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AHARONOV–BOHM EFFECT IN RESONANCES

OF MAGNETIC SCHRÖDINGER OPERATORS

IN TWO DIMENSIONS III

Hideo TAMURA

Abstract. We study the Aharonov–Bohm effect (AB effect) in quan-
tum resonances for magnetic scattering in two dimensions. The system
consists of four scatters, two obstacles and two scalar potentials with
compact support, which are largely separated from one another. The
obstacles by which the magnetic fields are completely shielded are ver-
tically placed between the supports of the two potentials. The system
yields a two dimensional model of a toroidal scattering system in three
dimensions. The resonances are shown to be generated near the real axis
by the trajectories trapped between two supports of the scalar potentials
as the distances between the scatterers go to infinity. We analyze how
the AB effect influences the location of resonances. The result heavily
depends on the width between the two obstacles as well as on the mag-
netic fluxes. The critical case is that the width is comparable to the
square root of the distance between the supports of the two potentials.

1. Introduction

In quantum mechanics, a vector potential is said to have a direct sig-
nificance to particles moving in a magnetic field. This quantum effect is
known as the Aharonov–Bohm effect (AB effect) ([1]). This is the third pa-
per on the AB effect in resonances of magnetic Schrödinger operators in two
dimensions. In the first paper [7], we have considered a simple scattering
system consisting of three scatterers, one bounded obstacle and two scalar
potentials with compact supports at large separation, where the obstacle is
placed between two supports and shields completely the support of a mag-
netic field. The field does not influence particles from a classical mechanical
point of view, but quantum particles are influenced by the corresponding
vector potential which does not necessarily vanish outside the obstacle. The
resonances are shown to be generated near the real axis by the trajecto-
ries trapped between two supports of the scalar potentials as the distances
between the three scatterers go to infinity. We there have shown that the
location of the resonances is described in terms of the backward amplitudes
for scattering by the two scalar potentials and it depends heavily on the
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magnetic flux of the field. In the second paper [9], we have discussed what
happens in the case of two obstacles, where these obstacles are horizontally
placed between the supports of the two scalar potentials. The obtained re-
sults depend on the ratios of the distances between the four scatters largely
separated from one another as well as on the magnetic fluxes of the two
fields. In the present paper, we study the case when the two obstacles are
vertically placed between the supports of the two scalar potentials. This
system yields a two dimensional model of toroidal scattering in three di-
mensions. In the vertical case, the width between the two obstacles plays
an important role. For example, the AB effect is not observed in the sys-
tem with the total flux vanishing, provided that the width is too large or
too small in comparison with the distance between the supports of the two
scalar potentials.

We set up our problem. We always work in the two dimensional space
R

2 with generic point x = (x1, x2), and we write

H(A,V ) = (−i∇−A)2 + V =

2
∑

j=1

(−i∂j − aj)
2 + V, ∂j = ∂/∂xj ,

for the magnetic Schrödinger operator with A = (a1, a2) : R2 → R
2 as a

vector potential and V : R2 → R as a scalar potential. Let b± ∈ C∞
0 (R2)

be two given magnetic fields with the fluxes

α± = (2π)−1

∫

b±(x) dx,

where the integral with no domain attached is taken over the whole space.
We assume that the support of b± satisfies ,

(1.1) supp b± ⊂ O± ⊂ B = {|x| < 1}

for some simply connected bounded obstacle O±, where O± has the smooth
boundary ∂O± and the origin as an interior point. We can take A±(x) to
be

(1.2) A±(x) = α±Φ(x) ∈ C
∞(Ω± → R

2)

for the vector potential corresponding to b±, where Ω± = R
2 \ O± and Φ(x)

is defined by

(1.3) Φ =
(

−x2/|x|
2, x1/|x|

2
)

= (−∂2 log |x|, ∂1 log |x|) .

As is easily seen, Φ defines the δ–like magnetic field (solenoidal field)

∇× Φ = ∆ log |x| = 2πδ(x)

with center at the origin, when considered over the whole space R
2. As-

sumption (1.1) means that the field b± is entirely shielded by the obstacle
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O±, although the corresponding vector potential A± does not necessarily
vanish outside O±.

Let V± ∈ C∞
0 (R2) with suppV± ⊂ B. For d≫ 1, we set

(1.4) d− = (−κ−d, 0), d+ = (κ+d, 0), κ± > 0, κ− + κ+ = 1,

so that |d+ − d−| = d for the distance between the two centers d− and d+.
Then we define

(1.5) Vd(x) = V−(x− d−) + V+(x− d+) = V−d(x) + V+d(x).

We further set

(1.6) ρ± = (0,±κd1/2), κ > 0,

and define

(1.7) Aρ(x) = A−(x− ρ−) +A+(x− ρ+) = A−ρ(x) +A+ρ(x)

over the exterior domain

(1.8) Ωρ = R
2 \
(

O−ρ ∪ O+ρ

)

, O±ρ = {x : x− ρ± ∈ O±} .

We now consider the self–adjoint operator

(1.9) Hd = H(Aρ, Vd), D(Hd) = H2(Ωρ) ∩H
1
0 (Ωρ),

in L2(Ωρ) under the zero boundary conditions, where H1
0 (W ) and H2(W )

stand for the usual Sobolev spaces over a region W . We know that the
resolvent

R(ζ;Hd) = (Hd − ζ)−1 : L2(Ωρ) → L2(Ωρ), Re ζ > 0, Im ζ > 0,

is meromorphically continued from the upper half plane of the complex plane
to the lower half plane across the positive real axis where the continuous
spectrum of Hd is located. Then R(ζ;Hd) with Im ζ ≤ 0 is well defined as an
operator from L2

comp(Ω) to L
2
loc(Ω) in the sense that χR(ζ;Hd)χ : L2(Ωρ) →

L2(Ωρ) is bounded for every χ ∈ C∞
0 (Ωρ), where L2

comp(W ) denotes the
space of square integrable functions with compact support in the closure
W of a region W ⊂ R

2 and L2
loc(W ) denotes the space of locally square

integrable functions over W . The resonances of Hd are defined as the poles
of R(ζ;Hd) in the lower half plane (the unphysical sheet). This is shown
by use of the complex scaling method [4, 5, 6]. Our aim is to study how
the resonances are generated near the real axis by the trajectories trapped
between the two centers d− and d+ as d = |d+ − d−| → ∞ and how the AB
effect influences the location of the resonances.

The obtained result is formulated in terms of the backward amplitudes
by the potentials V±. Let K0 = −∆ be the free Hamiltonian and let K± be
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the Schrödinger operator defined by

(1.10) K± = K0 + V± = −∆+ V±, D(K0) = D(K±) = H2(R2).

We denote by f±(ω → θ;E) the amplitude for scattering from the incident
direction ω ∈ S1 to the final one θ at energy E > 0 for the pair (K0,K±).
These amplitudes admit the analytic extensions f±(ω → θ; ζ) in a complex
neighborhood of the positive real axis as a function of E.

We now fix E0 > 0 and take a complex neighborhood

(1.11) Dd =

{

ζ : |Re ζ − E0| < δ0E0, |Im ζ| < (1 + 2δ0)E
1/2
0

(

log d

d

)}

for δ0, 0 < δ0 ≪ 1, small enough. We define

(1.12) π±(ζ) = (1− I0(ζ)) cos((α+ + α−)π) + I0(ζ) exp(±i(α+ − α−)π)

over Dd, where

(1.13) I0(ζ) = (2/π)1/2 e−iπ/4
∫ τ

0
eit

2/2 dt

with τ = τ(ζ) = κ (1/κ− + 1/κ+)
1/2 ζ1/4, while the branch ζ1/2 is taken in

such a way that Re ζ1/2 > 0 for Re ζ > 0, and the contour is taken to be the
segment from 0 to τ (although the integral does not depend on the contour).
For the direction ω1 = (1, 0), we further define

(1.14) h(ζ; d) =

(

e2ikd

d

)

f−(−ω1 → ω1; ζ)f+(ω1 → −ω1; ζ)π+(ζ)π−(ζ)

with k = ζ1/2. We always use the notation k with the meaning ascribed here.
Loosely speaking, the resonances in Dd of Hd are approximately determined
by the solutions to the equation h(ζ; d) = 1.

We shall formulate the obtained result more precisely. If ζ ∈ Dd, then

(1.15) 2 Im k = 2 Im (Re ζ + iIm ζ)1/2 = Im ζ/ (Re ζ)1/2 +O
(

|Im ζ|3
)

and also we have

(1.16) (Re ζ)1/2 = E
1/2
0

(

1 + (Re ζ − E0) /(2E0) +O(δ20)
)

with |Re ζ − E0| < δ0E0. Thus we can take δ0 > 0 in (1.11) so small that

(1.17) dδ0 <
∣

∣

∣
exp(2ikd)

∣

∣

∣
/d < d3δ0 , d≫ 1,

on the bottom of Dd (Im ζ = − (1 + 2δ0)E
1/2
0 ((log d) /d)). This implies

that the curve defined by |h(ζ; d)| = 1 with |Re ζ − E0| < δ0E0 is completely
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contained in Dd, provided that f±(±ω1 → ∓ω1;E0) 6= 0 and π±(E0) 6= 0.
We denote by

{

ζj(d)
}

, ζj(d) ∈ Dd, Re ζ1 < Re ζ2 < · · · < Re ζNd
,

the solutions to the equation

(1.18) h(ζ; d) = 1.

We know (see Lemma 3.3) that ζj(d) behaves like

Im ζj(d) ∼ −E
1/2
0 ((log d)/d) , Re (ζj+1(d) − ζj(d)) ∼ 2πE

1/2
0 /d

for d ≫ 1. With the notation above, we are now in a position to state the
main theorem.

