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QUASI TERTIARY COMPOSITIONS AND A TODA
BRACKET IN HOMOTOPY GROUPS OF SU(3)

Hipeakt OSHIMA anp Katsumi OSHIMA

ABSTRACT. We revise the theories of tertiary compositions studied by
Oguchi and Mimura. As a byproduct, we determine a Toda bracket
in homotopy groups of SU(3) which solves an ambiguity in a previous
paper of Maruyama and the first author.

1. INTRODUCTION

Since secondary compositions (Toda brackets) are powerful tools for com-
puting homotopy groups of spaces, one has expected that higher Toda brack-
ets are also useful if they exist. Hence several authors have tried to define
higher Toda brackets. First of all Toda suggested the existence of tertiary
compositions in [17] and then in [19] constructed elements u3 € m12(S3) and
k7 € T21(S7) by essentially tertiary compositions (see 5.9, 5.10, 6.1 below).
These works stimulated Oguchi [13] and Mimura [10] to research on ter-
tiary compositions. But in [13, 10| there are a few gaps and errors. On the
other hand, J. Cohen [3] defined k-fold Toda bracket for every k > 3 (see
Appendix B). His 3-fold Toda bracket is bigger than the usual Toda bracket
in general (see B.4 and B.5) and it seems that his k-fold Toda brackets are
useful not in unstable homotopy but in stable homotopy. So we resume
studying unstable tertiary compositions by revising theories of Oguchi [13]
and Mimura [10].

The main parts of this paper are the sections 4, 5 and 6. Suppose that
the following data are given: two non-negative integers ni, ng, four maps

Xo <= EM Xy, Xy €5 B™Xp, Xp ¢ Xy < X,
and three null homotopies
Ai:aro E™ag ~ %, Ay:asoE™agz~x*, Az:azoay ~ %

such that (A1, A2, A3)n, n, is admissible (see the section 4 for definitions),
where E" is the n-fold suspension. We define a number of subsets of
[Emitnet2 X, Xol: quasi tertiary compositions

(A1, Ay, A3} {A),Ay, A3}V

ni,n2 ni,n2

C {A1, Ay, A3} C {Ag, Ay, A3}

ni,n2 ni,n2
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in the section 4, and tertiary compositions

0 1
{ala 2,03, a4}’$11),n2 - {Oél 2, O3, a4}7(11),n2

- {alu a2, a3, 044}7(%21)7712 C {&17 g, a3, a/4}£;31),n2
in the section 6, such that {Al,Ag,Ag}g?,nQ C {al,ag,ag,azl}gi)m, where
«; is the homotopy class of a;. In case of ny = no =0, {a1, a9, as, a4}§f’3 is

a revised version of Mimura’s tertiary composition [10], {a1, as, as, a4}8())
is a subset of Cohen’s 4-fold Toda bracket {ai,as,as,as}C (see B.6), and
{041,042,043,044}8()) is written as {a1, a2, as, o} by Oguchi [13].

In the section 5, we prove elementary properties of quasi tertiary compo-
sitions. In the section 6, we give revisions of results in [13, 10].

In the section 7, we give applications of quasi tertiary compositions to
homotopy groups of SU(3). One of them is the following proposition (see
the section 7 for notations).

Proposition 7.5. The Toda bracket {[2t5]ns5,4vs,m8} consists of a single
element [v5nZ).

In the section 8, we prove Hamanaka-Kono’s results [4, Theorem 2.5,
Theorem 2.3] as a corollary to Proposition 7.5 so that we can solve an
ambiguity in [9, Theorem 7.1] (see 8.3).

We recall the definitions of extension and coextension [13, 19] in the
section 2 and Toda bracket [19] in the section 3. Many results in sections 2
and 3 are well-known or folklore. In Appendix A, we give a counterexample
to Proposition (6.5) of [13]. In Appendix B, we study some properties of
Cohen’s k-fold Toda brackets.

2. EXTENSIONS AND COEXTENSIONS

In this paper all spaces have the base point and all maps and homotopies
preserve the base point. We denote the base point of the space X by zq or
x. We denote by 1x : X — X and * : X — Y the identity map of X and the
constant map to yo, respectively. In particular we denote by %, : §¢t1 — g¢
and *}" : gttm s gl the trivial maps. We denote the homotopy classes
of 1x,1gn,*, x4, %) by tx,tn,0,04,07", respectively. Frequently we do not
distinguish in notation between a map and its homotopy class.

For spaces X and Y, we denote by [X, Y] the set of homotopy classes of
maps from X into Y. Let X VY = X X {x} U{x} x Y C X XY be the one
point union of X and Y. We denote the quotient space (X x Y)/(X VY)
by X AY,and z Ay € X AY is the point represented by (z,y) € X x Y.
Maps f: X - X' and g: Y — Y’ inducemaps f x g: X xY — X' x Y/,
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fVg: XVY 5> X'VY'and fAg: XAY = X'ANY by (f x g)(z,y) =
(f(x),9(W)), fVg=Ffxglxvy and (f Ag)(z Ay) = f(z) Agly).

Let I be the unit interval [0, 1] whose base point is 1. We use identifica-
tions 1/{0,1} = S' and S™ AS"™ = §™*" as in [19, pp.5-6]. Saying rough,
S'A---ASt =9" and so S AS? = 87 = §PAS™ by (21 A --- A Zm) A
—_——

n

(Tt 1 A AZman) = TIN - AZpgn = (L1 A AZp) A(Tpp1 A - AZman),
where z; € S'. For a space X, its cone C X, suspensions EX and E"X (n >
0) are defined as follows: CX = X NI, EX = (X AI)/(X A{0,1}) and
E"X = X AS"™. We identify EX with E'X by the canonical homeomor-
phism. We write z At € CX and At € EX which are represented by
(x,t) € X x I. We regard X as a subspace of CX by the identification
r=xAN0. Foramap f: X — Y, let E"f = fAlgn : E"X — E"Y
and Cf = fAl;: CX — CY. Alsolet C;y = Y Uy CX denote the map-
ping cone of f, that is, it is obtained from the disjoint union of Y and C'X
by identifying x A 0 € CX with f(z) € Y. The image of x At € CX in
Y Uy CX is also denoted by x At for simplicity. We regard Y as a subspace
of Y Uy CX by the canonical embedding iy : Y — Y Uy CX. We denote by
qr : Y Uy CX — EX the quotient map.

In case of that Z is a locally compact Hausdorff space or X and Y have
closed base points, we identify: (X VY)ANZ = (X AN Z)V (Y A Z) and
ZAN(XVY) = (ZANX)V(ZANY) by the canonical homeomorphisms.
Hence C(XVY)=CXVCY and E"(X VY) = E"X V E"Y. We define
g1 : S — s'vs! and Opx : EX — EX V EX by

bi (F) = {(Qt’ D ¢
2

—_ N

t
; , GEX:]_X/\HSL

IA A
IA A

(%,2t — 1)

These two maps are comultiplications. Since S? has the unique comultiplica-
tion up to homotopy, and since g1 A 11 and 1q1 A g1 are comultiplications
on S'AS! =82 we have 0q1 A 1g1 ~ 1g1 A fg1. Therefore

Let Vx : XVX — X be the folding map. For two maps aj,as : EX — Y,
we define a1 + ao = Vy o (a1 V ag) o0px : EX — Y. This induces a group
operation + in [FX,Y].

For two maps b; : Y; — Z (i = 1,2), we abbreviate V zo (b1 Vby) to by V bo.
We easily have

Lemma 2.1. Given four maps a; : EX = Y; and b; : Y; — Z (i =1,2), we
have (by V.ba) o (a1 Vas)obpx =bjoa; +byoay: EX — Z.
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If H: X xI—Y is a homotopy from f to g, that is, if H(z,0) = f(x),
H(xz,1) = g(z) and H(*,t) = %, then we write f =g X — Y or simply

H: f~g, and define —H : X x I — Y by (—H)(z,t) = H(z,1 —t). In
particular if moreover g = %, then H induces a map CX — Y, x At —
H(z,t), which is denoted by the same letter H for simplicity.

