [38]. In the one-dimensional
case, the existence and the asymptotic behaviour of the eigenvalues of the
operator Q(h) = −∂2

x+V0(x)+V (x, xh), tending to the border of the essential
spectrum as h ↘ 0, have been established in [8] for V0 = 0, and in [22]
for periodic potential V0 (see also [7, 8, 21, 23, 24]). Our problem here is
different. In fact, the scaling of H(h) is that of semi-classical analysis. In
particular, the number of discrete eigenvalues grows as h↘ 0, and satisfies
a Weyl type asymptotics.

In this paper, we investigate the effect of the slowly varying decaying
oscillating potential (V (hy, y), h ↘ 0) on the gaps and bands of the non-
perturbed Hamiltonian H. First, we give a complete asymptotic expansion
in powers of h of tr(f(H(h))) where f ∈ C∞0 (]a, b[;R). In particular, we
obtain a Weyl type asymptotics with optimal remainder estimates of the
counting function of eigenvalues of H(h) in any closed interval in [a, b].

To investigate the effect of the perturbation on the continuous spectrum
of H, it is natural to study the spectral shift function (SSF for short) and
the resonances of H(h). When V satisfies:

(1.1)

∀α, β ∈ Nn,∃Cα,β > 0, ∀x, y ∈ Rn, |∂αx ∂βy V (x, y)| ≤ Cα,β〈x〉−δ, with δ > n,

the SSF ξ(µ;h) is defined as a real-valued function on R satisfying the
Birman-Krein formula:

(1.2) tr
[
f(H(h))− f(H)

]
= −〈ξ′(·;h), f(·)〉 =

∫

R
ξ(µ;h)f ′(µ)dµ,
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for any f ∈ C∞0 (R). The function ξ(µ;h) is fixed up to a constant by the
formula, and we normalize ξ(µ;h) so that ξ(µ;h) = 0 for µ < inf(σ(H(h)).

The spectral shift function may be considered as a generalization of the
eigenvalues counting function. It is one of important physical quantities
in scattering theory, and it plays an important role in the study of the
location of resonances in various scattering problems. We refer to [45, 9] and
references cited there for comprehensive information on related subjects.

Under the assumption (1.1), we give a complete asymptotic expansion in
powers of h of the left hand side of (1.2). We also establish a Weyl type
asymptotics for ξ(µ;h), (see Corollary 2.2 and Corollary 2.3).

Finally, under some analytic assumption on the perturbation V , we es-
tablish the existence of shape resonances near the extremities of the bands,
and we give their asymptotic expansions in powers of h1/2.

While most of these results are new, similar results have been obtained
in the past. As already pointed out, the discrete spectrum of the operator
H(h) = −∆ + V0(y) + V (hy), (h ↘ 0), has already been studied in [14,
15] and bears many similarities with the present approach. The results
in [14, 15] depend only on the Floquet eigenvalues of the non perturbed
periodic operator H = −∆+V0(y). However, the oscillating potential affects
significantly the results and techniques. In particular, all the results here
will depend on the Floquet eigenvalues of the periodic Schrödinger operator
H̃ = −∆+V0(y)+V (x, y) (where x is a parameter). Our proofs are based on
the effective Hamiltonians and the semi-classical techniques (see Subsection
2.4 for an outline of the proof).

The paper is organized as follows : In the next section, we formulate our
main assumptions and results and we give an outline of the proofs. We
introduce a class of symbols and the corresponding h-Weyl operators (Sub-
section 3.2). In Subsections 3.1 and 3.3 we recall the effective Hamiltonian
method. The proofs of the main results are given in Section 4.

Notations : We shall employ the following standard notations. Given a
complex function fh depending on a small positive parameter h, the relation
fh = O(hN ) means that there exists CN , hN > 0 such that |fh| ≤ CNh

N

for all h ∈]0, hN [. The relation fh = O(h∞) means that, for all N ∈ N =
{0, 1, 2, . . .}, we have fh = O(hN ). We write fh ∼

∑∞
j=0 ajh

j if, for each

N ∈ N, we have fh −
∑N

j=0 ajh
j = O(hN+1).

Let H be a Hilbert space. The scalar product in H will be denoted by
〈·, ·〉. The set of linear bounded operators from H1 to H2 is denoted by
L(H1,H2) and L (H1) in the case where H1 = H2.
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2. Preliminaries and results

Let Γ =
n
⊕
i=1

Zvi be a lattice generated by the basis {v1, v2, · · · , vn} ⊂ Rn.
The reciprocal lattice Γ∗ is defined as the lattice generated by the dual basis
{v∗1, · · · , v∗n} determined by vj · v∗i = 2πδij , i, j = 1, · · · , n. Let E and E∗

be respectively fundamental domains for Γ and Γ∗. If we identify opposite
edges of E (resp. E∗) then it becomes a flat torus denoted by T = Rn/Γ
(resp. T∗ = Rn/Γ∗).

Throughout this paper, we always assume that V0 and V are regular,
Γ-periodic with respect to y and

lim
|x|→+∞

supy∈T∗ |V (x, y)| = 0.

For (x, ξ) fixed in R2n, we define

(2.1) P1(x, ξ) := (Dy + ξ)2 + V0(y) + V (x, y), P0(ξ) = (Dy + ξ)2 + V0(y),

as unbounded operators from L2(T) into L2(T) with domain H2(T). The
Hamiltonian Pj is semibounded and self-adjoint. Since the resolvent of
(Dy + ξ)2 is compact, the resolvent of Pj is also compact, and therefore
Pj has a complete set of (normalized) eigenfunctions. The corresponding
eigenvalues accumulate at infinity and we enumerate them according to their
multiplicities,

(2.2) λ1(x, ξ) ≤ λ2(x, ξ) ≤ · · · and µ1(ξ) ≤ µ2(ξ) ≤ · · ·

Since e−iy·γ
∗
Pje

iy·γ∗ = Pj(·, ξ + γ∗), it follows that ξ 7→ λm(x, ξ), µm(ξ)
are Γ∗−periodic and are called the band functions. Standard perturbation
theory shows that they are real continuous functions. The spectrum of H
is absolutely continuous (see [39, 43]) and consists of the bands Λm, m =
1, 2, · · · . Indeed, σ(H) = σac(H) = ∪

m≥1
Λm, Λm = µm(T∗) (see also [46]).

Let us now introduce the densities of states ρ(·, x) and ρ0(·) associated
with P1 and P0 (see [46])

(2.3) ρ(t, x) :=
1

(2π)n

∑

m≥1

∫

{ξ∈E∗; λm(x,ξ)≤t}
dξ, (here x is a parameter),

(2.4) ρ0(t) :=
1

(2π)n

∑

m≥1

∫

{ξ∈E∗; µm(ξ)≤t}
dξ.

