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AN EXPLICIT EFFECT OF NON-SYMMETRY OF

RANDOM WALKS ON THE TRIANGULAR LATTICE

Satoshi Ishiwata, Hiroshi Kawabi and Tsubasa Teruya

Abstract. In the present paper, we study an explicit effect of non-
symmetry on asymptotics of the n-step transition probability as n → ∞

for a class of non-symmetric random walks on the triangular lattice. Re-
alizing the triangular lattice into R

2 appropriately, we observe that the
Euclidean distance in R

2 naturally appears in the asymptotics. We char-
acterize this realization from a geometric view point of Kotani-Sunada’s
standard realization of crystal lattices. As a corollary of the main the-
orem, we obtain that the transition semigroup generated by the non-
symmetric random walk approximates the heat semigroup generated by
the usual Brownian motion on R

2.

1. Introduction

Let G = (V,E) be a locally finite, connected, oriented graph. Here V
is the set of vertices and E is the set of oriented edges. For an oriented
edge e ∈ E, the origin and the terminus of e are denoted by o(e) and t(e),
respectively. The inverse edge of e is denoted by e. A random walk on G is
given by a non-negative valued function p on E satisfying

∑

e∈Ex

p(e) = 1 for all x ∈ V ,

where Ex = {e ∈ E| o(e) = x}. Here p(e) is the probability that a particle
at o(e) moves to t(e) along the edge e in one unit time. Then the transition
probability p(n, x, y) that a particle starting at x ∈ V reaches y ∈ V at time
n is given by

p(n, x, y) =
∑

c=(e1,e2,...,en)

p(e1)p(e2) · · · p(en),

where the sum is taken over all paths c = (e1, e2, . . . , en) with t(ei) = o(ei+1),
i = 1, . . . , n − 1 and o(e1) = x, t(en) = y. If there exists a positive valued
function mV on V such that

(1.1) p(e)mV (o(e)) = p(e)mV (t(e)), e ∈ E,
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the random walk is said to be (mV -)symmetric.
A principal theme for random walks is to investigate the properties of

p(n, x, y) as n → ∞. One of the most classical problems is the recurrence-
transience problem which is related to the divergence-convergence of the
Green function G(x) :=

∑∞
n=1 p(n, x, x), and the local central limit theorem

gives us a useful criterion for the divergence-convergence of the series. For
this reason, this theme has been discussed intensively in various settings by
many authors. See Spitzer [10], Lawler and Limic [8] and Woess [15] for an
overview of random walks.

In particular, Kotani, Shirai and Sunada investigated long time asymp-
totics of p(n, x, y) of (mV -)symmetric random walks on a crystal lattice,
a covering graph of a finite graph whose covering transformation group is
abelian. In [4], as the precision of the local central limit theorem (cf. [7]),
they established the asymptotic expansion

p(n, x, y)mV (y)
−1

∼ a0n
−r/2 exp

(
− d(x, y)2

4n

)
·
(
1 + a1(x, y)n

−1 + a2(x, y)n
−2 + · · ·

)(1.2)

as n → ∞, where d(x, y) is a Euclidean distance appeared through the
standard realization of the graph into R

r. In their proof, spectral theoretic
arguments due to the periodicity of the graph and the symmetry of the
random walk play crucial roles.

Later in [2, 14], Uchiyama and his coauthor also established the formula
(1.2) for non-symmetric random walks on periodic graphs (i.e., crystal lat-
tices) in the Euclidean space by a probabilistic approach. Their result im-
plies that the effect of the non-symmetry on the coefficient a1(x, y) highly
depends not only on the underlying periodic graph but also on the choice
of the 1-step transition probability p even if the zero mean condition (see
condition (P1) in Section 2) is imposed.

In view of these results, it is a meaningful problem to determine an explicit
effect of the non-symmetry on the coefficient a1(x, y) on a specific graph.
In the present paper, we give an affirmative answer to this problem in the
case of the triangular lattice. As we will mention later, there exist non-
symmetric random walks on the triangular lattice satisfying the zero mean
condition (P1). On the other hand, for example, on the square lattice and
the hexagonal lattice, we note that the zero mean condition is equivalent to
the symmetry of the random walk since these graphs are maximal abelian
coverings (see Kotani and Sunada [6, page 842]). In the proof of the main
theorem (Theorem 2.2), we make use of the probabilistic approach as in
[2, 14] with the idea of the standard realization by Kotani and Sunada
[4, 5].
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As a corollary of Theorem 2.2, we establish the functional analytic central
limit theorem (Corollary 2.4) that the transition semigroup generated by
the non-symmetric random walk on the triangular lattice approximates the
heat semigroup generated by the usual Brownian motion on R

2. It says that
the effect of the non-symmetry of the random walk does not appear in the
appropriate space-time scaling limit.

Throughout the present paper, O(·) stands for the Landau symbol. When
the dependence of the O(·) term is significant, we specify as ON (·), etc.

2. Framework and Results

First of all, we prepare some notations and formulate our problem. Let
e1 and e2 be linearly independent vectors in R

2 and we set e3 := e2 − e1
and K := ‖e1‖R2 + ‖e2‖R2 . In particular, we denote two unit vectors by
ê1 := t(1, 0) and ê2 := t(0, 1). We define the triangular lattice G = (V,E)
by

V = {x = x1e1 + x2e2| (x1, x2) ∈ Z
2},

E = {(x, y) ∈ V × V | x− y ∈ {±e1,±e2,±e3}}
(see Figure 1). We remark that G is isomorphic to the Cayley graph of the

e1

e2

e3

Figure 1. Triangular lattice

abelian group Z
2 with a set of generators S = {±(1, 0),±(0, 1),±(−1, 1)}

identified by V ≃ Z
2 and e1 ≃ (1, 0), e2 ≃ (0, 1), e3 ≃ (−1, 1).

