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AHARONOV–BOHM EFFECT IN RESONANCES

OF MAGNETIC SCHRÖDINGER OPERATORS

IN TWO DIMENSIONS II

Hideo TAMURA

Abstract. We study the Aharonov–Bohm effect (AB effect) in quan-
tum resonances for magnetic scattering in two dimensions. The system
consists of four scatters, two obstacles and two scalar potentials with
compact support, which are largely separated from one another. The
obstacles by which the magnetic fields are completely shielded are hor-
izontally placed between the supports of the two potentials. The fields
do not influence particles from a classical mechanical point of view, but
quantum particles are influenced by the corresponding vector potential
which does not necessarily vanish outside the obstacle. This quantum
phenomenon is called the AB effect. The resonances are shown to be
generated near the real axis by the trajectories trapped between two
supports of the scalar potentials as the distances between the scatterers
go to infinity. We analyze how the AB effect influences the location of
resonances. The result is described in terms of the backward amplitudes
for scattering by each of the scalar potentials, and it depends heavily on
the ratios of the distances between the four scatterers as well as on the
magnetic fluxes of the fields.

1. Introduction

In quantum mechanics, a vector potential is said to have a direct signifi-
cance to particles moving in a magnetic field. This is called the Aharonov–
Bohm effect (AB effect) and is known as one of the most remarkable quan-
tum phenomena ([1]). In this work, we study the AB quantum effect in
resonances of magnetic Schrödinger operators in two dimensions. The scat-
tering system consists of four scatters, two obstacles and two scalar poten-
tials with compact support, where the scatters are largely separated from
one another, and the obstacles are placed between the supports of the two
potentials. The magnetic fields are assumed to be completely shielded by
the obstacles, so that the fields do not influence particles from a classical
mechanical point of view. However, by the AB effect, quantum particles are
influenced by the corresponding vector potential which does not necessarily
vanish outside the obstacle. We can show that the resonances are generated
near the real axis by the trajectories trapped between two supports of the
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scalar potentials as the distances between the scatterers go to infinity. The
location of the resonances is described in terms of the backward amplitudes
for scattering by each of the scalar potentials, and it depends heavily on the
magnetic fluxes of the fields. Thus we see that the location of resonances is
strongly influenced by the AB quantum effect.

The present work is a continuation to [7], where we have studied the case
of one obstacle. A new difficulty which happens to the case of two obstacles
appears from the trapping phenomenon between the obstacles. In addition,
we have to take account of the difficulty which comes from the fact that even
if the supports of the magnetic fields are largely separated from each other,
the corresponding vector potentials are not expected to be well separated.
To overcome these difficulties, we make use of the gauge transformation and
the complex scaling method. The location of the resonances depends not
only on the magnetic fluxes but also on the location of the obstacles. Here
we deal with the case when the obstacles are horizontally placed between
the supports of the two potentials. In [9], we will consider the case when the
obstacles are vertically placed between the supports of the two potentials.

We set up our problem precisely. We always work in the two dimensional
space R

2 with generic point x = (x1, x2) and write

H(A,V ) = (−i∇−A)2 + V =
2
∑

j=1

(−i∂j − aj)
2 + V, ∂j = ∂/∂xj ,

for the magnetic Schrödinger operator with A = (a1, a2) : R2 → R
2 as a

vector potential and V : R2 → R. as a scalar potential. The magnetic field
b : R2 → R associated with A is defined by

b(x) = ∇×A(x) = ∂1a2 − ∂2a1

and the quantity defined as the integral α = (2π)−1
∫

b(x) dx is called the

magnetic flux of b, where the integration with no domain attached is taken
over the whole space. We often use this abbreviation.

Let b± ∈ C∞
0 (R2) be two given magnetic fields with the fluxes

α± = (2π)−1

∫

b±(x) dx.

We make the assumption that the support of b± satisfies

(1.1) supp b± ⊂ O± ⊂ B = {|x| < 1}

for some simply connected bounded obstacle O±, where O± is assumed to
have the origin as an interior point and the smooth boundary ∂O±. For the
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vector potential A±(x) corresponding to b±, we can take A±(x) to fulfill

(1.2) A±(x) = α±Φ(x)

over Ω± = R
2 \ O±, where Φ(x) is defined by

(1.3) Φ =
(

−x2/|x|
2, x1/|x|

2
)

= (−∂2 log |x|, ∂1 log |x|) .

In fact, Φ defines the δ–like magnetic field (solenoidal field)

∇× Φ =
(

∂21 + ∂22
)

log |x| = ∆ log |x| = 2πδ(x)

with center at the origin, when considered over the whole space. This vector
potential is often called the Aharonov–Bohm potential in physics literatures.
Assumption (1.1) means that the field b± is entirely shielded by the obstacle
O±, although the corresponding vector potential A± does not necessarily
vanish outside O±.

For d ∈ R
2 with |d| ≫ 1, we set

d− = −κ−d, d+ = κ+d, κ± > 0, κ− + κ+ = 1,

so that d+ − d− = d. The distance |d| ≫ 1 is regarded as a large parameter

with the direction d̂ = d/|d| fixed. Let V± ∈ C∞
0 (R2) with suppV± ⊂ B.

Then we define

(1.4) Vd(x) = V−d(x) + V+d(x) = V−(x− d−) + V+(x− d+).

For ρ± = ±κ0d with 0 < κ0 < min(κ−, κ+), we also define

(1.5) Aρ(x) = A−ρ(x) +A+ρ(x) = A−(x− ρ−) +A+(x− ρ+)

over the exterior domain

(1.6) Ωρ = R
2 \
(

O−ρ ∪ O+ρ

)

, O±ρ = {x : x− ρ± ∈ O±} .

We now consider the self–adjoint operator

(1.7) Hd = H(Aρ, Vd), D(Hd) = H2(Ωρ) ∩H
1
0 (Ωρ),

in L2(Ωρ) under the zero boundary conditions, where H1
0 (W ) and H2(W )

stand for the usual Sobolev spaces over a region W . We know that the
resolvent

R(ζ;Hd) = (Hd − ζ)−1 : L2(Ωρ) → L2(Ωρ), Re ζ > 0, Im ζ > 0,

is meromorphically continued from the upper half plane of the complex plane
to the lower half plane across the positive real axis where the continuous
spectrum of Hd is located. Then R(ζ;Hd) with Im ζ ≤ 0 is well defined
as an operator from L2

comp(Ωρ) to L2
loc(Ωρ) in the sense that χR(ζ;Hd)χ :

L2(Ωρ) → L2(Ωρ) is bounded for every χ ∈ C∞
0 (Ωρ), where L2

comp(W )
denotes the space of square integrable functions with compact support in the
closure W of W and L2

loc(W ) denotes the space of locally square integrable
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functions over W . The resonances of Hd are defined as the poles of R(ζ;Hd)
in the lower half plane (unphysical sheet). This is shown by use of the
complex scaling method [4, 5, 6]. Our aim is to study how the resonances
are generated near the real axis by the trajectories trapped between the two
centers d− and d+ as |d| = |d+− d−| → ∞ and how the AB effect influences
the location of the resonances.

The obtained result is formulated in terms of the backward amplitudes
by the potentials V±. Let K0 = −∆ be the free Hamiltonian and let K± be
the Schrödinger operator defined by

(1.8) K± = K0 + V± = −∆+ V±, D(K0) = D(K±) = H2(R2).

We denote by f±(ω → θ;E) the amplitude for scattering from the incident
direction ω ∈ S1 to the final one θ at energy E > 0 for the pair (K0,K±).
These amplitudes admit the analytic extensions f±(ω → θ; ζ) in a complex
neighborhood of the positive real axis as a function of E.

We now fix E0 > 0 and take a complex neighborhood

(1.9) Dd =

{

ζ : |Re ζ − E0| < δ0E0, |Im ζ| < (1 + 2δ0)E
1/2
0

(

log |d|

|d|

)}

for δ0, 0 < δ0 ≪ 1, small enough. We also define the angle ψ0 through the
relation

(1.10) cosψ0 =

(

κ− − κ0
κ− + κ0

)1/2(κ+ − κ0
κ+ + κ0

)1/2

< 1, 0 < ψ0 < π/2,

and set

(1.11) π0 =

(

1−
ψ0

π

)

cos ((α+ + α−)π) +
ψ0

π
cos ((α+ − α−)π) .

We further define

(1.12) h(ζ; d) =

(

e2ik|d|

|d|

)

f−(−d̂→ d̂; ζ)f+(d̂→ −d̂; ζ)π20, k = ζ1/2,

over Dd, where the branch k = ζ1/2 is taken in such a way that Re k > 0
for Re ζ > 0. We always use the notation k with the meaning ascribed here.
Since

(1.13) 2 Im k = 2 Im (Re ζ + iIm ζ)1/2 = Im ζ/ (Re ζ)1/2 +O
(

|Im ζ|3
)

for ζ ∈ Dd and since

(1.14) (Re ζ)1/2 = E
1/2
0

(

1 + (Re ζ − E0) /(2E0) +O(δ20)
)
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with |Re ζ − E0| < δ0E0, we can take δ0 > 0 so small that

(1.15) |d|δ0 <
∣

∣

∣
exp(2ik|d|)

∣

∣

∣
/|d| < |d|3δ0 , |d| ≫ 1,

on the bottom of Dd (Im ζ = − (1 + 2δ0)E
1/2
0 ((log |d|) /|d|)). This implies

that the curve defined by |h(ζ; d)| = 1 with |Re ζ − E0| < δ0E0 is completely

contained in Dd, provided that f±(±d̂ → ∓d̂;E0) 6= 0 and π0 6= 0. We
denote by

{

ζj(d)
}

, ζj(d) ∈ Dd, Re ζ1 < Re ζ2 < · · · < Re ζNd
,

the solutions to the equation

(1.16) h(ζ; d) = 1.

We know (see Lemma 3.5) that ζj(d) behaves like

Im ζj(d) ∼ −E
1/2
0 ((log |d|)/|d|) , Re (ζj+1(d)− ζj(d)) ∼ 2πE

1/2
0 /|d|,

for |d| ≫ 1. With the notation above, we are now in a position to state the
main result.

Theorem 1.1. Let the notation be as above. Assume that π0 6= 0 and

f±(±d̂→ ∓d̂;E0) 6= 0, d̂ = d/|d|,

at energy E0 > 0. Then we can take δ0 > 0 so small that the neighborhood
Dd defined by (1.9) has the following property: For any ε > 0 small enough,
there exists dε ≫ 1 such that for |d| > dε, Hd has the resonances

{

ζres,j(d)
}

, ζres,j(d) ∈ Dd, Re ζres,1(d) < · · · < Re ζres,Nd
(d)

in the neighborhood
{

ζ ∈ Dd : |ζ − ζj(d)| < ε/|d|
}

and the resolvent R(ζ;Hd) is analytic over Dd \
{

ζres,1(d), · · · , ζres,Nd
(d)
}

as a function with values in operators from L2
comp(Ωρ) to L

2
loc(Ωρ).

The theorem above is proved in section 3 after a series of preliminary
lemmas are formulated. In section 2, we mention two basic propositions
(Propositions 2.1 and 2.2) on the asymptotic properties of the resolvent
kernel R(ζ;H0d)(x, y) with ζ ∈ Dd for the self–adjoint operator

(1.17) H0d = H(Aρ, 0), D(H0d) = H2(Ωρ) ∩H
1
0 (Ωρ),

where Aρ is defined by (1.5). In particular, Proposition 2.1 which is con-
cerned with the asymptotic behavior as |x − y| ≫ 1 along the forward
direction (x, y) ∼ (d±, d∓) plays an important role in proving the theorem.
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Sections 4 and 5 are devoted to proving the two propositions. The operator
H0d acts on the domain exterior to the union of the two obstacles O−ρ and
O+ρ placed at large separation, and the resolvent kernel with a spectral pa-
rameter in the unphysical sheet grows exponentially at infinity. In order to
construct the resolvent kernel R(ζ;H0d)(x, y) with ζ ∈ Dd, we make use of
the gauge transformation to separate the two obstacles from each other and
of the complex scaling method to compose the resolvent kernel constructed
for each obstacle O±ρ. We rely on the results obtained in the previous work
[8] for the proof of the two propositions. We summarize these results in
Appendix in the form adapted to our application.