2.1. Discrete Spectrum. In this subsection we shall discuss the asymp-
totic behaviour of the discrete spectrum of H(h) in the gaps of H. The
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results of this subsection extend those obtained in [18] where the case V0 = 0
was considered. Fix [a, b] such that

σ(H) ∩ [a, b] = ∅.
Theorem 2.1. For f ∈ C∞0 (]a, b[;R), the operator f(H(h)) is of trace class
and, there exists a sequence of real numbers (aj)j∈N such that

(2.5) tr
[
f(H(h))

]
∼
∞∑

j=0

ajh
j−n, h↘ 0,

with
(2.6)

a0 = (2π)−n
∑

k≥1

∫∫

Rnx×E∗
f(λk(x, ξ))dxdξ = −

∫

Rnx

∫

R
f ′(t)ρ(t, x)dtdx.

Let N([a, b];h) denote the number of eigenvalues of H(h) in [a, b] (counted
with their multiplicity).

Corollary 2.2. There holds

(2.7) lim
h↘0

[
hnN([a, b];h)

]
=

∫

Rn

[
ρ(b, x)− ρ(a, x)

]
dx.

By adding an additional assumption, we shall improve the above corollary.
For τ ∈ {a, b}, we let

Στ = ∪∞j=1{(x, ξ) ∈ Rn × E∗; λj(x, ξ) = τ}.
We make the following assumption:

H : for (x0, ξ0) ∈ Στ , λj(x0, ξ0) = τ is simple (i.e., λj−1(x0, ξ0) <
λj(x0, ξ0) < λj+1(x0, ξ0)), and ∇x,ξλj(x0, ξ0) 6= 0.

Theorem 2.3. Under the assumption H, we have

(2.8) hnN([a, b];h) =

∫

Rn

[
ρ(b, x)− ρ(a, x)

]
dx+O(h), (h↘ 0).

2.2. Spectral Shift Function.

Theorem 2.4. (Weak asymptotics) Assume (1.1), and let f ∈ C∞0 (R). The

operator
[
f(H(h))− f(H)

]
is of trace class and, there exists a sequence of

real numbers (aj)j∈N such that

(2.9) tr
[
f(H(h))− f(H)

]
∼
∞∑

j=0

ajh
j−n, h↘ 0,

with

(2.10) a0 =

∫

Rnx

∫

R
f ′(t)

[
ρ0(t)− ρ(t, x)

]
dtdx.
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Corollary 2.5. ( Pointwise asymptotics) Suppose that V0 = 0, and fix λ >
0. Under the hypothesis of Theorem 2.4, we have

(2.11) lim
h↘0

[
(2πh)nξ(λ;h)

]
=

∫

Rn

[
ρ(λ, x)− cn(2π)−nλn/2

]
dx.

Here cn is the volume of the unit ball in Rn.

2.3. Resonances. In this subsection, we first recall the definition of reso-
nances which can be found in [29] . Fix a point λ0 in the interior of the
spectrum of H, and assume that there exists a dense subset A in L2(Rn)
such that for all Φ,Ψ ∈ A the function

〈(z −H)−1Φ,Ψ〉, (resp., KΦ,Ψ := 〈(z −H(h))−1Φ,Ψ〉),
has a holomorphic (resp. meromorphic) continuation from the upper half
plane C+ := {z ∈ C; Imz > 0} to a complex disc around λ0. The poles of
KΦ,Ψ are called resonances of H(h). To state our resonance result, we need
to introduce the following additional assumptions.

(H1) There exist positive constants δ0, δ1 > 0 such that x 7→ V (x, y)
extends analytically to D(δ0) = {z ∈ Cn; |Imz| ≤ δ0〈Rez〉} and

(2.12) |V (z, y)| ≤ C〈z〉−δ1

uniformly in z ∈ D(δ0). Here 〈z〉 = (1 + |z|2)1/2.
Fix λ0 ∈ σ(H) = ∪∞j=1Λj = µj(T∗). We assume that

(H2) There exists m ≥ 1 such that

Σλ0 : = ∪∞j=1{(x, ξ) ∈ Rn × E∗; λj(x, ξ) = λ0}
= {(x, ξ) ∈ Rn × E∗; λm(x, ξ) = λ0},

Πλ0 := ∪∞j=1{ξ ∈ E∗; µj(ξ) = λ0} = {ξ ∈ E∗; µm(ξ) = λ0}.
(H3) If µm(ξ) = λ0, then ∇ξµm(ξ) 6= 0.
(H4) Σλ0 = (x0, ξ0) ∪ Ω, where Ω is a connected component, (x0, ξ0) 6∈

Ω and λm has a local non degenerate extremum (local minimum or local
maximum) at (x0, ξ0). We assume in addition that near Ω, G(x, ξ) = x ·
µm(ξ) is an escape function for the classical Hamiltonian λm i.e.,

(2.13) {λm, G} :=
∂λm
∂ξ

∂G

∂x
− ∂G

∂ξ

∂λm
∂x

> c0 > 0, ∀(x, ξ) ∈ Ω.

Notice that the assumption (H2) implies that the eigenvalue λm(x′, ξ′)
(resp. µm(ξ′)) is simple if λj(x

′, ξ′) = λ0 (resp. µm(ξ′) = λ0). In particular,
it follows from (H1− 2) that the function (x, ξ) 7→ λm(x, ξ) (resp. ξ 7→
µm(ξ)) is analytic near (x′, ξ′) (resp. ξ′) (see [29]).

Without any loss of generality, we may assume that (x0, ξ0) = (0, 0) and
λ′′m(0, 0) is strictly positive, (i.e., (0, 0) is a local minimum of λm). Let
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κ1, · · · , κn, ζ1, · · · , ζn be the eigenvalues of the square Hermitian matrix
1
2λ
′′
m(0, 0), and put

R :=





n∑

j=1

(2mj + 1)ζjκj ; (m1, · · · ,mn) ∈ Nn


 .

Let e1 < e2 ≤ e3 ≤ · · · be the elements ofR listed in increasing size counting
multiplicity. Fix 0 < C0 6∈ R, and let N0 be the number of ej ∈ [0, C0], so
that e1 < e2 ≤ · · · ≤ eN0 < C0 < eN0+1. Our result concerning resonances
is the following:

Theorem 2.6. Let C0 be as above and assume that (H1−H4) hold. Then,
there exists h0 > 0 small enough such that H(h) has exactly N0 resonances(
ej(h)

)
1≤j≤N0

in the disk D(λ0, C0h) = {z ∈ C; |z − λ0| < C0h} (counted

with their algebraic multiplicity). Moreover, the following asymptotics holds:

(2.14) ej(h)∼λ0 + hej +
∞∑

k=1

ej,kh
1+ k

2 , ej,k ∈ R, (h↘ 0).