Toda [19] introduced the notions of extension and coextension. We use
notations of [13] for them. Given maps a; : X; — X;_1 (i = 1,2) and
H : aj oay >~ *, we define

la1, H,as] : X1 Ug, C X2 — Xg, an extension of a; with respect to as,
[al, H, ag](l'l) = al(asl), [al, H, ag](ﬂfg N t) = H([EQ VAN t);
(a1, H,a2) : EXy — Xo Uy, CX1, a coextension of ay with respect to aq,

CLQ(LL'Q) A (1 - 2t)

] 0<
(a1, H, az)(za N T) = {H(xg AEt-1) L<

Notice that our coextension is different in sign to one given in [12, 13]. We
have

(2.2) la1, H, az) 0 iq, = aq, da, © (a1, H,a2) ~ —Fas.

Let Extg,(a1) and Coextg, (a2) be respectively the sets of homotopy classes
of [a1, H,as] and (a1, H, az), where we take all possible H. Since Extg,(a1)
and Coextg, (a2) depend on the homotopy classes of a; and as respectively,
we denote them by Ext,, () and Coextg, (a2) respectively, where «; is the
homotopy class of a;. Elements of Ext,,(a1) and Coext,, (a2) are frequently
written as @7 and as, respectively.

The following two lemmas are obtained easily.

Lemma 2.2. Let four maps X < X1 <2 Xy <22 X5 <% X, be given.
(1) If H : aj o ag ~ x, then

la1, H o Cag, az o az] = [a1, H, az] o (1x, U Cag),
(a1, H o Caz,as 0a3) = (a1, H,as) o Eas.
(2) If H : ag 0 ag ~ *, then
[al o az,ay © Ha a3] = ai © [(IQ,H, 0,3],

(a1 0az,a10H,a3) = (a1 Ulcx,) o (az, H, as).
(3) If H : a1 o ag o ag =~ *, then

la1 0 ag, H,a3] = [a1, H, a3 0 ag] o (a2 U 1oxy),

(a1, H,az 0 a3) = (1x, UCaz) o (a1 0 az, H, as).
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(4) If H:a10as ~* and K : az 0 ag o ay =~ *, then
la1, H o Cag,az 0 as] o (az o as, K,a4) = [a1, H,as] o (a2, K, a3 o ay).
(5) If H:ajo0az20a3 ~ % and K : agoay >~ *, then
[a1 0 a9, H, a3 o (a3, K,a4) = [a1, H,as 0 asg] o (az 0 az,az o K, ay).
Lemma 2.3 (Lemma 2.10 of [10]). Suppose the following data are given:
a; €a; € [X;,X; 1] (1=1,2), ajoas =0, Be€[Xo,V], 7e€][U Xz
Then
B o Exty, (1) C Extg, (8 oar) C[X] Uy, CXo, V],
Coexty, (a2) 0 Ey C Coextgy, (g 0y) C [EU, Xg Uy, CX1).

We denote by 7(X,Y) : X ANY — Y A X the switching map, that is,
7(X,Y)(x ANy) =y Az. Given a map f: X — Y, the “canonical” homeo-
morphism [19, (1.16)]

Wy px) : B"Y Upng CE"X — E"(Y Uy CX)
is defined by @Z)?Y’ﬁx)(y A $p) =y A s, and w?y,f,x)(x Asp ANt) =z AtA Sy,
where y €Y, s, € S, x € X, t € I. Sometimes we abbreviate ¢?YfX) to
1[)?. If 0 <m <n, then

_ . —my—1
(2.3) E™ (1&? m) o w%”n_mf = @b? i.e. @bgn_mf = F™ (¢? m) o @b?
We have

Wi 1ox) = 1x AT(S" 1) : CE"X — E"CX,

Uiy ax) = Ix AT(S",8") : EE"X — E"EX.
Since the degree of 7(S™,S1) : §"™1 — gl is (—1)", we have Wiy ) =

(=1)™1gn+1x. Given amap H : X x I — Y with H({x} x I) = x (i.e. a
homotopy), we define

E"H : E"X x I — E"Y, (x A sp,t) — H(z,t) A sp.
As is easily shown, EME"H = E™™H. If H: CX — Y, then we have
E"H = E"Ho (1x A7(S™,I)): CE"X — E"Y.
The following lemma is obvious from definitions.

Lemma 2.4. We have E™[ay, H,as] = [EnabEnH, Em™ag) o (Y3,)" and

az

E"(ay, H,as) = ¥ o (E"ay, E"H, E"ay) o (1x, A T(S',8™)).
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For a map f: X — Y, the co-operation [5]
QZQfZYUfCX% (YUfCX)\/EX
is defined by

1
2 .
1

IA A

0) = (5,%), O At) = {Efgft;];*)l) o<t
) 2 ~

When Y = {x}, we have § = 0gx. For maps g : Y Uy CX — Z and
h:EX — Z, we define g+ h = (g V h) o 8 which is the composite of

YU CX —2 (YU, 0X)VEX 2" zvz Y 2

This defines an action + : [Y Uy CX,Z] x [EX,Z] — [Y Uy CX,Z]. We
easily have

Lemma 2.5. Given maps f: X =Y, g:YU;CX = Z and h: EX — Z,
we have

E"(g+h) ooy = (E"gov?) + (E"ho iy . x))
~ (E"goy})+ ((-1)"E"h) rel E"Y : E"Y Ugny CE"X — E"Z.
In particular, if moreover f = 1x, then
E™(g+h) ~ E"g+ (~1)"E"h rel E"X : CE"X — E"Z.

Proposition 2.6 (Chapter 15 of [5]). If a,8 € [Y Uy CX,Z] and A\, p €
[EX, Z], then

() at (Ot = (@43 4

(2) ifa€a, thena+x~arelY,

(3) ¢;(N) + 1 =q;(A+p),

(4) i (o) = iy” (5) if and only if 8= a+ X\ for some .

We easily have

Lemma 2.7. IfY Lxé& W are maps and A : f o g~ x, then
jobro(f,A,g)~jo(—(f,Ag)VEg)oblpwo(—lpgw)
EW — (YU CX) x EX,

where j : (Y Uy CX)V EX — (Y Uy CX) x EX is the inclusion map. If
moreover jy : [EW, (Y Uy CX)VEX| — [EW, (Y U;CX) x EX] is injective,
then

o(f,A,g9) ~ (= (f,A,9)VEg)obpwo(~1lpw): EW — (YU;CX)VEX.
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For maps A, B : CX — Y with A|x = B|x, we define

Az A (1 - 2t))

d(A,B): EX =Y, xAt~— (1]
Bz A(2t—1)) 3

<t<;
<t<1
and denote its homotopy class by d(4, B) € [EX,Y]. It is a generalization
of “separation element” in [6], while our d(A, B) is written as d(B, A) in
13, 18].

) Let A,B,D : CX — Y satisfy A|lx = B|x = D|x.
= —d(B,A).
+6(B,D) =06(A, D).

0.

)

)

)

) d(A, A+ h) ~h for every map h: EX — Y.

) A+d(A,B)~ B rel X.

) 6(A,B) =0 if and only if A~ B rel X.

) For a fired A, [EX,Y] is the set of 6(A, B) with A|x = Bl|x.
) For maps f:W — X and g:Y — Z, we have
d(A,B)o Ef =d(AoCf,BoCf), god(A,B)=d(goA,goB).

(i) We have E"d(A, B) :~d(ﬁni4, E"B)o (1x AT(SY,8™)) which is
homotopic to (—1)"d(E™ A, E"B).
(2) IfZ(iY&X and h : EX — Z are maps and H : aob ~ *, then

(2.4) la,H+ h,b] =[a,Hb] +h:Y U, CX — Z,
(2.5) (a, H+ h,b) ~ (a,H,b) +igoh: EX - ZU,CY.
If moreover H' :aob~ % and H ~ H' rel X, then
(2.6) la, H,b] ~ [a, H',b] 7el Y, (a,H,b) ~ (a, H',b).
Proof. (1) is easy, and (2) is proved by giving homotopies explicitly. O

Iff%g:X%Y,thenwedeﬁnegoF:YUfC'X—>YUgC'be

or(y) =y, wr(@At)= {F(x’%) 2
2

x A (2t —1)
For every n > 0, we have
(2.7) ng(pEnF :Engppozﬁ?.

We denote by 1¢ : X xI — Y the constant homotopy of f, that is, 1;(xz,t) =
f(x). Then

(28) golf ~ 1YUfC’X rel Y.

