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ON MODEL STRUCTURE FOR COREFLECTIVE

SUBCATEGORIES OF A MODEL CATEGORY

Tadayuki Haraguchi

1. Introduction

Let C be a coreflective subcategory of a cofibrantly generated model cat-
egory D. In this paper we show that under suitable conditions C admits a
cofibrantly generated model structure which is left Quillen adjunct to the
model structure on D. As an application, we prove that well-known conve-
nient categories of topological spaces, such as k-spaces, compactly generated
spaces, and ∆-generated spaces [3] (called numerically generated in [12]) ad-
mit a finitely generated model structure which is Quillen equivalent to the
standard model structure on the category Top of topological spaces.

2. Coreflective subcategories of a model category

Let D be a cofibrantly generated model category [7, 2.1.17] with gener-
ating cofibrations I, generating trivial cofibrations J and the class of weak
equivalences WD. If the domains and codomains of I and J are finite relative
to I-cell [7, 2.1.4], then D is said to be finitely generated.

Recall that a subcategory C of D is said to be coreflective if the inclu-
sion functor i : C → D has a right adjoint G : D → C, so that there is a
natural isomorphism ϕ : HomD(X,Y ) → HomC(X,GY ). The counit of this
adjunction ǫ : GY → Y (Y ∈ D) is called the coreflection arrow.

Theorem 2.1. Let C be a coreflective subcategory of a cofibrantly generated
model category D which is complete and cocomplete. Suppose that the unit of
the adjunction η : X → GX is a natural isomorphism, and that the classes I
and J of cofibrations and trivial cofibrations in D are contained in C. Then
C has a cofibrantly generated model structure with I as the set of generating
cofibrations, J as the set of generating trivial cofibrations, and WC as the
class of weak equivalences, where WC is the class of all weak equivalences
contained in C. If D is finitely generated, then so is C. Moreover, the
adjunction (i,G, ϕ) : C → D is a Quillen adjunction in the sense of [7,
1.3.1].

Proof. It suffices to show that C satisfies the six conditions of [7, 2.1.19]
with respect to I, J and WC. Clearly, the first condition holds because
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WC satisfies the two out of three property and is closed under retracts. To
see that the second and the third conditions hold, let IC-cell and JC-cell
be the collections of relative I-cell and J-cell complexes contained in C,
respectively. Since IC-cell and JC-cell are subcollections of the collections
of relative I-cell and J-cell complexes in D, respectively, the domains of I
and J are small relative to IC-cell and JC-cell, respectively. The rest of the
conditions are verified as follows. Let f : X → Y be a map in C. Since
η : X → GX is isomorphic for X ∈ D, f is I-injective in C if and only
if it is I-injective in D. Similarly, f is J-injective in C if and only if it
is J-injective in D. Let f be an I-cofibration in D. Then it has the left
lifting property with respect to all I-injective maps in C. Hence f is an
I-cofibration in C. Conversely, let f be an I-cofibration in C. Suppose we
are given a commutative diagram

X −−−−→ A

f





y

p





y

Y −−−−→ B

where p is I-injective in D. Then there is a relative I-cell complex g : X → Z

[7, 2.1.9] such that f is a retract of g by [7, 2.1.15]. Since g is an I-cofibration
in D, there is a lift Z → A of g with respect to p. Then the composite
Y → Z → A is a lift of f with respect to p. Therefore f is an I-cofibration
in D. Similarly, f is a J-cofibration in C if and only if it is a J-cofibration
in D. Thus we have the desired inclusions

• JC-cell ⊆ WC ∩ IC-cof,
• IC-inj ⊆ WC ∩ JC-inj, and
• either WC ∩ IC-cof ⊆ JC-cof or WC ∩ JC-inj ⊆ IC-inj.