2.4. Comments and outline of the proofs.
By the change of variable z = hy, the operator H(h) is unitarily equiva-

lent to

(2.15) H̃(h) = −h2∆z + V (z,
z

h
).

In the case where V (x, y) = V (x) is independent of the periodic variable,

the operator H̃(h) is still the semi-classical Schrödinger one, and then all
our results are well known in this case (see [20, 40] and the reference given
there).

However, in our case, there are two spatial scales in the potential
V (hy, y), y and x = hy, which are completely different when h tends to
zero. So H(h) cannot be identified to the semi-classical Schrödinger op-
erator. Here, as in [14, 15, 18], we use the effective Hamiltonian method,
which allows us to reduce the spectral study of H(h) to the one of a system

of h-pseudodifferential operators E1,w
−+(x, hDx, z;h) = E1,w

0,−+(x, hDx, z) +

hE1,w
1,−+(x, hDx, z) + · · · , acting on L2(T∗;CN ) (see Proposition 3.3).
Thus we establish some trace formula involving the effective Hamiltonian

E1,w
−+(x, hDx, z;h) (see (4.7) and (4.12)). After that, using some standard

results on h-pseudodifferential calculus we prove Theorem 2.1, Corollary 2.2,
Theorem 2.3, Theorem 2.4 and Corollary 2.5.

Let us recall that, in the study of the spectral properties of a system of
h-pseudodifferential operator E1,w

−+(x, hDx, z;h), the characteristic set Σz :=

{(x, ξ); detE1
0,−+(x, ξ, z) = 0} plays a crucial role. Here E1

0,−+(x, ξ, z) is
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the principal symbol of E1,w
−+(x, hDx, z;h). On the other hand, according

to (3.16) we have

Σz = ∪∞j=1{(x, ξ);λj(x, ξ) = z}.
Thus ”microlocally” we will be only concerned with the behavior of

E1
0,−+(x, ξ, z) near Σz. In particular, this explains why all our results only

depend on λj(x, ξ).
To prove Theorem 2.6, we notice that the assumption (H2) allows us to

chose E1
−+(x, ξ, z;h) scalar valued with

E1
0,−+(x, ξ, z) = z − λj(x, ξ).

On the other hand, the assumption (2.13) (which is a standard non-trapping
condition) implies that E1

−+(x, ξ, z;h) restricted to Ω does not produce
resonances near λ0. Thus it suffices to study E1

−+(x, ξ, z;h) for (x, ξ) near
(x0, ξ0). By a change of variable we may assume that (x0, ξ0) = (0, 0). Next,
assumption (H4) tells us that

E1
0,−+(x, ξ, λ0) = λ0 −

n∑

j=1

(κjx
2
j + ζjξ

2
j ) +O(|(x, ξ)|3),

for (x, ξ) near (0, 0). Thus, modulo O(h3/2), the resonances of H(h) near
λ0 coincide with the eigenvalues of the semi-classical harmonic oscillator

n∑

j=1

(κjx
2
j + ζjh

2D2
xj ).

3. Effective Hamiltonian method

3.1. Grushin problem: brief description. In this paragraph, we review
some of the standard facts on Grushin problem. Let H1, H2 and H3 be
three Hilbert spaces, and let P ∈ L(H1, H3). Assume that there exist R+ ∈
L(H1, H2) and R− ∈ L(H2, H3) such that the following operator

P(z) =

(
P − z R−
R+ 0

)
: H1 ×H2 → H3 ×H2

is bijective for z ∈ Ω. Here Ω is an open bounded set in C. Let

E(z) =

(
E(z) E+(z)
E−(z) E−+(z)

)

be its inverse. We refer to the problem P(z) as a Grushin problem and the
operator E−+(z) is called effective Hamiltonian. The following properties
are consequences of the identities E ◦ P = I and P ◦ E = I:

(3.1) (P − z) is invertible if and only if E−+(z) is invertible,
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(3.2) dim ker(P − z) = dim ker(E−+(z)),

(3.3) (P − z)−1 = E(z)− E+(z)E−1
−+(z)E−(z),

(3.4) E−1
−+(z) = −R+(P − z)−1R−.

On the other hand, since z 7→ (P − z) is holomorphic, it follows that the
operators E(z), E±(z) and E−+(z) are also holomorphic in z ∈ Ω. Moreover,
we have

(3.5) ∂zE−+(z) = E−(z)E+(z).

This identity comes from the fact that R± are independent of z.

3.2. Classes of symbols and notations. For (m,N) ∈ R× N we denote
by Sm(T∗ × Rn;MN (C)) the space of P ∈ C∞

(
R2n;MN (C)

)
, Γ∗-periodic

with respect to x, such that for all α and β in Nn there exists Cα,β > 0 such
that

(3.6) ‖∂αξ ∂βxP (x, ξ)‖MN (C) ≤ Cα,β〈ξ〉−m−|α|, 〈ξ〉 =
(
1 + |ξ|2

) 1
2 ,

whereMN (C) is the set of N×N -matrices. In the special cases when N = 1
(i.e., P is real-valued) or m = 0, we will write Sm(T∗ × Rn) or S(T∗ ×
Rn;MN (C)) instead of Sm(T∗ × Rn;M1(C)) and S0(T∗ × Rn;MN (C)).

If P depends on a semi-classical parameter h ∈]0, h0] and possibly on
other parameters as well, we require (3.6) to hold uniformly with respect
to these parameters. For h- dependent symbols, we say that P (x, ξ;h) ∈
Sm
(
T∗ ×Rn;MN (C)

)
has an asymptotic expansion in powers of h, and we

write

P (x, ξ;h) ∼
∞∑

j=0

Pj(x, ξ)h
j ,

if for every k ∈ N, h−(k+1)
(
P −

k∑

j=0

Pjh
j
)
∈ Sm

(
T∗ × Rn;MN (C)

)
.

For P ∈ Sm(T∗ × Rn;MN (C)), the h-Weyl operator Pw(x, hDx;h) is
defined by:

Pw(x, hDx;h)u(x) = (2πh)−n
∫

T∗

∫

Rn
e
i
h

(x−y)ξP (
x+ y

2
, ξ;h)u(y) dy dξ.

Here Dx =
1

i

∂

∂x
.

If m ≥ 0, then Pw(x, hDx;h) is well defined and bounded from L2(T∗) into
L2(T∗). In particular, we have a global h-pseudodifferential calculus on the
torus in analogy to the one in Euclidean space. In an appendix, we recall
some well known results on the h-pseudodifferential calculus.
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3.3. Effective Hamiltonian. In this subsection, we recall the effective
Hamiltonian method. More precisely, we will construct a suitable auxiliary
(so-called Grushin) problem associated with the operator

(
P (h)−z

)
for z in

a small complex neighborhood of some bounded interval I = [a, b] ⊂ R. The
reader can find more details and the proofs of the results of this subsection
in [26] (see also [20, 19]). For the reader convenience, let us point out the
main change in our situation and fix the notations.