Theorem 1.1. Let the notation be as above. Assume that π±(E0) 6= 0 and

f±(±ω1 → ∓ω1;E0) 6= 0, ω1 = (1, 0),

at energy E0 > 0. Then we can take δ0 > 0 so small that the neighborhood
Dd defined by (1.11) has the following property: For any ε > 0 small enough,
there exists dε ≫ 1 such that for d > dε, Hd has the resonances

{

ζres,j(d)
}

, ζres,j(d) ∈ Dd, Re ζres,1(d) < · · · < Re ζres,Nd
(d),

in the neighborhood
{

ζ ∈ Dd : |ζ − ζj(d)| < ε/d
}

and the resolvent R(ζ;Hd) is analytic over Dd \
{

ζres,1(d), · · · , ζres,Nd
(d)
}

as a function with values in operators from L2
comp(Ωρ) to L

2
loc(Ωρ).

We shall discuss the scattering system with the total flux α+ + α− =
0 vanishing as a particular case of the theorem above. Such a system is
important from a practical point of view as well as from a theoretical point
of view, because it can be considered to be the two dimensional model for
the toroidal scattering in three dimensions. If we set α+ = α and α− = −α,
then π±(ζ) takes the form

π±(ζ) = 1± (8/π)1/2eiπ/4e±iαπ sin(απ)

∫ τ

0
eis

2/2 ds

with τ = τ(ζ) as in (1.13), and the location of the resonances is approxi-
mately determined from the equation h(ζ; d) = 1 as in Theorem 1.1.

The proof of Theorem 1.1 is done by analyzing the asymptotic properties
along forward directions of the resolvent kernels of magnetic Schrödinger
operators with two solenoids. The analysis uses the results obtained by
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[8]. The resolvent kernel with one solenoid is represented in terms of an
integral in the complex plane, but it grows exponentially at infinity for
spectral parameters in the lower half plane. We also make use of the complex
scaling method developed by [3]. This method makes the composition of one
solenoid kernels convergent and enables us to construct the kernels for two
solenoids. The main body of the paper is devoted to the construction of
two solenoid kernels and to the analysis on the asymptotic properties along
forward directions of such kernels.

We end the section by making a brief comment on the case that the
centers ρ± are located at ρ± = (0,−κdp) with p 6= 1/2 in the scattering
system with the total flux vanishing. If 0 < p < 1/2, then the width 2κdp

between the obstacles O−ρ and O+ρ is small in comparison with the distance
d = |d+− d−| between the two centers, and a main contribution comes from
the closed trajectories enclosing the two obstacles, so that the phase factor
of the wave function along such trajectories is not changed in the scattering
system with the total flux vanishing. In fact, the integral interval [0, τ ]
shrinks (κ→ 0), and π+(ζ) = π−(ζ) = 1. Thus the AB effect is not observed
in the location of the resonances. If, conversely, 1/2 < p < 1, then the width
is large, and a main contribution comes from the closed trajectories passing
between the two obstacles. In this case, the integral interval [0, τ ] expands
to [0,∞) (κ → ∞), and π±(ζ) is calculated as π±(ζ) = e±2iαπ by making
use of the formula

∫ ∞

0
eis

2/2 ds = (π/2)1/2eiπ/4.

As a result, π−(ζ)π+(ζ) = 1, and the AB effect is not observed in the case
1/2 < p < 1 either. The AB effect for resonances is observed in the critical
case p = 1/2 only.

2. Asymptotic properties of resolvent kernel

We write R(ζ;T ) for the resolvent (T − ζ)−1 of the operator T acting on
L2(W ), W being a domain of R2. We use the same notation R(ζ;T ) for
the resolvent meromorphically extended from the upper half plane of the
complex plane to the lower half one. We also take µ to be

(2.1) 2/5 < µ < 1/2
(

< 1− µ
)

close enough to 1/2. We use the notation µ with the meanings ascribed here
throughout the entire discussion. We now define

(2.2) H0d = H(Aρ, 0), D(H0d) = H2(Ωρ) ∩H
1
0 (Ωρ),
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where Aρ and Ωρ are defined by (1.7) and (1.8), respectively. The next
theorem is obtained as an immediate consequence of [3, Theorem 1.1]. For
completeness, we give its proof at the end of this section.

Theorem 2.1. Let Dd be defined by (1.11). Then

R(ζ;H0d) : L
2
comp(Ωρ) → L2

loc(Ωρ)

is analytic over Dd as a function with values in operators for |d| ≫ 1.

We formulate the two propositions on the asymptotic properties of the re-
solvent kernel R(ζ;H0d)(x, y) of R(ζ;H0d) with ζ ∈ Dd. These propositions
play an important role in proving Theorem 1.1. In what follows, we denote

by H0(z) = H
(1)
0 (z) the Hankel function of the first kind and of order zero

and by γ(ω; θ) the azimuth angle from ω ∈ S1 to θ.

Proposition 2.1. Let d± be as in (1.4). Denote by j±d the characteristic
function of the unit disk

(2.3) B±d =
{

|x− d±| < 1
}

and define c0(ζ) by

(2.4) c0(ζ) = (8π)−1/2 eiπ/4ζ−1/4.

Assume that π±(E0) 6= 0 for the function π±(ζ) defined by (1.12). Then the
operator j±dR(ζ;H0d)j∓d acting on L2(Ωρ) admits the decomposition

j±dR(ζ;H0d)j∓d = R±0(ζ; d) +R±1(ζ; d)

where R±0(ζ; d) is the integral operator with the kernel

R±0(ζ, d)(x, y) = c0(ζ)π±(ζ)e
ik|x1−y1||x1 − y1|

−1/2

for (x, y) ∈ B±d ×B∓d, and the operator R±1(ζ; d) satisfies ‖R±1(ζ; d)‖ =
O(d−ν) uniformly in ζ ∈ Dd for some ν > 0.

Proposition 2.2. Let j̃±d denote the characteristic function of

(2.5) B̃±d =
{

dδ < |x− d±| < 2dδ
}

for 0 < δ ≪ 1 fixed small enough. Write x±ρ = x−ρ± and x̂±ρ = x±ρ/|x±ρ|.

Then the operator j+R(ζ;H0d)j̃+ : L2(Ωρ) → L2(Ωρ) admits the decomposi-
tion

j+dR(ζ;H0d)j̃+d = R̃0(ζ; d) + R̃1(ζ; d),

where the kernel R̃0(ζ; d)(x, y) of R̃0(ζ; d) is defined by

R̃0(ζ; d)(x, y) = (i/4)H0(k|x− y|)a0(x, y; d), (x, y) ∈ B+d × B̃+d,
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with

(2.6) a0 = exp
(

iα+(γ(x̂+ρ;−ŷ+ρ)− π) + iα−(γ(x̂−ρ;−ŷ−ρ)− π)
)

and R̃1(ζ; d) obeys the bound ‖R̃1(ζ; d)‖ = O(d−ν) uniformly in ζ ∈ Dd for
some ν > 0. A similar decomposition remains true for j−dR(ζ;H0d)j̃−d.

We prove the above propositions in section 5. The proof is based on
the gauge transformation and on the complex scaling method. We end the
section by proving Theorem 2.1.

Proof of Theorem 2.1. Assume that ζ ∈ Dd, so that

|Im k| =
∣

∣Im ζ1/2
∣

∣ = O ((log d)/d) .

Since ρ = |ρ+ − ρ−| = 2κd1/2 by (1.6), we have
∣

∣

∣
e2ikρ/ρ

∣

∣

∣
= O

(

ρ−1
)

uni-

formly in ζ ∈ Dd. Hence it follows from [3, Theorem 1.1] that the resolvent
R(ζ;H0d) is analytic over Dd as a function with values in operators from
L2
comp(Ωρ) to L

2
loc(Ωρ). Thus the proof is complete. �

3. Proof of Theorem 1.1

This section is devoted to proving the main theorem. Once the two propo-
sitions in the previous section are established, the theorem is verified in ex-
actly the same way as [9, Theorem 1.1]. We give only a sketch for a proof.

We fix the new notation. Let ϕ0(x;ω,E) be the plane wave defined by

ϕ0(x;ω,E) = exp
(

iE1/2x · ω
)

with ω as an incident direction at energy E > 0. Let K0 = −∆ and K± be
as in (1.10). Then we define

(3.1) ϕ±(x;ω, ζ) =
[

(Id−R(ζ;K±)
∗V±)ϕ0(·;ω, ζ)

]

(x).

The function ϕ±(x;ω, ζ) solves the equation
(

K± − ζ
)

ϕ±(x;ω, ζ) = 0. If,
in particular, ζ = E > 0, then ϕ±(x;ω,E) turns out to be the incoming
eigenfunction of K±, and the conjugate function ϕ±(x;ω, ζ) of ϕ±(x;ω, ζ)

is analytic in ζ. It should be noted that ϕ±(x;ω, ζ) itself is not analytic.
We also note that ϕ+(x;ω,E) does not denote the outgoing eigenfunction
at energy E > 0 but the incoming eigenfunction of the Schrödinger operator
K+.