We consider a Z
2-invariant random walk on the triangular lattice G sat-

isfying

p
(
(x, x+ e1)

)
= α, p

(
(x, x− e1)

)
= α′,
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p
(
(x, x+ e2)

)
= β′, p

(
x, x− e2)

)
= β,

p
(
(x, x+ e3)

)
= γ, p

(
(x, x+ e3)

)
= γ′,

for every x ∈ V , where α,α′, β, β′, γ, γ′ are nonnegative constants with

α+ α′ + β + β′ + γ + γ′ = 1.

Throughout the present paper, we impose the following conditions on the
1-step transition probability p:

(P1): Zero mean condition:
∑

e∈E0

p(e)e = 0.

(P2):

Γ(p) := α̂β̂ + β̂γ̂ + γ̂α̂ > 0,

where α̂ := α+ α′, β̂ := β + β′, γ̂ := γ + γ′.

Remark 2.1. Condition (P1) is equivalent to the following condition:

• There exists a constant 0 ≤ κ ≤ 1
3 such that α−α′ = β−β′ = γ− γ′ = κ.

In the case κ = 0, condition (P1) implies that p(e) = p(e) holds for every
e ∈ E. Namely, our random walk is symmetric with mV ≡ 1. On the other
hand, by a simple calculation, we see that there does not exist the function
mV satisfying (1.1) unless κ = 0. Hence our random walk is non-symmetric
in the case 0 < κ ≤ 1

3 . We can regard the constant κ as intensity of the
non-symmetry.

We set

Mq(θ) :=
∑

e∈E0

p(e)〈e, θ〉q, θ = (θ1, θ2) ∈ R
2, q ∈ N,

where 〈·, ·〉 stands for the scalar product on R
2. Condition (P1) implies

M1(θ) ≡ 0. Besides, the explicit form of Mq(θ) is easily calculated as

Mq(θ) =

{
κ
(
〈e1, θ〉q − 〈e2, θ〉q + 〈e3, θ〉q

)
(if q is odd) ,

α̂〈e1, θ〉q + β̂〈e2, θ〉q + γ̂〈e3, θ〉q (if q is even).

Note that Mq(θ) ≡ 0 for every odd number q if the random walk is symmet-
ric.

We define the covariance matrix Q by

〈Qθ, θ〉 = M2(θ), θ ∈ R
2.
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In the case of e1 = ê1 and e2 = ê2, the corresponding covariance matrix is
easily calculated as

Q̂ :=

(
α̂+ γ̂ −γ̂

−γ̂ β̂ + γ̂

)
,

and hence we obtain detQ̂ = Γ(p). For a general pair of two vectors e1, e2,
we can decompose the covariance matrix Q as

(2.1) Q = TQ̂tT,

where T = [e1, e2] stands for the matrix formed by column vectors e1, e2.
It follows from condition (P2) and linear independence of e1, e2 that the
covariance matrix Q is positive definite, i.e., 〈θ,Qθ〉 ≥ λ‖θ‖2

R2 , θ ∈ R
2 for

some λ > 0. By (2.1), we also observe that

(2.2) 〈Q−1x, y〉 = 〈Q̂−1(x1ê1 + x2ê2), y1ê1 + y2ê2〉
holds for all x = x1e1+x2e2, y = y1e1+y2e2 ∈ V . This means that the left-
hand side of (2.2) is independent of the realization of the triangular lattice
G.

Let

(2.3) A(G) :=
1

3Γ(p)1/2
, l :=

(
β̂ + γ̂

3Γ(p)

)1/2

and we introduce three vectors by

h1 :=
t(l, 0), h2 :=

t
( γ̂

β̂ + γ̂
l,
Γ(p)1/2

β̂ + γ̂
l
)
, h3 := h2 − h1

(see Figure 2). Note that A(G) is equal to the area of the parallelogram

h1

h2

Γ(p)1/2

β̂+γ̂
l

β̂

β̂+γ̂
l

γ̂

β̂+γ̂
l

Figure 2. h1 and h2
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spanned by h1 and h2. In the case of e1 = h1 and e2 = h2, the corresponding
covariance matrix is

(2.4) Q =

(
1/3 0
0 1/3

)
.

Recalling (2.2) and (2.4), we easily see 〈Q−1ei, ej〉 = 3〈hi,hj〉, i = 1, 2, 3.
Then a direct calculation of the inner product 〈hi,hj〉, i, j = 1, 2, 3 implies

(2.5)

〈Q−1e1, e1〉 = β̂+γ̂
Γ(p) , 〈Q−1e2, e2〉 = γ̂+α̂

Γ(p) , 〈Q−1e3, e3〉 = α̂+β̂
Γ(p) ,

〈Q−1e1, e2〉 = γ̂
Γ(p) , 〈Q−1e2, e3〉 = α̂

Γ(p) , 〈Q−1e3, e1〉 = −β̂
Γ(p) .

Now, we are in a position to state the main result of the present paper.