Denote by TΓ the distribution in S ′(R2n) defined by

TΓ(x, y) =
1

vol(E)hn

∑

β∗∈Γ∗
ei(x−hy)β

∗
h .

We recall that E is a fundamental domain of Γ.
For m ∈ N, we introduce the following Hilbert space with their natural

norms

Lm := {u(x)TΓ(x, y); ∂αxu ∈ L2(Rn), ∀α, |α| ≤ m},
K0 = L2(T), Km,ξ = {u ∈ K0; (Dy + ξ)αu ∈ K0, ∀|α| ≤ m}.

It was shown in [20, Chapter 13, Proposition 13.5] that the operator H(h)
acting on L2(Rn) with domain H2(Rn) is unitarily equivalent to

(3.7) H1(h) :=
(
Dy + hDx

)2
+ V0(y) + V (x, y),

acting on L0 with domain L2, and the following propositions hold ( see [26]).

Proposition 3.1. ([26], Proposition 2.1) There exist N ∈ N, a complex
neighborhood Ω of I, and a bounded operator r+ in L

(
L2(T);CN

)
such that

for all z ∈ Ω and 0 < h < h0 small enough, the operator

(3.8) P(x, ξ, z) :=

(
P1(x, ξ)− z r∗+

r+ 0

)
: H2(T)× CN → L2(T)× CN ,

is bijective with bounded two-sided inverse

(3.9) E(x, ξ, z) :=

(
e(x, ξ, z) e+(x, ξ, z)
e−(x, ξ, z) e−+(x, ξ, z)

)
.

Here e−+ ∈ S(R2d
x,ξ;Mn(C)) is Γ∗-periodic in ξ.

Theorem 3.2. ([26], Theorem 2.3) For h sufficiently small, the operator
P1(z, h) := Pw(x, hDx, z) has a uniformly bounded inverse of the form
E1(z, h) = Ew(x, hDx, z;h), where

E(x, ξ, z;h) ∈ S0(R2n;L(K0 ⊕ CN ,K2,ξ ⊕ CN )).

Proposition 3.3. ([26], Theorem 3.7, Remark 3.9) There exist
N ∈ N, a complex neighborhood Ω of I, and a bounded operator R+
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in L
(
L0;L2(T∗;CN )

)
such that for all z ∈ Ω and 0 < h < h0 small enough,

the operator
(3.10)

P1(z, h) :=

(
H1(h)− z R∗+

R+ 0

)
: L2 × L2(T∗;CN )→ L0 × L2(T∗;CN ),

is bijective with bounded two-sided inverse

(3.11) E1(z, h) :=

(
E1(z, h) E1

+(z, h)
E1
−(z, h) E1

−+(z, h)

)
.

Here E1
−+(z, h) = E1,w

−+(x, hDx, z;h) is an h−pseudodifferential operator
with symbol

(3.12) E1
−+(x, ξ, z;h) ∼

∑

l≥0

E1
l,−+(x, ξ, z)hl, in S0

(
T∗ × Rn;MN (C)

)

where E1
0,−+(x, ξ, z) = e−+(ξ,−x, z) is given in the above proposition.

Remark 3.4. (1) We denote by

P0(z, h) =

(
H0(h)− z R∗+

R+ 0

)
, E0(z, h) :=

(
E0(z, h) E0

+(z, h)
E0
−(z, h) E0

−+(z, h)

)

the operators given by Proposition 3.1 when V (x, y) = 0.
(2) Note that, R+ depends only on the non-perturbed periodic

Schrödinger operator H. (see [26, Proposition 2.1] and [20,
Chapter 13]). Therefore, we may take the same R+ for P1(z, h)
and P0(z, h).

For simplicity of notation we ignore the dependence of Ej , Ej±, E
j
−+ on

(z, h).
The following formulas are consequences of (3.1), (3.2), (3.3), (3.4), and

Propositions 3.1-3.3.

(3.13)
(
Hj(h)− z

)−1
= Ej − Ej+(Ej−+)−1Ej−,

(3.14) (Ej−+)−1 = −R+

(
Hj(h)− z

)−1
R∗+ ,

and

(3.15) ∂zE
j
−+ = Ej−E

j
+,

(3.16) det
(
e−+(x, ξ, z)

)
= 0⇐⇒ ∃k ∈ N such that z = λk(x; ξ),

(3.17) ‖(e−+(x, ξ, z))−1‖L(MN (C)) ≤
C

|Imz| ,
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(3.18) dim ker(P (x, ξ)− z) = dim ker(e−+(x, ξ, z)).

Remark 3.5. Let z0 ∈ R, d = dim ker (e−+(x, ξ, z0)) for a fixed (x, ξ). By
ordinary perturbation theory (see Kato [30]) we can reorder the eigenvalues
(λj(z))1≤j≤N of e−+(x, ξ, z) to be holomorphic in a neighborhood of z0 ∈ R
and λ1(z0) = · · · = λd(z0) = 0. Using (3.17) we see that

|λj(z)| ≥ Cj |Imz|,
so λ′j(z0) 6= 0 for all 1 ≤ j ≤ N . Hence, z 7→ det e−+(x, ξ, z) has a root z0

of multiplicity d.

4. Proof of the results

4.1. Proof of Theorem 2.1. Fix a < b such that [a, b] ∩ σ(H) = ∅. Let
f ∈ C∞0 (]a, b[;R) and let ϕ(x) ∈ C∞(Rnx; [0, 1]) be equal to one for |x| > 2R
and ϕ(x) = 0 for |x| < R. Since

lim
|x|→+∞

supy∈T∗ |V (x, y)| = 0,

we choose R large enough such that

(4.1) sup(x,y)∈R2n |ϕ(x)V (x, y)| ≤ dis(σ(H), [a, b])

2
.

Let ê−+(x, ξ, z) be the effective Hamiltonian given by Proposition 3.3 asso-
ciated with

P̂ (x, ξ) = (Dy + ξ)2 + V0(y) + ϕ(x)V (x, y),

and put

(4.2) Ê−+(x, ξ, z;h) = ê−+(ξ,−x, z) + E1
−+(x, ξ, z;h)− E1

0,−+(x, ξ, z).

= ê−+(ξ,−x, z) +
∑

j≥1

hjE1
j,−+(x, ξ, z).

Making use of (3.16) and (4.1) we deduce that

|det ê−+(x, ξ, z)| ≥ 1

C
uniformly on (x, ξ, z) ∈ Rn × T∗ × [a, b]

which together with (4.2) yield, for h small enough,

(4.3) |det Ê−+(x, ξ, z;h)| ≥ 1

2C
uniformly on (x, ξ, z) ∈ T∗ × Rn × [a, b].