Let j(x) be the characteristic function of the unit disk B = {|x| < 1}.
Then

j±d(x) = j (x− d±) = j (x±d) , x±d = x− d±,
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defines the characteristic function of B±d defined by (2.3). We introduce
the auxiliary operator

(3.2) H±d = H(Aρ, V±d), D(H±d) = H2(Ωρ) ∩H
1
0 (Ωρ),

where V±d(x) = V±(x−d±) is as in (1.5) and V± is assumed to have support
in B. We recall that the notation γ(x;ω) = γ(x̂;ω) denotes the azimuth
angle from ω to x̂ = x/|x|. We take a function γ0 ∈ C∞(R2 → R) such that

γ0(x) = α−γ(x̂−ρ;−ω2) + α+γ(x̂+ρ;ω2), ω2 = (0, 1),

on

Bd =
{

|x− d−| < |d−|/2
}

∪
{

|x− d+| < |d+|/2
}

and that it satisfies ∂nxγ0 = O(|x|−|n|) as |x| → ∞, where x̂±ρ = x±ρ/|x±ρ|
with x±ρ = x− ρ±. Since ∇γ(x;ω) = Φ(x) for Φ defined by (1.3), it follows
from (1.7) that

∇γ0 = α−Φ(x− ρ−) + α+Φ(x− ρ+) = A−ρ +A+ρ = Aρ

on Bd. We further introduce the auxiliary operator

K̃±d = eiγ0K±de
−iγ0 = H(∇γ0, V±d),

where K±d = K0 + V±d with D(K±d) = H2(R2). The operator K̃±d coin-
cides with H±d over Bd. If we make use of these auxiliary operators and of
Proposition 2.2, then the lemma below is obtained by modifying slightly the
argument in the proof of [9, Lemmas 3.1 and 3.2]. We skip its proof.

Lemma 3.1. Let the notation be as above and let Dd be defined by (1.11).
Define the operator Q±(ζ; d) by

Q±(ζ; d) = V±dR(ζ;H0d)j±d : L
2(B±d) → L2(B±d)

for ζ ∈ Dd, where the multiplication j±d is considered to be the extension to
L2(Ωρ) from L2(B±d). Then

Id+Q±(ζ; d) : L
2(B±d) → L2(B±d)

has the inverse bounded uniformly in d and ζ ∈ Dd. Moreover, we have the
relation

R(ζ;H±d)j±d = R(ζ;H0d)j±d (Id+Q±(ζ; d))
−1 : L2(B±d) → L2

loc(Ωρ)

for ζ ∈ Dd.

By the resolvent identity, it follows from Theorem 2.1 and Lemma 3.1
that the resolvent R(ζ;H±d) is represented as

(3.3) R(ζ;H±d) =
(

Id−R(ζ;H±d)V±d

)

R(ζ;H0d) : L
2
comp(Ωρ) → L2

loc(Ωρ)
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for ζ ∈ Dd and is analytic there. The next lemma is also shown in almost
the same way as in the proof of [9, Lemma 3.3]. The proof uses Proposition
2.1.

Lemma 3.2. Define

(3.4) G(ζ; d) = V+dR(ζ;H−d)V−dR(ζ;H+d)j+d : L
2(B+d) → L2(B+d)

and write x+d = x− d+. Then G(ζ; d) admits the decomposition

G(ζ; d) = G0(ζ; d) +G1(ζ; d),

where the kernel G0(ζ, d)(x, y) of G0(ζ; d) is defined by

G0 = −c0(ζ)π−(ζ)π+(ζ)
(

e2ikd/d
)

f−(−ω1 → ω1; ζ)

× V+(x+d)ϕ0(x+d;ω1, ζ)ϕ+(y+d;−ω1, ζ)j(y+d)

for (x, y) ∈ B+d × B+d, and G1(ζ; d) is analytic in ζ ∈ Dd with values
in bounded operators acting on L2(B+d) and obeys ‖G1(ζ; d)‖ = O

(

d−ν
)

uniformly in ζ ∈ Dd for some ν > 0.

The lemma below is proved in the same way as in the proof of [7, Lemma
4.6].

Lemma 3.3. Assume the same assumptions as in Theorem 1.1. Let h(ζ; d)
be defined by (1.14). Then the equation h(ζ; d) = 1 has a finite number of
the solutions

{

ζj(d)
}

1≤j≤Nd

, ζj(d) ∈ Dd, Re ζ1(d) < · · · < Re ζNd
(d),

in Dd, and each solution ζj(d) has the properties
∣

∣

∣
Im ζj(d) + E

1/2
0 (log d)/d

∣

∣

∣
< δ0E

1/2
0 (log d)/d,

∣

∣

∣
Re (ζj+1(d)− ζj(d)) − 2πE

1/2
0 /d

∣

∣

∣
< 2πδ0E

1/2
0 /d

for d≫ 1.

Proof of Theorem 1.1. Recall the notation H±d = H(Aρ, V±d) from (3.2).
We know by (3.3) that R(ζ;H±d) : L

2
comp(Ωρ) → L2

loc(Ωρ) is well defined for
ζ ∈ Dd and is analytic there. We start with the relation

(Hd − ζ)R(ζ;H−d) = Id+ V+dR(ζ;H−d).

We regard the operator on the right side as an operator acting on L2(B+d).
By the resolvent identity, the operator on the right side equals

Id+ V+dR(ζ;H−d)j+d =

Id+ V+dR(ζ;H0d)j+d − V+dR(ζ;H−d)V−dR(ζ;H0d)j+d.
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By Lemma 3.1, it is further equal to

(3.5) Id+ V+dR(ζ;H−d)j+d = (Id−G(ζ; d)) (Id+Q+(ζ; d)) ,

where G(ζ; d) is again defined by

G(ζ; d) = V+dR(ζ;H−d)V−dR(ζ;H+d)j+d : L
2(B+d) → L2(B+d)

as in Lemma 3.2. If one is not the eigenvalue of G(ζ; d) at ζ = ζ0(d) ∈
Dd, then the resolvent R(ζ;Hd) in question turns out to be analytic in a
neighborhood of ζ0 as a function with values in operators from L2

comp(Ωρ)

to L2
loc(Ωρ). In fact, R(ζ;Hd) is represented as

R(ζ;Hd) = R(ζ;H−d)

− R(ζ;H−d)j+d (Id+ V+dR(ζ;H−d)j+d)
−1 V+dR(ζ;H−d).

Thus the problem is reduced to specifying ζ ∈ Dd at which G(ζ; d) has one
as an eigenvalue and to showing that this point is really the pole of R(ζ;Hd)
in Dd.

Lemma 3.2 enables us to write Id−G(ζ; d) as

(3.6) Id−G(ζ; d) = (Id− G̃(ζ; d))(Id −G1(ζ; d)) : L
2(B+d) → L2(B+d),

where G1(ζ; d) is as in Lemma 3.2 and G̃(ζ; d) is defined by

G̃(ζ; d) = G0(ζ; d)(Id −G1(ζ; d))
−1 = G0(ζ; d)(Id + G̃1(ζ; d))

with G̃1(ζ; d) = G1(ζ; d)(Id −G1(ζ; d))
−1. We write ( , ) for the L2 scalar

product in L2(R2). We compute the integral

c0(ζ)

∫

V+(x+d)ϕ0(x+d;ω1, ζ)ϕ+(x+d;−ω1, ζ) dx(3.7)

= c0(ζ)
(

V+ϕ0(·;ω1, ζ), (Id−R(ζ;K+)
∗V+)ϕ0(·;−ω1, ζ)

)

= c0(ζ)
(

V+ (Id−R(ζ;K+)V+)ϕ0(·;ω1, ζ), ϕ0(·;−ω1, ζ)
)

= −f+(ω1 → −ω1; ζ)

with x+d = x− d+ again, and we set

h1(ζ; d) = −c0(ζ)
(

e2ikd/d
)

π−(ζ)π+(ζ)f−(−ω1 → ω1; ζ)×

×
(

G̃1(ζ; d)V+dϕ0(· − d+;ω1, ζ), j+dϕ+(· − d+;−ω1, ζ)
)

.

If we take δ0 > 0 small enough in Dd, then it follows from (1.17) and Lemma
3.2 that h1(ζ; d) is analytic over Dd and obeys |h1(ζ; d)| = O (d−ν) uniformly

in ζ for some ν > 0. The only nonzero eigenvalue of the operator G̃(ζ; d) of
rank one is given by h(ζ; d) + h1(ζ; d), where h(ζ; d) is defined by (1.14).
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We apply Rouché’s theorem to the equation

(3.8) h(ζ; d) + h1(ζ; d) = 1

over Dd. Let
{

ζj(d)
}

1≤j≤Nd

be as in Lemma 3.3 and let

Cjε =
{

|ζ − ζj(d)| = ε/d
}

, Djε =
{

|ζ − ζj(d)| < ε/d
}

for ε > 0 fixed arbitrarily but sufficiently small. We may assume Djε ⊂ Dd

for d ≫ 1 by expanding Dd slightly, if necessary. Since h (ζj(d); d) = 1, the
derivative h′(ζ; d) behaves like

h′ (ζj(d); d) = iζj(d)
−1/2d

(

1 +O(d−1)
)

,

at ζ = ζj(d) ∈ Dd, so that
∣

∣h′ (ζj(d); d)
∣

∣ ≥ c1d for some c1 > 0. Hence it
follows that

|h(ζ; d) − 1| ≥ c2ε

on Cjε for some c2 > 0. Thus equation (3.8) has a unique solution ζres,j(d)
in Djε for d≫ 1.

Once the location ζres,j(d) is determined as above, we can show in exactly
the same way as in the proof of [7, Theorem 1.1] (see step (3) there) that it
really turns out to be the resonance of R(ζ;Hd). We do not go into details.
Thus the proof of the theorem is complete. �

4. Complex scaling method

The remaining sections are devoted to proving Propositions 2.1 and 2.2
which have remained unproved in section 2. The main body of the present
work is occupied by the proof of these propositions. The proof is done by
constructing the resolvent kernel R(ζ;H0d)(x, y) with the spectral parameter
ζ in the lower half plane. To do this, we make use of the complex scaling
method to compose the Green kernel constructed for each obstacle O±ρ.
Here we explain a strategy based on this method.