Theorem 2.2. (1) Let us consider the case 0 ≤ κ < 1/3. Then we have

2πn · p(n, x, y) = 3A(G) exp
(
− 1

2n
〈Q−1(y − x), y − x〉

)

×
(
1 +

N∑

j=1

n−j/2Pj

(y − x√
n

))
+ON

(
n−N+1

2

)
, N ∈ N ∪ {0}

(2.6)

as n → ∞ uniformly for all x, y ∈ V , where Pj = Pj(y), j ∈ N is a
polynomial of degree at most 3j in the variables y1, y2 and an odd or even
function depending on whether j is odd or even. Furthermore, let a1(y −
x;κ)n−1 denote the leading term of

∑N
j=1 n

−j/2Pj

(y−x√
n

)
, N ≥ 2, that is,

lim
n→∞

n
( N∑

j=1

n−j/2Pj

(y − x√
n

)
− a1(y − x;κ)n−1

)
= 0, x, y ∈ V.

Then the coefficient a1(y;κ) is explicitly obtained by

(2.7) a1(y;κ) = a
(0)
1 + κa

(1)
1 (y) + κ2a

(2)
1 ,

where

a
(0)
1 = −1 +

1

8Γ(p)2

{
α̂(β̂ + γ̂)2 + β̂(γ̂ + α̂)2 + γ̂(α̂+ β̂)2

}
,

a
(1)
1 (y) =

1

Γ(p)2

{
(α̂β̂ − 2β̂γ̂ + γ̂α̂)y1 + (−α̂β̂ − β̂γ̂ + 2γ̂α̂)y2

}
,

for y = y1e1 + y2e2,

a
(2)
1 =

3

8Γ(p)2

(
− 1 +

5α̂β̂γ̂

Γ(p)

)
.
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If, in addition, we realize the triangular lattice G along h1 and h2, then
we have

2πn · p(n, x, y) = 3A(G) exp
(
− 3

2n
‖y − x‖2

R2

)

×
(
1 +

N∑

j=1

n−j/2Pj

(y − x√
n

))
+ON

(
n−N+1

2
)
, N ∈ N ∪ {0},

as n → ∞ uniformly for all x, y ∈ V .
(2) Let us consider the case κ = 1/3, i.e., α = β = γ = 1/3, α′ = β′ = γ′ =
0. We set

Vk :=
{
x = x1ẽ1 + x2ẽ2 | (x1, x2) ∈ Z

2
}
+ ke1, k = 0, 1, 2,

where ẽ1 = 2e1 − e2, ẽ2 = e1 + e2. For k, l = 0, 1, 2, we take x ∈ Vk and
y ∈ Vl. Then we have

2πn · p(n, x, y) = 9A(G) exp
(
− 1

2n
〈Q−1(y − x), y − x〉

)

×
(
1 +

N∑

j=1

n−j/2Pj

(y − x√
n

))
+ON

(
n−N+1

2
)
, N ∈ N ∪ {0}

(2.8)

as n = 3m + (l − k) → ∞ uniformly for all x and y. In this case, A(G) =
1/
√
3 and the coefficient of the leading term is

a1(y − x; 1/3) = −2

3
.

If, in addition, we realize the triangular lattice G along h1 = t(
√

2/3, 0)

and h2 =
t(1/

√
6, 1/

√
2) (see Figure 3), then we have

2πn · p(n, x, y) = 9A(G) exp
(
− 3

2n
‖y − x‖2

R2

)

×
(
1 +

N∑

j=1

n−j/2Pj

(y − x√
n

))
+ON

(
n−N+1

2
)
, N ∈ N ∪ {0}

as n = 3m+ (l − k) → ∞ uniformly for all x and y.

Now, we characterize the pair h1, h2 through a variational problem on
the crystal lattices based on the idea of Kotani and Sunada [4, 5].

We set e1 := t(u, 0), e2 := t(v1, v2). Without loss of generality, we may
assume u, v2 > 0. Then the energy of the (quotient graph of the) triangular
lattice G is given by

E(G) :=
1

2

∑

e∈E0

p(e)‖t(e) − o(e)‖2
R2
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h1

h2

h̃1

h̃2

Figure 3. V0 in the case of e1 = h1, e2 = h2 and κ = 1/3

=
1

2

[
α̂u2 + β̂(v21 + v22) + γ̂

{
(v1 − u)2 + v22

}]
.

Minimizing E(G) with respect to (u, v1, v2) under the condition

det(〈ei, ej〉)2i,j=1 = A(G)2,

we obtain

u = l, v1 =
γ̂

β̂ + γ̂
l, v2 =

Γ(p)1/2

β̂ + γ̂
l.

Hence we have derived e1 = h1, e2 = h2.

Remark 2.3. In the case α = α′ = β = β′ = γ = γ′ = 1/6, the random walk
is said to be simple. In this case, we have

A(G) =
1√
3
, l =

√
2

3
, h1 =

t

(√
2

3
, 0

)
, h2 =

t

(
1√
6
,
1√
2

)
.

We note the volume of the Albanese torus is equal to 1/
√
3 (see [4, page

640], [7, Section 10] ). The standard realization of the triangular lattice is

the equilateral triangular lattice in R
2 each of whose edge has length

√
2/3.