On the other hand, from the properties of ϕ we have

E1
−+(x, ξ, z;h) = Ê−+(x, ξ, z;h) for large |ξ|.
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It follows from (4.3) and Proposition 5.4 that for h small enough (Ê−+)−1

is well defined and is holomorphic in z near [a, b] and

(4.4) ‖(Ê−+)−1‖L(L2(T∗;CN )) = O(1).

Let f̃ ∈ C∞0 ((a, b)+i[−1, 1]) be an almost analytic extension of f , i.e., f̃ = f

on R and ∂z f̃ vanishes on R to infinite order, i.e. ∂z f̃(z) = ON (|Im z|N ) for
all N ∈ N. Then the functional calculus due to Helffer-Sjöstrand (see e.g.
[20, Chapter 8]) yields

f(H1(h)) = − 1

π

∫
∂z f̃(z)(z −H1(h))−1L(dz).

Here L(dz) = dxdy is the Lebesgue measure on the complex plane C ∼ R2
x,y.

The identity

(E1
−+)−1 = Ê−1

−+ − (E1
−+)−1(E1

−+ − Ê−+)Ê−1
−+,

combined with (3.13) and the fact that Ê−1
−+, E

1, E1
+, E

1
− are holomorphic in

z near [a, b], give

(4.5) f(H1(h)) = − 1

π

∫
∂z f̃(z)

(
E1

+(E1
−+)−1(Ê−+ − E1

−+)Ê−1
−+E

1
−
)
L(dz).

In the above equality we have used the fact that
∫
∂z f̃(z)K(z)L(dz) = 0

provided that K(z) is holomorphic in a neighborhood of suppf̃ .

By Proposition 5.3, (E1
−+ − Ê−+) is of trace class and we can take the

trace and permute integration and the operator ‘tr’ in (4.5). The identity
∂zE

1
−+ = E1

−E
1
+ shows that for Im z 6= 0,

tr (E1
+(E1

−+)−1(Ê−+ − E1
−+)Ê−1

−+E
1
−)

= tr ((E1
−+)−1(Ê−+ − E1

−+)Ê−1
−+∂zE

1
−+).

(4.6)

Let χ ∈ C∞0 (Rnξ ) be equal to 1 in a neighborhood of

S := {ξ ∈ Rn; (x, ξ) ∈ supp (E1
0,−+(x, ξ, z)− ê−+(ξ,−x, z))},

and denote by χ̂ = χw(hDx) the corresponding operator on L2(T∗;CN ).
Since

S ∩ supp (1− χ) = ∅,
it follows from Propositions 5.1 and 5.3 that:

‖(Ê−+ − E1
−+)Ê−1

−+∂zE
1
−+(1− χ̂)‖tr = O(h∞).

On the other hand, (3.14) yields

‖(E1
−+)−1‖ = O(|Imz|−1).
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Hence

‖(E1
−+)−1(Ê−+ − E1

−+)Ê−1
−+∂zE

1
−+(1− χ̂)‖tr = O(h∞|Im z|−1).

Combining this equality with (4.5) and (4.6) we obtain

tr
[
f(H1(h))

]

= − 1

π
tr
[ ∫

∂z f̃(z)(E1
−+)−1(Ê−+ − E1

−+)Ê−1
−+∂zE

1
−+χ̂L(dz)

]
+O(h∞).

Splitting the integral into two terms and using the fact that Ê−1
−+∂zÊ−+ is

holomorphic in z, we get

(4.7) tr
[
f(H1(h))

]
= − 1

π
tr
[ ∫

∂z f̃(z)(E1
−+)−1∂zE

1
−+χ̂L(dz)

]
+O(h∞).

The proof of the following lemma is similar to the one in [15].

Lemma 4.1. There exists r1(x, ξ;h) ∈ S0(R2n,L(CN )) such that
r1(x, ξ;h) ∼∑j≥0 h

jrj(x, ξ) and

(4.8) Opwh (r1(x, ξ;h)) = − 1

π

∫

|Im z|≥hδ
∂z f̃(z)(E1

−+)−1∂zE
1
−+L(dz).

Moreover, rj is Γ∗-periodic in x for all j ≥ 0 and

r0(x, ξ) = − 1

π

∫
∂z f̃(z)(E1

0,−+(x, ξ, z))−1∂zE
1
0,−+(x, ξ, z)L(dz).

End of the proof of Theorem 2.1. If we restrict the integral in the
right hand side of (4.7) to the domain |Im z| ≤ hδ then we get a term O(h∞)

in trace norm. Here we have used the fact that ∂z f̃(z) = ON (|Im z|N ) for
all N ∈ N. If we restrict our attention to the domain |Im z| ≥ hδ then by
Lemma 4.1 we get (2.5). To finish the proof let us compute a0. We have

a0 =

∫∫

E∗×Rn
t̂r [r0(x, ξ)]dxdξ =

∫∫

E∗×Rn
t̂r [r0(x, ξ)]dxdξ

=

∫∫

E∗×Rn
(− 1

π

∫
∂z f̃(z)t̂r

[
(E1

0,−+(x, ξ, z))−1∂zE
1
0,−+(x, ξ, z)

]
L(dz))dxdξ.

Here t̂r denotes the trace of square matrices. Thanks to Liouville’s formula

(i.e. t̂r (∂zA(z)A−1(z)) = ∂zdetA(z)
detA(z) in the sense of matrices), we get

a0 =

∫∫

E∗×Rn

(
− 1

π

∫
∂z f̃(z)

∂zdetE1
0,−+(x, ξ, z)

detE1
0,−+(x, ξ, z)

L(dz)

)
dxdξ.

To prove (2.6) we use Remark 3.5 and the following lemma:
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Lemma 4.2. Let g be an analytic function. Let (zk)k≥1 be the roots (counted

with their multiplicity) of g in supp (f̃). We have:

−1

π

∫
∂z f̃(z)

g′(z)
g(z)

L(dz) =
∑

k≥1

f(zk).

Proof. This follows from the formula 1
π∂z(

1
z−z0 ) = δ(· − z0) and the fact

that g′(z)
g(z) =

∑
k≥1

1
z−zk +k(z), where k is holomorphic for z in a small neigh-

borhood of supp f̃ . Applying the above lemma to g(z) =
∂zdetE1

0,−+(x,ξ,z)

detE1
0,−+(x,ξ,z)

and using Remark 3.5 we get

(4.9) a0 = (2π)−n
∑

k≥1

∫∫

Rnx×E∗
f(λk(x, ξ))dxdξ.