The following lemma can be proved by giving homotopies explicitly.
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Lemma 2.9. Under the above notations, ¢r is a homotopy equivalence
whose homotopy inverse is p_p : Y Uy, CX — Y Uy CX, and the following
diagram is homotopy commutative:

Y U CX o Y U, CX

EX

Given homotopies F;A : X x I — Y and G : Y x I — Z such that
F(z,1) = A(x,0) for all x € X, we define Ae F': X xI — Y and GS F :
X X1 — Z by

F(x,2t) 0
5

1
Az, 2t — 1) 2. (GoF) (1) = G(F(x.1).0)

(Ao F)(z,t) = {

Note that e and & are called in [8, pp.272-273] vertical composition and
horizontal composition, respectively.
The following lemma can be proved by giving homotopies explicitly.

Lemma 2.10 ([13]). If al % a’l B Xy — Xo, as % CL/2 X9 > Xy and
A :ajoE"y >~ %, then
[ala A7Ena2] = [ale,a EnCLIQ] OPengs $HO (0,1, A7 EnCLQ) = (alla Ala Enaé),
where A’ = Ae ((—H) 6E”(—K)) :CE" X9 — Xp.
Proposition 2.11. Suppose the following data are given: aq =~ ay : E"X, —
X(), as %a’z : Xo %Xl, as ’f ag : X3 —)Xg, A1 a1 0o E"ag ~ *,
Ay iagoaz >~ x. Then
d(Al o CEnag, ay © ERAQ) - [al, Al, E”ag] o (E"ag, ETLAQ, E"ag)
~ [a}, Ay, E™ab] o (E"dh, E™ AL, E"ab) = d(A} o CE™al, a), o E™Ab),
where
Al =A,e((—H) BE”(—K)) :a) o E"aly ~ x,

Ay =Ase ((—K)3(—L)) : ay o as ~ .
Proof. By definitions, two equalities are obvious. By Lemma 2.10, we have

[a17A17Ena‘2] = [a/17A/17Ena/2] O Ponpes

Cpng © (E"ag, E" Ay, E™ag) ~ (E™d), E" Ay, E™db).

Hence we obtain the result. U]
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Proposition 2.12. Suppose that the following data are given: ap : Xp —
X1 (/{5 = 1,2,3), Ayt apoapyy ~ % (€ = 1,2), h : X1 Uy CXo — Z,
f:EXy — Z and g: EX3 — X1. Then

(2.9) (h+ f)o (a2, Az,a3) = f o (—Eaz) + ho (a2, A2, a3),
(2.10) ho (ag, As + g,a3) ~ ho (as, As,a3) + hoig, og.
If moreover Z = Xy, then
a1, Ay + [, a2] 0 (a2, A2 + g, a3)

~ fo(—Ea3) + [a1, A1,a2] o (az, A2,a3) + ai o g.
Proof. We have (2.10) from (2.5). In order to prove (2.9), consider the
decomposition: I x I = KjU---U K5, where (s,t) € I x I and

Ky ={(s,t) |t >2s}, Ko={(s,t)]4s —1<t<2s},
Kz ={(s,t)]4s —2 <t <4s— 1},

Ky={(s,t)]|2s =1 <t <4s—2}, K5={(s,t)|t <2s—1}.

We define ¢p: I x I - Tand ®: X3 x I x I — Z by

(2.11)

2s (s,t) € Ky
4s — t (s,t) € Ko
(s, t) = —4s+t+2 (s,t) € K3,
4s —t —2 (s, t) € Ky
2s — 1 (s,t) € K5
(—f)(a3(373) Ad(s,t)) (s,t) € K1 UKy
d(x3,s8,t) = h(a3 x3) A P(s,t) ) (s,t) € K3

h(AQ(.%’g N ¢(S t))) (S, t) € Ky UK;5

Let ® : EX5 x I — Z be defined by ®(x3 A'S,t) = ®(x3,s,t). Then @ is a
desired homotopy of (2.9). We have (2.11) by (2.4), (2.9) and (2.10). This
completes the proof. Il

From Lemma 2.5, (2.6) and (2.11), we have
Corollary 2.13. Suppose the following data are given:
Xo < E"X;, X1 <2 X9 <% X3, Ay :ay0E"g ~ %, Ag:agoag ™
f:E"" X, - Xy, ¢:EX3;— Xi.
Then
a1, Ay + f, E"ay] o (E"ag, E™(As + g), E"a3)
~ fo(—E"a3) + [a1, A1, E"as) o (E"ay, E™As,, E"a3) + a0 (—1)"E"g.



22 H. OSHIMA AND K. OSHIMA

3. TODA BRACKETS

If G is an abelian group and « is a coset of a subgroup H of G, then H
is called the indeterminacy of o and we write Indet o = H.

We use notations of Toda [19] for elements of homotopy groups of spheres.
Let Z,,{a} denote the cyclic group of order m whose generator is «, and
let Z7', denote the direct sum of n copies of Z,,. For example, m,(S") =
Z{in} (n > 1), m3(8?) = Z{no}, mus1(S") = Za{mn} (n > 3), masa(S") =
22{77721} (TL > 2)7 where 77721 = MnTin+1, 7Tn+3(sn) - Z8{Vn} ® Zs (TL > 5)7 and
m9(S°) = Za{vsns}.

Suppose that a non-negative integer n and the following null triple [13]
are given

a1 € [EnXl,Xo], o € [Xk:;Xk:—l] (]{Z = 2,3),

3.1
(3.1) a0 E"as =0, agoaz =0.

We abbreviate it to (a1, a2, a3),. A representative of (3.1) is a 6-tuple
(a1,a9,a3; Ay, Az), such that ax € ai (k= 1,2,3), A1 : a3 o E"as ~ % and
As 1 ag 0 ag ~ *. Sometimes we write (ay,as,as), instead of (ay,ag, as),.
Denote by {ai,as,as}, the set of homotopy classes of

[CLl,Al, EnCLQ] © (Ena27 EnAZ) Ena?))

for all Ay, As such that (a1, as,as; A1, As),, is a representative of (3.1). Then
{a1,as,a3}, depends only on oy, (k = 1,2,3) by Proposition 2.11. Therefore
we denote {ai,a9,as}, by {a1,as,as}, which is called the Toda bracket or
the secondary composition [16, 19]. This is different only in sign to one
given in [18, 12]. By Corollary 2.13, the Toda bracket {a1,as,as}, is a
double coset of the subgroups [E" ! X5, Xo]o E"las and oy o E"[EX3, X1]
of the group [E"! X3, Xo], that is, an element of

[E"*1 X5, Xo] 0 E" T ag\[E" X3, Xo /a1 0 EMEX3, X1].
If [E"*1 X3, Xo] is abelian, then
Indet{o, g, az}p, = [E"1 Xy, Xo] 0 E"las 4+ oy 0 E"[EX3, X1].

As is easily seen, we have {a1, as, a3}, C {a1, E" a9, E" ™as}y, for
0 <m < n, and —E{aj,as, a3}, C {Fai,as,a3}p+1. As in [19], we
abbreviate {1, s, as}o to {a1, as, as}.

Cohen [3] defines k-fold Toda brackets for every k > 3 (see B.3). If
(a1,as,a3)o is a null triple, then his 3-fold Toda bracket {ai,as,a3}¢ con-
tains the Toda bracket {a1,a2,as} (see B.4) and they are generally not the
same (see B.5).

Remark 3.1. The original notation [19] for {a1, as, as}y, is

{Oél, E”ag, E"ag}n.
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The original one may cause a misunderstanding that it depends on E"q;
(i = 2,3). For evample, {13,m0 0V ,v5}1 = e3 # 0 = {13,03,v6}1, while
E(n2ov') = EO03.

Lemma 3.2. Let EW & XU CW dx é W be a cofibre sequence. Then

Proof. Let A = : CX — EW and B : CW — X Uy CW the canonical
map. Then

wAOD=x 0<
wA2A—1 3<

Hence [q, A,if] o (if, B, f) ~ 1gw. O

lq, A if) o (if, B, f) : EW — EW, w/\tl—>{

Lemma 3.3. Suppose {a1, as, az}t, 3 0.