The quantity A(G) introduced in (2.3) can be regarded as a generalization
of the notion of the volume of the Albanese torus to some non-symmetric
cases. Henceforth, we call the realization of the triangular lattice G along h1

and h2 the standard realization even if the random walk is non-symmetric.
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Now, we take the standard realization of the triangular lattice G as above.
As an application of Theorem 2.2, we obtain the following corollary which
says that the transition semigroup generated by the random walk approxi-
mates the heat semigroup generated by the usual Brownian motion on R

2.
See e.g., [4, Theorem 8.5] for the detailed proof.

Corollary 2.4. Let t > 0 and {δn}∞n=1 be a sequence of positive real numbers
satisfying limn→∞ nδ2n = 3t. Then for every continuous function f on R

2

with compact support and for a sequence {xn}∞n=1 in V with limn→∞ δnxn =
x ∈ R

2, we have

lim
n→∞

∑

y∈V
p(n, xn, y)f(δny) =

1

2πt

∫

R2

exp

(
−‖x− z‖2

R2

2t

)
f(z)dz.

Remark 2.5. Corollary 2.4 can be also obtained as an immediate consequence
of the approximation theory due to Trotter [13] (see also Kotani [3]).

3. Preliminaries

In this section, we collect several basic facts which are useful in the proof
of Theorem 2.2. In what follows, we denote x3 := x2 − x1 and ( ∂

∂x3
) :=

( ∂
∂x2

)− ( ∂
∂x1

) for convenience.
First, we recall an elementary fact about the Fourier transform

(3.1)

∫

R2

e−
1
2
〈Qθ,θ〉e−

√
−1〈x,θ〉dθ = 2π(detQ)−1/2e−

1
2
〈Q−1x,x〉, x ∈ R

2.

Differentiating both sides of (3.1) with respect to xi, i = 1, 2, 3, we have
∫

R2

〈ei, θ〉e−
1
2
〈Qθ,θ〉e−

√
−1〈x,θ〉dθ

= 2π
√
−1 · (detQ)−1/2

(
− 〈Q−1ei, x〉

)
e−

1
2
〈Q−1x,x〉, x ∈ R

2, i = 1, 2, 3.

Repeating this argument several times, we obtain the following proposition:

Proposition 3.1. For N ∈ N and i1, . . . , iN = 1, 2, 3, we define a function
F (i1, . . . , iN ) by

F (i1, . . . , iN )(x) :=

∫

R2

( N∏

k=1

〈eik , θ〉
)
e−

1
2
〈Qθ,θ〉e−

√
−1〈x,θ〉dθ, x ∈ R

2.

Then we have

F (i1, . . . , iN )(x) = 2π(
√
−1)N (detQ)−1/2e−

1
2
〈Q−1x,x〉G(i1, . . . , iN )(x),

where {G(i1, . . . , ik)(x) : x ∈ R
2, k = 1, . . . , N} is determined as the solution

of the recursive system of the following equations starting from k = 1 to
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k = N :

(3.2)





G(i1, . . . , ik)(x) = −〈Q−1eik , x〉G(i1, . . . , ik−1)(x)

+
∂

∂xik
G(i1, . . . , ik−1)(x),

G(i1)(x) = −〈Q−1ei1 , x〉.

Remark 3.2. G(i1, . . . , iN )(x) is decomposed by

G(i1, . . . , iN )(x) =





N−1
2∑

l=0

G(i1, . . . , iN )(2l+1)(x) (if N is odd),

N
2∑

l=0

G(i1, . . . , iN )(2l)(x) (if N is even) ,

where G(i1, . . . , iN )(k)(x), k = 0, 1, . . . , N is a homogeneous polynomial of

degree k in the variables 〈Q−1e1, x〉, 〈Q−1e2, x〉 and 〈Q−1e3, x〉. In partic-
ular, G(i1, i2)(x) and G(i1, i2, i3)(x), i1, i2, i3 = 1, 2, 3 are obtained by

G(i1, i2)(x) = 〈Q−1ei1 , x〉〈Q−1ei2 , x〉 − 〈Q−1ei1 , ei2〉,
G(i1, i2, i3)(x) = −〈Q−1ei1 , x〉〈Q−1ei2 , x〉〈Q−1ei3 , x〉

+〈Q−1ei1 , ei2〉〈Q−1ei3 , x〉+ 〈Q−1ei2 , ei3〉〈Q−1ei1 , x〉
+〈Q−1ei3 , ei1〉〈Q−1ei2 , x〉.

Next, we define the characteristic function of the 1-step transition prob-
ability p by

(3.3) ϕ(θ) :=
∑

e∈E0

p(e) exp{
√
−1〈e, θ〉}, θ = (θ1, θ2) ∈ R

2.

We denote ϕ especially by φ in the case of e1 = ê1 and e2 = ê2. Noting
that the characteristic function of the n-step transition probability of the
random walk starting at the origin is equal to ϕn, we easily have

p(n, x, y) =
|detT |
(2π)2

∫

(tT )−1(D)
ϕ(θ)n exp{−

√
−1〈y − x, θ〉}dθ,

x, y ∈ V, n ∈ N,

(3.4)

where D := [−π, π]2. (See e.g., Lawler and Limic [8, Section 2.2.2] for
details.)

For later use, we give

Lemma 3.3. Let ϕ : ( tT )−1(D) → C be the characteristic function defined
in (3.3). Then we have the following:
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(1) In the case 0 ≤ κ < 1/3, |ϕ(θ)| = 1 holds only when θ = 0.
(2) In the case κ = 1/3, |ϕ(θ)| = 1 holds only when

θ = (0, 0), ( tT )−1
(
(
2π

3
,−2π

3
)
)
, ( tT )−1

(
(−2π

3
,
2π

3
)
)
.