2. Asymptotic properties of resolvent kernel

We write R(ζ;T ) for the resolvent (T − ζ)−1 of the operator T acting on
L2(W ), W being a domain of R2. We use the same notation R(ζ;T ) for
the resolvent meromorphically extended from the upper half plane to the
lower half one. For notational brevity, we take the four centers d± and ρ±
as follows:

(2.1) d± = (±κ±d, 0), ρ± = (±κ0d, 0), d≫ 1,

where
−κ− < −κ0 < 0 < κ0 < κ+, κ− + κ+ = 1.

We identify the distance |d| = |d+ − d−| between the two centers d+ and
d− with d, while the direction of d+ − d− remains fixed as ω1 = (1, 0). We
further take µ to be

(2.2) 2/5 < µ < 1/2
(

< 1− µ
)

close enough to 1/2. Throughout the whole exposition, we use notation
d±, ρ± and µ with the meanings ascribed in (2.1) and (2.2).

Let H0d be defined by (1.17). The next theorem is obtained as an imme-
diate consequence of [3, Theorem 1.1] (see also [2]). We give its proof at the
end of this section.

Theorem 2.1. Let Dd be defined by (1.9) with |d| replaced by d. Then

R(ζ;H0d) : L
2
comp(Ωρ) → L2

loc(Ωρ)

is analytic over Dd for d≫ 1.

Let R(ζ;H0d)(x, y) be the resolvent kernel of R(ζ;H0d) with ζ ∈ Dd. We
are now in a position to state the asymptotic properties of R(ζ;H0d)(x, y) as
the two propositions, which play an important role in proving Theorem 1.1.

In what follows, H0(z) = H
(1)
0 (z) denotes the Hankel function of the first
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kind and of order zero, and γ(ω; θ) denotes the azimuth angle from ω ∈ S1

to θ.

Proposition 2.1. Let j±d be the characteristic function of

(2.3) B±d =
{

x : |x− d±| < 1
}

and let c0(ζ) be defined by

(2.4) c0(ζ) = (8π)−1/2 eiπ/4ζ−1/4 = (8π)−1/2 eiπ/4k−1/2.

Assume that π0 6= 0 for the constant π0 defined by (1.11). Then the operator
j+dR(ζ;H0d)j−d acting on L2(Ωρ) admits the decomposition

j+dR(ζ;H0d)j−d = R0(ζ; d) +R1(ζ; d),

where R0(ζ; d) is the integral operator with the kernel

R0(ζ, d)(x, y) = c0(ζ)π0e
ik|x1−y1||x1 − y1|

−1/2

for (x, y) ∈ B+d × B−d, and R1(ζ; d) obeys the bound ‖R1(ζ; d)‖ = O(d−ν)
uniformly in ζ ∈ Dd for some ν > 0. A similar decomposition remains true
for j−dR(ζ;H0d)j+d.

Proposition 2.2. Let j̃±d denote the characteristic function of

(2.5) B̃±d =
{

x : dδ < |x− d±| < 2dδ
}

with 0 < δ ≪ 1 fixed small enough. Write x±ρ = x − ρ± and x̂±ρ =

x±ρ/|x±ρ|. Then the operator j+dR(ζ;H0d)j̃+d admits the decomposition

j+dR(ζ;H0d)j̃+d = R̃0(ζ; d) + R̃1(ζ; d),

where the kernel R̃0(ζ; d)(x, y) of the integral operator R̃0(ζ; d) is defined by

R̃0(ζ; d)(x, y) = (i/4)H0(k|x− y|)a0(x, y; d)

for (x, y) ∈ B+d × B̃+d with

(2.6) a0 = exp
(

iα+(γ(x̂+ρ;−ŷ+ρ)− π) + iα−(γ(x̂−ρ;−ŷ−ρ)− π)
)

,

while R̃1(ζ; d) obeys the bound ‖R̃1(ζ; d)‖ = O(d−ν) uniformly in ζ ∈ Dd for
some ν > 0. A similar decomposition remains true for j−dR(ζ;H0d)j̃−d.

We prove these basic propositions in sections 4 and 5. The proof is based
on the gauge transformation and on the complex scaling method, as stated
at the end of the previous section. We end the section by proving Theorem
2.1.
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Proof of Theorem 2.1. By assumption, ζ ∈ Dd. Since ρ = |ρ+ − ρ−| =
2κ0d < d, we have

∣

∣

∣
e2ikρ/ρ

∣

∣

∣
< 1, ζ ∈ Dd,

strictly for d ≫ 1. This, together with [3, Theorem 1.1], implies that the
resolvent R(ζ;H0d) is analytic over Dd as a function with values in operators
from L2

comp(Ωρ) to L
2
loc(Ωρ). Thus the proof is complete. �

3. Proof of main theorem

In this section, we complete the proof of the main theorem, accepting a
series of preliminary lemmas as proved. These lemmas are verified at the
end of the section.

3.1. We fix the notation to formulate the lemmas. Let ϕ0(x;ω,E) be
the plane wave defined by

ϕ0(x;ω,E) = exp
(

iE1/2x · ω
)

with ω as an incident direction at energy E > 0. Let K0 = −∆ and K± be
as in (1.8). Then we define

(3.1) ϕ±(x;ω, ζ) =
[

(Id−R(ζ;K±)
∗V±)ϕ0(·;ω, ζ)

]

(x).

The function ϕ±(x;ω, ζ) solves the equation
(

K± − ζ
)

ϕ±(x;ω, ζ) = 0. In,
particular, if ζ = E > 0, then ϕ±(x;ω,E) turns out to be the incoming
eigenfunction of K±, and the conjugate function ϕ±(x;ω, ζ) of ϕ±(x;ω, ζ)

is analytic in ζ. It should be noted that ϕ±(x;ω, ζ) itself is not analytic.
We also note that ϕ+(x;ω,E) does not denote the outgoing eigenfunction
at energy E > 0 but the incoming eigenfunction of the Schrödinger operator
K+.

We recall that the notation γ(x;ω) = γ(x̂;ω) denotes the azimuth angle
from ω to x̂ = x/|x|. We take a function γ± ∈ C∞(R2 → R) such that

(3.2) γ±(x) = α−γ(x̂−ρ;∓ω1) + α+γ(x̂+ρ;∓ω1)

on {|x − d±| < |d± − ρ±|/2} and ∂nxγ± = O(|x|−|n|) as |x| → ∞, where
x̂±ρ = x±ρ/|x±ρ| with x±ρ = x − ρ±. Since ∇γ(x;ω) = Φ(x) for Φ defined
by (1.3), it follows from (1.5) that

(3.3) ∇γ± = α−Φ(x− ρ−) + α+Φ(x− ρ+) = A−ρ +A+ρ = Aρ

on {|x−d±| < |d±−ρ±|/2}. If we denote by j(x) the characteristic function
of the unit disk B, then

j±d(x) = j (x− d±) = j (x±d)
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defines the characteristic function of B±d defined by (2.3). We introduce
the auxiliary operator

(3.4) H±d = H(Aρ, V±d), D(H±d) = H2(Ωρ) ∩H
1
0 (Ωρ),

where V±d(x) = V±(x − d±) is defined by (1.4) and V± is assumed to have
support in B. With the notation above, we are now to state a series of
preliminary lemmas.

Lemma 3.1. Let the notation be as above and let Dd be defined by (1.9).
Define the operator Q±(ζ; d) by

Q±(ζ; d) = V±dR(ζ;H0d)j±d : L2(B±d) → L2(B±d)

for ζ ∈ Dd, where the multiplication j±d is understood to be the extension
from L2(B±d) to L

2(Ωρ). Then Id+Q±(ζ; d) takes the form

Id+Q±(ζ; d) = eiγ±
(

Id+ Q̃±(ζ; d)
)

(Id+ V±dR(ζ;K0)j±d) e
−iγ± ,

where Q̃±(ζ; d) is analytic in ζ ∈ Dd with values in bounded operators acting

on L2(B±d) and obeys ‖Q̃±(ζ; d)‖ = O
(

|d|−ν
)

uniformly in ζ for some ν >
0.

Lemma 3.2. Let Q±(ζ; d) be as in Lemma 3.1. Then

Id+Q±(ζ; d) : L
2(B±d) → L2(B±d)

has the inverse bounded uniformly in d and ζ ∈ Dd. Moreover, we have the
relation

R(ζ;H±d)j±d = R(ζ;H0d)j±d (Id+Q±(ζ; d))
−1 : L2(B±d) → L2

loc(Ωρ)

for ζ ∈ Dd.

By the resolvent identity, it follows from Theorem 2.1 and Lemma 3.2
that the resolvent R(ζ;H±d) is represented as

(3.5) R(ζ;H±d) =
(

Id−R(ζ;H±d)V±d

)

R(ζ;H0d) : L
2
comp(Ωρ) → L2

loc(Ωρ)

for ζ ∈ Dd and is analytic there.

Lemma 3.3. Assume that the constant π0 defined by (1.11) does not vanish.
Recall that the incoming eigenfunction ϕ±(x;ω, ζ) of K± = K0 + V± is
defined by (3.1). Then we have the following statements :

(1) Let G+(ζ; d) be the operator defined by

G+(ζ; d) = V−dR(ζ;H+d)j+d : L2(B+d) → L2(B−d)
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for ζ ∈ Dd. Then G+(ζ; d) admits the decomposition

G+(ζ; d) = G+d(ζ; d) + G̃+d(ζ; d),

where G+d(ζ; d) is the integral operator with the kernel G+d(x, y; ζ, d) defined
by

G+d = c0(ζ)π0

(

eikd/d1/2
)

V−(x−d)ϕ0(x−d;−ω1, ζ)ϕ+(y+d;−ω1, ζ)j(y+d)

with x±d = x − d± and y±d = y − d±, and G̃+d(ζ; d) is analytic in ζ ∈
Dd with values in bounded operators from L2(B+d) to L2(B−d) and obeys

‖G̃+d(ζ; d)‖ = O(|d|−ν) uniformly in ζ for some ν > 0.

(2) Let G−(ζ; d) be the operator defined by

G−(ζ; d) = V+dR(ζ;H−d)j−d : L2(B−d) → L2(B+d)

for ζ ∈ Dd. Then G−(ζ; d) admits the decomposition

G−(ζ; d) = G−d(ζ; d) + G̃−d(ζ; d),

where G−d(ζ; d) is the integral operator with the kernel G−d(x, y; ζ, d) defined
by

G−d = c0(ζ)π0

(

eikd/d1/2
)

V+(x+d)ϕ0(x+d;ω1, ζ)ϕ−(y−d;ω1, ζ)j(y−d)

and G̃−d(ζ; d) is analytic in ζ ∈ Dd with values in bounded operators from

L2(B−d) to L2(B+d) and obeys ‖G̃−d(ζ; d)‖ = O(|d|−ν) uniformly in ζ for
some ν > 0.

Lemma 3.4. Let G±(ζ; d) be as in Lemma 3.3. Define

(3.6) G(ζ; d) = G−(ζ; d)G+(ζ; d) = V+dR(ζ;H−d)V−dR(ζ;H+d)j+d

as an operator acting on L2(B+d). Then G(ζ; d) admits the decomposition

G(ζ; d) = G0(ζ; d) +G1(ζ; d),

where G0(ζ; d) is the integral operator with the kernel G0(x, y; ζ, d) defined
by

G0 = −c0(ζ)π
2
0

(

e2ikd/d
)

f−(−ω1 → ω1; ζ)×

V+(x+d)ϕ0(x+d;ω1, ζ)ϕ+(y+d;−ω1, ζ)j(y+d)

and G1(ζ; d) is analytic in ζ ∈ Dd with values in bounded operators acting
on L2(B+d) and obeys ‖G1(ζ; d)‖ = O

(

|d|−ν
)

uniformly in ζ ∈ Dd for some
ν > 0.
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3.2. We are now in a position to prove the main theorem. The lemma
below is proved in almost the same way as in the proof of [7, Lemma 4.6].
We skip its proof.