(1) If ag o E"[EX3,X1] D [E"™ X5, Xo] 0 E"lag, then for any Ay :
ay o E™ag ~ x there exists Ay : ag o ag ~ * such that [a1, A1, E"as] o
(E"ag,E”Ag, E™ag3) ~ .

(2) If a1 o E"EX3,X1] C [E"M1 X5, Xo] o E"lag, then for any As :
as o ag ~ * there exists Ay : a1 o E™as ~ % such that [a1, A1, E"as] o
(E”ag, EWAQ, E"a3) ™~ %,

Proof. Since {1, ag, as}, > 0, there exist A} : a; o E"as ~ % and A} :
as o ag ~ * such that [aj, A}, E"a3] o (E™ag, E"A,, E™a3) ~ *. Let A; :
a1 0 E"as ~ x and As : ag 0 az ~ *. By Lemma 2.8 and Corollary 2.13, we
have

[CLl,Al, EnG’Z] © (Enaza EnAQa Ena?))
~ a1, A + d(A}, A1), E"ag) o (E"ag, EMAly + d(E™ A}, E™ Ay), E"as3)
~ d(A}, A1) o (—E"ag) + aq o (—1)"E"d(4), As).
Then the assertions follow from Lemma 2.8(1)(g). O
For (3.1), we define
Gll =F"o (041*)71 o (En+1a3)*[En+1X2,X0] - [EXg,Xl],
Gy = (E"a3) ' o anu 0 E'[EX3, X1] C [E™ Xy, Xol.
Lemma 3.4. Suppose that (3.1) has a representative (ai,as,as; A1, As)n
such that [a1, Ay, E™ag] o (E™ag, E™ Ag, E™a3) ~ x.
(1) If A, : ay 0 ag ~ *, then there exists A} : a; o E™ag ~ * such that
[a1, A, E™as] o (E™ag, E™ AL, E™a3) ~ * if and only if §(As, A}) € GY.
(2) If A} : a1 o E"ag ~ *, then there exists A} : az o a3 ~ * such that
l[a1, A}, E"as] o (E™ag, E™ A, E"a3) ~ x if and only if §(A;, A}) € GY,.
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Proof. (1) Let A\ : E""1 X5 — Xy. By Lemma 2.8 and Corollary 2.13, we
easily see

[al, Al —|— )\, E”az] o (Enag, EnAIQ, Enag)
~ Xo (—E""tag) +aj o (—1)"E"d(A,, Ab).
Hence [a1, A1+ )\, E"asg]o(E™aq, E”A’Q, E™a3) ~ « if and only if Ao E"tlag ~
ajo(—1)"E"d(Ay, AY). Therefore following three statements are equivalent:
(i) there exists A} with [ay, A}, E™as] o (E"ag, E™ AL, E™a3) ~ x; (ii) aj o

(=1)"E"§(Ag, AY) € [E"T1 Xy, Xo] o E™lag; (iii) §(Ag, A)) € GY.
Similarly we can prove (2). We omit details. O

bt b,
Lemma 3.5. If maps Y & E™Y1, Y; 2 Y, & EY3 and Y1 <% Y] <> EY;3
satisfy by o E™bg ~ %, by o E™bh ~ %, by 0 by ~ x and b, o by ~ %, then
{b17 bQMbéa (b3 Vv bé) o 9EY3}1’L — {bla b27 bS}n + {bla /27 bé}}n

Proof. We have {bl, by V bIQ, (bg V bg) OQEY3 }n D {bl, by V b’z, b3V bg}n OQEn+2Y3
by [19, Proposition 1.2(i)] and (2.1). Every null homotopy of by o E™ (b \VV b))
has a form

A VA, CE™Y,VCOE"Y, =CE"(Ya2VYy) = Yy,

where Ay : by o E™bg ~ x and A : by o E™b, ~ %, and every null homotopy
of (ba V. b) o (bg VvV b5) = (b 0 b3) V. (b, o by) has a form

AQMA/Q :CREY3V CEY; = C(EYg V EYg) — Y7,
where Ag : by o b3 ~ % and A : b, o b ~ x. By routine calculations, we have
[b1, A1V A}, E™(by Vb)) o (E™ (b V. by), E™(Ag V. Ab), E™ (b V b)) 0 O iy,
= [b1, Ay, E"by] o (E"by, E™ Ay, E"b3)
+ [617 /17Enb/2] © (En éaEnAIZaEnbg)
Hence {bl, bo Mbé, bs VvV bg}n o QEn+2y3 C {bl, ba, bg}n + {bl, bl2, bg}n We have
Indet{bl, by Mblz, (bg V bg) o 9EY3}7’7,
= [E"T1 (Yo V Y3), Yol o E"((bs V bs) 0 Opy,) + by o E"[E*Y3, V1]
= [E" (Y2 V Y3), Yo 0 E" (b3 V b)) 0 Opnray, + by o E"[E?Y3,Y]
(by (2.1))
= [E"M1Y,, Yo) o E"Tlbg + [E"TYY, Y] 0 E"T0S + by o EM[E%Y3, Y]]
= Indet{bl, ba, bg}n —+ Indet{bl, /2, /3}77,

Hence the equality in the assertion is obtained. [
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Lemma 3.6 (Proposition (5.11) of [13]). If Z & Y & X are maps and
H :aob~x, then the following square is homotopy commutative:

7z ey ox

io| |o

ZU,CY +—— EX
(a,H,b)

Proof. We define € : IxI — ITand G : (Y U,CX) x I — ZU,CY as follows:

S s>t
E(s,t) =< 25—t 2s >t > s,
(3.2) —2s+t 2s<t

G(y,t) =yAt, GxAs,t)= HxAE(s.t) 25>t

- - {b(x) NE(s,t) 25 <t

where y € Y and ¢ € X. Then G :igo la, H,b] ~ (a, H,b) o qp. O
We call the above G the typical homotopy for (a,b; H).

Remark 3.7. Even if H, H' : aob ~ %, the following square is not necessarily
homotopy commutative.

[a,H,b]

A YU, CX
ial lQb
7U,CY ~——— EX
(a,H'.b)

For example, if Z =Y =8% X =97,a = 26, b = , H:ngoW:CX—>Z,
where m : CX — EX 1is the quotient map, and H = x : CX — Z, then
[a, H,b] = 21,6 V2 and (a, H',b) = x so that iy o [a, H,b] =~ * Vi, ng # *
and (a, H',b) o q5 = x.

Proposition 3.8. If (a1, a9, as; A1, A2)y, is a representative of (3.1), then
ay o E"[ag, As, as)
~ a1, A1, E"asg] o (E"ag,E”Ag, E"a3) o (1x, A7(S',8")) 0 E"qq,.
Proof. We have
ay o E"[as, As,as] = [a1, A1, E"as] 0 igng, © E"[ag, As, as]

= [a1, A1, E"as] o (¢} )_1 o E"ig, 0 E"[ag, Az, a3]

az
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~ [ay, Ay, E"as] o (¢22)_1 o E"(ag, Ag,a3) o E"qu, (by 3.6)

= [a1, Ay, E"as] o (E™ag, E™Ag, E™as) o (1x, A7(S',8™)) 0 E"qq, (by 2.4).
O

4. QUASI TERTIARY COMPOSITIONS

A null quadruple [13] is a set of two non-negative integers ni,ns and four
homotopy classes ay € [E™ X, Xk—1] (K =1,2), ay € [X¢, X¢—1] (¢ = 3,4)
such that a o E™ g1 =0 (k= 1,2) and a3 o ay = 0. This is abbreviated
to (o, a2, a3, 4)n, n, and expressed as
(4.1) Xo &L EMXy, Xy & E Xy, Xy &2 Xy & Xy,

' a1 0o EMag =0, asoFE"a3=0, azoay=0.

A representative of (4.1) is a 9-tuple (a1, a2, ag, as; A1, A2, A3)p, n, Or shortly
5-tuple (A1, A2, A3)n, n, such that

ap € ap (k=1,2,3,4), A :aro E™ap1 ~x* (k=1,2), A3 :azoaq ~ %,
and it is called admissible if
[a1, A1, E™as] o (E™ aq, EnlAQ, E™E™aqag) ~ x,
lag, Ao, E™ag] o (E™as, E™ As, E™ay) ~ x.

A null quadruple is called admissible if it has an admissible representative.