Proof. Since (2) is obvious, we only prove (1). By virtue of

ϕ(θ) = φ(tTθ), θ ∈ R
2,

it is sufficient to show that |φ(θ)| = 1 on D implies θ = 0.
We calculate the characteristic function φ(θ) as

φ(θ) =
(
α̂ cos(θ1) +

√
−1κ sin(θ1)

)
+
(
β̂ cos(−θ2) +

√
−1κ sin(−θ2)

)

+
(
γ̂ cos(θ2 − θ1) +

√
−1κ sin(θ2 − θ1)

)

=: φ1(θ) + φ2(θ) + φ3(θ), θ = (θ1, θ2) ∈ D.

(3.5)

Note that the assumption 0 ≤ κ < 1
3 implies min{α̂, β̂, γ̂} > κ ≥ 0. Then

we have

(3.6) |φ1(θ)| ≤ α̂, |φ2(θ)| ≤ β̂, |φ3(θ)| ≤ γ̂, θ = (θ1, θ2) ∈ D.

We also observe that |φ1(θ)| = α̂, |φ2(θ)| = β̂ and |φ3(θ)| = γ̂ imply φ1(θ) =

±α̂, φ2(θ) = ±β̂ and φ3(θ) = ±γ̂, respectively.
Now, we suppose |φ(θ)| = 1 on D. By combining (3.5) and (3.6) with

α̂+ β̂ + γ̂ = 1, we deduce

(φ1(θ), φ2(θ), φ3(θ)) = (α̂, β̂, γ̂), (−α̂,−β̂,−γ̂), θ ∈ D.

We easily see that the first equation (φ1(θ), φ2(θ), φ3(θ)) = (α̂, β̂, γ̂) has the
solution (θ1, θ2) = (0, 0). On the other hand, there exists no solution of the

second equation (φ1(θ), φ2(θ), φ3(θ)) = (−α̂,−β̂,−γ̂). Hence we conclude
θ = 0. �

Remark 3.4. In the case 0 ≤ κ < 1/3, by (1) of Lemma 3.3, the random
walk is aperiodic. Namely, the period of the random walk d(p) := gcd{n ∈
N : p(n, 0, 0) > 0} is equal to 1. See e.g., Spitzer [10, P8 in Section 7] for the
proof. On the other hand, (2) of Lemma 3.3 means that the random walk
is periodic with d(p) = 3 in the case κ = 1/3.

Before closing this section, we present an asymptotic expansion formula
of the characteristic function ϕ which plays a crucial role in the next section.
We set

(3.7) χq(θ) := (
√
−1)−q

( d
dt

)q∣∣∣
t=0

logϕ(tθ), θ ∈ R
2, q ∈ N.
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(See Bhattacharya and Ranga Rao [1, page 47].) We note that χq(θ) is a
polynomial in the variables M2(θ), . . . ,Mq(θ). Noting condition (P1), we
have

χ1(θ) ≡ 0, χ2(θ) = M2(θ), χ3(θ) = M3(θ), χ4(θ) = M4(θ)− 3M2(θ)
2.

The following proposition is taken from [1, Lemma 7.1 and Theorem 9.11].

Proposition 3.5. Let n ∈ N and N ∈ N ∪ {0}. Then there exist positive
constants C1(N), C2(N) such that for all θ ∈ R

2 with

〈Qθ, θ〉1/2 ≤ C1(N)
( ∑

e∈E0

p(e)〈Q−1e, e〉N/2
)− 1

N+3 · n
N+1

2(N+3) ,

we have
∣∣∣ϕ
( θ√

n

)n
− exp

(
− 1

2
〈Qθ, θ〉

)
·
(
b0(θ) + b1(θ)n

−1/2 + · · · + bN (θ)n−N/2
)∣∣∣

≤ C2(N) exp
(
− 1

4
〈Qθ, θ〉

)(
〈Qθ, θ〉N+3 + 〈Qθ, θ〉3(N+1)

)
· n−N+1

2 .

Here b0(θ) ≡ 1 and bj(θ), j = 1, . . . , N is written as

bj(θ) = (
√
−1)3jb

(3j)
j (θ) + (

√
−1)3j−2b

(3j−2)
j (θ)

+ · · · + (
√
−1)j+2b

(j+2)
j (θ),

(3.8)

where b
(k)
j (θ), k = j + 2, j + 4, . . . , 3j is a polynomial in the variables

χ3(θ), . . . , χk(θ) and it can be regarded as a homogeneous polynomial of de-
gree k in the variables 〈e1, θ〉, 〈e2, θ〉 and 〈e3, θ〉. In particular,

b1(θ) = (
√
−1)3

(χ3(θ)

6

)
, b2(θ) = (

√
−1)6

(χ3(θ)
2

72

)
+ (

√
−1)4

(χ4(θ)

24

)
.

4. Proof of Theorem 2.2

In this section, we prove Theorem 2.2 based on the standard Laplace
method argument as in [8, 10]. For the reader’s convenience, we nevertheless
give a detailed proof. Without loss of generality, we may suppose x = 0
throughout the proof.

First, we recall that the covariance matrix Q is positive definite and
Lemma 3.3. Then we can choose a positive constant R sufficiently small
such that both

(4.1) η := sup{|ϕ(θ)| : θ ∈ (tT )−1(D), ‖θ‖R2 ≥ R} < 1,

and

(4.2) |ϕ(θ)| ≤ exp
(
− 1

4
〈Qθ, θ〉

)
, ‖θ‖R2 < R
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hold. See e.g., [10, P7 in Section 7] and also Shiga [9, Lemma 6.15] for the
proof of (4.2).