Lemma 3.5. Assume the same assumptions as in Theorem 1.1. Let h(ζ; d)

be defined by (1.12) with |d| = d and d̂ = ω1 = (1, 0). Then the equation
h(ζ; d) = 1 has a finite number of the solutions

{

ζj(d)
}

1≤j≤Nd

, ζj(d) ∈ Dd, Re ζ1(d) < · · · < Re ζNd
(d),

in Dd, and each solution ζj(d) has the properties
∣

∣

∣
Im ζj(d) + E

1/2
0 (log d)/d

∣

∣

∣
< δ0E

1/2
0 (log d)/d,

∣

∣

∣
Re (ζj+1(d)− ζj(d)) − 2πE

1/2
0 /d

∣

∣

∣
< 2πδ0E

1/2
0 /d

for d≫ 1.

Proof of Theorem 1.1. Recall the notation H±d = H(Aρ, V±d) from (3.4).

We know by (3.5) that R(ζ;H±d) : L
2
comp(Ωρ) → L2

loc(Ωρ) is well defined for
ζ ∈ Dd and is analytic there. We start with the relation

(Hd − ζ)R(ζ;H−d) = Id+ V+dR(ζ;H−d).

We regard the operator on the right side as an operator acting on L2(B+d).
By the resolvent identity, the operator on the right side equals

Id+ V+dR(ζ;H−d)j+d =

Id+ V+dR(ζ;H0d)j+d − V+dR(ζ;H−d)V−dR(ζ;H0d)j+d.

By Lemma 3.2, it is further equal to

(3.7) Id+ V+dR(ζ;H−d)j+d = (Id−G(ζ; d)) (Id+Q+(ζ; d)) ,

where G(ζ; d) is again defined by

G(ζ; d) = V+dR(ζ;H−d)V−dR(ζ;H+d)j+d : L2(B+d) → L2(B+d)

as in Lemma 3.4. If one is not an eigenvalue of G(ζ; d) at ζ = ζ0 ∈ Dd, then
the resolvent R(ζ;Hd) in question turns out to be analytic in a neighborhood
of ζ0 as a function with values in operators from L2

comp(Ωρ) to L
2
loc(Ωρ). In

fact, R(ζ;Hd) is represented as

R(ζ;Hd) = R(ζ;H−d)

−H(ζ;H−d)j+d (Id+ V+dR(ζ;H−d)j+d)
−1 V+dR(ζ;H−d).

Thus the problem is reduced to specifying ζ ∈ Dd at which G(ζ; d) has one as
an eigenvalue and to showing that this point is really the pole of R(ζ;Hd)(ζ)
in Dd.
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Lemma 3.4 enables us to write Id−G(ζ; d) as

(3.8) Id−G(ζ; d) = (Id− G̃(ζ; d))(Id −G1(ζ; d)) : L
2(B+d) → L2(B+d),

where G1(ζ; d) is as in Lemma 3.4 and G̃(ζ; d) is defined by

G̃(ζ; d) = G0(ζ; d)(Id −G1(ζ; d))
−1 = G0(ζ; d)(Id + G̃1(ζ; d))

with G̃1(ζ; d) = G1(ζ; d)(Id −G1(ζ; d))
−1. We write ( , ) for the L2 scalar

product in L2(R2). We compute the integral

c0(ζ)

∫

V+(x+d)ϕ0(x+d;ω1, ζ)ϕ+(x+d;−ω1, ζ) dx(3.9)

= c0(ζ)
(

V+ϕ0(·;ω1, ζ), (Id−R(ζ;K+)
∗V+)ϕ0(·;−ω1, ζ)

)

= c0(ζ)
(

V+ (Id−R(ζ;K+)V+)ϕ0(·;ω1, ζ), ϕ0(·;−ω1, ζ)
)

= −f+(ω1 → −ω1; ζ)

and we set

h1(ζ; d) = −c0(ζ)
(

e2ikd/d
)

π20f−(−ω1 → ω1; ζ)×
(

G̃1(ζ; d)V+dϕ0(· − d+;ω1, ζ), j+dϕ+(· − d+;−ω1, ζ)
)

.

Then it follows from Lemma 3.4 and (1.15) that h1(ζ; d) is analytic over
Dd and obeys |h1(ζ; d)| = O (|d|−ν) uniformly in ζ for some ν > 0. The

only nonzero eigenvalue of the operator G̃(ζ; d) of rank one is given by
h(ζ; d) + h1(ζ; d), where h(ζ; d) is defined by (1.12).

We apply Rouché’s theorem to the equation

(3.10) h(ζ; d) + h1(ζ; d) = 1

over Dd. Let
{

ζj(d)
}

1≤j≤Nd

be as in Lemma 3.5 and let

Cjε =
{

|ζ − ζj(d)| = ε/d
}

, Djε =
{

|ζ − ζj(d)| < ε/d
}

for ε > 0 fixed arbitrarily but sufficiently small. We may assume Djε ⊂ Dd

for d ≫ 1 by expanding Dd slightly, if necessary. Since h (ζj(d); d) = 1, the
derivative h′(ζ; d) behaves like

h′ (ζj(d); d) = iζj(d)
−1/2d

(

1 +O(d−1)
)

at ζ = ζj(d) ∈ Dd, so that
∣

∣h′ (ζj(d); d)
∣

∣ ≥ c1d for some c1 > 0. Hence it
follows that

|h(ζ; d) − 1| ≥ c2ε

on Cjε for some c2 > 0. Thus equation (3.10) has a unique solution ζres,j(d)
in Djε for d≫ 1.
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Once the location ζres,j(d) is determined as above, we can show in exactly
the same way as in the proof of [7, Theorem 1.1] (see step (3) there) that
it really becomes the resonance of R(ζ;Hd). We do not go into the details.
Thus the proof of the theorem is complete. �

3.3. We shall prove the preliminary lemmas which remain unproved.
We use the new notation

K±d = K0 + V±d, D(K±d) = H2(R2)

where V±d(x) = V±(x±d) = V±(x−d±) is as in (1.4). We introduce a smooth
non–negative cut–off function χ ∈ C∞

0 [0,∞) with the properties

(3.11) 0 ≤ χ ≤ 1, suppχ ⊂ [0, 2], χ = 1 on [0, 1].

This function is often used in the future discussion without further refer-
ences.

Proof of Lemma 3.1. We prove the lemma for the operator Q+(ζ; d) only.
A similar argument applies to Q−(ζ; d) also. Let γ+(x) be as in (3.2). Then
we introduce

K̃0 = H(∇γ+, 0) = eiγ+K0e
−iγ+ , K̃+ = H(∇γ+, V+) = K̃0 + V+

and K̃+d = K̃0 + V+d as auxiliary operators. These operator have the com-
mon domain H2(R2). By definition, we have

(3.12) R(ζ; K̃0) = eiγ+R(ζ;K0)e
−iγ+ , R(ζ; K̃+) = eiγ+R(ζ;K+)e

−iγ+

and similarly for R(ζ; K̃+d).

We take δ > 0 small enough as in Proposition 2.2 and define wd(x) by

wd(x) = χ
(

|x+d|/d
δ
)

= χ
(

|x− d+|/d
δ
)

, suppwd ⊂
{

|x+d| < 2dδ
}

,

where χ is the smooth cut–off function with properties in (3.11). Then, by

(3.3), ∇γ+ = Aρ on suppwd, so that K̃0 = H(Aρ, 0) = H0d there. Making
use of the relations wdV+d = V+d and wdj+d = j+d, we compute

Id+Q+(ζ; d) = Id+ V+dR(ζ; K̃0)j+d + V+d

(

R(ζ;H0d)−R(ζ; K̃0

)

j+d

= Id+ V+dR(ζ; K̃0)j+d + V+dR(ζ;H0d)
(

wdK̃0 −H0dwd

)

R(ζ; K̃0)j+d

= Id+ V+dR(ζ; K̃0)j+d + V+dR(ζ;H0d)[wd, K̃0]R(ζ; K̃0)j+d.

It follows by the resolvent identity that

R(ζ; K̃+d)j+d = R(ζ; K̃0)j+d

(

Id+ V+dR(ζ; K̃0)j+d

)−1
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on L2(B+d), and hence we obtain the following representation for the oper-
ator Id+Q+(ζ; d) in question:

Id+Q+(ζ; d)

=
(

Id+ V+dR(ζ;H0d)[wd, K̃0]R(ζ; K̃+d)j+d

)(

Id+ V+dR(ζ; K̃0)j+d

)

= eiγ+
(

Id+ Q̃+(ζ; d)
)

(Id+ V+dR(ζ;K0)j+d) e
−iγ+ ,

where Q̃+(ζ; d) is defined by

(3.13) Q̃+(ζ; d) = V+de
−iγ+R(ζ;H0d)e

iγ+ [wd,K0]R(ζ;K+d)j+d

as an operator acting on L2(B+d). Thus the problem is reduced to evaluating

the operator norm of Q̃+(ζ; d).

We compute the commutator

[wd,K0] = wdK0 −K0wd = 2∇wd · ∇+ (∆wd) = 2∇wd · ∇+O(d−2δ).

The coefficients ∇wd and ∆wd have support in B̃+d defined by (2.5). We
study the behavior of the resolvent kernel

R(ζ;K+d)(z, y) = R(ζ;K+)(z+d, y+d)

when (z, y) ∈ B̃+d ×B+d. By the resolvent identity, we have

(3.14) R(ζ;K+d) = R(ζ;K0)(Id− V+dR(ζ;K+d)).

For the free Hamiltonian K0 = −∆, the resolvent kernel R(ζ;K0)(z, y) is
given by

R(ζ;K0)(z, y) = (i/4)H0(k|z − y|)

and behaves like

R(ζ;K0)(z, y) = c0(ζ)e
ik|z−y||z − y|−1/2

(

1 +O(|z − y|−1)
)

when |z − y| ≫ 1. If z ∈ B̃+d and y ∈ B+d, then

|z+d − y+d| = |z+d| − y+d · ẑ+d +O(|d|−δ)

and hence

eik|z+d−y+d| = eik|z+d|
(

ϕ0(y+d; ẑ+d, ζ) +O(|d|−δ)
)

,

where ẑ+d = z+d/|z+d|. Thus R(ζ;K0)(z+d, y+d) behaves like

R(ζ;K0)(z+d, y+d) =

c0(ζ)e
ik|z+d||z+d|

−1/2
(

ϕ0(y+d; ẑ+d, ζ) + r(z+d, y+d; ζ)
)

,

where the remainder term r(z+d, y+d; ζ) satisfies

(3.15) |∂nz r(z+d, y+d; ζ)| = O(d−(1+|n|)δ)



AHARONOV–BOHM EFFECT IN RESONANCES II 55

uniformly in z, y and ζ ∈ Dd. Since

ϕ+(x; ẑ+d, ζ) =
[

(Id−R(ζ;K+)
∗V+)ϕ0(·; ẑ+d, ζ)

]

(x)

by definition, it follows from (3.14) that the kernel R(ζ;K+d)(z, y) under
consideration takes the asymptotic form

R(ζ;K+d)(z, y) =(3.16)

c0(ζ)e
ik|z+d||z+d|

−1/2
(

ϕ+(y+d; ẑ+d, ζ) + r0(z+d, y+d; ζ)
)

,

where

r0(z+d, y+d; ζ) = r(z+d, y+d; ζ)−

∫

r(z+d, u; ζ)V+(u)R(ζ;K+)(u, y+d) du

is analytic in ζ ∈ Dd and obeys the same bound as in (3.15).

We consider [wd,K0]R(ζ;K+d)(z, y). Since ∇wd · ∇ = O(d−δ)ẑ+d · ∇ for
wd = wd(z) and since

∂nz ϕ+(y+d; ẑ+d, ζ) = O
(

|z+d|
−|n|
)

= O(d−|n|δ)

on B̃+d, [wd,K0]R(ζ;K+d)(z, y) takes the form

(3.17)
(

[wd,K0]R(ζ;K+d)
)

(z, y) = eik|z+d|r̃0(z, y; ζ)

by (3.16), where r̃0(z, y; ζ) satisfies |∂
n
z r̃0| = O(d−(3/2+|n|)δ).