If (4.1) has an admissible representative (Aj, Az, A3)n,n, and 0 < m; <
n; (i = 1,2), then (Al,E’"l_mlAg,£~?”1+”2_ml_m?Ag,)ml,m2 is an admissible
representative of the null quadruple

ni—mi ni+ng—mip—msa ni+ng—mi—msa
(Oél,E a27E Oég,E O54)’ITL1,7TL2

by Lemma 2.4.

When ny = 0 or ny = no = 0, we usually omit the subscript ny or
ni,ng from the above notations respectively. For example, we abbreviate
(a1,a2,a3,a4; A1, Az, A3)o,0 to (a1, az,as,as; A1, Az, Az) or (A, Az, A3).

It is obvious that if (4.1) is admissible then {a1, s, E™as},, > 0 and
{ag, a3, a4}tn, 0. A sufficient condition that (4.1) is admissible was essen-
tially given by Oguchi [13, Proposition (6.3)] as follows.

Proposition 4.1. If
{a1,a2, E™as}y, 20, {ag,a3,04}n, 20, G+ Gy = [E™T1X35, X1],
then (4.1) is admissible, where G1 and Go are defined by
Gr = (B™) 7 (o) T (B ag) [ 7271, X)),
Gy = (B ay’ ) H(aa(E™[EXy, Xa))).
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Proof. Let a; € o; (1 <14 <4). By assumptions and Proposition 2.11, there
exist null homotopies A; : a; 0o E™ag ~ %, Ay, A, 1 ag 0 E™az ~ %, A}
asg o aq ~ % such that [a, A1, E™as] o (E”lag,EnlAg,EnlEmag) ~ % and
[ag, AL, E™as]o (E™ag, Ene A5, E™ay) ~ *. By the assumption on G + Ga,
we can write 0(Ag, AL) =1 + 2 with v, € G; (i = 1,2). Let ¢; € 1. Then
5(/1/2, Ag-i-Cl) = (S(A/Q, A2)+5(A2, A2+Cl) = —7Y2 € G2 by Lemma 2.8. Since
G is G, for (ag, as, aq)n,, it follows from Lemma 3.4(2) that there exists
As : azoayg ~ * such that [ag, Ao + ¢1, E™ag] o (E”2a3,E”2A3,E”2a4) ~
*. By the definition of Gy, there exists 8 € [E™*m2+lX, X(] such that
Bo Emtnetlas =y 0o E™(—1)"y;. Let b € 3. Then, by Corollary 2.13,
we have

[(11, Al —|— b, E™ (12] 9 (En1 as, Enl (A2 —|— Cl), E™ E"Q(zg)
~bo (—EMT2Hlas) 4 [ay, Ay, E™ag) o (E™ag, E™ Ag, EM+M24y)
+ajo Enl(—l)nlcl ~ k.

Hence (a1, a2, a3, a4; A1 +b, Ay + 1, A3)p, n, is an admissible representative
of (4.1). O

Remark 4.2. There is an admissible null quadruple such that G1 + Go ;
[E™2H1 X3, X4]. For example, the following null quadruple is admissible and

G1 + G2 = {0} C mpyta(S™213) = Zo{nny13}-

ni4no+2 Mitno+2 —py (no+3
S 1 2 f E IS 2 ,

0 0
Sn2—|—3 0"2+3 En2 S3 S3 03 S3 n3 S4
<— y — <—— .

In fact, (*%1+n2+2 O Pry+ns+3 *}12% O Pry+3s *% O P4 )ny ny 1S admissible, where
Pm : CS™ — ES™ = S™H is the quotient map, and G1 = Gy = {0},
{77m+n2—|—270%2+37En20g}n1 = ZQ{”%H—ngjLQ}a {0224-370&773}@ = Z2{7772L2+3}-
Lemma 4.3. [E™T1 X3, X1] is G1 or G according as {a1, az, E™as},, =
{0} or {ag,as,as}n, = {0}.

Proof. This is obvious from definitions. [

Mimura [10] considered the following conditions on (4.1).

(1) {a17a27En2043}n1 = {O} and {042,053’054}712 3 0.
(i) {a1, a2, E™as}y, 20 and {9, a3, as}n, = {0}.

Proposition 4.4. If (i) or (ii) holds, then the hypotheses of Proposition 4.1
are satisfied so that (4.1) is admissible.

Proof. This follows from definitions (or Proposition 4.1 and Lemma 4.3). O
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Example 4.5. A null quadruple (2t3,m3,2t5,75) is admissible, G + Go
[E™2H X3, X1](= 76(S3) = Z12) and satisfies neither (i) nor (ii).

Proof. We have {2u3,n3,2t5} = 2m6(S?) = Zg and {n3,2t5,75} = 77(S?)
ZQ by [19], and G1 = [En2+1X3,X1].

Proposition 4.6. Let a; € ap (1 <k < 4).

(1) If (i) holds, then there exist A : ag o E™ a3 ~ % and A3 : a3 o aq ~ *
such that (A1, Az, A3)n, ny is admissible for every Ay : a; o E™ag =~ *.

(2) If (ii) holds, then there exist Ay : ajoE™ ag =~ * and Ay : agoE™ag ~ *
such that (Ay, Az, A3)n, n, is admissible for every Az : azoag o .

1R

Proof. These are obvious from definitions. [

Corollary 4.7. Let ap, € o, (1 <k <4).

(1) If (i) holds and ago E™[E Xy, Xo] D [E™ 1 X3, X1]oE™Vlay, then for
any Ay : a1 0 E™ag ~ % and Ay : as o E™ a3 ~ * there exists Az : azoay ~ *
such that (A1, Az, A3)n, ne @5 an admissible representative of (4.1).

(2) If (ii) holds and cyoE™ [E X3, X1] C [E™ T Xy, XgloE™ Tlag, then for
any As : as o E™ag ~ x and A3 : agoay ~ * there exists Ay : a1 o E™ay ~ *
such that (A1, Az, A3)n, ny is an admissible representative of (4.1).

Proof. These follow immediately from Lemma 3.3 and Proposition 4.6. [

Proposition 4.8. If (a1,a2,as3,a4; A1, A2, A3)p, ny @5 an admissible repre-
sentative of (4.1), then the following diagrams are homotopy commutative.

al

Xo +— E™M X4

| [

Xo 2 EM(X) Uy, CE™Xo)

X1 % En2X2 UE"2a3 CEn2X3 <T EE”2X4
a En2a4
J{iaQ J{qEnQaS H
X1 Ug, CEP2X, £7298 EE™ X5 SEEZa ppns x

In the above diagrams we have used the following abbreviations:

a_llz [a’laAlaEnlaﬂo(wggl)_l? az = [a2’A27En2a3]7

(4.2) _
En2qg = (CLQ, Ao, E”Qag), En2ay = (En2a3, EnQAg, E”2a4).

Proof. By definitions, the first square is commutative and the third square is
homotopy commutative. Let G be the typical homotopy for (as, E™2as; As).
Then G : (E™ X Ugnagq, CE™X3) X I — X7 U,, CE™ X5 is a homotopy

from 4,4, 0 @3 to E™2a3 0 qgnag,- [
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Theorem 4.9. If (a1,a2,as3,a4; A1, A2, A3)n, ny s an admissible represen-
tative of (4.1), then

{a1, [ag, Ao, E™a], (E™2a3, E™ Az, E™a4) }n,
C {[a1, A1, E™ag] o (@bg;)_l,i@ o [ag, A2, E™as], (E™as, E"QAg, E™ay)}n,
= {[a1, A1, E™as] o (Y1), (a2, A2, E™a3) 0 qpraas,
(E™as, E™ As, E™ aq) tn,
O {[a1, A1, E™as] o (Y1) 71, (a2, A2, E™a3), —E™ M ay}n,

where the first bracket and the last bracket have a common element.

The relations C, =, D in the above theorem follow from [19, Proposi-
tion 1.2] and the homotopy commutative diagrams of Proposition 4.8. To
prove the underlined part which is the main part of the theorem, we need
preparations. Indeed the proof will be completed before Definition 4.12.

While we can take another way, we shall go on Oguchi’s way.