We begin by fixing the new notation. We introduce a smooth non–
negative cut–off function χ ∈ C∞

0 [0,∞) with the properties

(4.1) 0 ≤ χ ≤ 1, suppχ ⊂ [0, 2], χ = 1 on [0, 1],

and we take smooth cut–off functions χ∞ and χ± over R with the following
properties : 0 ≤ χ∞, χ± ≤ 1 and

χ∞(t) = 1− χ(|t|),

χ+(t) = 1 for t ≥ 1, χ+(t) = 0 for t ≤ −1, χ−(t) = 1− χ+(t).



AHARONOV–BOHM EFFECT IN RESONANCES III 91

We often use these functions without further references throughout the fu-
ture discussion. We again set ρ = |ρ+ − ρ−| = 2κd1/2 for ρ± = (0,±κd1/2)

in (1.6), so that d =
(

ρ/2κ
)2

∼ ρ2.

We define the mapping jρ(x) : R
2 → C ×R by

(4.2) jρ(x1, x2) = (x1 + iηρ(x1)x1, x2) , ηρ(t) = L0

(

(log ρ)/ρ2
)

χ∞(t/d),

for L0 ≫ 1 fixed large enough, and we consider the complex scaling mapping

(4.3) (Jρf) (x) =
[

det (∂jρ/∂x)
]1/2

f(jρ(x))

associated with jρ(x). The Jacobian det (∂jρ/∂x) of jρ(x) does not vanish for
ρ≫ 1, and it is easily seen that Jρ is a one-to-one mapping. For notational
brevity, we now write

Pρ = H(Aρ, 0), D(Pρ) = H2(Ωρ) ∩H
1
0 (Ωρ)

for the operator H0d under consideration. Since the coefficients of Pρ are
analytic over Ωρ, we can define the operator

(4.4) Qρ = JρPρJ
−1
ρ .

This becomes a closed operator in L2(Ωρ) with the same domain as Pρ, but
it is not necessarily self–adjoint. The future discussion does not require the
explicit form of Qρ. We construct the resolvent kernel R(ζ;Qρ)(x, y) with
ζ ∈ Dd instead of R(ζ;Pρ)(x, y). The mapping jρ acts as the identity over

the strip
{

x = (x1, x2) : |x1| < d
}

and hence we have the relation

R(ζ;Pρ)(x, y) = R(ζ;Pρ)(jρ(x), jρ(y)) = R(ζ;Qρ)(x, y)

for (x, y) ∈ B±d × B∓d or for (x, y) ∈ B±d × B̃±d. Thus the necessary
information can be obtained through the kernel R(ζ;Qρ)(x, y).

We introduce the auxiliary operators

(4.5) P±ρ = H(A±ρ, 0), D(P±ρ) = H2(Ω±ρ) ∩H
1
0 (Ω±ρ),

where A±ρ(x) is defined in (1.7), and Ω±ρ = R
2 \ O±ρ. We define the com-

plex scaled operator as in (4.4) for these auxiliary operators P±ρ. Recall
that γ(x;ω) denotes the azimuth angle from ω ∈ S1 to x̂ = x/|x|. The
potential Φ(x) defined by (1.3) satisfies Φ(x) = ∇γ(x;ω). Hence it follows
that

A±ρ(x) = α±∇γ(x− ρ±;±ω2), ω2 = (0, 1).

If we take arg z, 0 ≤ arg z < 2π, to be a single valued function over the
complex plane slit along the direction ω2, then the angle function γ(x;ω2)
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is represented as

γ(x;ω2) = −
i

2

(

log(x1 + ix2)− log(−x1 + ix2)
)

+ π,

so that it is well defined for the complex variables also. Thus we can define

γ(jρ(x);ω2) =
1

2

(

(arg(b+ρ(x)) − arg(b−ρ(x)
)

+ π −
i

2
log |bρ(x)|,

where

b+ρ(x) = x1 + iηρ(x1)x1 + ix2, b−ρ(x) = −x1 − iηρ(x1)x1 + ix2,

and bρ(x) = b+ρ(x)/b−ρ(x). The function γ(jρ(x);−ω2) is similarly defined
by taking arg z to be a single valued function over the complex plane slit
along the direction −ω2.

We define g±ρ(x) by

(4.6) g±ρ(x) = α±χ∓

(

(32x2/ρ)∓ 13
)

γ(jρ(x)− ρ±;±ω2)

and g0ρ(x) by

(4.7) g0ρ(x) = g−ρ(x) + g+ρ(x).

By definition, supp g−ρ ⊂ {x : x2 > −7ρ/16} and

g−ρ(x) = α−γ(jρ(x)− ρ−;−ω2) on Σ+ = {x : x2 > −3ρ/8}.

Hence exp(ig−ρ) acts as

exp(ig−ρ)f(x) =
(

Jρ exp(iα−γ(x− ρ−;−ω2))J
−1
ρ f

)

(x)

on functions f(x) with support in Σ+. On the other hand, g+ρ(x) has
support in {x : x2 < 7ρ/16} and

g+ρ(x) = α+γ(jρ(x)− ρ+;ω2) on Σ− = {x : x2 < 3ρ/8},

so that exp(ig+ρ) acts as

exp(ig+ρ)f(x) =
(

Jρ exp(iα+γ(x− ρ+;ω2))J
−1
ρ f

)

(x)

on functions f(x) with support in Σ−. We take these relations into account
to define the following complex scaled operator

(4.8) Q±ρ = exp(ig∓ρ)
(

JρP±ρJ
−1
ρ

)

exp(−ig∓ρ)

for P±ρ defined by (4.5), where Q±ρ has the same domain as P±ρ. Since

Q+ρ = JρH(α−∇γ(x− ρ−;−ω2) +A+ρ)J
−1
ρ

on Σ+, we have

(4.9) Q+ρ = Qρ on Σ+ = {x : x2 > −3ρ/8} .

Similarly we have

(4.10) Q−ρ = Qρ on Σ− = {x : x2 < 3ρ/8} .



AHARONOV–BOHM EFFECT IN RESONANCES III 93

The function g0ρ(x) defined by (4.7) satisfies

g0ρ = α−γ(jρ(x)− ρ−;−ω2) + α+γ(jρ(x)− ρ+;ω2)

on Σ0 = {x : |x2| ≤ ρ/4}. If we define the operator Q0ρ by

(4.11) Q0ρ = exp(ig0ρ)
(

JρK0J
−1
ρ

)

exp(−ig0ρ), K0 = −∆,

as a closed operator with domain D(Q0ρ) = H2(R2), then we obtain

(4.12) Q0ρ = Q±ρ = Qρ on Σ0 = {x : |x2| ≤ ρ/4} .

We set χ±ρ(x) = χ±(16x2/ρ) and take χ̃±ρ ∈ C∞(R2) in such a way that

χ̃±ρ has a slightly larger support than χ±ρ, χ̃±ρχ±ρ = χ±ρ.

We may assume that

(4.13) χ̃±ρj+d = j+d, χ̃±ρj−d = j−d

for the characteristic function j±d of B±d =
{

|x− d±| < 1
}

, and similarly

for the characteristic function j̃±d of B̃±d. For the exterior domain Ω±ρ =

R
2 \O±ρ, we regard χ̃±ρ as the extension from L2(Ωρ) to L

2(Ω±ρ) and χ±ρ

as the restriction to L2(Ωρ) from L2(Ω±ρ). Then we define

(4.14) Λ(ζ; ρ) = χ−ρR(ζ;Q−ρ)χ̃−ρ + χ+ρR(ζ;Q+ρ)χ̃+ρ, ζ ∈ Dd,

as an operator from L2
comp(Ωρ) to L

2
loc(Ωρ). We know (see [3]) that R(ζ;Q±ρ)

is well–defined as an operator from L2
comp(Ω±ρ) to L2

loc(Ω±ρ) for ζ ∈ Dd.
Since Qρ = Q±ρ on suppχ±ρ by (4.9) and (4.10), we compute

(Qρ − ζ)Λ = (Q−ρ − ζ)χ−ρR(ζ;Q−ρ)χ̃−ρ + (Q+ρ − ζ)χ+ρR(ζ;Q+ρ)χ̃+ρ

= Id+ [Q−ρ, χ−ρ]R(ζ;Q−ρ)χ̃−ρ + [Q+ρ, χ+ρ]R(ζ;Q+ρ)χ̃+ρ.

The function χ±ρ depends on x2 only, and the derivative χ′
±ρ has support

in

(4.15) Π0 =
{

x = (x1, x2) : |x2| < ρ/16
}

.

By (4.12), Q±ρ = Q0ρ on Π0, so that both the commutators [Q−ρ, χ−ρ] and
[χ+ρ, Q+ρ] on the right side equal [Q0ρ, χ−ρ]. Hence we have

(4.16) (Qρ − ζ)Λ(ζ; ρ) = Id+ Γ0 (R(ζ;Q−ρ)χ̃−ρ −R(ζ;Q+ρ)χ̃+ρ) ,

where

(4.17) Γ0 = [Q0ρ, χ−ρ], χ−ρ = χ−(16x2/d).

We define T (ζ; ρ) by

(4.18) T (ζ; ρ) = Γ0

(

R(ζ;Q−ρ)−R(ζ;Q+ρ)
)

p0
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as an operator acting on L2(Π0), where the multiplication by the charac-

teristic function p0(x)
(

= p0(x2)
)

of Π0 is regarded as the extension from

L2(Π0) to L
2(Ω−ρ) or to L

2(Ω+ρ). If

(4.19) Id+ T (ζ; ρ) : L2(Π0) → L2(Π0)

is shown to have the inverse bounded uniformly in ζ ∈ Dd, then it follows
that

R(ζ;Qρ) = Λ(ζ; ρ)−(4.20)

Λ(ζ; ρ)p0 (Id+ T )−1 Γ0

(

R(ζ;Q−ρ)χ̃−ρ −R(ζ;Q+ρ)χ̃+ρ

)

.