Recalling (2.1), (2.3), (3.4) and performing the change of variables
√
nθ′ =

θ, we have

2πn · p(n, 0, y)

=
|detT |n

2π

∫

(tT )−1(D)
ϕ(θ′)ne−

√
−1〈y,θ′〉dθ′

=
3A(G)

2π
(detQ)1/2

∫
√
n(tT )−1(D)

ϕ
( θ√

n

)n
e
−
√
−1〈y, θ√

n
〉
dθ.

(4.3)

We take a positive constant r sufficiently small such that

(4.4) r < min{C1(N)K− 2N+3
N+3 λ

N
2(N+3) , R},

and divide the range of the above integration
√
n(tT )−1(D) into three parts

according as ‖θ‖R2 ≤ rn1/6; rn1/6 < ‖θ‖R2 ≤ R
√
n; ‖θ‖R2 > R

√
n. Then

we can write as
∫
√
n(tT )−1(D)

ϕ
( θ√

n

)n
e
−
√
−1〈y, θ√

n
〉
dθ

= I(n)(y) + J1(n)(y) + J2(n)(y) + J3(n)(y) + J4(n)(y),

where

I(n)(y) =
N∑

j=0

Ij(n)(y)

:=

N∑

j=0

{
n−j/2

∫

R2

bj(θ)e
− 1

2
〈Qθ,θ〉e

−
√
−1〈y, θ√

n
〉
dθ
}
,

J1(n)(y) :=

∫

‖θ‖
R2≤rn1/6

{
ϕ
( θ√

n

)n
− e−

1
2
〈Qθ,θ〉(

N∑

j=0

bj(θ)n
−j/2

)}

×e
−
√
−1〈y, θ√

n
〉
dθ,

J2(n)(y) := −
∫

‖θ‖
R2>rn1/6

e−
1
2
〈Qθ,θ〉(

N∑

j=0

bj(θ)n
−j/2

)
e
−
√
−1〈y, θ√

n
〉
dθ,

J3(n)(y) :=

∫

rn1/6<‖θ‖
R2≤R

√
n
ϕ
( θ√

n

)n
e
−
√
−1〈y, θ√

n
〉
dθ,

J4(n)(y) :=

∫

‖θ‖
R2>R

√
n, θ∈√n(tT )−1(D)

ϕ
( θ√

n

)n
e
−
√
−1〈y, θ√

n
〉
dθ.
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Our first task is to estimate the error terms J1(n)(y), J2(n)(y), J3(n)(y)
and J4(n)(y). By using (4.1) and (4.2), we have

sup
y∈V

|J4(n)(y)| ≤
∫
√
n(tT )−1(D)

ηndθ = (2π)2|detT | · nηn,

and

sup
y∈V

|J3(n)(y)| ≤
∫

‖θ‖
R2>rn1/6

e−
1
4
〈θ,Qθ〉dθ ≤

∫

‖θ‖
R2>rn1/6

e−
λ
4
‖θ‖2

R2dθ

Thus both J3(n)(y) and J4(n)(y) converge to zero as n → ∞ exponentially
fast uniformly for all y ∈ V . Similarly, we have

sup
y∈V

|J2(n)(y)| ≤ e−
λ
4
n1/4

N∑

j=0

n−j/2
( ∫

R2

e−
λ
4
‖θ‖2

R2 |bj(θ)|dθ
)
,

and since each bj(θ) has polynomial growth, we also see that J2(n)(y) con-
verges to zero as n → ∞ exponentially fast uniformly for all y ∈ V .

By virtue of |Mq(θ)| ≤ Kq‖θ‖q
R2 , q ∈ N, we have

∑

e∈E0

p(e)〈Q−1e, e〉N/2 ≤ KNλ−N/2, N ∈ N ∪ {0}.

Furthermore recalling (4.4), we observe that ‖θ‖R2 ≤ rn1/6 implies

〈Qθ, θ〉1/2 ≤ K‖θ‖R2

≤ C1(N)K− N
N+3λ

N
2(N+3)n

1
6

≤ C1(N)
( ∑

e∈E0

p(e)〈Q−1e, e〉N/2
)− 1

N+3
n

N+1
2(N+3) .

Thus we may apply Proposition 3.5, and we obtain

sup
y∈V

|J1(n)(y)|

≤ C2(N)n−N+1
2

∫

‖θ‖
R2≤rn1/6

e−
1
4
〈Qθ,θ〉(〈Qθ, θ〉N+3 + 〈Qθ, θ〉3(N+1)

)
dθ

≤ ON (n−N+1
2 ).

Now, we calculate the principal terms

Ij(n)(y) := n−j/2

∫

R2

bj(θ)e
− 1

2
〈Qθ,θ〉e

−
√
−1〈y, θ√

n
〉
dθ,

y ∈ V, j = 0, 1, . . . , N.
(4.5)
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It follows directly from (3.1) that

I0(n)(y) = 2π(detQ)−1/2 exp
(
− 1

2n
〈Q−1y, y〉

)
.

Applying Proposition 3.1, we obtain

I1(n)(y) = (
√
−1)3n−1/2

∫

R2

(M3(θ)

6

)
e−

1
2
〈Qθ,θ〉e

−
√
−1〈y, θ√

n
〉
dθ

= 2πn−1/2(detQ)−1/2 exp
(
− 1

2n
〈Q−1y, y〉

)
P1

( y√
n

)
,

where

P1(y) :=
κ(
√
−1)6

6

(
G(1, 1, 1)(y) −G(2, 2, 2)(y) +G(3, 3, 3)(y)

)
.