For a homotopy commutative square and a homotopy

X()(LXl

hOJ lhl hoo f=goh

Yo +— Y3
g

we define hg Uy hy : Xo Uy CXy — Yy Uy, CY7 to be the composite of the
following maps:

XoUs OX1 %% Y5 Upgor X1 =22 Yo Ugon, CX1 —25 ¥y U, CY).

A null couple (B1,52) consists of 51 € [Y1,Yy] and By € [Ya,Y:] such
that 51 o fo = 0. A representative of (51, 2) is a triple (b1, be; B), where
by € B (k=1,2) and B : by o by ~ *. A quasi-map (hg, h1,he; D1, D2) :
(b1, be; B) — (), by; B") between representatives of null couples consists of a
homotopy commutative diagram and four homotopies:

b1 b
Y() < Y, « Yo
hol h1J{ lhz
Iy !, !/
Y] —— V] +—— Y]
b b
1 2

Dlthooblzbllohl, Dgihlobgl“béohg,
B:bjoby~x, B :blobl~x.
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For a quasi-map (hg, h1, he; D1, Do) : (b1, be; B) — (V), by; B), we define two
null homotopies B’ o C’hg(Dl Do)’ hg o g2 CYs — Y] by

D1 (ba(y2), 3t) 0<t<i
B'oChyypy (s A1) = by (Da(ye,3t — 1)) L<t<?,
B'(ha(ys),3t —2) §<t<1
b1 ((—D2)(y2, 3t)) 0<t<i
(4.3) oo BV (yo A1) = L (= D1) (ba(1n), 3t — 1) Loy
ho(B(yz, 3t — 2)) 2<t<1

Then B'o Cha ;) hoo by oby =% and hgo B2 i o bh o hy ~ x.

Lemma 4.10. Under the above conditions, we have the following properties.
7——(D1,D2)
(1) d(hgo B,B’ o Ch2(D1,D2)) ~ d(hgo B 1,D2 ,B'oChy): EYs — YOI

(2) hoB~B'o Chg(Dl D2) rel Yo if and only if hg o B Lo
Chy rel Ys.

(3) If hpo B ~ B'o ChQ(Dl D) rel Y, then the following two squares
are homotopy commutative.

v, &2y oy vou, oy &R gy,

hol h1UD2th lhoUDIIH lEhg
Y +— Y/ Uy CY) Y Uy CY] «+— EY
O [b/ B/ b/] 1 b 2 O b 1 b/ B/ b/) 2

Proof. We have (1) by giving a homotopy so that (2) follows from (1)(f) of
Lemma 2.8.

3) We prove hg o [b1, B,bs] ~ [V, B’,b,] o (h1 Up, ho) as follows. By
2 2
assumptions, we have

ho o [b1, B, ba] = [hg 0 by, hg o B,bs] ~ [hg 0 b1, B OCh?(D gy b2

Hence it suffices to show [hOObl,B o C’hg(D Dy 02 ba] ~ V), B',bh]o(h1Up, he).
Decompose [ x [ = K1 U---U K5 as follows: let (s,t) € I x I and

Ki=A{(s,0)[t <=3s+1}, Ky={(s,1)[t > =3s+ 1 and t > 6s -2},
Kz ={(s,t)|t <6s—2andt < —6s+ 4},
Ky={(s,t)|t > —6s+4and t>3s—2}, Ks5={(s,t)|t <3s—2}.
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Definew:I xI — I,V :Y, xI—Yjand U":CY; x I — Y] by

(35 + ¢ (s,1) € K3
—2s—2t+ 2 (s,t) € K>
u(s,t) =< =3s—it+2 (s,t) € K3,  U'(y1,t) = Di(y1,t),
25+ 3t —3  (s,t) € Ky
|35 —2 (s,t) € K5
Dy (b2(y2),u(s, 1)) (s,t) € Ky
U (yg A s,t) = { bh o (—Do)(y2,u(s,t)) (s,t) € Koy UKs .
B'(ha(y2),u(s, 1)) (s,t) € K4y UK;

Then \I//, \If” define ¥ : [hoobl, B/ 9] Chz(Dl,Dg)’ bg] ~ [bll, B/, bIQ] O(hl UD2 hg)

Next we prove (hoUp, hy)o (b1, B,bs) ~ (b}, B’,by) o Ehy. We define two
null homotopies

(hoo B)' = (hgo B) e ((=D1)

o(—1 )):b'lohlobgz*,
(hoo B)" = (ho o B)" e ((—1y,)®

(=Ds3)) : b} o by o hy ~ %,
that is, they are maps from C'Ys to Y and

D1 (b 1-2t) 0<t<i
(hoo B) (y2 At) = 1(b2(g2), ) LR,
hoo B(y2,2t —1) 5 <t<1
by o Dy(y2,1—2t) 0<t <3
(44) (ho O B)”(yz N t) == D1 (bg(yz), 3 — 4t) % S t S %
hoo B(yz, 4t —3) 32 <t<1
Consider the following diagram.
EY; = EY; = EY, = EY)

(bl,B,bg)j (h()obl,hgoB,bQ)l (bllhl,(hooB)/,bg)l (bll,(hgoB)/,hlon)l

Yo Uy, CY; m YO/ Uhgob; CY; @—D1> Yol Ub’lohl CY; m YOI Uy, CY{

The second square is homotopy commutative by Lemma 2.10 and other two
squares are commutative by Lemma 2.2. Hence (hg Up, hy) o (b1, B,bs) ~

(b}, (hg o B)', hi 0be), where the latter is homotopic to (b}, (ho o B)", b, 0 hg)
by (2.8) and Lemma 2.10. On the other hand, by assumptions, we have

(B, B, by) 0 Ehy = (b}, B' 0 Chy, by o hy) ~ (b, g 0 B V"% b o hy).
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Thus, by (2.6), it suffices to prove (hgo B)” ~ hg o B e Ys. We do
it as follows. We divide I x I = Ky U---U Kg: let (s,t) € I x I and

Ky ={(s,t)|t >3s}, Ky={(s,t)|t <3sandt<—6s+ 3},
K3 ={(s,t)|t > =65+ 3 and t > 6s — 3},
Ky ={(s,t)|t <6s—3andt<—12s+ 9},
Ks ={(s,t)|t > —12s+9 and t > 4s — 3}, Kg={(s,t)|t <4s—3}.
We defineu: K1 UKy — I, v: KsU---UKg — I and ® : CYs x I — Y] by

-3 1 t K
u(s,t) = 8+t (s,1) € 1’
—2s—g5+1 (s,t) € K3
—3s—14+5 (s,t) € K3
—4s—L4+3 (s,t) € Ky
v(s,t) = g1t 5y ;
S+Z_Z (8,t)€K5
4s — 3 (S,t) c KG
by o Dao(yo,u(s,t)) (s,t) € K1 UKy
(I)(yg A S,t) = Dl(bg(yg), U(S,t)) (S,f) € KsUKy
ho o B(y2,v(s,t)) (s,t) € K5 U Kg
Then ® : (hgo B)' ~ hgo B e Y by (4.3) and (4.4). O

A quasi-map
(h07h17h27h3;D17D27D3) : (b17b27b3;BlvB2)n — ( llab/27 gﬂBiaBé)n

between representatives of null triples is defined similarly:

b1

Yo «+— E™Y; Y, ¢ Yy < Y3
hol EnhlJ/ lhl hzl lh3
Yy «— E™Y] Y] « Yy < Yy
by by by

Dy:hgoby ~byoE"hy, Dsy:hjoby~byohy, Ds:hyobs=bsohs,
Bi:bjoE"by ~ %, By :bgobs~ x,
Bi Vo E™"by ~ %, Bb:byobs~x.
The quasi-map is called a map if both of the following relations hold

hoo By ~ Bj o CEnhQ(Dl,E"Dg) rel E™Yy: CE"Y; — Yy,
(4.5) hio By ~ B)o Ch3(D2,D3) rel Y3 : CYs — Y/,
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Proposition 4.11 (Lemma (5.5) of [13]). Under the above notations, if
(h07h17h27h3;D17D27D3) : (b17b27b3;B17B2)n — ( llab/27 éaBiaBé)n

is a map between representatives of null triples, then the following diagram
18 homotopy commutative

[b1,B1,E™bs] (E"bg,E"Bg,E"bg)
(__—__

Yo
hol lEnhlUE"DgEnhQ lEEnhg

Y] «— E"Y{Ugny CE"Y] < EE™YS
/ ’ nk/ 2 ~
[b1, B, Enb] (Enbl, En Bl Enby)

EE"Y;

E™Y1 Ugnp, CE™Yy <

and hence
ho O [bl, Bl, Enbg] O (Enbg, E’nBz, Enbg)
~ [}, B}, E"b)) o (E™by, E" By, E™b}) o EE"hs.
Proof. By (4.5), we can easily show
E"hyo E"By ~ E"B} o CEnh3(EnD2,EnD3) rel E"Ys3.