The last equality in (2.6) follows from (2.3) and (4.9) by integrating by
parts. This ends the proof of Theorem 2.1.

4.2. Proof of Corollary 2.2. For every small ε > 0, choose fε, fε ∈
C∞0 (R; [0, 1]) with

1[a+ε,b−ε] ≤ fε ≤ 1[a,b] ≤ fε ≤ 1[a−ε,b+ε].

It then suffices to observe that

tr
[
fε(H(h))

]
≤ N([a, b];h) ≤ tr

[
fε(H(h))

]
,

which yields

lim
ε↘0

lim
h↘0

(
(2πh)ntr

[
fε(H(h))

])
≤ lim

h↘0
(2πh)nN([a, b];h)

≤ lim
ε↘0

lim
h↘0

(
(2πh)ntr

[
fε(H(h))

])
,

and to apply Theorem 2.1.

4.3. Proof of Theorem 2.3. To prove this theorem one needs a refinement
of Theorem 2.1. Let θ ∈ C∞0 (R) and put

θ̆h(τ) :=
1

2πh

∫
eitτ/hθ(t)dt.

Analysis similar to that in the proof of (4.7) shows that

(4.10) tr
[
f(H(h))θ̆h(t−H(h))

]
=

tr
[
− 1

π

∫
∂z f̃(z)θ̆h(t− z)(E1

−+)−1∂zE
1
−+χ̂ L(dz)

]
+O(h∞),
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In the first equality we have used the fact that f̃(z)θ̆h(t − z) is an almost

analytic extension of f(x)θ̆h(t − x), since z 7→ θ̆h(t − z) is analytic. Here

the support of f̃ is in a small neighborhood of τ ∈ {a, b}. Trace formulas
involving effective Hamiltonian like (4.10) were studied in [15].

According to the definition of Στ before the assumption (H) and (3.16)
we have

Στ = {(x, ξ) ∈ R2n; det(e−+(x, ξ, τ)) = 0}.
Fix (x0, ξ0) ∈ Στ . Under the assumption (H) we may choose

e−+(x, ξ, z) =




λj(x, ξ)− z 0 · · · 0
0 · · · · ·
· · · · · ·
· · · g(x, ξ, z) · ·
· · · · · ·
0 · · · · ·



,

where det(g(x, ξ, z)) 6= 0 for all (x, ξ, z) in a small neighborhood W of
(x0, ξ0, τ).

The assumption (H) implies that the principal symbol e−+(ξ,−x, z) of
E1
−+ is micro-hyperbolic (in the sense of [15, 20]) at every point (x, ξ) ∈ Στ .

Thus, applying Theorem 1.8 in [15] to the left hand side of (4.10), we obtain

(4.11) tr
[
f(H(h))θ̆h(t−H(h))

]
∼
∞∑

j=0

βjh
j−n, (h↘ 0).

Theorem 2.3 now follows from Theorem 2.1, (4.11) and tauberian arguments
(see Theorem V-13 in [40]).

4.4. Proof of Theorem 2.4. In what follows, we write [aj ]1j=0 = a1 − a0.
The proof of Theorem 2.4 is based on the following proposition.

Proposition 4.3. Assume that (1.1) holds. Let f ∈ C∞0 (R) and let f̃ be
an almost analytic extension of f. Then the operator [f(H(h)) − f(H)] is
of trace class as an operator from L2(Rn) to L2(Rn) and

tr[f(H(h))− f(H)] = tr[f(H1(h))− f(H0(h))] =(4.12)

tr
(
− 1

π

∫

C
∂f̃(z)

[
(Ej−+)−1∂zE

j
−+

]1
j=0

L(dz)
)
.

Here ∂ =
∂

∂z
and L(dz) = dxdy denotes the Lebesgue measure on C.

Now, analysis similar to that in the proof of Theorem 2.1 with (4.7)
replaced by (4.12) gives Theorem 2.4.

The remainder of this subsection will be devoted to the proof of Proposi-
tion 4.3.
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Lemma 4.4. We have

(4.13)
[
Ej+

]1

j=0
= E1V E0

+,

(4.14)
[
Ej−
]1

j=0
= E0

−V E
1,

and

(4.15)
[
Ej−+

]1

j=0
= E1

−V E
0
+.

In particular, if (1.1) is satisfied then

(4.16)
[
Ej−+

(
k, r, z;h

)]1

j=0
∈ Sδ

(
T∗ × Rn;MN (C)

)
.

Proof. Identities (4.13)-(4.15) follow from the first resolvent equation
[
Ej(z, h)

]1

j=0
= E1(z, h)

[
P0(z, h)− P1(z, h)

]
E0(z, h)

= −E0(z, h)
[
P1(z, h)− P0(z, h)

]
E1(z, h)

and the fact that
[
Pj(z, h)

]1

j=0
=

(
V 0
0 0

)
.

Formula (4.16) is a simple consequence of (4.15) and standard h-
pseudodifferential calculus of operator-valued symbols. �

Lemma 4.5. Under the assumption (1.1), the operators

V E0
+ : L2(T∗;CN )→ L0,(4.17)

and

E0
−V : L0 → L2(T∗;CN ),(4.18)

are of trace class.

Proof. We observe that Pj(z, h)∗ = Pj(z, h), which implies that Ej(z, h)∗ =
Ej(z, h). From this, we deduce the following identity:

(4.19) E0
−(z, h)∗ = E0

+(z, h), j = 0, 1.

Since
(
E0
−V
)∗

= V E0
+(z, h) it suffices to prove (4.17).

Consider the operator A =
(
Id − h2∆T∗

)− δ
2 on L2(T∗;CN ). Set B =

V E0
+(z, h), C = B∗B and D = A−1CA−1.

According to the h-pseudodifferential calculus of operator-valued symbols
(see Proposition 5.7, Proposition 5.6), it follows from the assumption (1.1)
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and Theorem 3.2 that D ∈ S0(T∗k×Rnr ;MN (C)). In particular, by construc-
tion of r+(x, ξ, z), e+(x, ξ, z) and E0

+(z, h) (see [26]) the principal symbol of
C is given by C0(k, r, z) = (cij(k, r))1≤i,j≤N where

ci,j(k, r) =

∫

E
Ψi(y, k)V (r, y)Ψj(y, k)dy.

Here Ψj(y, k) are smooth functions, Γ∗-periodic with respect to k and sat-

isfying Ψj(y+ γ, k) = eiγ·kΨj(y, k) for all γ in Γ. Therefore, D extends to a
bounded operator from L2(T∗;CN ) into L2(T∗;CN ), (see Proposition 5.2).
Combining this with the fact that C is non-negative, we get:

0 ≤ C = ADA ≤ ‖D‖A2,

which implies

0 ≤ C 1
2 ≤

√
‖D‖A.