Besides, it follows from Remark 3.2 that

G(i, i, i)
( y√

n

)
= −n−3/2〈Q−1ei, y〉3 + 3n−1/2〈Q−1ei, ei〉〈Q−1ei, y〉,

i = 1, 2, 3.

Thus the explicit form of P1

( y√
n

)
is given by

P1

( y√
n

)
=

κ

6
n−3/2

{
〈Q−1e1, y〉3 − 〈Q−1e2, y〉3 + 〈Q−1e3, y〉3

}

+
κ

2
n−1/2

{
〈Q−1e1, e2〉〈Q−1e3, y〉+ 〈Q−1e2, e3〉〈Q−1e1, y〉

+ 〈Q−1e3, e1〉〈Q−1e2, y〉
}
.

(4.6)

It follows from Proposition 3.5 that

I2(n)(y) = n−2/2

∫

R2

(
√
−1)4

(M4(θ)

24
− M2(θ)

2

8

)
e−

1
2
〈Qθ,θ〉e

−
√
−1〈y, θ√

n
〉
dθ

+n−2/2

∫

R2

(
√
−1)6

(M3(θ)
2

72

)
e−

1
2
〈Qθ,θ〉e

−
√
−1〈y, θ√

n
〉
dθ.

Then by repeating the same argument as above, we have

I2(n)(y) = 2πn−2/2(detQ)−1/2 exp
(
− 1

2n
〈Q−1y, y〉

)

×
(
P

(1)
2 (n)

( y√
n

)
+ P

(2)
2 (n)

( y√
n

))
,

where

P
(1)
2 (n)(y) =

(
√
−1)8

24

{
α̂G(1, 1, 1, 1)(y) + β̂G(2, 2, 2, 2)(y)

+γ̂G(3, 3, 3, 3)(y)
}
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−(
√
−1)8

8

{
α̂2G(1, 1, 1, 1)(y) + β̂2G(2, 2, 2, 2)(y)

+γ̂2G(3, 3, 3, 3)(y) + 2α̂β̂G(1, 1, 2, 2)(y)

+2β̂γ̂G(2, 2, 3, 3)(y) + 2γ̂α̂G(1, 1, 3, 3)(y)
}
,

P
(2)
2 (n)(y) =

κ2(
√
−1)12

72

{ 3∑

i=1

G(i, i, i, i, i, i)(y) − 2G(1, 1, 1, 2, 2, 2)(y)

+2G(1, 1, 1, 3, 3, 3)(y) − 2G(2, 2, 2, 3, 3, 3)(y)
}
.

Besides, it follows from (3.2) that

G(i, i, i, j, j, j)(0)(y) = −9〈Q−1ei, ei〉〈Q−1ei, ej〉〈Q−1ej, ej〉
−6〈Q−1ei, ej〉3,

G(i, i, j, j)(0)(y) = 〈Q−1ei, ei〉〈Q−1ej, ej〉+ 2〈Q−1ei, ej〉2

for i, j = 1, 2, 3.
Combining these identities with (2.5), we have

3
(
α̂2〈Q−1e1, e1〉2 + β̂2〈Q−1e2, e2〉2 + γ̂2〈Q−1e3, e3〉2

)

+ 2α̂β̂
(
〈Q−1e1, e1〉〈Q−1e2, e2〉+ 2〈Q−1e1, e2〉2

)

+ 2γ̂α̂
(
〈Q−1e1, e1〉〈Q−1e3, e3〉+ 2〈Q−1e1, e3〉2

)

+ 2β̂γ̂
(
〈Q−1e2, e2〉〈Q−1e3, e3〉+ 2〈Q−1e2, e3〉2

)
= 8.

(4.7)

Thus the constant term of P
(1)
2 and P

(2)
2 are obtained by

(4.8) −1 +
1

8

(
α̂〈Q−1e1, e1〉2 + β̂〈Q−1e2, e2〉2 + γ̂〈Q−1e3, e3〉2

)

and

− 5

24

(
〈Q−1e1, e1〉3 + 〈Q−1e2, e2〉3 + 〈Q−1e3, e3〉3

)

+
1

6

(
〈Q−1e1, e2〉3 + 〈Q−1e2, e3〉3 − 〈Q−1e3, e1〉3

)

+
1

4

(
〈Q−1e1, e1〉〈Q−1e1, e2〉〈Q−1e2, e2〉

+ 〈Q−1e2, e2〉〈Q−1e2, e3〉〈Q−1e3, e3〉

− 〈Q−1e3, e3〉〈Q−1e3, e1〉〈Q−1e1, e1〉
)
,

(4.9)

respectively. Summarizing (4.6), (4.7), (4.8), (4.9), and recalling (2.5) again,
we conclude that the explicit form of the coefficient of the leading term
a1(y;κ)n

−1 is given by (2.7).
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For general j = 1, 2, . . . , N , by virtue of (3.8), we may write Ij(n)(y) as

Ij(n)(y) =

j∑

k=1

I
(k)
j (n)(y)

:=

j∑

k=1

{
n−j/2(

√
−1)j+2k

∫

R2

b
(j+2k)
j (θ)e−

1
2
〈Qθ,θ〉e

−
√
−1〈y, θ√

n
〉
dθ
}
.