Then we have the assertion from Lemma 4.10. O

Proof of Theorem 4.9. We use the abbreviations (4.2) of Proposition 4.8.
We shall prove the underlined part of Theorem 4.9 which says that

{a1,az, E™ay},, and {a7’, E"2as3, —E”2+1a4}n1 have a common element.

We take following five homotopies arbitrarily

e~ — e~ —

By a7’ o EM E™q3 ~ %, Bg:ago E™ay ~ *,
—_—
. ~ — . —
(4.6) Di:ay~ay o E™ig, = a1, Da:ig, 00y >~ E"a3 0 qgnags;,

D3 : ggnags 0 BE™ag ~ —EE™"ay.
Consider the following two diagrams from Proposition 4.8.

al E™lay

E™ Xy

Xo

EMEE™ X,

E™(E™ Xy Ugnag, CE™X3)

ar’ Em™1 En2q4

Xog=—FE™M (X1 Uas CEn2X2)

—~

Xi~— 2 E™X,Upne, CE™ X3 22" EE™ X,
liaQ Do lQEnQag) D3 l:
X1 Uy, CE™2 Xy <229 ppreyx, < PE2%  ppesx,
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Then, from these diagrams, we have

ni . N15— ~
Bl o CE qEnQCLS(Dl,EnlD2) * al o E a/2 —_— *7

ia2 o B2(D27D3) : m o (—EE”2a4) ~ %,

It follows that {a1,az, E™a4},, contains the homotopy class of

(4.7) [a1,B1 0o CE™ qpnaq, (Dy.E" Dy’ E™@;] o (E™ag, E™ By, E™ En2ay)

and that {ai’, E™a3, —E™ " as},, contains the homotopy class of

[a_lla B17 Enlm}

(4.8) L
o (E™ En2ag, By, 0 By 2", EM(—EE™ay)).
Since 44, © BQ(D2’D3) = lg, O BQ(D2’D3), it follows from Lemma 4.10(2) that
Ggy © Bg ™ ig, 0 BQ(DQ’D?’)(D2 D) rel EE™ Xy

so that the quasi-map

(1xy,%ay,9Em2as, LEE2 Xx,; D1, D2, D3) :

oy no . 1 "
(CLl,CLQ,E CL4,B100E QEn2a3(D1,E"1D2)’BZ)n1

) T ——(D2,D
— (al’,E”2a3,—EE”2a4;Bl,2a2 oBg( 2 3))

ni

is a map between representatives of null triples. Hence (4.7) is homotopic
to (4.8) by Proposition 4.11. Therefore we obtain the underlined part of
Theorem 4.9. [

Notice that the homotopy classes of (4.7) and (4.8) do not depend on D,
and D3 so that we take usually 1,, as D;.

Definition 4.12. If (a1,a2,a3,a4; A1, A2, A3)n, ny 95 an admissible repre-
sentative of (4.1) and Dj : ig, o [ag, As, E™a3] ~ (ag, Aa, E™a3) o qpraag,
then we define

{a1, a2, a3, aq; Ay, Ag, Az; Do}V

ni,n2

to be the set of homotopy classes of (4.7) hence of (4.8) for all possible
B1,By,D1,Ds in (4.6), and define

{a1, a9, a3,a4; A1, Ay, A3} = {ay, an, a3, a4; A1, Ay, As; G}V

ni,no ni,n2’

where G is the typical homotopy for (as, E™as; As), and define

. 1 — . . 1
{a17 a2, az, a4; A17 A27 A3}$11),n2 - U{a17 a2, a3z, a4; A17A2a A3’ DQ}%I)JLQ?
Do
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{aha2,a3,a4;A1,A2,A3}(2)

ni,n2

= {a17 [a27A27En2a3]7 (En2a37 EnQA?); En2a4)}

ni

N {[al,Al,Emag] o ( 221)_1, (az, Az, E™as3), —En2+la4}
{ala az,as, a4; A17 A27 A3}£L31),n2

- {[a17A17En1a2] © ( 321)_177:a2 © [a2aA27En2a3]7 (En2a37

EnQ A3, E™ CL4)}

ny’

ni’
We call these five subsets of [E™+"212X,. Xo| quasi tertiary compositions
and abbreviate them to

{A1, As, Az; Do}V 0 Ay, A, A5YE) (k= 0,1,2,3).

ni,na
We have Indet{A4;, A,, Ag}ﬁi)m = ® + Py, where
&y = [EMTYE™ Xy Ugnag, CE™X3), Xo] o EMTY(E™as, E™ As, E™ay),

Qg = [a1, A1, E™ag] o (¢3§>_1 o EM[E™ 12Xy, X1 Uy, CE™ Xs),

d; DO [En1+n2+2X3,X0] o En1+n2+2a4

T g2 (by (2.2)).

®y Dajo E™M[E™T Xy, X
We have
Indet{al, [ag, Ao, E™ag], (E™%as, E™ Ay, E™ a4)}
=&y +ay 0 E™[E™ Xy, Xi],

Indet{ [al, Al, E™ a2] o ( 321>_1, (CLQ, AQ, En2a3), —E”2+1a4}

= [En1+n2+2X3, X()] o E”1+”2+2a4 + o

ni

ni

The intersection of the last two indeterminacies is Indet{Al,Ag,Ag}gi)m.
As will be seen in Proposition 5.6,

Indet{A;, Ay, As; Dy}

ni,n2

— [En1+n2+2X3,X0] o En1+n2+2a4 +aj 0 E™ [En2+2X4,X1],

but we do not know if {Al,Ag,Ag}SLll),nQ has an indeterminacy (cf. Corol-
lary 5.7(1)).

When ny = 0 or ny = no = 0, we usually omit the subscript ny or
(1)

11,0 to

ni,n9 from notations. For example, we abbreviate {A1, Ao, As; Do}
{Ala A27 A37 D2}£111) .

OgUChi [13, p48] denoted {Al,AQ,Ag,; DQ}&% by ’}/(Al, AQ, Ag) to which
we prefer v(Ay, Ay, As; D). He asserted that if (A;, Ag, A3) and (Aq, Ag, AS)
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are admissible, then (A, Aa, As; D) = (A1, Aa, A§; Da). But, as will be
seen in (5.7) and (5.8) below, it is not true. As a consequence, Proposi-
tion (6.5) of [13] does not hold (see Example A.1 in Appendix A). Also
there are gaps in proofs of several assertions in [13, pp.49-52].

5. PROPERTIES OF QUASI TERTIARY COMPOSITIONS

Proposition 5.1. If (a1,a2,as3,a4; A1, A, A3)p, ny @5 an admissible repre-
sentative of (4.1) and Djy : ig, o [az, As, E™a3] ~ (a2, Az, E™a3) o qpraag,
then
{A17 A2 A37 DQ}nl n9 {Ala A27 A3}n1 N3
C {A1,A2,A3}n1 ny C {A1, A9, A3} [EmTm2t2x, X,

ni,n2

where containments are proper in general.

Proof. Containments are obvious from definitions, and the last assertion will
be obtained from Example 5.2 below. [

Example 5.2. Consider the next null quadruple:
03 09 09 07
g3 (3 gl2 12 gl2 12 gl2 12 gl9

Then (x5, xYy, %95, %153 A1, Ao, A3) is an admissible representative of it for
every respective null homotopies A;. We can write A; = EZ o m, where
,Zl g3 g3, E . g3 5 gl2, A\ : 20 — §'2 are maps and 7 : CS™ —

ES™ = g™+l s the quotient map for m = 12,19. Then {A;, Ay, A3}
consists of a single element A1 o EA3 which generates {Al,Ag,A3}( ). We
know {Ay, Ay, A3s}%) (k = 1,2,3) from Table k which will be given in the

proof.