Since δ > n, it follows from Proposition 5.3 that A : L2(T∗;CN ) →
L2(T∗;CN ) is of trace class and the lemma follows from the above
inequality. �
Proposition 4.6. Suppose that (1.1) holds. For z ∈ Ω such that Im(z) 6= 0,
the operator [

Ej+(Ej−+)−1Ej−
]1

j=0

is of trace class from L2(Rn) to L2(Rn) and

(4.20) tr
([
Ej+(Ej−+)−1Ej−

]1

j=0

)
= tr

([
(Ej−+)−1∂zE

j
−+

]1

j=0

)
.

Here the operator in the right hand side of (4.20) is defined on L2(T∗;CN ).

Proof. Let z ∈ Ω such that Im(z) 6= 0, we have the following identity:
(4.21)[
Ej+(Ej−+)−1Ej−

]1

j=0
=
[(

[Ej+]1j=0

)
(E1
−+)−1E1

−
]

+
[
E0

+(E0
−+)−1

(
[Ej−]1j=0

)]
−

[
E0

+(E1
−+)−1

(
[Ej−+]1j=0

)
(E0
−+)−1E1

−
]
.

According to Lemmas 4.4 and 4.5, all the terms of the rhs in the last
equality are of trace class. Using the cyclicity of the trace and identity
(3.15), we obtain

(4.22) tr
([
Ej+(Ej−+)−1Ej−

]1

j=0

)
= tr

(
(E1
−+)−1

(
∂zE

1
−+ − E1

−E
0
+

))
+

tr
(

(E0
−+)−1

(
E1
−E

0
+ − ∂zE0

−+

))
− tr

(
(E0
−+)−1E1

−E
0
+ − (E1

−+)−1E1
−E

0
+

)
,

which yields the proposition. �
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Proof of Proposition 4.3. By the Helffer-Sjöstrand formula (see [20]),
we have

f(H1(h))− f(H0(h)) = − 1

π

∫

C
∂f̃(z)

[
(z−H1(h))−1− (z−H0(h))−1

]
L(dz).

Combining this with (3.13), we obtain

f(H1(h))− f(H0(h)) =
1

π

∫

C
∂f̃(z)

[
Ej ]1j=0 L(dz)(4.23)

− 1

π

∫

C
∂f̃(z)

[
Ej+(Ej−+)−1Ej−

]1

j=0
L(dz).

Since Ej , j = 0, 1 are holomorphic in a neighborhood of supp(f̃), the first
term in the rhs of (4.23) vanishes. Consequently,

f(H1(h))− f(H0(h)) = − 1

π

∫

C
∂f̃(z)

[
Ej+(Ej−+)−1Ej−

]1

j=0
L(dz).

Using Proposition 4.6, we conclude that [f(H1(h)) − f(H0(h))] is of trace
class and applying (4.20), we obtain the second equality of (4.12). The
first equality follows from the fact that H1(h) (resp. H0(h)) is unitarily
equivalent to H(h) (resp. H).

4.5. Proof of Corollary 2.5. Assume for instance that µ 7→ ξ(µ;h) is
monotone (i.e., ξ′(·;h) is positive in the sense of distributions). For small
ε > 0, choose fε, fε ∈ C∞0 (R; [0, 1]) satisfying

1[C+ε,λ−ε] ≤ fε ≤ 1[C,λ] ≤ fε ≤ 1[C−ε,λ+ε].

According to (1.2), we have

tr
[
fε(H(h))− f

ε
(H)

]
≤ ξ(λ;h)− ξ(C, h) ≤ tr

[
fε(H(h))− f ε(H)

]
.

Multiplying these inequalities by (2πh)n, applying Theorem 2.4 and letting
(h ↘ 0) and (ε ↘ 0) we obtain (2.11). We recall that ξ(C;h) = 0 for

C << −1, and ρ0(λ) = cn(2π)−nλn/2 in the case where V0 = 0. Here cn is
the volume of the unit ball in Rn.

For the general case we use a trick due to D.Robert [41], which consists to
write ξ(µ;h) = ξ1(µ;h)−ξ2(µ;h) where µ 7→ ξi(µ;h), i = 1, 2 are monotonic.
Now, it suffices to apply the above argument for each ξi(µ;h).

Notice that, Robert’s method holds for the Schrödinger operator −∆x +
W (x) under the assumption that |W (x) − x · ∇W (x)| = O(〈x〉−δ), with
δ > n, and near a strict positive energy (i.e., λ > 0).
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4.6. Proof of Theorem 2.6. Here we deal with Ej , Ej−+, E
j
± when j =

1. For that we omit the index j. Since E,E± are holomorphic in z, it
follows from (3.13) and (3.14) that the poles of the meromorphic extension
of (z−H)−1 are the zeros of the meromorphic extension of E−1

−+ in a suitable
space with the same algebraic multiplicity. Hence, we are reduced to the
study of the meromorphic extension of E−1

−+. Now let Ω be a small complex
neighborhood of λ0. We recall that λ0 ∈ µm(T∗) is a fixed level. Under
the assumption (H2), the effective Hamiltonian in Proposition 3.1 can be
chosen real-valued with

e−+(x, ξ, z) = z − λm(x, ξ),

for z in Ω. In particular, due to the assumptions (H1− 2), for all N ∈ N
we have

E−+(x, ξ, z;h) = e−+(ξ,−x, z) +
N∑

j=1

hjEj,−+(x, ξ, z) + hN+1FN (x, ξ, z;h),

where Ej,−+(x, ξ, z), FN (x, ξ, z;h) are holomorphic in (x, ξ) on a neighbor-
hood of E∗ × Rn. In the following, we follow quite closely the exposition
and the proof in [16, 35]. For this reason we omit the details.

Let t0 be a small positive constant. For t ∈ D(t0) := {t ∈ C; |t| < t0}, set

νt(x) = x− t∇µm(x).

We denote by Jt(x) = det[Dνt(x)] the Jacobian of νt(x). Since µm(x) is
bounded with all its derivatives, there exists t0 small enough such that νt
is invertible for all t ∈ D(t0). We define the following map on the Schwartz
space of rapidly decreasing functions:

Utu(x) = {J
1
2
t (x)(Fhu)(νt(x))}, u ∈ S(Rn),

where F is the semi-classical Fourier transform

Fhu(ξ) =

∫

Rn
e−ix·ξ/hu(x)dx.

For t ∈ D(t0), we define

(4.24) Ew,t−+(x, hDx, z;h) := UtEw−+(x, hDx, z;h)U−1
t .

According to Theorem 2.3 and Corollary 2.5 in [16], the operator

Ew,t−+(x, hDx, z;h) is well defined from L2(T∗) into L2(T∗) and satisfies the
following properties:

1) Et−+(x, ξ, z;h) ∼∑l≥0E
t
l,−+(x, ξ, z)hl in Sδ1(T∗ × Rn).