We now evaluate the norm of the operator Q̃+(ζ; d) : L
2(B+d) → L2(B+d)

defined by (3.13). We note that
∣

∣

∣
eik|z+d|

∣

∣

∣
is uniformly bounded in d for

z ∈ B̃+d, because

|Im k||z+d| = O ((log d)/d)O(dδ) = O(1)

for ζ ∈ Dd. Similarly
∣

∣

∣
eik|x−z|

∣

∣

∣
is also uniformly bounded in d when (x, z) ∈

B+d × B̃+d. Hence it follows from (3.17) that

(3.18) ‖[wd,K0]R(ζ;K+d)‖ = O(d−δ/2)

as a bounded operator from L2(B+d) to L
2(B̃+d). This is obtained by eval-

uating the Hilbert–Schmidt norm of the operator. According to Proposition
2.2, the operator R(ζ;H0d) admits the decomposition

R(ζ;H0d) = R̃0(ζ; d) + R̃1(ζ; d)

as a bounded operator from L2(B̃+d) to L2(B+d). The operator R̃0(ζ; d)
has the integral kernel

R̃0(ζ; d) = (i/4)H0(k|x− y|)a0(x, y; d)
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with a0(x, z; d) defined by (2.6), and R̃1(ζ; d) obeys ‖R̃1(ζ; d)‖ = O(d−ν)

uniformly in ζ ∈ Dd for some ν > 0. If x ∈ B+d and z ∈ B̃+d, then

|∇z (|x− z|+ |z+d|)| = |∇z (|z − x|+ |z − d+|)| ≥ c > 0

for some c independent of d, and hence we have
∫

H0(k|x− z|)eiγ+(z)a0(x, z; d)[wd,K0]R(ζ;K+d)(z, y) dz = O(d−N )

for any N ≫ 1 by repeated use of integration by parts. By (3.18), we also
have

‖R̃1(ζ; d)[wd,K0]R(ζ;K+d)j+d‖ = O(d−ν)

as a bounded operator on L2(B+d). Thus we see that the operator Q̃+(ζ; d)

defined by (3.13) satisfies ‖Q̃+(ζ; d)‖ = O(d−ν) as a bounded operator acting
on L2(B+d), and the proof is complete. �

Proof of Lemma 3.2. We prove the lemma for Q+(ζ; d) only. A similar
argument applies to Q−(ζ; d) also. By the resolvent identity, we have

(Id+ V±dR(ζ;K0)j±d) (Id− V±dR(ζ;K±d)j±d) = Id

on L2(B±d). This implies that Id+ V±dR(ζ;K0)j±d is invertible and

(Id+ V±dR(ζ;K0)j±d)
−1 =(3.19)

Id− V±dR(ζ;K±d)j±d : L2(B±d) → L2(B±d)

is bounded uniformly in ζ ∈ Dd. By Lemma 3.1 and (3.19), it follows that
Id+Q+(ζ; d) is invertible as an operator acting on L2(B+d). Since

(H+d − ζ)R(ζ;H0d)j+d = Id+ V+dR(ζ;H0d)j+d = Id+Q+(ζ; d)

on L2(B+d), the desired relation follows at once. �

Proof of Lemma 3.3. We prove statement (1) only. We use the notation
with the same meanings ascribed in the proof of Lemma 3.1 throughout the
proof. By Lemma 3.2, the operator G+(ζ; d) is represented as

G+(ζ; d) = V−dR(ζ;H0d)j+d(Id+Q+(ζ; d))
−1,

and by Lemma 3.1, the relation

Id+Q+(ζ; d) = eiγ+(Id+ Q̃+(ζ; d))(Id + V+dR(ζ;K0)j+d)e
−iγ+

holds true as an operator acting on L2(B+d). By (3.2), we have

(3.20) eiγ+(x) = ei(α−+α+)π +O(d−1)

for x ∈ B+d. Since Q̃+(ζ; d) satisfies ‖Q̃+(ζ; d)‖ = O
(

d−ν
)

for some ν > 0 as

a bounded operator acting on L2(B+d), the inverse (Id+ Q̃(ζ; d))−1 exists,
and we have the relation

(Id+ Q̃+(ζ; d))
−1 = Id− Q̃+(ζ; d)(Id + Q̃+(ζ; d))

−1.
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This, together with (3.19) and (3.20), enables us to decompose G+(ζ; d) into

G+(ζ; d) = G+0(ζ; d) + V−dR(ζ;H0d)j+dG+1(ζ; d),

where

G+0(ζ; d) = V−dR(ζ;H0d)j+d(Id− V+dR(ζ;K+d)j+d)

and G+1(ζ; d) is analytic in Dd and satisfies ‖G+1(ζ; d)‖ = O(d−ν) as an
operator acting on L2(B+d). We apply Proposition 2.1 to V−dR(ζ;H0d)j+d.
If (x, y) ∈ B−d ×B+d, then

|x1 − y1| = d− (x−d − y+d) · ω1 +O(d−1).

Hence the kernel R0(ζ; d)(x, y) of Proposition 2.1 behaves like

R0(ζ; d)(x, y) =

(

eikd

d1/2

)

(

c0(ζ)π0ϕ0(x−d;−ω1, ζ)ϕ0(y+d;−ω1, ζ) +O(d−1)
)

uniformly in (x, y) ∈ B−d ×B+d and ζ ∈ Dd. Since

ϕ+(y+d;−ω1, ζ) =
[

(Id−R(ζ;K+d)
∗V+d)ϕ0(· − d+;−ω1, ζ)

]

(y+d)

by definition and since
∣

∣

∣
eikd/d1/2

∣

∣

∣
= O

(

d3δ0/2
)

overDd (see (1.15)), the leading termG+d(x, y; ζ, d) is obtained from the ker-

nel ofG+0(ζ; d) and the remainder operator G̃+d(ζ; d) satisfies ‖G̃+d(ζ; d)‖ =
O(|d|−ν) for some ν > 0 by taking δ0 > 0 small enough. This yields the
desired decomposition and proves the lemma. �

Proof of Lemma 3.4. We compute the integral

c0(ζ)

∫

V−(x−d)ϕ0(x−d;−ω1, ζ)ϕ−(x−d;ω1, ζ) dx = −f−(−ω1 → ω1; ζ).

in exactly the same way as used to establish relation (3.9). This, together

with Lemma 3.3, yields the kernel of G0(ζ; d). Since
∣

∣

∣
eikd/d1/2

∣

∣

∣
= O

(

d3δ0/2
)

over Dd, we can take δ0 so small that the remainder operator G1(ζ; d) obeys
‖G1(ζ; d)‖ = O

(

d−ν
)

for some ν > 0. Thus the proof is complete. �

4. Complex scaling method

The remaining two sections are devoted to proving Propositions 2.1 and
2.2 which have remained unproved in section 2. These propositions are
proved by constructing the resolvent kernel R(ζ;H0d)(x, y) with the spectral
parameter ζ in the lower half plane. To do this, we compose the resolvent
kernel constructed for each obstacle O±ρ by making use of the complex
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scaling method. In this section, we introduce the new notation and explain
a strategy based on this method. For notational brevity, we write

Pρ = H(Aρ, 0), D(Pρ) = H2(Ωρ) ∩H
1
0 (Ωρ)

for the operator H0d under consideration (see (1.17)). We set

ρ = 2κ0d = |ρ+ − ρ−|

for ρ± = (±κ0d, 0) as in (2.1). Besides the cut–off function χ ∈ C∞
0 [0,∞)

with properties in (3.11), we further introduce smooth cut–off functions χ∞

and χ± over (−∞,∞) with the following properties : 0 ≤ χ∞, χ± ≤ 1 and

χ∞(t) = 1− χ(|t|),

χ+(t) = 1 for t ≥ 1, χ+(t) = 0 for t ≤ −1, χ−(t) = 1− χ+(t).

We often use these functions without further references throughout the fu-
ture discussion.

We define the mapping jρ(x) : R
2 → R×C by

(4.1) jρ(x1, x2) = (x1, x2 + iηρ(x2)x2) , ηρ(t) = L0

(

(log ρ)/ρ
)

χ∞(t/ρ),

where L0 ≫ 1 is fixed large enough, and we consider the complex scaling
mapping

(4.2) (Jρf) (x) =
[

det (∂jρ/∂x)
]1/2

f(jρ(x))

associated with jρ(x). The Jacobian det (∂jρ/∂x) of jρ(x) does not vanish
for d ≫ 1, and it is easily seen that Jρ is a one-to-one mapping. Since the
coefficients of Pρ are analytic over Ωρ, we can define the operator

(4.3) Qρ = JρPρJ
−1
ρ .

This becomes a closed operator in L2(Ωρ) with the same domain as Pρ, but
it is not necessarily self–adjoint. We do not require the explicit form of Qρ in
the future discussion. We construct the resolvent kernel R(ζ;Qρ)(x, y) with
ζ ∈ Dd without constructing R(ζ;Pρ)(x, y) directly. The mapping jρ acts

as the identity over the strip
{

x = (x1, x2) : |x2| < ρ = 2κ0d
}

, and hence we

have the relation

R(ζ;Pρ)(x, y) = R(ζ;Pρ)(jρ(x), jρ(y)) = R(ζ;Qρ)(x, y)

for (x, y) ∈ B±d × B∓d or for (x, y) ∈ B±d × B̃±d. Thus the necessary
information can be obtained through the kernel R(ζ;Qρ)(x, y).

Here we make a brief comment on the motivation to introduce the com-
plex scaled operator Qρ above. The scattering system by one solenoid is
known to be exactly solvable. We make a full use of of the information
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from such a system to construct R(ζ;Qρ)(x, y) by composing the two resol-
vent kernels associated with each obstacle O±. In doing this, a difficulty
comes from the exponential growth of resolvent kernels with spectral pa-
rameters in the lower half plane. For magnetic fields compactly supported,
the corresponding vector potentials can not be expected to fall off rapidly at
infinity, because of the topological feature of the two dimensional space that
R

2 \ {0} is not simply connected. In fact, vector potentials have the long
range property. As already stated in section 1, the vector potentials can not
be expected to be well separated, even if the supports of the two magnetic
fields are largely separated from each other. In other words, cut–off func-
tions used to separate the two obstacles do not have bounded supports. Thus
the composition of the resolvent kernels growing exponentially can not be
controlled simply by integration by parts using oscillatory properties. The
mapping jρ defined by (4.1) makes the resolvent kernels of one obstacle fall
off rapidly even for spectral parameters in the lower half plane, so that the
composition converges (see Theorem A.4 in Appendix). This is the reason
why we consider Qρ in place of Pρ.

We introduce the auxiliary operators

(4.4) P±ρ = H(A±ρ, 0), D(P±ρ) = H2(Ω±ρ) ∩H
1
0 (Ω±ρ),

where A±ρ(x) is defined in (1.5) and Ω±ρ = R
2 \ O±ρ. We define the com-

plex scaled operator as in (4.3) for these auxiliary operators P±ρ. Recall
that γ(x;ω) denotes the azimuth angle from ω ∈ S1 to x̂ = x/|x|. The po-
tential Φ(x) defined by (1.3) satisfies the relation Φ(x) = ∇γ(x;ω). Hence
it follows that

A±ρ(x) = α±∇γ(x− ρ±;±ω1), ω1 = (1, 0).

If we take arg z, 0 ≤ arg z < 2π, to be a single valued function over the
complex plane slit along the direction ω1, then the angle function γ(x;ω1)
is represented as

γ(x;ω1) = −
i

2

(

log(x1 + ix2)− log(x1 − ix2)
)

+ π,

so that it is well defined for the complex variables also. Thus we can define

γ(jρ(x);ω1) =
(

arg(b+ρ(x))− arg(b−ρ(x))
)

/2 + π − i (log |bρ(x)|) /2,

where

b+ρ(x) = x1 − ηρ(x2)x2 + ix2, b−ρ(x) = x1 + ηρ(x2)x2 − ix2,

and bρ(x) = b+ρ(x)/b−ρ(x). The function γ(jρ(x);−ω1) is similarly defined
by taking arg z to be a single valued function over the complex plane slit
along the direction −ω1.
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We define g±ρ(x) by

(4.5) g±ρ(x) = α±χ∓

(

(32x1/ρ)∓ 13
)

γ(jρ(x)− ρ±;±ω1)

and g0ρ(x) by

(4.6) g0ρ(x) = χ

(

4|x1|

ρ

)

(

α−γ(jρ(x)− ρ−;−ω1) + α+γ(jρ(x)− ρ+;ω1)
)

.

By definition, supp g−ρ ⊂ {x : x1 > −7ρ/16} and

g−ρ(x) = α−γ(jρ(x)− ρ−;−ω1) on Σ+ = {x : x1 > −3ρ/8}.