The proof of Propositions 2.1 and 2.2 is based on this representation.

5. Resolvent kernels of distorted operators

The aim of this section is to study the behavior at infinity of the resolvent
kernel R(ζ;Q±ρ)(x, y) for the operator Q±ρ defined by (4.8).

Let O be a simply connected bounded domain in R
2. We assume that

the origin is included in O as an interior point and that the boundary ∂O
is smooth. We consider the self–adjoint operator

(5.1) P = H(αΦ, 0), D(P ) = H1
0 (Ω) ∩H

2(Ω),

over the outside domain Ω = R
2 \ O under the zero Dirichlet boundary con-

ditions, where Φ(x) is the Aharonov–Bohm potential defined by (1.3). We
denote by R(ζ;P )(x, y) the kernel of the resolvent R(ζ;P ) with ζ ∈ Dd.

Proposition 5.1. Assume that ρ/c < x2, y2 < cρ for some c > 1, and let

ψρ(x, y) = ψ(jρ(x), jρ(y)), ψ(x, y) = γ(x;−ω2)− γ(y;−ω2),

for ω2 = (0, 1). Set

Q(x, y; ζ) = R(ζ;P )(jρ(x), jρ(y))

for ζ ∈ Dd. Then Q(x, y; ζ) admits the decomposition

Q(x, y; ζ) = exp(iαψρ(x, y))R(ζ;K0)(jρ(x), jρ(y)) +Rsc(ζ;P )(x, y)

and the analytic function Rsc(ζ;P )(x, y) over Dd satisfies the following es-
timates uniformly in ζ ∈ Dd.

(1) If |x1|+ |y1| > Ld = Lρ2 for L≫ 1 fixed arbitrarily, then

Rsc(ζ;P )(x, y) = O
(

(|x|+ |y|)−σL
)

for some σ > 0 independent of L, and a similar bound remains true for the
derivatives ∂Rsc(ζ;P )(x, y)/∂x2 and ∂Rsc(ζ;P )(x, y)/∂y2.
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(2) If |x1|+ |y1| < 2Ld and
∣

∣|ψ(x, y)| − π
∣

∣ > 1/L for L≫ 1 fixed above,
then Rsc(ζ;P )(x, y) takes the form

Rsc(ζ;P )(x, y) = exp(ikrρ(x))|x|
−1/2q0(x, y; ζ)|y|

−1/2 exp(ikrρ(y))

and q0(x, y; ζ) satisfies
∣

∣

∣
(∂/∂x)j (∂/∂y)l q0

∣

∣

∣
= O

(

ρ−(|j|+|l|)
)

, where

rρ(x) = r(jρ(x)), r(x) =
(

x21 + x22
)1/2

,

and similarly for rρ(y).

(3) If |x1|+ |y1| < 2Ld and
∣

∣|ψ(x, y)| − π
∣

∣ < 2/L for L≫ 1 fixed again,
then Rsc(ζ;P )(x, y) takes the form

Rsc(ζ;P )(x, y) = exp(ikrρ(x))q1(x, y; ζ) exp(ikrρ(y))

and q1(x, y; ζ) satisfies
∣

∣

∣
(∂/∂x)j (∂/∂y)l q1

∣

∣

∣
= O

(

ρε/2−(|j|+|l|)(1−ε)
)

with ε, 0 < ε≪ 1, fixed arbitrarily but small enough.

Remark 5. If −cρ < x2, y2 < −ρ/c for some c > 1, then the same state-
ments as above remain true for ψ(x, y) replaced with

ψ̃(x, y) = γ(x;ω2)− γ(y;ω2).

Sketch of proof. The proposition is proved in almost the same way as
Propositions 6.1, 6.2 and 6.3 in [3]. We give only a sketch for a proof.
We fix ε > 0 arbitrarily but small enough throughout the proof.

We skip the proof of statement (1). To prove statements (2) and (3), we
see from the arguments used for proving the propositions above that the
leading term of Rsc(ζ;P )(x, y) takes the form

(rρ(x) + rρ(y))
−1/2 exp

(

i[α]ψρ(x, y)
)

exp(ikrρ(x))q(x, y; ζ) exp(ikrρ(y))

with k = ζ1/2, where the Gauss notation [α] denote the greatest integer not
exceeding α and q(x, y; ζ) takes the integral form

q =

∫

exp
(

ikϕρ(p, x, y)
)

χ
(

ρ(1−ε)/2|p|
)(

ep + e−iψρ(x,y)
)−1

dp

with

ϕρ =
(

rρ(x)rρ(y)/(rρ(x) + rρ(y))
)

(cosh p− 1) .

We note that

k = ζ1/2 = (E + iη)1/2 = E1/2
(

1 + iO
(

(log ρ)/ρ2
)

+O
(

ρ−3
))
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for ζ ∈ Dd and cosh p− 1 = O(|p|2) = O
(

ρ−(1−ε)
)

. Since

rρ(x)rρ(y)

rρ(x) + rρ(y)
=

(

|x||y|

|x|+ |y|

)

(

1 +O
(

(log ρ)/ρ2
)

)

,

the function exp (ikϕρ(p, x, y)) is uniformly bounded, and also it follow that
∣

∣

∣
rρ(x)rρ(y)/(rρ(x) + rρ(y))

∣

∣

∣
> cρ

for some c > 0. If (x, y) fulfills the assumption of statement (2), then

ep+e−iψρ(x, y) is away from 0 uniformly in x, y and p with |p| < 2ρ−(1−ε)/2.
Thus the stationary phase method (or the method of steepest descent) yields
the desired form.

We move to statement (3). In this case, ep + e−iψρ(x, y) takes values
close to 0. It occurs when γ(x;−ω2) ∼ π/2 and γ(y;−ω2) ∼ 3π/2 or when
γ(x;−ω2) ∼ 3π/2 and γ(y;−ω2) ∼ π/2. We consider only the former case.
We set θ+ρ(x) = θ+(jρ(x)) and θ−ρ(y) = θ−(jρ(y)), where

θ+(x) = γ(x;−ω2)− π/2 > 0, θ−(y) = 3π/2 − γ(y;−ω2) > 0.

Then ψρ(x, y) = θ+ρ(x) + θ−ρ(y)− π, so that

ep + e−iψρ(x,y) ∼ p+ i (θ+ρ(x) + θ−ρ(y)) .

Since θ+(x) ∼ x2/|x| and θ−(y) ∼ y2/|y|, we have
∣

∣

∣
(∂/∂x)j θ+ρ(x)

∣

∣

∣
=
(

x2/|x|
)

O
(

ρ−|j|
)

and similarly for θ−ρ(y). This implies that
∣

∣

∣

∣

(∂/∂x)j (∂/∂y)n
(

ep + e−iψρ(x,y)
)−1

∣

∣

∣

∣

= O
(

ρ1−(|j|+|n|)
)

,

because
∣

∣

∣
ep + e−iψρ(x,y)

∣

∣

∣
≥ cρ−1 for some c > 0. We also have that

∣

∣

∣
(∂/∂x)j (∂/∂y)l exp (ikϕρ(p, x, y))

∣

∣

∣
= O

(

ρ−(|j|+|l|)(1−ε)
)

.

Thus the desired form is obtained. �

We recall that Q±ρ is defined by (4.8). The kernel R(ζ;Q±ρ)(x, y) of the
resolvent R(ζ;Q±ρ) has the representation

[

det(∂jρ/∂x)
]1/2

eig∓ρ(x)R(ζ;P±ρ)(x, y)e
−ig∓ρ(y)

[

det(∂jρ/∂y)
]1/2

for ζ ∈ Dd. We set ψ±ρ(x, y) = ψ±(jρ(x), jρ(y)), where

ψ±(x, y) = γ(x− ρ±;±ω2)− γ(y − ρ±;±ω2).

Then it follows from (4.6) and (4.7) that

α±ψ±ρ(x, y) + g∓ρ(jρ(x))− g∓ρ(jρ(y)) = g0ρ(jρ(x))− g0ρ(jρ(y))
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over Π0 × Π0. Thus the proposition below is obtained as a consequence of
(4.11) and Proposition 5.1 (see Remark 5 also).

Proposition 5.2. Let (x, y) ∈ Π0×Π0, so that |x2| < ρ/16 and |y2| < ρ/16.
Let ψ±ρ(x, y) be as above. Write x± = x − ρ± and y± = y − ρ± for ρ± =
(0,±κρ), and define

r±ρ(x) = r±(jρ(x)), r±(x) =
(

x21 + (x2 ∓ κρ)2
)1/2

,

and similarly for r±ρ(y). Then R(ζ;Q±ρ)(x, y) admits the decomposition

R(ζ;Q±ρ)(x, y) = R(ζ;Q0ρ)(x, y) +Rsc(ζ;Q±ρ)(x, y)

over Π0 × Π0, and the analytic function Rsc(ζ;Q±ρ)(x, y) over Dd satisfies
the following estimates uniformly in ζ ∈ Dd.

(1) If |x1|+ |y1| > Ld = Lρ2 for L≫ 1 fixed arbitrarily, then

Rsc(ζ;Q±ρ)(x, y) = O
(

(|x±|+ |y±|)
−σL

)

for some σ > 0 independent of L together with the derivatives

∂Rsc(ζ;Q±ρ)/∂x2, ∂Rsc(ζ;Q±ρ)/∂y2.