Here IC-inj and IC-cof denote, respectively, the classes of I-injective maps
and I-cofibrations in C, and similarly for JC-inj and JC-cof. Therefore C

is a cofibrantly generated model category by [7, 2.1.19].
It is clear, by the definition, that C is finitely generated if so is C.
Finally, to prove that (i,G, ϕ) is a Quillen adjunction, it suffices to show

that G : D → C is a right Quillen functor, or equivalently, G preserves
J-injective maps in D by [7, 1.3.4] and [7, 2.1.17]. Let p : X → Y be a
J-injective map in D. Suppose there is a commutative diagram

A −−−−→ GX

f





y

Gp





y

B −−−−→ GY
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where f ∈ J . Then we have a commutative diagram

A −−−−→ GX
ǫ

−−−−→ X

f





y

p





y

B −−−−→ GY
ǫ

−−−−→ Y.

Since p is J-injective in D, there is a lift h : B → X of f . Thus we have a lift
Gh◦ η : B ∼= GB → GX of f with respect to Gp. Therefore Gp : GX → GY

is J-injective in C. Similarly, we can show that G preserves I-injective maps
in C, and so G preserves trivial fibrations in C. Hence (i,G, ϕ) is a Quillen
adjunction. �

We turn to the case of pointed categories [7, p.4]. Let D∗ be the pointed
category associated with D, and let U : D∗ → D be the forgetful functor.
We denote by I+ and J+ the classes of those maps f : X → Y in D∗ such
that Uf : UX → UY belongs to I and J , respectively. Then we have the
following. (Compare [7, 1.1.8], [7, 1.3.5], and [7, 2.1.21].)

Theorem 2.2. Let D be a cofibrantly (resp. finitely) generated model cate-
gory, and let C be a coreflective subcategory satisfying the conditions of The-
orem 2.1. Then the pointed category C∗ has a cofibrantly (resp. finitely) gen-
erated model structure, with generating cofibrations I+ and generating trivial
cofibrations J+, such that the induced adjunction (i∗, G∗, ϕ∗) : C∗ → D∗ is
a Quillen adjunction.

We also have the following Proposition.

Proposition 2.3. Suppose C and D satisfy the conditions of Theorem 2.1.
Suppose, further, that the coreflection arrow ǫ : GY → Y is a weak equiva-
lence for any fibrant object Y in D. Then the adjunctions (i,G, ϕ) : C → D

and (i∗, G∗, ϕ∗) : C∗ → D∗ are Quillen equivalences.

Proof. Let X be a cofibrant object in C and Y a fibrant object in D. Let
f : X → Y be a map in D. Then we have ϕf = Gf ◦ η : X ∼= GX → GY .

Since f coincides with the composite X
ϕf
−−→ GY

ǫ
−→ Y and ǫ is a weak

equivalence in D, ϕf is a weak equivalence in C if and only if f is a weak
equivalence in D. It follows by [7, 1.3.17] that that the induced adjunction
(i∗, G∗, ϕ∗) is a Quillen equivalence. �

3. On a model structure of the category NG

In [12] we introduced the notion of numerically generated spaces which
turns out to be the same notion as ∆-generated spaces introduced by Jeff
Smith (cf. [3]) . LetX be a topological space. A subset U ofX is numerically
open if for every continuous map P : V → X, where V is an open subset of
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Euclidean space, P−1(U) is open in V . Similarly, U is numerically closed
if for every such map P , P−1(U) is closed in V . A space X is called a
numerically generated space if every numerically open subset is open in X.

Let NG denote the full subcategory of Top consisting of numerically
generated spaces. Then the category NG is cartesian closed [12, 4.6]. To
any X we can associate the numerically generated space topology, denoted
νX, by letting U open in νX if and only if U is numerically open in X.
Therefore we have a functor ν : Top → NG which takes X to νX. Clearly,
the identity map νX → X is continuous. By the results of [7, §3] the
following holds.

Proposition 3.1. The functor ν : Top → NG is a right adjoint to the
inclusion functor i : NG → Top, so that NG is a coreflective subcategory
of Top.