Hence exp(ig−ρ) acts as

exp(ig−ρ)f(x) =
(

Jρ exp(iα−γ(x− ρ−;−ω1))J
−1
ρ f

)

(x)

on functions f(x) with support in Σ+. On the other hand, g+ρ(x) has
support in {x : x1 < 7ρ/16} and

g+ρ(x) = α+γ(jρ(x)− ρ+;ω1) on Σ− = {x : x1 < 3ρ/8},

so that exp(ig+ρ) acts as

exp(ig+ρ)f(x) =
(

Jρ exp(iα+γ(x− ρ+;ω1))J
−1
ρ f

)

(x)

on functions f(x) with support in Σ−. We take these relations into account
to define the following complex scaled operator

(4.7) Q±ρ = exp(ig∓ρ)
(

JρP±ρJ
−1
ρ

)

exp(−ig∓ρ)

for P±ρ defined by (4.4), where Q±ρ has the same domain as P±ρ. Since

Q+ρ = JρH(α−∇γ(x− ρ−;−ω1) +A+ρ)J
−1
ρ

on Σ+, we have

(4.8) Q+ρ = Qρ on Σ+ =
{

x : x1 > −3ρ/8
}

.

Similarly we have

(4.9) Q−ρ = Qρ on Σ− =
{

x : x1 < 3ρ/8
}

.

The function g0ρ(x) defined by (4.6) has support in {x : |x1| < ρ/2} and
satisfies

g0ρ = α−γ(jρ(x)− ρ−;−ω1) + α+γ(jρ(x)− ρ+;ω1)

on Σ0 = {x : |x1| ≤ ρ/4}. If we define the operator Q0ρ by

(4.10) Q0ρ = exp(ig0ρ)
(

JρK0J
−1
ρ

)

exp(−ig0ρ), K0 = −∆,

as a closed operator with domain D(Q0ρ) = H2(R2), then we obtain

(4.11) Q0ρ = Q±ρ = Qρ on Σ0 =
{

x : |x1| ≤ ρ/4
}

.
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We set χ±ρ(x) = χ±(16x1/ρ) and take χ̃±ρ ∈ C∞(R2) in such a way that

(4.12) χ̃±ρ has a slightly larger support than χ±ρ, χ̃±ρχ±ρ = χ±ρ.

For the exterior domain Ω±ρ = R
2 \ O±ρ, we regard χ̃±ρ as the extension

from L2(Ωρ) to L
2(Ω±ρ) and χ±ρ as the restriction to L2(Ωρ) from L2(Ω±ρ).

Then we define

(4.13) Λ(ζ; ρ) = χ−ρR(ζ;Q−ρ)χ̃−ρ + χ+ρR(ζ;Q+ρ)χ̃+ρ, ζ ∈ Dd,

as an operator from L2
comp(Ωρ) to L

2
loc(Ωρ). We note (see [3]) that R(ζ;Q±ρ)

is well–defined as an operator from L2
comp(Ω±ρ) to L2

loc(Ω±ρ) for ζ ∈ Dd.
Since Qρ = Q±ρ on suppχ±ρ by (4.8) and (4.9), we compute

(Qρ − ζ)Λ = (Q−ρ − ζ)χ−ρR(ζ;Q−ρ)χ̃−ρ + (Q+ρ − ζ)χ+ρR(ζ;Q+ρ)χ̃+ρ

= Id+ [Q−ρ, χ−ρ]R(ζ;Q−ρ)χ̃−ρ + [Q+ρ, χ+ρ]R(ζ;Q+ρ)χ̃+ρ.

The function χ±ρ depends on x1 only, and the derivative χ′
±ρ has support

in

(4.14) Π0 =
{

x = (x1, x2) : |x1| < ρ/16
}

.

By (4.11), Q±ρ = Q0ρ on Π0, so that both the commutators [Q−ρ, χ−ρ] and
[χ+ρ, Q+ρ] on the right side equal [Q0ρ, χ−ρ]. Hence we have

(4.15) (Qρ − ζ)Λ(ζ; d) = Id+ Γ0 (R(ζ;Q−ρ)χ̃−ρ −R(ζ;Q+ρ)χ̃+ρ) ,

where

(4.16) Γ0 = [Q0ρ, χ−ρ], χ−ρ = χ−(16x1/ρ).

We define T (ζ; ρ) by

(4.17) T (ζ; ρ) = Γ0(R(ζ;Q−ρ)−R(ζ;Q+ρ))p0

as an operator acting on L2(Π0), where the multiplication by the characteris-
tic function p0(x)

(

= p0(x1)
)

of Π0 is regarded as the extension from L2(Π0)

to L2(Ω−ρ) or to L
2(Ω+ρ). We have shown ([3, section 6]) that T (ζ; d) obeys

the bound ‖T (ζ; d)‖ = O (dν) for some ν > 0 uniformly in ζ ∈ Dd and is
analytic over Dd as a function with values in bounded operators acting on
L2(Π0). If

(4.18) Id+ T (ζ; ρ) : L2(Π0) → L2(Π0)

is shown to have the inverse bounded uniformly in ζ ∈ Dd, then it follows
that

R(ζ;Qρ) = Λ(ζ; d)(4.19)

− Λ(ζ; d)p0 (Id+ T )−1 Γ0

(

R(ζ;Q−ρ)χ̃−ρ −R(ζ;Q+ρ)χ̃+ρ

)

.

The proof of Propositions 2.1 and 2.2 is based on this relation.
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5. Proof of Propositions 2.1 and 2.2

In this section we prove Propositions 2.1 and 2.2.

5.1. We begin by showing that the operator in (4.18) is invertible and
establish the basic representation (4.19) for R(ζ;Qρ) with ζ ∈ Dd. Let
χ ∈ C∞

0 [0,∞) be a cut–off function with properties in (3.11) and let µ
(2/5 < µ < 1/2) be as in (2.2). We define

v0(x2) = χ
(

2|x2|/ρ
1−µ
)

, ṽ0 = χ
(

|x2|/ρ
1−µ
)

, v1(x2) = 1− v0(x2)

and ṽ1(x2) = 1− χ
(

4|x2|/ρ
1−µ
)

. Then vj ṽj = vj for 0 ≤ j ≤ 1. We further
define

Tjk = Tjk(ζ; ρ) = vjT (ζ; ρ)ṽk, 0 ≤ j, k ≤ 1,

for the operator T (ζ; ρ) defined by (4.17). Then the following lemma has
been established as Lemma 7.1 in [3], although the slightly different notation
has been used there.

Lemma 5.1. Let Op(d−N ) denote the class of bounded operators on L2(Π0)
with bound O(d−N ) for any N ≫ 1. Then the operators

T11T11, T11T10, T01T11, T01T10 : L
2(Π0) → L2(Π0)

are all of class Op(d−N ).

We discuss the asymptotic form of T00(ζ; ρ). We introduce the self–adjoint
operator

P± = H(A±, 0), D(P±) = H2(Ω±) ∩H
1
0 (Ω±),

where A±(x) is defined by (1.2) over Ω± = R
2 \O±. Let f̃±(±ω1 → ∓ω1; ζ)

be the function obtained from the backward amplitude for the pair (K0, P±)
by analytic continuation over Dd. We further define u± = u±(x; ζ, ρ) and
w± = w±(x; ζ, ρ) as

(5.1)
u± = −2ikc0(ζ)f̃±(±ω1 → ∓ω1; ζ)χ

′
−ρ(x1)v0(x2)e

ik|x±ρ||x±ρ|
−1/2,

w± = p0(x1)ṽ0eik|x±ρ||x±ρ|
−1/2 = p0(x1)ṽ0(x2)e

−ik|x±ρ||x±ρ|
−1/2,

where c0(ζ) is the constant defined by (2.4) and p0(x1)(= p0(x)) is the
characteristic function of Π0. We write u⊗w for the integral operator with
the kernel u(x)w(y). The next lemma has also been verified as [3, Lemmas
7.2].

Lemma 5.2. The operator T00(ζ; ρ) admits the decomposition

T00(ζ; ρ) = Z0(ζ; ρ) + Z1(ζ; ρ).

Here the two operators on the right side have the following properties.
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(1) The operator Z0(ζ; ρ) is defined by

Z0(ζ; ρ) = u− ⊗ w− + u+ ⊗ w+

with u± and w± defined by (5.1).

(2) We can take δ0 > 0 in (1.9) and 0 < 1/2 − µ ≪ 1 in (2.2) so small
that

‖Z1(ζ; ρ)‖ = O(d−3/8)

uniformly in ζ ∈ Dd as a bounded operator acting on L2(Π0).

We are now in a position to prove the basic lemma below.

Lemma 5.3. Let T (ζ; ρ) be defined by (4.17). Then

Id+ T (ζ; ρ) : L2(Π0) → L2(Π0)

is invertible for ζ ∈ Dd, and the inverse is bounded uniformly in ζ and
d≫ 1.

Proof. The proof is divided into four steps.
(1) The operator Id+ T (ζ; ρ) in question has the matrix representation

X = X(ζ; ρ) =

(

Id+ T00 T01
T10 Id+ T11

)

as an operator acting on L2(Π0)⊕L2(Π0), and all the components Tjk(ζ; ρ)
are bounded with ‖Tjk‖ = O(dν) uniformly in ζ ∈ Dd, as stated at the end
of the previous section. By Lemma 5.1, we have

(5.2) (Id+ T11)
−1 =

(

Id− T 2
11

)−1
(Id− T11) = Id− T11 +Op

(

d−N
)

and X admits the decomposition

X =

(

Id 0
0 Id+ T11

)(

Id T01
0 Id

)(

Id+ T00 + TN 0

(Id+ T11)
−1 T10 Id

)

,

where
TN = TN (ζ; ρ) = −T01 (Id+ T11)

−1 T10

is of class Op
(

d−N
)

by Lemma 5.1. We now consider the operator

Y0 = Y0(ζ; ρ) = Id+ T00 + TN : L2(Π0) → L2(Π0).

If Y0 is invertible, then it follows that X is also invertible, so that Id+T (ζ; ρ)
becomes invertible. The inverse X−1 is calculated as

X−1 =

(

Y −1
0 X01

X10 X11

)

,

where

X01 = −Y −1
0 T01 (Id+ T11)

−1 , X10 = − (Id+ T11)
−1 T10Y

−1
0
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and

X11 = (Id+ T11)
−1 T10Y

−1
0 T01 (Id+ T11)

−1 + (Id+ T11)
−1 .

If we take (5.2) into account, then it follows by Lemma 5.2 that (Id+ T )−1

takes the form

(Id+ T )−1 =
(

Id− T10 +Op
(

d−N
))

Y −1
0

(

v0 − T01v1 +Op
(

d−N
))

(5.3)

+ (Id− T11) v1 +Op
(

d−N
)

.

(2) We denote by 〈 , 〉 and ‖ ‖0 the L2 scalar product and norm in
L2(Π0), respectively. Lemma 5.2 allows us to write

Y0(ζ; ρ) = Id+ Z0(ζ; ρ) + Zrem(ζ; ρ)(5.4)

= (Id+ Zrem(ζ; ρ))
(

Id+ Z̃0(ζ; ρ)
)

,

where

(5.5) Zrem(ζ; ρ) = Z1(ζ; ρ) + TN (ζ; ρ)

and

Z̃0(ζ; ρ) = (Id+ Zrem(ζ; ρ))
−1 Z0(ζ; ρ) = ũ− ⊗ w− + ũ+ ⊗ w+

with ũ± = ũ±(x; ζ, d) defined by

ũ± = (Id+ Zrem(ζ; ρ))
−1 u±(5.6)

= u± − (Id+ Zrem(ζ; ρ))
−1 Zrem(ζ; ρ)u±.