(2) If |x1|+|y1| < 2Ld and
∣

∣|ψ±(x, y)| − π
∣

∣ > 1/L for L ≫ 1 fixed above,
then Rsc(ζ;Q±ρ)(x, y) takes the form

Rsc(ζ;Q±ρ)(x, y) = eikr±ρ(x)|x±|
−1/2p±0(x, y; ζ)|y±|

−1/2eikr±ρ(y)

and p±0(x, y; ζ) satisfies
∣

∣

∣
(∂/∂x)j (∂/∂y)l p±0

∣

∣

∣
= O

(

ρ−(|j|+|l|)
)

.

(3) If |x1|+|y1| < 2Ld and
∣

∣|ψ±(x, y)| − π
∣

∣ < 2/L for L ≫ 1 fixed again,
then Rsc(ζ;Q±ρ)(x, y) takes the form

Rsc(ζ;Q±ρ)(x, y) = exp(ikr±ρ(x))p±1(x, y; ζ) exp(ikr±ρ(y))

and p±1(x, y; ζ) satisfies
∣

∣

∣
(∂/∂x)j (∂/∂y)l p±1

∣

∣

∣
= O

(

ρε/2−(|j|+|l|)(1−ε)
)

for ε > 0 fixed arbitrarily but small enough.

Let Rsc(ζ;Q±ρ)(x, y) be as in Proposition 5.2. We now denote byRsc(ζ;Q±ρ)
the integral operator with this kernel. Then we have

(5.2) R(ζ;Q±ρ) = R(ζ;Q0ρ) +Rsc(ζ;Q±ρ), ζ ∈ Dd,

as an operator from L2
comp(Π0) to L2

loc(Π0), and also it follows that the
operator T (ζ; d) defined by (4.18) takes the form

(5.3) T (ζ; d) = Γ0 (Rsc(ζ;Q−ρ)−Rsc(ζ;Q+ρ)) p0, ζ ∈ Dd.
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By Proposition 5.2, we see that T (ζ; d) is analytic in ζ ∈ Dd as a function
with values in bounded operators acting on L2(Π0) and obeys ‖T (ζ; d)‖ =
O (ρν) uniformly in ζ ∈ Dd for some ν > 0.

6. Proof of Propositions 2.1 and 2.2

The last section is devoted to proving Propositions 2.1 and 2.2.

6.1. We prove Proposition 2.1 only in the case when (x, y) ∈ B+d ×B−d.
We assert that the operator j+dR(ζ;H0d)j−d in question takes the form

j+dR(ζ;H0d)j−d = j+dR(ζ;Qρ)j−d(6.1)

= j+d

(

R(ζ;Q−ρ) +R(ζ;Q+ρ)−R(ζ;Q0ρ)
)

j−d +R1(ζ; d)

where the remainder operator R1(ζ; d) satisfies ‖R1(ζ; d)‖ = O(d−ν) uni-
formly in ζ ∈ Dd for some ν > 0. The section is almost occupied by the
proof of this assertion. We first complete the proof of Proposition 2.1, ac-
cepting (6.1) as established. The proof is based on the following proposition
which has been proved as Proposition 6.3 in [8].

Proposition 6.1. Let ρ± = (0,±κd1/2) = (0,±κρ) be as in (1.6) and let
P±ρ be defined by (4.5). Assume that ζ ∈ Dd. Then there exists a constant
ν > 0 such that R(ζ;P±ρ)(x, y) behaves as follows:

R(ζ;P−ρ)(x, y) = c0(ζ)

(

eik|x1−y1|

|x1 − y1|1/2

)

(

cos(α−π)∓ i sin(α−π)I0(ζ)
)

+ eik|x1−y1||x1 − y1|
−1/2O

(

d−ν
)

for (x, y) ∈ B±d ×B∓d, and

R(ζ;P+ρ)(x, y) = c0(ζ)

(

eik|x1−y1|

|x1 − y1|1/2

)

(

cos(α+π)± i sin(α+π)I0(ζ)
)

+ eik|x1−y1||x1 − y1|
−1/2O

(

d−ν
)

for (x, y) ∈ B±d ×B∓d, where I0(ζ) is the integral defined by (1.13).

Proof of Proposition 2.1. The mapping jρ defined by (4.2) acts as the
identity over B±d, and hence it follows from (4.8) and (4.11) that

R(ζ;Q±ρ)(x, y) = exp(ig∓ρ(x))R(ζ;P±ρ)(x, y) exp(−ig∓ρ(y)),

R(ζ;Q0ρ)(x, y) = exp(ig0ρ(x))R(ζ;K0)(x, y) exp(−ig0ρ(y)).

Recall the definitions of g±ρ and g0ρ from (4.6) and (4.7), respectively. If
(x, y) ∈ B+d ×B−d, then

g+ρ(x)− g+ρ(y) = α+ (γ(x− ρ+;ω2)− γ(y − ρ+;ω2)) = α+π +O(ρ−1).
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Thus we have

R(ζ;Q−ρ)(x, y) =
(

eiα+π +O(ρ−1)
)

R(ζ;P−ρ)(x, y).

We now use Proposition 6.1 to obtain that

R(ζ;Q−ρ)(x, y) = c0(ζ)

(

eik|x1−y1|

|x1 − y1|1/2

)

eiα+π
(

cos(α−π)− i sin(α−π)I0(ζ)
)

+ O
(

ρ−2ν
)

eik|x1−y1||x1 − y1|
−1/2

for some ν > 0. Similarly

R(ζ;Q+ρ)(x, y) = c0(ζ)

(

eik|x1−y1|

|x1 − y1|1/2

)

e−iα−π
(

cos(α+π) + i sin(α+π)I0(ζ)
)

+ O
(

ρ−2ν
)

eik|x1−y1||x1 − y1|
−1/2.

The asymptotic formula for the Hankel function H0(z) yields

R(ζ;Q0ρ)(x, y) =
(

ei(α+−α−)π +O(ρ−1)
)

R(ζ;K0)(x, y)

=
(

c0(ζ)e
i(α+−α−)π +O(ρ−1)

)

eik|x1−y1||x1 − y1|
−1/2.

We combine these three asymptotic formulas to calculate the leading coeffi-
cient π+(ζ) defined by (1.12) as follows:

eiα+π cos(α−π) + e−iα−π cos(α+π)− ei(α+−α−)π = cos ((α+ + α−)π) ,

i
(

−eiα+π sin(α−π) + e−iα−π sin(α+π)
)

= − cos ((α+ + α−)π) + ei(α+−α−)π.

We evaluate remainder operators with kernels satisfying

O
(

ρ−2ν
)

eik|x1−y1||x1 − y1|
−1/2

for some ν > 0. If (x, y) ∈ B+d ×B−d, then it follows from (1.17) that this

kernel obeys the bound O
(

ρ−2ν+3δ0
)

uniformly in ζ ∈ Dd. Hence we can

take δ0 so small that the remainder operators are bounded by O
(

ρ−ν
)

. This
proves the proposition. �

6.2. Let T = T (ζ; ρ) be defined by (4.18) and let χ ∈ C∞
0 [0,∞) be

a cut–off function with properties in (4.1). We establish the basic relation
(4.20) by showing that Id+T is invertible. We recall that µ, 2/5 < µ < 1/2,
is fixed close to 1/2 as in (2.1). We define

v0(x1) = χ
(

2|x1|/ρ
1−µ
)

, ṽ0(x1) = χ
(

|x1|/ρ
1−µ
)

, v1(x1) = 1− v0(x1)

and ṽ1(x1) = 1− χ
(

4|x1|/ρ
1−µ
)

. Then vj ṽj = vj for j = 0, 1. We further
define

Tjk = Tjk(ζ; ρ) = vjT (ζ; ρ)ṽk, 0 ≤ j, k ≤ 1.
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We formulate the two lemmas below for these operators. For the first lemma,
a similar lemma has been already proved as Lemma 7.1 in [3] or Lemma 5.1
in [9], although the slightly different notation has been used there.

Lemma 6.1. The norm of the operators

p0Rsc(ζ;Q±ρ)ṽ1Γ0Rsc(ζ;Q±ρ)p0, p0Rsc(ζ;Q±ρ)ṽ1Γ0Rsc(ζ;Q∓ρ)p0

acting on L2(Π0) is of order O
(

ρ−N
)

for any N ≫ 1, and the norm of the
operators

T11T11, T11T10, T01T11, T01T10 : L
2(Π0) → L2(Π0)

is also of order O
(

ρ−N
)

for any N ≫ 1.

Proof. The second statement is an immediate consequence of the first one.
We consider only the operator with pair {Rsc(ζ;Q+ρ), Rsc(ζ;Q+ρ)} in the
first statement. We decompose it into the sum

p0Rsc(ζ;Q±ρ)
(

χL + (1− χL)
)

ṽ1Γ0Rsc(ζ;Q±ρ)p0,

where χL(x1) = χ
(

|x1|/Lρ
2
)

for L ≫ 1 fixed arbitrarily but large enough.
Then it follows from Proposition 5.2 (1) that the second operator on the right

side obeys the bound O
(

ρ−σL
)

. By Proposition 5.2 ((2),(3)), the integral
kernel of the first operator takes a form such as

eikr+ρ(x)

(
∫

exp (2ikr+ρ(u)) a(u;x, y, ζ, ρ) du

)

eikr+ρ(y)

where the function a satisfies

(∂/∂u1)
n a = O

(

ρ−3−(1−µ)n
)

and has support in
{

u = (u1, u2) : ρ
1−µ/4 < |u1| < 2Lρ2, |u2| < ρ/16

}

as a function of u. If |u1| > ρ1−µ/4, then
∣

∣

∣
(∂/∂u1)r+ρ(u)

∣

∣

∣
> cρ−µ for some

c > 0. Since 1 − µ > µ by choice, the above integral obeys the bound
O
(

ρ−N
)

for any N ≫ 1 by repeated use of partial integral. This proves the
lemma. �

Lemma 6.2. ‖T00‖ = O
(

ρ−µ
)

= O
(

d−µ/2
)

.