Applying Proposition 3.1 again, we obtain

I
(k)
j (n)(y) = 2π(

√
−1)j+2kn−j/2(detQ)−1/2 exp

(
− 1

2n
〈Q−1y, y〉

)

× P
(j+2k)
j

( y√
n

)
,

(4.10)

where

P
(j+2k)
j (y) :=





j−1
2

+k∑

l=0

(
√
−1)j+2k−2lP

(j+2k)
j,j+2k−2l(y) (if j is odd),

j
2
+k∑

l=0

(
√
−1)j+2k−2lP

(j+2k)
j,j+2k−2l(y) (if j is even) ,

and each P
(j+2k)
j,j+2k−2l(y) is a homogeneous polynomial of degree (j+2k−2l) in

the variables y1, y2. Noting (j+2k−2l) ≤ 3j and (
√−1)j+2k(

√−1)j+2k−2l ∈
R for any j, k, l, we see that

(4.11) Pj(y) :=

j∑

k=1

(
√
−1)j+2kP

(j+2k)
j (y), j = 1, 2, . . . , N

is a real valued polynomial of degree at most 3j in the variables y1, y2 and
it is an odd or even function depending on whether j is odd or even.

Then by (4.10) and (4.11), we obtain

(4.12) Ij(n)(y) = 2πn−j/2(detQ)−1/2 exp
(
− 1

2n
〈Q−1y, y〉

)
Pj

( y√
n

)
.

Here we mention that the term n−j/2Pj

( y√
n

)
on the right-hand side of (4.12)

is regarded as a polynomial of degree at most 2j in the variable n−1.
Plugging the above all arguments into (4.3), and recalling (2.5), we finally

obtain the desired asymptotic expansion formula (2.6). This completes the
proof of (1).

Next, we prove (2). For simplicity, we only give a proof in the case
k = l = 0. (In other cases, the proof goes through in a very similar way
with a slight modification.) Let p(3) := p ∗ p ∗ p and we denote by ϕ(3)
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and Q(3) the characteristic function and the covariance matrix associated

with the 1-step probability distribution p(3), respectively. We define χ
(3)
q (θ),

q ∈ N in the same way as in (3.7) with ϕ replaced by ϕ(3). Note Q(3) = 3Q

and χ
(3)
q (θ) = 3χq(θ), q ∈ N.

Let G̃ = (Ṽ , Ẽ) be an enlarged triangular lattice defined by Ṽ := V0 and

Ẽ := {(x, y) ∈ V0 × V0| x− y ∈ {±ẽ1,±ẽ2,±(ẽ2 − ẽ1)}} (see Figure 3). We

introduce a random walk on G̃ whose 1-step transition probability distri-
bution is given by p(3). We denote by p(3)(m,x, y) the m-step transition
probability of the random walk. Namely, p(3)(m,x, y) = p(3m,x, y) for

x, y ∈ Ṽ .

Since p(3)(1, 0, 0) = 2/9 > 0, the random walk on G̃ is aperiodic. Thus
we may follow the proof of (1) above, and we finally obtain the desired
asymptotic expansion formula (2.8). This completes the proof of (2). �

5. Examples

Example 5.1 (Kotani-Sunada [4], Example 2). We consider the simple
random walk. Namely, we consider the case α = α′ = β = β′ = γ =
γ′ = 1/6. As we mentioned in Remark 2.3, the standard realization of the
triangular lattice is the equilateral triangular lattice in R

2 each of whose
edge has length

√
2/3. Then we have

2πn · p(n, x, y) =
√
3 exp

(
− 3

2n
‖y − x‖2

R2

)

×
(
1− 1

2
n−1 + · · · + 1

nN/2
PN

(y − x√
n

))
+ON

(
n−N+1

2
)
, N ≥ 3

as n → ∞ uniformly for all x = x1h1 + x2h2, y = y1h1 + y2h2 ∈ V .

Example 5.2 ([12]). We consider the case

α = β = γ = (1/6) + ε, α′ = β′ = γ′ = (1/6) − ε (0 < ε < 1/6).

In this case, the standard realization of the triangular lattice is same as
Example 5.1. However, the corresponding random walk is non-symmetric
with κ = 2ε. Then we have

2πn · p(n, x, y) =
√
3 exp

(
− 3

2n
‖y − x‖2

R2

)
·
{
1 +

(
− 1

2
− 6ε2

)
n−1

+ · · ·+ 1

nN/2
PN

(y − x√
n

)}
+ON

(
n−N+1

2
)
, N ≥ 3

as n → ∞ uniformly for all x = x1h1 + x2h2, y = y1h1 + y2h2 ∈ V .

Example 5.3. We consider the case

α = 1/4, α′ = 1/12, β = 1/3, β′ = 1/6, γ = 1/6, γ′ = 0 (κ = 1/6).
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In this case,

A(G) =
2√
11

, l =
2
√
2√
11

, h1 =
t

(
2
√
2√

11
, 0

)
, h2 =

t

(
1√
22

,
1√
2

)

(see Figure 4). Then we have

1

4
l

3

4
l

√

11

4
l

√

3

2
l

√

5

2
l

h1

h2

Figure 4. Example 5.3

2πn · p(n, x, y) =
6√
11

exp
(
− 3

2n
‖y − x‖2

R2

)

×
[
1 +

{
− 719

1331
+

6

121

(
2(y1 − x1)− 5(y2 − x2)

)}
n−1

+ · · ·+ 1

nN/2
PN

(y − x√
n

)]
+ON

(
n−N+1

2
)
, N ≥ 3

as n → ∞ uniformly for all x = x1h1 + x2h2, y = y1h1 + y2h2 ∈ V .
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