We set

(5.7) h±±(ζ; ρ) = 〈ũ±, w±〉, h±∓(ζ; ρ) = 〈ũ±, w∓〉

and define h0(ζ; ρ) by

(5.8) h0(ζ; ρ) = (1 + h−−(ζ; ρ)) (1 + h++(ζ; ρ))− h−+(ζ; ρ)h+−(ζ; ρ)

for ζ ∈ Dd. If h0(ζ; ρ) does not vanish over Dd, then a direct computation
yields

(5.9)
(

Id+ Z̃0(ζ; ρ)
)−1

= Id− h−1
0 Z2(ζ; ρ),

where

Z2 = Z2(ζ; ρ) = (1 + h++)Z−− − h+−Z−+ − h−+Z+− + (1 + h−−)Z++

with Z±± = ũ± ⊗ w± and Z∓± = ũ∓ ⊗ w±. If we further write

(Id+ Zrem)
−1 = Id− Zrem (Id+ Zrem)

−1 ,

then it follows from (5.4) and (5.9) that

(5.10) Y −1
0 = Id− Zrem (Id+ Zrem)

−1 − h−1
0 Z3,
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where

Z3 = Z3(ζ; ρ) = (1 + h++)Z̃−− − h+−Z̃−+ − h−+Z̃+− + (1 + h−−)Z̃++

and Z̃±± = ũ± ⊗ w̃± and Z̃∓± = ũ∓ ⊗ w̃± with

(5.11) w̃± = w̃±(x; ζ, d) = (Id+ Zrem(ζ; ρ)
∗)−1 w±.

(3) We claim that h0(ζ; ρ) defined by (5.8) never vanishes over Dd. To
see this, we evaluate the norms ‖u±‖0 and ‖w±‖0 in L2(Π0). Recall that
ρ = |ρ+ − ρ−| = 2κ0d. If x ∈ Π0 ∩ supp ṽ0, then

7ρ/16 < |x1 − ρ/2| < 9ρ/16 = 9κ0d/8

and |x2| ≤ 2ρ1−µ. Hence we have

|x+ρ| = |x− ρ+| = |x1 − ρ/2|
(

1 +O(ρ−2µ)
)

≤ (9κ0d/8)
(

1 +O(d−2µ)
)

.

By (1.13) and (1.14), we have

|Im k| ≤ (1/2 + 3δ0/2) ((log d)/d)

uniformly in ζ ∈ Dd, so that
∣

∣

∣
eik|x+ρ|/|x+ρ|

1/2
∣

∣

∣
= O(d−1/2)O

(

d9κ0(1+3δ0)/16
)

and similarly for eik|x−ρ|/|x−ρ|
1/2 with x−ρ = x−ρ−. Note that |χ

′
−d(x1)| =

O(d−1) and κ0 < 1/2 strictly. Hence we can take δ0 > 0 so small that

−3/2 + 9κ0/16 + 27δ0/32 + 1− µ/2 < −7/32− µ/2.

Thus we obtain the bounds

(5.12) ‖u±‖0 = O(d−7/32−µ/2), ‖w±‖0 = O(d25/32−µ/2).

(4) We prove the claim in step (3) by analyzing the asymptotic behaviors
of the L2 scalar products h±±(ζ; ρ) and h∓±(ζ; ρ) defined by (5.7). Recall
that u± and w± are defined by (5.1). If we note that |∂1|x±ρ|| > c > 0 for
x ∈ Π0 ∩ supp v0, then we can easily show by repeated use of integration
by parts that 〈u±, w±〉 = O(d−N ) for any N ≫ 1. We make use of the
stationary phase method (or the method of steepest descent) to see the
behavior of 〈u±, w∓〉. For x1 fixed, the phase function |x−ρ|+ |x+ρ| attains
its minimum at x2 = 0 as a function of x2. Hence we have the relation

〈u±, w∓〉 = eikρO(d−1/2).

The operator Zrem defined by (5.5) satisfies ‖Zrem‖ = O(d−3/8) by Lemma
5.2. Thus we obtain

|〈ũ± − u±, w±〉| = O(1)‖Zrem‖‖u±‖0‖w±‖0 = O
(

d3/16−µ
)
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by (5.6) and (5.12). This implies that h±±(ζ; ρ) = O(d3/16−µ) uniformly in
ζ ∈ Dd, and also we have

h∓±(ζ; ρ) = O(d−1/2)
∣

∣

∣
eikρ

∣

∣

∣
= O(d−1/2)

(

dκ0(1+3δ0)
)

.

Hence we can take δ0 > 0 so small that

|h++(ζ; ρ)|+ |h−−(ζ; ρ)|+ |h+−(ζ; ρ)h−+(ζ; ρ)| = o(1), d→ ∞,

so that the claim is verified. The proof of the lemma is complete. �

By definition, v0 + v1 = 1. We now combine (5.3) with (5.10) to see that
(Id+ T (ζ; ρ))−1 admits the following decomposition

(5.13) (Id+ T )−1 = Id+

3
∑

j=1

Sj(ζ; ρ) + Op
(

d−N
)

,

where

S1 = −T10v0 − (Id− T10)T01v1 − T11v1,

S2 = − (Id− T10)Zrem (Id+ Zrem)
−1 (v0 − T01v1) ,

S3 = −h−1
0 (Id− T10)Z3 (v0 − T01v1) ,

and Z3 is defined as in (5.10). According to (5.13), it follows from (4.19)
that the resolvent R(ζ;Qρ) in question is decomposed into the sum

(5.14) R(ζ;Qρ) = Λ(ζ; ρ) + Λ0(ζ; ρ) +

3
∑

j=1

Λj(ζ; ρ) + ΛN (ζ; ρ),

where Λ is defined by (4.13) and

Λ0 = −ΛΓ0

(

R(ζ;Q−ρ)χ̃−ρ −R(ζ;Q+ρ)χ̃+ρ

)

Λj = −Λp0SjΓ0

(

R(ζ;Q−ρ)χ̃−ρ −R(ζ;Q+ρ)χ̃+ρ

)

, 1 ≤ j ≤ 3,

ΛN = Λp0Op
(

d−N
)

Γ0

(

R(ζ;Q−ρ)χ̃−ρ −R(ζ;Q+ρ)χ̃+ρ

)

.

5.2. We prove Propositions 2.1 and 2.2, accepting the preliminary lem-
mas below as proved. These lemmas are proved in subsection 5.3. We
recall that j±d and j̃±d denote the characteristic functions of B±d and B̃±d,
respectively.

Lemma 5.4. Let Λ1(ζ; ρ) be as above. Then

‖j+dΛ1(ζ; ρ)j−d‖+ ‖j+dΛ1(ζ; ρ)j̃+d‖ = O(d−N )

uniformly in ζ ∈ Dd for any N ≫ 1 as a bounded operator on L2(Ωρ).
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Lemma 5.5. Let Λ2(ζ; ρ) be as above. Then there exists ν > 0 such that

‖j+dΛ2(ζ; ρ)j−d‖+ ‖j+dΛ2(ζ; ρ)j̃+d‖ = O(d−ν)

uniformly in ζ ∈ Dd as a bounded operator on L2(Ωρ).

Lemma 5.6. Let Λ3(ζ; ρ) be as above. Then there exists ν > 0 such that

‖j+dΛ3(ζ; ρ)j−d‖+ ‖j+dΛ3(ζ; ρ)j̃+d‖ = O(d−ν)

uniformly in ζ ∈ Dd as a bounded operator on L2(Ωρ).

Lemma 5.7. Let ΛN (ζ; ρ) be as above. Then

‖j+dΛN (ζ; ρ)j−d‖+ ‖j+dΛN (ζ; ρ)j̃+d‖ = O(d−N )

uniformly in ζ ∈ Dd for any N ≫ 1 as a bounded operator on L2(Ωρ).

Proof of Proposition 2.1. We first note that j+dR(ζ;H0d)j−d in question is
represented as

j+dR(ζ;H0d)j−d = j+dR(ζ;Pρ)j−d = j+dR(ζ;Qρ)j−d

according to the notation in this section. We recall the representation for
Λ(ζ; ρ) from (4.13). If we take (4.12) into account, then j+dΛ(ζ; ρ)j−d = 0.
Thus it follows from Lemmas 5.4 ∼ 5.7 that the leading term R0(ζ; d) comes
from the operator

j+dΛ0(ζ; ρ)j−d = −j+dΛΓ0R(ζ;Q−ρ)j−d

= −j+dR(ζ;Q+ρ)(v0 + v1)Γ0R(ζ;Q−ρ)j−d.

The coefficients of the commutator Γ0 defined by (4.16) have supports in
Π0. We can show in almost the same way as used to prove Lemma 7.1 in [3]
(see also Lemma 5.1) that the second operator on the right sides obeys

‖j+dR(ζ;Q+ρ)v1Γ0R(ζ;Q−ρ)j−d‖ = O(d−N )

for any N ≫ 1 as a bounded operator acting on L2(Ωρ). This is intuitively
clear. In fact, the particle which starts from B−d and passes over Π0∩supp v1
never arrives at B+d. The rigorous proof is done by taking Theorems A.3
and A.4 and by making repeated use of integration by parts. We consider
the kernel of the first operator. We note that χ−ρ is a function of the x1
variable only and that the mapping jρ defined by (4.1) acts as the identity

over supp v0 ⊂
{

|x2| < ρ1−µ
}

. We compute

v0Γ0 = v0[Q0ρ, χ−ρ] = v0 exp(ig0ρ)[K0, χ−ρ] exp(−ig0ρ)

= exp(ig0ρ)v0

{

−2 (∂1χ−ρ) ∂1 − χ′′
−ρ

}

exp(−ig0ρ)
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= v0

{

−2 (∂1χ−ρ) ∂1 +O(d−2)
}

.

It follows from (4.7) that

j+dR(ζ;Q+ρ)v0 = j+d exp(ig−ρ)R(ζ;P+ρ) exp(−ig−ρ)v0,

R(ζ;Q−ρ)j−d = exp(ig+ρ)R(ζ;P−ρ) exp(−ig+ρ)j−d.

By (4.5), we also have

g−ρ(x) = α−γ(x− ρ−;−ω1) = α−π +O(d−µ)

on B+d or on Π0 ∩ supp v0, and

g+ρ(x) = α+γ(x− ρ+;ω1) = α+π +O(d−µ)

on B−d or on Π0 ∩ supp v0. Thus the kernel under consideration takes the
following integral form:

2

∫

R(ζ;P+ρ)(x, z)∂1χ−ρ(z1)v0(z2)∂1R(ζ;P−ρ)(z, y) dz +
∫

R(ζ;P+ρ)(x, z)
(

O(d−µ)∂1χ−ρ(z1) +O(d−2)
)

v0(z2)∂1R(ζ;P−ρ)(z, y) dz

for (x, y) ∈ B+d×B−d. We now apply [8, Proposition 6.1] to the first integral
and [8, Proposition 6.2] to the second one. Then the first integral behaves
like

eik|x1−y1||x1 − y1|
−1/2

(

c0(ζ)π0 +O(d−(1/2−µ))
)

,

and the second integral obeys the bound eik|x1−y1||x1 − y1|
−1/2O(d−µ). Since

∣

∣

∣
eik|x1−y1|/d1/2

∣

∣

∣
= O

(

d3δ0/2
)

by (1.15) and since µ < 1/2 strictly, we can

take δ0 > 0 and 0 < µ − 1/2 ≪ 1 so small that the desired leading term
R0(ζ; d) is obtained from j+dΛ0(ζ; ρ)j−d. �

Proof of Proposition 2.2. By (4.16) and (4.11), we have

Γ0 = [Q0ρ, χ−ρ] = [χ+ρ, Q+ρ].

Hence

j+dΛ0j̃+d = j+dR(ζ;Q+ρ)Γ0R(ζ;Q+ρ)j̃+d = 0,

and also we have by Lemmas 5.4 ∼ 5.7 that the leading term R̃0(ζ; d) comes
from

j+dΛj̃+d = j+dR(ζ;Q+ρ)j̃+d = j+d exp(ig−ρ)R(ζ;P+ρ) exp(−ig−ρ)j̃+d.

We apply Theorem A.3 in Appendix ([8, Theorem 1.3]) to R(ζ;P+ρ). If we
note that

g−ρ(x)− g−ρ(y) = α−(γ(x̂−ρ;−ŷ−ρ)− π)
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for (x, y) ∈ B+d × B̃+d, then the kernel of this operator behaves like

(i/4)H0(k|x− y|)a0(x, y; ρ) + eik(|x+ρ|+|y+ρ|)O(d−1).