Proof. The kernel of the operator in the lemma has support
{

(x, y) : |x1| < ρ1−µ, |x2| < ρ/16, |y1| < 2ρ1−µ, |y2| < ρ/16
}
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and
∣

∣

∣
exp(ik|x±ρ|)

∣

∣

∣
is bounded uniformly in ζ ∈ Dd (and similarly for |y±ρ|).

Thus it follows from Proposition 5.2 (2) that the kernel obeys the bound
O
(

ρ−2
)

, and hence the Hilbert–Schmidt norm is evaluated as ‖T00‖HS =
O (ρ−µ). This proves the lemma. �

For two bounded operators A(ζ) and B(ζ) acting on L2(Π0) or on L
2(Ωρ),

we use the notation A(ζ) ∼ B(ζ) to denote that the norm of A(ζ) − B(ζ)
is bounded by O

(

ρ−N
)

uniformly in ζ ∈ Dd for any N ≫ 1. The operator
Id+ T (ζ; ρ) has the matrix representation

X = X(ζ; ρ) =

(

Id+ T00 T01
T10 Id+ T11

)

as an operator acting on L2(Π0)⊕L2(Π0), and all the components Tjk(ζ; ρ)
are bounded by O (ρν) for some ν > 0, as stated at the end of section 4. By
Lemma 6.1, we have

(6.2) (Id+ T11)
−1 =

(

Id− T 2
11

)−1
(Id− T11) ∼ Id− T11

and X admits the decomposition

X =

(

Id 0
0 Id+ T11

)(

Id T01
0 Id

)(

Id+ T00 + TN 0

(Id+ T11)
−1 T10 Id

)

,

where
TN = TN (ζ; ρ) = −T01 (Id+ T11)

−1 T10 ∼ 0

by Lemma 6.1. Since the operator

Y0 = Y0(ζ; ρ) = Id+ T00 + TN ∼ Id+ T00 : L
2(Π0) → L2(Π0)

is invertible by Lemma 6.2, X−1 is calculated as

(

Y −1
0 X01

X10 X11

)

, where

X01 = −Y −1
0 T01 (Id+ T11)

−1 , X10 = − (Id+ T11)
−1 T10Y

−1
0

and

X11 = (Id+ T11)
−1 T10Y

−1
0 T01 (Id+ T11)

−1 + (Id+ T11)
−1 .

If we take (6.2) into account, then we see from Lemma 6.1 that (Id+ T )−1

takes the form

(6.3) (Id+ T )−1 ∼ (Id− T10)Y
−1
0 (v0 − T01v1) + (Id− T11) v1.

Thus we can obtain the basic representation (4.20) for R(ζ;Qρ).

By Lemma 6.2, Y −1
0 is expanded into the Neumann series

(6.4) Y −1
0 ∼ Id+ Y (ζ; ρ), Y =

L−1
∑

l=1

(−1)lT l00 + (−1)LTL00 (Id+ T00)
−1 ,
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for L≫ 1 fixed large enough. Hence we have

(Id+ T )−1 ∼ Id− T10v0 − (T01 − T10T01 + T11) v1

+ (Id− T10)Y (v0 − T01v1) .

We also have

T01v1Tj−d ∼ 0, T10T01v1Tj−d ∼ 0, T11v1Tj−d ∼ 0

by Lemma 6.1. Thus it follows from (4.20) that

(6.5) j+dR(ζ;Qρ)j−d ∼ j+dΛj−d − Z0 + Z1 − Z,

where

Z0 = Z0(ζ; ρ) = j+dΛTj−d, Z1 = Z1(ζ; ρ) = j+dΛT10v0Tj−d

and Z = Z(ζ; ρ) = j+dΛ (Id− T10)Y v0Tj−d.

6.3. In what follows, we denote byOp(ρν) the class of bounded operators
acting on L2(Ωρ) such that their norms obey O(ρν) uniformly in ζ ∈ Dd.
We analyze the three operators Z0, Z1 and Z on the right side of (6.5). The
obtained results are formulated as the three lemmas below.

Lemma 6.3. The operator Z0 takes the form

Z0 = −j+d (χ+ρRsc(ζ;Q−ρ) + χ−ρRsc(ζ;Q+ρ)) j−d +Op
(

ρ−1−µ+3δ0
)

.

Lemma 6.4. The operator Z1 is of class Op
(

ρ−1−µ+3δ0
)

.

Lemma 6.5. The operator Z is of class Op
(

ρ−2µ+6δ0
)

.

We are now in a position to show assertion (6.1), accepting these three
lemmas as proved.

Completion of Proof of Proposition 2.1 (Proof of (6.1)). We may assume
that χ̃±ρj−d = j−d (see (4.13)). Then we recall from (4.14) that j+dΛj−d is
given by

j+dΛj−d = j+d (χ−ρR(ζ;Q−ρ) + χ+ρR(ζ;Q+ρ)) j−d.

By definition (see (5.2)),

R(ζ;Q±ρ) = R(ζ;Q0ρ) +Rsc(ζ;Q±ρ).

Hence (6.5), together with the three lemmas above, implies that the operator
j+dR(ζ;Qρ)j−d under consideration takes the form

j+d (Rsc(ζ;Q−ρ) +Rsc(ζ;Q+ρ) +R(ζ;Q0ρ)) j−d +Op
(

ρ−2µ+6δ0
)

.
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This proves (6.1), so that Proposition 2.1 is obtained. �

6.4. The proof of Lemma 6.3 is based on the following three lemmas.

Lemma 6.6. The operator defined by

j+dRsc(ζ;Q±ρ)v0Γ0Rsc(ζ;Q±ρ)j−d : L
2(Ωρ) → L2(Ωρ)

is of class Op
(

ρ−N
)

for any N ≫ 1.

Lemma 6.7. The operator defined by

j+dRsc(ζ;Q∓ρ)v0Γ0Rsc(ζ;Q±ρ)j−d : L
2(Ωρ) → L2(Ωρ)

is of class Op
(

ρ−1−µ+3δ0
)

.

Lemma 6.8. One has the following two relations:

j+dR(ζ;Q0ρ)Γ0Rsc(ζ;Q−ρ)j−d ∼ −j+dχ+ρRsc(ζ;Q−ρ)j−d,

j+dR(ζ;Q0ρ)Γ0 (−Rsc(ζ;Q+ρ)) j−d ∼ −j+dχ−ρRsc(ζ;Q+ρ)j−d.

Proof of Lemma 6.6. We prove the lemma for the pair {Q+ρ, Q+ρ} only.
By Proposition 5.2 (2), the integral kernel R(x, y; ζ, ρ) of the operator in
question takes the form

R(x, y; ζ, ρ) = eik|x+ρ|

(
∫

e2ik|u+ρ|a(u;x, y, ζ, ρ) du

)

eik|y+ρ|

for (x, y) ∈ B+d ×B−d, where a has support in
{

|u1| < ρ1−µ, |u2| < ρ/16
}

as a function of u = (u1, u2) and satisfies

(∂/∂u2)
n a = O

(

ρ−4−n
)

uniformly in (x, y) and ζ ∈ Dd. Since
∣

∣∂|u+ρ|/∂u2
∣

∣ > 1/2, we see by repeated

use of partial integration that a obeys O
(

ρ−N
)

. This proves the lemma. �

Proof of Lemma 6.7. We consider the pair {Q+ρ, Q−ρ} only. We again
make use of Proposition 5.2 (2). Then it follows from (1.17) that the inte-
gral kernel R(x, y; ζ, ρ) of the operator under consideration is bounded by

O
(

ρ−1−µ+3δ0
)

uniformly in (x, y) ∈ B+d × B−d and ζ ∈ Dd. Hence the

lemma is immediately obtained. �

Proof of Lemma 6.8. We only prove the first relation in some details. The
proof is based on the same idea as developed in section 4. Let Λ∓(ζ; ρ) be
defined by

Λ− = χ−ρR(ζ;Q−ρ)χ̃−ρ + χ+ρR(ζ;Q0ρ)χ̃+ρ,
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Λ+ = χ−ρR(ζ;Q0ρ)χ̃−ρ + χ+ρR(ζ;Q+ρ)χ̃+ρ.

Then we have the relation

(Q−ρ − ζ)Λ− = Id+ Γ0 (R(ζ;Q−ρ)χ̃−ρ −R(ζ;Q0ρ)χ̃+ρ) .

We define the operator

T−(ζ; ρ) = Γ0Rsc(ζ;Q−ρ)p0 : L
2(Π0) → L2(Π0)

corresponding to T (ζ; ρ) defined by (4.18), where the multiplication by the
characteristic function p0 of Π0 again denotes the extension from L2(Π0) to
L2(Ω±ρ). Then we have

R(ζ;Q−ρ) = Λ− − Λ−p0 (Id+ T−)
−1 Γ0 (R(ζ;Q−ρ)χ̃−ρ −R(ζ;Q0ρ)χ̃+ρ) ,

which corresponds to relation (4.20). By Lemmas 6.1 and 6.6, we may write

(Id+ T−)
−1 =

(

Id− T 2
−

)−1
(Id− T−) ∼ Id− T−.

We now compute

Γ0 (R(ζ;Q−ρ)χ̃−ρ −R(ζ;Q0ρ)χ̃+ρ) j−d = Γ0Rsc(ζ;Q−ρ)j−d

and hence it follows from Lemmas 6.1 and 6.6 that

(Id+ T−)
−1 Γ0 (R(ζ;Q−ρ)χ̃−ρ −R(ζ;Q0ρ)χ̃+ρ) j−d ∼ Γ0Rsc(ζ;Q−ρ)j−d.