A continuous map f : X → Y between topological spaces is called a weak
homotopy equivalence in Top if it induces an isomorphism of homotopy
groups

f∗ : πn(X,x) → πn(Y, f(x))

for all n > 0 and x ∈ X. Let I be the set of boundary inclusions Sn−1 →
Dn, n ≥ 0, J the set of inclusions Dn ×{0} → Dn × I, and WTop the class
of weak homotopy equivalences. The standard model structure on Top can
be described as follows.

Theorem 3.2 ([7, 2.4.19]). There is a finitely generated model structure on
Top with I as the set of generating cofibraitons, J as the set of generating
trivial cofibrations, and WTop as the class of weak equivalences.

The category NG is complete and cocomplete by [12, 3.4]. A space X

is numerically generated if and only if νX = X holds. Thus the unit of
the adjunction η : X → νX is a natural homeomorphism. Moreover, since
CW-complexes are numerically generated spaces by [12, 4.4], the classes I

and J are contained in NG. Let WNG be the class of maps f : X → Y

in NG which is a weak equivalence in Top. Since the coreflection arrow
νY → Y , given by the identity of Y ∈ Top, is a weak equivalence (cf. [12,
5.4]), we have the following by Theorem 2.1 and Proposition 2.3.

Theorem 3.3. The category NG has a finitely generated model structure
with I as the set of generating cofibrations, J as the set of generating triv-
ial cofibrations, and WNG as the class of weak equivalences. Moreover the
adjunction (i, ν, ϕ) : NG → Top is a Quillen equivalence.

We turn to the case of pointed spaces. LetTop∗ be the category of pointed
topological spaces. By [7, 2.4.20], there is a finitely generated model struc-
ture on the category Top∗, with generating cofibrations I+ and generating
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trivial cofibrations J+. Then we have the following by Theorem 2.2 and
Proposition 2.3.

Corollary 3.4. There is a finitely generated model structure on the category
NG∗ of pointed numerically generated spaces, with generating cofibrations
I+ and generating trivial cofibrations J+. Moreover, the inclusion functor
i∗ : NG∗ → Top∗ is a Quilen equivalence.

Remark. (1) The argument of Theorem 3.3 can be applied to the subcate-
gories K of k-spaces and T of compactly generated spaces. Similarly, the
argument of Corollary 3.4 can be applied to the pointed categories K∗ and
T∗. Compare [2.4.28], [2.4.25], [2.4.26] of [7].

(2) Let Diff be the category of diffeological spaces (cf. [8]). In [12] we
introduced a pair of functors T : Diff → Top and D : Diff → Top, where
T is a left adjoint to D, and showed that the composite TD coincides with
ν : Top → NG. Thus NG can be embedded as a full subcategory into
Diff . It is natural to ask whether Diff has a model category structure with
respect to which the pair (T,D) gives a Quillen adjuntion between Top and
Diff .

Let I be the unit interval, and let λ : R → I be the smashing function,
that is, a smooth function such that λ(t) = 0 for t ≤ 0 while λ(t) = 1 for

t ≥ 1. Let Ĩ denote the unit interval equipped with the quotient diffeology
λ∗(DR), where DR is the standard diffeology of R. In [5] we introduce
a finitely generated model category structure on Diff with the boundary
inclusions ∂Ĩn−1 → Ĩn as generating cofibrations, and with the inclusions
∂Ĩn−1 × Ĩ ∪ Ĩn × {0} → Ĩn × Ĩ as generating trivial cofibrations. Its class
of weak equivalences consists of those smooth maps f : X → Y inducing
an isomorphism f∗ : πn(X,x0) → πn(Y, f(x0)) for every n ≥ 0 and x0 ∈
X. Here, the homotopy set πn(X,x0) is defined to be the set of smooth

homotopy classes of smooth maps (Ĩn, ∂Ĩn) → (X,x0).
It is expected that with respect to the model structure on Diff described

above, the pair (T,D) induces a Quillen adjunction between Top and Diff .
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