This yields the desired leading term R̃0(ζ; d). �

5.3. We prove Lemmas 5.4 ∼ 5.7 which have remained unproved. The
proof uses the following two auxiliary lemmas.

Lemma 5.8. The following operators are all bounded with bound O(d−N )
uniformly in ζ ∈ Dd for any N ≫ 1:

j+dR(ζ;Q+ρ)p0T10 : L
2(Π0) → L2(Ωρ),

T01v1Γ0R(ζ;Q−ρ)j−d : L2(Ωρ) → L2(Π0),

T01v1Γ0R(ζ;Q+ρ)j̃+d : L2(Ωρ) → L2(Π0),

j+dR(ζ;Q+ρ)p0T11v1Γ0R(ζ;Q−ρ)j−d : L2(Ωρ) → L2(Ωρ),

j+dR(ζ;Q+ρ)p0T11v1Γ0R(ζ;Q+ρ)j̃+d : L2(Ωρ) → L2(Ωρ).

Proof. The proof uses Theorem A.4 in Appendix (see [3, Propositions 6.3
and 6.4] also). In principle, it is based on the same idea as the proof of
Lemma 5.1 ([3, Lemma 7.1]). For example, the bound on the first operator
follows from the fact that outgoing particles starting from Π0 ∩ supp ṽ0 and
passing over Π0 ∩ supp v1 after scattered by the obstacle O−ρ or O+ρ never
reach B+d. This is made rigorous by repeated use of integration by parts.
We do not go into details. �

Lemma 5.9. The following statements hold true uniformly in ζ ∈ Dd.
(1) The operator

j+dR(ζ;Q+ρ)p0ṽ0 : L
2(Π0) → L2(Ωρ)

is bounded with the bound O(d1/2−µ/2)O
(

d(κ++κ0/8)(1/2+3δ0/2)
)

.

(2) The operator

ṽ0Γ0R(ζ;Q−ρ)j−d : L2(Ωρ) → L2(Π0)

is bounded with the bound O(d−1/2−µ/2)O
(

d(κ−+κ0/8)(1/2+3δ0/2)
)

.

(3) The operator

ṽ0Γ0R(ζ;Q+ρ)j̃+d : L2(Ωρ) → L2(Π0)

is bounded with the bound O(d−1/2−µ/2)O(dδ)O
(

d(κ++κ0/8)(1/2+3δ0/2)
)

.
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Proof. The proof uses Theorems A.1 and A.2 in Appendix ([8, Theorems
1.1 and 1.2]). If x ∈ B+d and y ∈ Π0 ∩ supp ṽ0, then

|x− y| = |x1 − y1|
(

1 +O(d−2µ)
)

and |x1 − y1| < ρ/16 + κ+d = (κ0/8 + κ+)d. This implies
∣

∣

∣
eik|x−y||x− y|−1/2

∣

∣

∣
= O(d−1/2)O

(

d(κ++κ0/8)(1/2+3δ0/2)
)

.

Statement (1) is verified by evaluating the Hilbert–Schmidt norm of the
operator. Similar arguments apply to the other statements. �

Proof of Lemma 5.4. The lemma follows immediately from Lemmas 5.8
and 5.9. �

Proof of Lemma 5.5. By Lemma 5.2, ‖Zrem (Id+ Zrem)
−1 ‖ = O(d−3/8) as

an operator on L2(Π0). This, together with Lemmas 5.8 and 5.9, implies
that

‖j+dΛ2(ζ; ρ)j−d‖ = O(d−3/8−µ)O
(

d(κ++κ−+κ0/4)(1/2+3δ0/2)
)

as an operator on L2(Ωρ). Recall from (2.2) that µ > 2/5. Since κ−+κ+ = 1
and κ0 < 1/2 strictly, we can take δ0 > 0 so small that

−3/8− µ+ (1 + κ0/4)(1/2 + 3δ0/2) < −µ+ 3/16 < 0.

Next we prove the lemma for j+dΛ2(ζ; ρ)j̃+d. Recall the representation
for Zrem(ζ; ρ) from (5.5). By Lemma 5.2, we have the expansion

Zrem (Id+ Zrem)
−1 = Z1 − Z2

1 + · · · + (−1)nZn+1
1

+ (−1)n+1Zn+2
1 (Id+ Zrem)

−1 +Op
(

d−N
)

by the Neumann series. We have shown in the course of the proof of
[3, Lemma 7.2] that the kernel Z1(ζ; ρ)(x, y) of Z1(ζ; ρ) takes the form

Z1(ζ; ρ)(x, y) =

v0(x2)p0(x1)e
ik|x−ρ||x−ρ|

−1/2z−(x, y; ζ, ρ)|y−ρ|
−1/2eik|y−ρ|p0(y1)ṽ0(y2)

+ v0(x2)p0(x1)e
ik|x+ρ||x+ρ|

−1/2z+(x, y; ζ, ρ)|y+ρ|
−1/2eik|y+ρ|p0(y1)ṽ0(y2),

where z±(x, y; ζ, ρ) satisfies
∣

∣

∣
∂lx∂

m
y z±(x, y; ζ, ρ)

∣

∣

∣
= O

(

d−1−µ−(|l|+|m|)(1−µ)
)

uniformly in ζ ∈ Dd and in x ∈ Π0 ∩ supp v0 and y ∈ Π0 ∩ supp ṽ0. We
observe that

∣

∣

∣
(∂/∂z1)(|x− z|+ |z+ρ|)

∣

∣

∣
=
∣

∣

∣
(∂/∂z1)(|x− z|+ |ρ+ − z|)

∣

∣

∣
> c > 0
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for x ∈ B+d and z ∈ Π0 ∩ supp v0. If we take account of Theorems A.1 and
A.2 in Appendix, then we have

(

Γ0R(ζ;Q+ρ)
)

(z, y) = O(d−3/2)
∣

∣

∣
eik|z−y|

∣

∣

∣

for z ∈ Π0 ∩ supp v0 and y ∈ B̃+d, and

R(ζ;Q+ρ)(x, z) = O(d−1/2)
∣

∣

∣
eik|x−z|

∣

∣

∣

for x ∈ B+d and z ∈ Π0 ∩ supp v0. Since |z2| = O
(

d1−µ
)

on supp v0 or
supp ṽ0, we see by repeated use of partial integration that

(

R(ζ,Q+ρ)p0Z1Γ0R(ζ;Q+ρ)
)

(x, y) = O(d−3µ)
∣

∣

∣
eik|x−ρ|

∣

∣

∣

∣

∣

∣
eik|y−ρ|

∣

∣

∣

uniformly in x ∈ B+d and y ∈ B̃+d, so that

‖j+dR(ζ,Q+ρ)p0Z1Γ0R(ζ;Q+ρ)j̃+d‖ = O(d−3µ+δ)O
(

d2(κ0+κ+)(1/2+3δ0/2)
)

as a bounded operator on L2(Ωρ). If we note that κ0 < κ−, then

−3µ+ δ + (κ0 + κ+)(1 + 3δ0) < −µ

for δ0 > 0 and δ > 0 small enough, and hence

‖j+dR(ζ,Q+ρ)p0Z1Γ0R(ζ;Q+ρ)j̃+d‖ = O(d−µ)

uniformly in ζ ∈ Dd. The better bound is expected for the higher power
Zn
1 with n ≥ 2. It is easy to see that the contribution from the even power

Z2m
1 is negligible. We consider the odd power Z2m+1

1 . We have chosen µ,
0 < µ < 1/2, so close to 1/2 so that

O(d−µ)
∣

∣

∣
eik|z−ρ|

∣

∣

∣

∣

∣

∣
eik|z+ρ|

∣

∣

∣
= O(d−µ)

∣

∣

∣
eikρ

∣

∣

∣
= O(1)

for z ∈ Π0 ∩ supp v0. This yields
(

R(ζ,Q+ρ)p0Z
2m+1
1 Γ0R(ζ;Q+ρ)

)

(x, y) = O(d−(2m+3)µ)
∣

∣

∣
eik|x−ρ|

∣

∣

∣

∣

∣

∣
eik|y−ρ|

∣

∣

∣

uniformly in x ∈ B+d and y ∈ B̃+d, and hence it follows that

‖j+dR(ζ,Q+ρ)p0Z
2m+1
1 Γ0R(ζ;Q+ρ)j̃+d‖ = O

(

d−(2m+1)µ
)

.

By Lemma 5.2, the reminder operator

Zn+2
1 (Id+ Zrem)

−1 : L2(Π0) → L2(Π0)

obeys the bound O
(

d−3(n+2)/8
)

. Thus we can take n ≫ 1 so large that

the operator j+dΛ2(ζ; ρ)j̃+d under consideration obeys the bound O(d−ν)
for some ν > 0. This proves the lemma. �

Proof of Lemma 5.6. First we consider the operator j+dΛ3j−d. Recall the
representation for S3 from (5.13). Then S3 is decomposed into the sum of
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four operators. Among these operators, it suffices to prove the bound only
for the operator

j+dR(ζ;Q+ρ)p0Z3v0Γ0R(ζ;Q−ρ)j−d : L2(Ωρ) → L2(Ωρ).

By Lemma 5.8, the other three operators are shown to be negligible. Recall
from (5.6) and (5.11) that Z̃±± and Z̃±∓ are defined by Z̃±± = ũ± ⊗ w̃±

and Z̃±∓ = ũ± ⊗ w̃∓, where

ũ± = (Id+ Zrem(ζ; ρ))
−1u± = u± − Zrem(Id+ Zrem)

−1u±,

w̃± = (Id+ Zrem(ζ; ρ)
∗)−1w± = w± − Z∗

rem(Id+ Z∗
rem)

−1w±,

and u± and w± are defined by (5.1). We now define the operators

Λ±±(ζ; ρ) = j+dR(ζ;Q+ρ)p0Z̃±±v0Γ0R(ζ;Q−ρ)j−d,

Λ±∓(ζ; ρ) = j+dR(ζ;Q+ρ)p0Z̃±∓v0Γ0R(ζ;Q−ρ)j−d

and we assert that

(5.15) ‖Λ±±(ζ; ρ)‖ = O
(

d−ν
)

, ‖Λ±∓(ζ; ρ)‖ = O
(

d−ν
)

uniformly in ζ ∈ Dd for some ν > 0. Then the desired bound on the operator
j+dΛ3j−d in question is obtained.

We analyze only Λ−+(ζ; ρ) in some details. By Theorems A.1 and A.2,
the function (R(ζ;Q+ρ)p0u−) (x) satisfies

|(R(ζ;Q+ρ)p0u−)(x)| = O(d−µ)
∣

∣

∣
eik|x−ρ|

∣

∣

∣

uniformly in x ∈ B+d. Similarly we have

|((Γ0R(ζ;Q−ρ)j−d)
∗w+) (y)| = |(R(ζ;Q−ρ)

∗Γ∗
0w+) (y)| = O(d−µ)

∣

∣

∣
eik|y+ρ|

∣

∣

∣

uniformly in y ∈ B−d. Hence the operator

I0 =
(

j+dR(ζ;Q+ρ)p0u−

)

⊗
(

(Γ0R(ζ;Q−ρ)j−d)
∗w+

)

: L2(Ωρ) → L2(Ωρ)

is bounded by O(d−2µ)O
(

d(2κ0+κ++κ−)(1/2+3δ0/2)
)

. Since κ+ + κ− = 1 and

since κ0 < 1/2 strictly, we can take δ0 > 0 so small that

−2µ+ (2κ0 + κ+ + κ−)(1/2 + 3δ0/2) < 0.

Thus we have ‖I0‖ = O(d−ν) for some ν > 0. Next we evaluate the norm of
remainder operators such as

I1 =
(

j+dR(ζ;Q+ρ)(ũ− − u−)
)

⊗
(

(Γ0R(ζ;Q−ρ)j−d)
∗w+

)

,
(

j+dR(ζ;Q+ρ)u−

)

⊗
(

(Γ0R(ζ;Q−ρ)j−d)
∗(w̃+ − w+)

)

,
(

j+dR(ζ;Q+ρ)(ũ− − u−)
)

⊗
(

(Γ0R(ζ;Q−ρ)j−d)
∗(w̃+ − w+)

)

.
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By Lemma 5.9 (1), we see that the operator

j+dR(ζ;Q+ρ)p0ṽ0 : L
2(Π0) → L2(Ωρ)

obeys the bound O(d1/2−µ/2)O
(

d(κ0/8+κ+)(1/2+3δ0/2)
)

. We also have

‖ũ− − u−‖0 = O(d−3/8)O(d−7/32−µ/2) = O(d−19/32−µ/2)

by Lemma 5.2 and (5.12). Thus we are able to evaluate the operator norm
of the first operator I1 as follows:

‖I1‖ = O(d−3/32−µ)O(d−µ)O
(

d(9κ0/8+κ++κ−)(1/2+3δ0/2)
)

.