Thus we obtain

j+dR(ζ;Q−ρ)j−d ∼ j+dΛ−j−d − j+dΛ−Γ0Rsc(ζ;Q−ρ)j−d.

Hence we have

j+dΛ−Γ0Rsc(ζ;Q−ρ)j−d ∼ j+dΛ−j−d − j+dR(ζ;Q−ρ)j−d

= −j+d (R(ζ;Q−ρ)− χ−ρR(ζ;Q−ρ)− χ+ρR(ζ;Q0ρ)) j−d

= −j+d (χ+ρR(ζ;Q−ρ)− χ+ρR(ζ;Q0ρ)) j−d

= −j+dχ+ρRsc(ζ;Q−ρ)j−d.

Since

j+dΛ−Γ0Rsc(ζ;Q−ρ)j−d ∼ j+dR(ζ;Q0ρ)Γ0Rsc(ζ;Q−ρ)j−d,

the first relation is verified. To prove the second relation, we start with the
relation

(Q+ρ − ζ)Λ+ = Id+ Γ0 (R(ζ;Q0ρ)χ̃−ρ −R(ζ;Q+ρ)χ̃+ρ)

and repeat the same argument as above. �

Proof of Lemma 6.3. According to (5.2), we write

χ−ρR(ζ;Q−ρ) + χ+ρR(ζ;Q+ρ) =

R(ζ;Q0ρ) + χ−ρRsc(ζ;Q−ρ) + χ+ρRsc(ζ;Q+ρ)
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and use Lemmas 6.1, 6.6 and 6.7 to compute

Z0 = j+dR(ζ;Q0ρ)Γ0 (Rsc(ζ;Q−ρ)−Rsc(ζ;Q+ρ)) j−d +Op
(

ρ−1−µ+3δ0
)

,

which, together with Lemma 6.8, proves the lemma. �

6.5. The proof of Lemma 6.4 requires the two preliminary lemmas be-
low. We give only a sketch for the proof of the first lemma (Lemma 6.9),
because it is done in almost the same way as Lemma 6.8.

Lemma 6.9. One has the relation

j+dR(ζ;Q0ρ)Γ0Rsc(ζ;Q±ρ)v0p0 ∼ ±j+dχ∓ρRsc(ζ;Q±ρ)v0p0.

Lemma 6.10. One has the relation

j+dR(ζ;Q0ρ)v0Γ0Rsc(ζ;Q±ρ)v0p0 ∼ 0.

Proof of Lemma 6.9. We consider only the operator with Rsc(ζ;Q−ρ). As
in the proof of Lemma 6.8, we get the relation

j+dR(ζ;Q−ρ)v0p0 ∼ j+dΛ−v0p0 − j+dΛ−Γ0Rsc(ζ;Q−ρ)v0p0.

We also have the relation

Λ−Γ0 = (R(ζ;Q0ρ) + χ−ρRsc(ζ;Q−ρ)) Γ0.

Hence it follows from Lemmas 6.1 and 6.6 that

j+dΛ−Γ0Rsc(ζ;Q−ρ)v0p0

= j+d (R(ζ;Q0ρ) + χ−ρRsc(ζ;Q−ρ)) Γ0Rsc(ζ;Q−ρ)v0p0

∼ j+dR(ζ;Q0ρ)Γ0Rsc(ζ;Q−ρ)v0p0.

Thus we have the desired relation

j+dR(ζ;Q0ρ)Γ0Rsc(ζ;Q−ρ)v0p0 ∼

j+d (Λ− −R(ζ;Q−ρ)) v0p0 = −j+dχ+ρRsc(ζ;Q−ρ)v0p0.

This proves the lemma. �

Proof of Lemma 6.10. The lemma is verified by repeated use of partial
integral. The kernel of the operator in the lemma is given by composition.
Let u = (u1, u2) be such that |u1| < ρ1−µ and |u2| < ρ/16. The phase
function ik|x − u| with x ∈ B+d comes from the operator R(ζ;Q0ρ), while
ik|u±ρ| comes from Rsc(ζ;Q±ρ). If we note that

∂|x− u|/∂u1 ∼ −1, ∂|u±ρ|/∂u1 ∼ 0

for ρ ≫ 1, then this enables us to obtain the lemma by repeated use of
partial integral. �
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Proof of Lemma 6.4. We use Lemmas 6.1, 6.9 and 6.10 to compute

j+dΛT10v0Γ0 =

j+d (R(ζ;Q0ρ) + χ−ρRsc(ζ;Q−ρ) + χ+ρRsc(ζ;Q+ρ))T10v0Γ0

∼ j+dR(ζ;Q0ρ)v1Γ0 (Rsc(ζ;Q−ρ)−Rsc(ζ;Q+ρ)) v0Γ0

∼ j+dR(ζ;Q0ρ)Γ0 (Rsc(ζ;Q−ρ)−Rsc(ζ;Q+ρ)) v0Γ0

∼ −j+d (χ+ρRsc(ζ;Q−ρ) + χ−ρRsc(ζ;Q+ρ)) v0Γ0.

Hence the operator Z1 = j+dΛT10v0Tj−d in the lemma behaves like

Z1 ∼ −j+d (χ+ρRsc(ζ;Q−ρ) + χ−ρRsc(ζ;Q+ρ))

× v0Γ0 (Rsc(ζ;Q−ρ)−Rsc(ζ;Q+ρ)) j−d.

This shows that Z1 is of class Op
(

ρ−1−µ+3δ0
)

and completes the proof. �

We proceed to proving Lemma 6.5.

Proof of Lemma 6.5. We recall the definition of the operator Z from (6.5).
The lemma follows as an immediate consequence of the assertion

(6.6) ‖Ul(ζ; ρ)‖ =
∥

∥

∥
j+dΛ (Id− T10)T

l
00v0Tj−d

∥

∥

∥
= O

(

ρ−lµ−µ+6δ0
)

uniformly in ζ ∈ Dd for integers l ≥ 1. For brevity, we prove this for the
case l = 1 only. A similar argument applies to the other cases. We set

W1 = j+dΛT00v0Tj−d, W2 = j+dΛT10T00v0Tj−d,

so that U1 =W1 −W2. We use Lemmas 6.10 to compute

W1 ∼ j+d (χ−ρRsc(ζ;Q−ρ) + χ+ρRsc(ζ;Q+ρ))T00v0Tj−d.

By (1.17) and Proposition 5.2 (2), we have

‖j+dRsc(ζ;Q±ρ)v0p0‖ = O
(

ρ1/2−µ/2+3δ0
)

and ‖v0Tj−d‖ = O
(

ρ−1/2−µ/2+3δ0
)

. Since ‖T00‖ = O
(

ρ−µ
)

as shown in the

proof of Lemma 6.2, it follows that ‖W1‖ = O
(

ρ−µ−µ+6δ0
)

. We combine

Lemmas 6.1, 6.9 and 6.10 to obtain that

W2 ∼ j+dR(ζ;Q0ρ)Γ0 (Rsc(ζ;Q−ρ)−Rsc(ζ;Q+ρ))T00v0Tj−d

∼ Op
(

ρ1/2−µ/2+3δ0
)

T00v0Tj−d

and hence ‖W2‖ = O
(

ρ−µ−µ+6δ0
)

. Thus (6.6) is established and the proof

is complete. �
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6.6. We end the paper by proving Proposition 2.2. The proof is based
on the same arguments as used for proving Proposition 2.1. We give only a
sketch for it.

Proof of Proposition 2.2. We can get a relation similar to (6.5):

j+dR(ζ;Qρ)j̃+d ∼ j+dΛj̃+d − Z̃0 + Z̃1 − Z̃,

where

Z̃0 = j+dΛT j̃+d, Z1 = j+dΛT10v0T j̃+d

and Z = j+dΛ (Id− T10)Y v0T j̃+d. We may assume that χ̃±ρj̃+d = j̃+d. The
leading term comes from

j+dΛj̃+d = j+d (R(ζ;Q0ρ) + χ−ρRsc(ζ;Q−ρ) + χ+ρRsc(ζ;Q+ρ)) j̃+d.

By (4.11), we have

R(ζ;Q0ρ)(x, y) = exp
(

i(g0ρ(x)− g0ρ(y))
)

R(ζ;K0)(x, y)

for (x, y) ∈ B+d× B̃+d, and exp
(

i(g0ρ(x)− g0ρ(y))
)

yields a0(x, y; d) defined

by (2.6). Thus the leading operator R̃0(ζ; d) in the proposition is obtained.
We evaluate the operator j+dRsc(ζ;Q±ρ)j̃+d by making use of Proposition
5.1 (2). If x ∈ B+d, then

|x±ρ| = |x− ρ±| =
(

|x1|
2 +O(d)

)1/2
= κ+d+O(1), d≫ 1,

and hence it follows from (1.17) that
∣

∣

∣
exp(ik|x±ρ|)/|x±ρ|

1/2
∣

∣

∣
= O

(

d3δ0/2
)

∣

∣exp(−ik(1 − κ+)d)
∣

∣

on the bottom of the neighborhood Dd. A similar bound remains true for
y ∈ B̃+d. Note that κ+ < 1 strictly. Thus we can take δ0 > 0 and δ > 0 so
small that

‖j+dRsc(ζ;Q±ρ)j̃+d‖ = O
(

d−ν
)

for some ν > 0. The other operators Z̃1 and Z̃ are also shown to obey
O
(

d−ν
)

for another ν > 0 and are dealt with as remainder operators. This
proves the proposition. �
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dinger operators in two dimensions II, Math. J. Okayama Univ., 58
(2016), 41–78.

Hideo Tamura

Department of Mathematics, Okayama University

Okayama, 700-8530 Japan

e-mail address: tamura@math.okayama-u.ac.jp

(Received February 11, 2014 )
(Accepted November 18, 2014 )