2) For t ∈]− t0, t0[, the operator Ew,t−+(x, hDx, z;h) is unitarily equivalent
to Ew−+(x, hDx, z;h).
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3) Et0,−+(x, ξ, z) = z − λm

(
(1 − tM(x))−1ξ, νt(x)

)
, where M(x) =

(
∂νj
∂xi

(x)
)

1≤i,j≤n
.

4) For fixed t = iImt with Imt > 0, the operator Ew,t−+(x, hDx, z;h) has a
meromorphic

extension from {z ∈ C; Imz > 0, |z − λ0| < ε} to {z ∈ C; Imz > −ηh, |z −
λ0| < ε}. Here ε

and η are small positive constants.
Now to prove Theorem 2.6 it suffices to show that (Ew,t−+(x, hDx, z;h))−1

has exactly N poles e1(h), · · · eN (h) (counted with their algebraic multiplic-
ity) in the disc D(λ0, C0h).

Notice that, the assumption (2.13) implies that Et−+(x, ξ, λ0;h) is elliptic
except at (x, ξ) = (x0, ξ0). We recall that (x0, ξ0) is a local non-degenerate
extremum of the function (x, ξ) 7→ λm(x, ξ). Thus, to determine the spec-

trum of Ew,t−+(x, hDx, z;h) near λ0 we have reduced to study microlocally
Et−+(x, ξ, z;h) near (x0, ξ0). Next, by the WKB method (see [20], Chapter
3 and the end of Chapter 4 and Chapter 14), we construct z1(h), · · · zN (h)
satisfying (2.14) and g1(x, h), · · · gN (x, h) such that

Et,w−+(x, hDx, zi(h);h)gj(x, h) = O(h∞).

From this we deduce Theorem 2.6. For the details we refer to [16] Section
5.

5. Appendix

In this appendix, we recall some well known results on the scalar and
operator-valued h-pseudodifferential calculus. For the proof we refer to [20].

5.1. h-pseudodifferential operator. By X we denote either R2n or T∗×
Rn. We recall that S(T∗ × Rn;MN (C)) = {P ∈ S(R2n;MN (C)); Γ∗ −
periodic in x}. Put Y = ΠxX (i.e., Y = Rn (resp, T∗) for X = R2n (resp.
T∗ × Rn)).

Proposition 5.1. (Composition formula) Let ai ∈ S(X;MN (C)),
i = 1, 2. Then bw(y, hDy;h) = aw1 (y, hDy) ◦ aw2 (y, hDy) is an h-pseudo-
differential operator, and

b(y, η;h) ∼
∞∑

j=0

bj(y, η)hj , in S(X;MN (C)).

Proposition 5.2. (L2− boundedness) Let a = a(x, ξ;h) ∈ S(X;MN (C)).
Then aw(x, hDx;h) is bounded : L2(Y ;CN ) → L2(Y ;CN ), and there is a
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constant C independent of h such that

‖aw(x, hDx;h)‖ ≤ C.
Proposition 5.3. (trace) Let a = a(x, ξ;h) ∈ S(X;MN (C)). We assume

that ∂αx ∂
β
ξ a ∈ L1(X), for all |α|+ |β| ≤ 2n+ 2. Then aw(x, hDx;h) is trace

class operator and

tr(aw(x, hDx;h)) =
1

(2πh)n

∫∫

Y
t̂r
(
a(x, ξ;h)

)
dxdξ.

Proposition 5.4. (invertibility) Let a = a(x, ξ;h) ∈ S(X;MN (C)). We
assume that there exists C > 0 (independent of h) such that

|det a(x, ξ;h)| ≥ C.
Then, for h small enough, the operator aw(x, hDx;h) : L2(Y ) → L2(Y ) is
invertible with uniformly bounded inverse.

5.2. Operator valued h-pseudodifferential operator. Our main refer-
ence is here the unpublished work of Balazard–Konlein and [20]. We shall
consider a family of Hilbert spaces AX , X = (x, ξ) ∈ R2n satisfying:

(5.1) AX = AY as vector spaces for all X,Y ∈ R2n,

there exist N0, C0 > 0 such that

(5.2) ‖u‖AX ≤ C〈X − Y 〉N0‖u‖AY
for all u ∈ A0, X, Y ∈ R2n.

Let BX , X ∈ R2n be a second family with the same properties. We say
that p ∈ C∞(R2n;L(A0,B0)) belongs to S0(R2n;L(AX ,BX)) if for every
α ∈ N2n, there is a constant Cα such that

(5.3) ‖∂αXp‖L(AX ;BX) ≤ Cα, for all X ∈ R2n.

We can then associate with p the operator pw(x, hDx). In particular, the
following propositions hold.

Proposition 5.5. . Let p ∈ S0(R2n;L(AX ,BX)), where AX ,BX satisfy
(5.1), (5.2). Then Opwh (p) = pw(x, hDx) is uniformly continuous from
S(Rn;A0) to S(Rn;B0).

Proposition 5.6. . Assume AX = A0, BX = B0, ∀X ∈ R2n. If p ∈
S0(R2n;L(A0,B0)) (i.e. ‖∂αXp‖L(A0;B0) ≤ Cα, for all X ∈ R2n) then Opwh (p)

is uniformly bounded from L2(Rn;A0) to L2(Rn;B0).

Let CX be a third family of Hilbert spaces which also satisfies (5.1), (5.2).
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Proposition 5.7. Let p ∈ S0(R2n;L(BX , CX)), q ∈ S0(R2n;L(AX ,BX)).
Then Opwh (p) ◦ Opwh (q) = Opwh (r), where r ∈ S0(R2n;L(AX , CX)) is given
by

r = exp

(
ih

2
σ(Dx, Dξ;Dy, Dη)

)
(p(x, ξ)q(y, η))|

x=y,ξ=η

,

where σ is the usual symplectic 2-form. We have the asymptotic formula:

r ∼
∞∑

k=0

1

k!
(
ih

2
σ(Dx, Dξ;Dy, Dη))

kp(x, ξ)q(y, η)|x=y,ξ=η
.

Acknowledgements. The authors wish to thank the Vietnam Institute
for Advanced Study in Mathematics, where a part of this paper was writ-
ten, for financial support and hospitality. The second author is supported
by Vietnam National Foundation for Science and Technology Development
(NAFOSTED) under grant number 101.02-2014.06.

References

[1] S. Alama, P. Deift, R. Hempel, Eigenvalues branches of the Schrödinger operator
H − λW in a gap of σ(H). Comm. Math. Phys., 121, (1989), 291–321.

[2] E. Bardos, J.-C. Guillot, J. Ralston, La relation de Poisson pour l’équation des ondes
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