We can take δ0 > 0 so small that

−3/32 − 2µ+ (1 + 9κ0/8)(1/2 + 3δ0/2) < 0

strictly. Hence we have ‖I1‖ = O
(

d−ν
)

for some ν > 0. The other two
remainder operators are dealt with in a similar way, and we obtain (5.15)
for Λ−+(ζ; ρ).

To prove (5.15) for Λ±±(ζ; ρ) and Λ+−(ζ; ρ), we observe that the function
(R(ζ;Q+ρ)p0u+) (x) behaves like

(R(ζ;Q+ρ)p0u+) (x) = O(d−N )

over B+d, which follows from Theorems A.1 and A.2. Intuitively, this follows
from the fact that particles outgoing from ρ+ to B+d never pass over Π0 ∩
supp v0. For a similar reason, we also have

(R(ζ;Q−ρ)
∗Γ∗

0w−) (y) = O(d−N )

over B−d. In fact, particles incoming to ρ− from B−d never pass over Π0 ∩
supp ṽ0. If we take these facts into account, then we can show (5.15) for the
other three operators.

Next we show the lemma for the operator j+dΛ3j̃+d. We can obtain
similar bounds on the operators

Λ̃±±(ζ; ρ) = j+dR(ζ;Q+ρ)p0Z̃±±v0Γ0R(ζ;Q+ρ)j̃+d,

Λ̃±∓(ζ; ρ) = j+dR(ζ;Q+ρ)p0Z̃±∓v0Γ0R(ζ;Q+ρ)j̃+d.

For example, we consider Λ̃−−(ζ; ρ). We repeat the same argument as above
to get

∥

∥

∥

(

j+dR(ζ;Q+ρ)u−

)

⊗
(

(Γ0R(ζ;Q+ρ)j̃+d)
∗w−

)
∥

∥

∥

= O(d−2µ)O(dδ)O
(

d2(κ0+κ+)(1/2+3δ0/2)
)
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as a bounded operator on L2(Ωρ). Since κ0 < κ− strictly, we can take δ0 > 0
and δ > 0 so small that

−2µ+ 2(κ0 + κ+)(1/2 + 3δ0/2) + δ < 0.

The norm of such a remainder operator as
(

j+dR(ζ;Q+ρ)(ũ− − u−)
)

⊗
(

(Γ0R(ζ;Q+ρ)j̃+d)
∗w−

)

is bounded by

O(d−3/32−µ)O
(

d(κ0/8+κ+)(1/2+3δ0/2)
)

O(d−µ)O(dδ)O
(

d(κ0+κ+)(1/2+3δ0/2)
)

.

Since κ0 < κ− (and hence 9κ0/8− 2κ− < 0) and κ+ + κ− = 1, we have

−3/32− 2µ + (9κ0/8 + 2κ+)(1/2 + 3δ0/2) + δ < 0

for δ0 > 0 and δ > 0 small enough. The other remainder operators are
dealt with in a similar way. Hence we can show that ‖Λ̃−−(ζ; ρ)‖ = O(d−ν)

uniformly in ζ ∈ Dd for some ν > 0. A similar argument applies to Λ̃++(ζ; ρ)

and Λ̃±∓(ζ; ρ). We skip the details. Thus the proof of the lemma is now
complete. �

Proof of Lemma 5.7. The proof uses Theorems A.1 ∼ A.4. According to
these results,

p0R(ζ;Q−ρ)j−d, p0R(ζ;Q+ρ)j̃+d : L2(Ωρ) → L2(Π0),

and j+dR(ζ;Q+ρ)p0 : L
2(Π0) → L2(Ωρ) are bounded with bound O (dν) for

some ν > 0. In particular, Theorem A.4 is used to evaluate the bounds when
|x2| ≫ 1. We note that H0

(

krρ(x, y)
)

rapidly falls off even for Imk < 0 as
|x2| → ∞. Hence the lemma follows at once. �

Appendix

In the previous work [8], we have studied the asymptotic properties, par-
ticularly along forward directions of resolvent kernels (the Green functions)
with spectral parameters in the lower half plane of the complex plane (un-
physical sheet) for magnetic Schrödinger operators in two dimensions. Here
we refer to these results as the three theorems below in the form adapted to
the application to the present problem.

Let b ∈ C∞
0 (R2) be a given magnetic field such that b has α as a magnetic

flux and supp b ⊂ O ⊂ {|x| < 1} for some simply connected bounded domain
O with the smooth boundary. We take

A(x) = αΦ(x), x ∈ Ω = R
2 \ O



AHARONOV–BOHM EFFECT IN RESONANCES II 75

as the vector potential corresponding to b, where Φ is the Aharonov–Bohm
potential defined by (1.3). We consider the self–adjoint operator

P = H(A, 0) = (−i∇−A)2 , D(P ) = H2(Ω) ∩H1
0 (Ω),

in L2(Ω). The notation d still denotes the large parameter, and we use Dd

and µ with the meanings ascribed by (1.9) and (2.2), respectively. We also
define

σ(x; y) = γ(x̂; ŷ)− π = γ(x; y)− π, x̂ = x/|x|,

where γ(θ;ω) again denotes the azimuth angle from ω ∈ S1 to θ. With the
notation above, we are now in a position to state the asymptotic properties
of the resolvent kernel R(ζ;P )(x, y) with ζ ∈ Dd when |x − y| ≫ 1 with
|σ(x, y)| ≪ 1. The following three theorems (Theorems A.1, A.2 and A.3)
are obtained as particular cases of Theorems 1.1, 1.2 and 1.3 in [8], respec-
tively. In fact, these theorems remain true for ζ such that

∣

∣Re ζ−E0

∣

∣ < E0/2

and
∣

∣Im ζ
∣

∣ < c
(

(log |d|)/|d|
)

for some c > 0.

Theorem A.1. Assume that ζ ∈ Dd and that x and y fulfill

d/c ≤ |x|, |y| ≤ c d, |σ(x, y)| ≤ c d−(1−µ)

for some c > 1. Then the kernel R(ζ;P )(x, y) takes the asymptotic form

R(ζ;P )(x, y) = (i/4) cos(απ)eiα(γ(x̂;ŷ)−π)H0(k|x− y|)

+ eik(|x|+|y|) (|x|+ |y|)−1/2 r1(x, y; ζ, d),

where the remainder term r1 is analytic in ζ ∈ Dd and obeys
∣

∣∂nx∂
m
y r1

∣

∣ = O
(

dµ−1/2−(|n|+|m|)/2
)

uniformly in x, y and ζ.

Theorem A.2. Assume that ζ ∈ Dd and that x and y fulfill

d/c ≤ |x|, |y| ≤ c d, d−(1−µ)/c ≤ |σ(x, y)| ≤ c d−µ

for some c > 1. Let c0(ζ) be defined by (2.4) and let z0 = z0(x, y; ζ) be
defined by

z0 =
(

|x||y|/(|x| + |y|)
)1/2

|σ(x, y)|ζ1/4.

Then R(ζ;P )(x, y) behaves like

R(ζ;P )(x, y) = (i/4)eiα(γ(x̂;−ŷ)−π)H0(k|x− y|)

± c0(ζ)
i sin(απ)

π

(

eik|x−y|

|x− y|1/2

)

(

π − (2π)1/2e−iπ/4

∫ z0

0
eis

2/2 ds

)

+ eik|x−y||x− y|−1/2r±2(x, y; ζ, d)
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according as ±σ(x, y) > 0, where r±2 is analytic in ζ ∈ Dd and obeys
∣

∣∂nx∂
m
y r±2

∣

∣ = O
(

d−µ−(|n|+|m|)µ
)

uniformly in x, y and ζ.

Theorem A.3. Assume that ζ ∈ Dd and that x and y fulfill

d/c ≤ |x|, |y| ≤ c d, |σ(x, y)| > d−µ/c

for some c > 1. Then

R(ζ;P )(x, y) = (i/4)eiα(γ(x̂;−ŷ)−π)H0(k|x− y|)

+ eik(|x|+|y|) (|x|+ |y|)−1/2 r3(x, y; ζ, d),

where r3 is analytic in ζ ∈ Dd and obeys
∣

∣∂nx∂
m
y r3

∣

∣ = |σ(x, y)|−1−(|n|+|m|)O
(

d−1/2−(|n|+|m|)
)

uniformly in x, y and ζ.

Let Jρ be the mapping defined by (4.2). We define the complex scaled
operator

Q̃ρ = JρPJ
−1
ρ , D(Q̃ρ) = H2(Ω) ∩H1

0 (Ω),

for the operator P and

Q̃0ρ = JρK0J
−1
ρ , D(Q̃0ρ) = H2(R2),

for the free Hamiltonian K0 = −∆. Then the resolvent kernel R(ζ; Q̃ρ)(x, y)
is given by

R(ζ; Q̃ρ)(x, y) = [det (∂jρ/∂x)]
1/2R(ζ;P )(jρ(x), jρ(y)) [det (∂jρ/∂y)]

1/2 ,

where det (∂jρ/∂x) denotes the Jacobian of the mapping jρ defined by (4.1).
By definition, the mapping jρ acts as the identity over the strip

Wρ =
{

x = (x1, x2) : |x2| < ρ
}

, ρ = 2κ0d,

and hence we have the relation

R(ζ; Q̃ρ)(x, y) = R(ζ;P )(jρ(x), jρ(y)) = R(ζ;P )(x, y)

for (x, y) ∈ Wρ ×Wρ. If we take account of the relation R(ζ;K0)(x, y) =
(i/4)H0(k|x− y|), then we have

R(ζ; Q̃0ρ)(x, y) =
i

4
[det (∂jρ/∂x)]

1/2H0(krρ(x, y)) [det (∂jρ/∂y)]
1/2 ,

where

rρ(x, y) =
(

(x1 − y1)
2 +

(

(x2 + iηρ(x2)x2)− (y2 + iηρ(y2)y2)
)2
)1/2
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and ηρ(t) is defined in (4.1). We set

U±ρ =
{

x = (x1, x2) : |x2| > ρ/c, ρ/c < ±x1 < cρ
}

for c > 1. Then the next theorem is verified in almost the same way as
[3, Proposition 6.3].

Theorem A.4. Assume that x ∈Wρ fulfills ρ/c < x1 < cρ and y ∈ U−ρ for
some c > 1, and define

ψ−ρ(x, y) = γ(jρ(x);−ω1)− γ(jρ(y);−ω1), ω1 = (1, 0),

for x and y as above. Then R(ζ; Q̃ρ)(x, y) admits the decomposition

R(ζ; Q̃ρ)(x, y) = exp(iαψ−ρ(x, y))R(ζ; Q̃0ρ)(x, y) +Rsc(x, y; ζ)

and the analytic function Rsc(x, y; ζ) over Dd satisfies the following esti-
mates uniformly in ζ ∈ Dd.

(1) If |y2| > Lρ for L≫ 1 fixed arbitrarily, then

Rsc(x, y; ζ) = O
(

(|x|+ |y|)−σL
)

for some σ > 0 independent of L together with the derivatives ∂Rsc/∂x1 and
∂Rsc/∂y1.

(2) If |y2| < 2Lρ for L≫ 1 fixed, then Rsc takes the form

Rsc(x, y; ζ) = exp(ikrρ(x))q0(x, y; ζ) exp(ikrρ(y))

and q0(x, y; ζ) satisfies
∣

∣

∣
(∂/∂x2)

j (∂/∂y2)
l q0

∣

∣

∣
= O(ρ−1−j−l).

Similar estimates hold true for ∂q0/∂x1 and ∂q0/∂y1.

A similar relation remains true when x ∈ U−ρ and y ∈ Wρ fulfills ρ/c <
y1 < cρ for some c > 1.

Remark. If x ∈ Wρ fulfills −cρ < x1 < −ρ/c and y ∈ U+ρ for some c > 1
or if x ∈ U+ρ and y ∈Wρ fulfills −cρ < y1 < −ρ/c, then the same results as
above remain true for ψ−ρ replaced by

ψ+ρ(x, y) = γ(jρ(x);ω1)− γ(jρ(y);ω1).
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