Proof. Recall from [19, Theorem 7.1, Theorem 7.3, Theorem 12.8, (7.7)]
that m13(S?) = Za{e'} ® Zo{nzpa} & Zs, m0(S"?) = Z3{T12, 12}, m1(S?) =
Za{p'o1a} © Z5{v'E6, m3fis} and 20" = n3pus. We have

{49, A1, 59), (x99, Ag, #35), —Exy} = Ay o mor(s19),
{53, [0, Ao, #%5], (+95, Ag, %15)} = m13(S?) 0 EA;,
(A1, Ay, A3} = A} 0191 (') + m13(S%) 0 EA3,
{A1, Az, A5} = (A\l o m1(S™)) N (m13(8%) 0 Eﬁg)
We use the following relations [14, (2.13)(7),(8), (2.17)(8)]:
pse12 = nzpaory  (mod 287),  p3Pi2 =0 (mod 28'),

/ /— —/ /—
€€13 =&€V13 =€ T20 = VEs.
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Note that, although there is a few of gaps in [14], the above relations were
correctly proved. We then easily obtain Table k (k = 1,2, 3):

TABLE 1. ﬁl o EA\g

Az _ _
I €12 Vi | €12 T V12
1
g’ V'Eg Vg 0
1344 21 o14 0 | 240w
e+ maps | V'Ee 421 014 | Ve | 21014

TABLE 2. {Al, AQ, A3}<2)

i As €12 V12 e12+7v12 |0
g’ ZQ{V/§6} ZQ{V’E(;} 0 0
13144 Zo{2p' 014} 0 Zo{21'o14} | O
e +m3pa | Zy{v'e, 20 014} | Zo{V'E6} | Zo{20/ 014} | O
0 0 0 0 0
TABLE 3. {Al, Ag, Ag}(g)
A _ _
1 3 €12 712 €12 + V12 0
1
e I' .= Z%{V/§6, 2/1/0’14} ZQ{I//§6} r ZQ{Vlgﬁ}
BRI L2 F F ZQ{Q,[L/O'14} ZQ{2,[L/0'14}
e 4 344 r r r r
0 r ZQ{V’EG} ZQ{Quldl4} 0

In the rest of the proof, we shall compute {41, Ay, Az; Do}V for all Dy :
iy, © [#09, Ao, #35] == (0, Ao, %)5) o q,0,- Given any homotopies
B : [*gvAh *(1)2] © (*(1)27A27 >k(1)2) ~ %, DBy: [*(1)2?A27 >I<(1)2] © (*(1)27"437 *12) =%,
we define fp, : EESY — §3 by

fDQ = [*27 Bl © Cq*?2(1 D )7 [*(1)27 AQa *(1)2]}0([*(1)27 A27 *(1)2]7 B27 (*(1)27 A37 *IQ))
— (g D2
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Then fp,(x ASAT) is

<t<

{[*g,Al,*QQ] o Dy(Az(x N25 —1),2—6t) $<s<1, 3

* otherwise.

Hence fp, does not depend on By, By so that {Aj, Ay, Az; Do}V consists
of a single element fp, (cf. Proposition 5.6). Let gp, : EESY — S be
defined by gp,(x A3 AE) = [*3, Ay, *{5] o Do(As(z AS),1 — t). Then, as is
easily shown, fp, >~ gp,.

Thereisamaph : E g2 5 g2 F 912 which makes the following diagram
commutative:

A‘ _ i*o X1y
B8 /e (12 p g2y x T

[+3, 41,40, ]
_—

EE 819 EA\ E812 - 812 VE 812 SS
- 3
Pra .
Aq
Esl2

where (—1)(t) = 1 —t, 7’s are quotient maps and pry is the projection to
the second factor. Let yp, € Z such that pry o h >~ yp, 1q13. Then

9D, (T ATATE) = (+3V A1) 0 Do(Az(z A3),1 — 1)

— Ay opryoh(Ag(x AS)AT—1t) = Ajopryoho (—EAs)(z ASAT).
Since 2111 o EA\g >~ x, we then have gp, ~ yp, El o EA\g and
(5.1) {Ay, Ay, Ag; Do}V = {yp, Ay 0 EAs}.

If we take the typical homotopy G for (#Y5, %055 Ao) as Do, then Ys = 1 so
that

(5.2) {A1, Ay, A3} = {4, 0 EA;)}.

Next we shall show that yp, = 0 for some Dy. Let w : I x I — I and
K : ES'? xI — §'2 be defined by

0 2s <t
w(s,t)=<2s—t s<t<2s, K(zAF,t)=A(zAw(s,t)).
S t<s

We define D) : (S VES'?) x I — §'2 VES'2 to be the composite of

proXx1y
e

1,0
(812 \/E812) X I E812 XI K \ 812 12 \ 812 \/E 812-
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rg 0 01~ (50 0 _
Then Dy :id,0, 0 [¥]g, A2, *19] = (73, A2, #73) © ¢,9, and yp; = 0. Hence

(5.3) {A1, Az, Az; DLYY = {0},
It follows from (5.1), (5.2) and (5.3) that {A;, As, A3} is a group generated
by Al o EA3 This completes the proof. [

Proposition 5.3. Suppose that (ai1,asz,as,as; A1, A2, A3)n, ny 1S an admis-
sible representative of (4.1) and 0 < m; < n; (i = 1,2). Then, for any
Dy : i, o [ag, Aa, E™a3] ~ (ag, Aa, E™a3) 0 qpra2e,, we have

{Al, AQ, A37 DQ}nl no {A17 A27 EnQ_mQAE'); D2}£L11),m27
{A1,Aq, Az; Do}V

(5.4) e
) C (=1) ™ {4, Era— m1 4, En1+n2 mi—ms g, DQ}ml,

m2?

where DYy = (M =m1)~1 o Fr=miDy o ("M 5 17). For 0 < k < 3, we

h a Em™2qa3
ave
{Ay, Ao, Ay ®) = {Ay, Ay, Em27 M2 450
{A1, Ag, AB}SLI?,M C (=1)" ™Ay, EM ™ Ay, Enﬁn?_ml_m%‘li’»}gsz,mz-

Proof. We prove only (5.4) because others are easier. Given null homotopies
B : a1, A1, E™as] o ( ”1) o E™ (ag, Ag, E™a3) ~ x,
By : [ag, Ay, E™ag] o (E"2a3,En2A3,E”2a4) ~ %,
we define null homotopies B] and Bj by
Bl =By oC(lgrax, AT(S™ 7™, 8" A 1gmi)
fan, AL EMEM T Mag] o (Vi myy,,)
o E™L(E™ M ay, MM Ay, B2 EUTTIIMa gy
Bhy=E™ ™™ Byo (1gnax, AT(SM ™™, 8Y) A1)
L [EM T gy, BN Ay, B2 e mi—ma g
o (B2 Eratna=mi—ma g, Fme tna—ini =i A, e pratie—momzg )
~ ¥,
By the definition of D), we have
Dl t iy gy © [E™ ™ ag, B Ag, EM1H2 M g

~ (En1 Mgy BT A, Ermtne—mi a3) O qpri+na—m1 gq
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and, under the identifications §M1T72=mM1—m2 A QM2 — QN2 A QMM QU1 —
§M ML A Q™ (see the section 2 or [19, pp.5-6]), we obtain the following
equality by (2.3) and routine calculations.

la1, By o CEleE”2a3(1a1 Gy B a2, A2, E™aj)]

o (Enl [(12, AQ, E"Qag], Enl BQ, E™ (En2 as, E’nQAg, E”2a4))

/ m
= [al, Bl oCFE 1qEn1+n2—m1a3(1
\+ap>»

E™1 D)’
E™ [Em_mlaz,Enl_mlAg,Eszn1+n2_m1_m2a3]]
o (Em1 [En1—m1a27En1—m1A27Eszn1+n2—m1—m2a3]7Em1Bé’
B (Emz En1+n2—m1—m2a3 Emz En1+n2—m1—m2 As
) )
Eme2 En1+n2—m1—m2a4))

o (1pnaxy AT(S', 8™ ™) A lgmi pg-

Hence
{A1, A2,43; Do},
- (_1>n17m1{A1,En1fm1A2’En1+n2*m1*m2A3;D/2}7(7}L37m2.

This proves (5.4). For the case k = 0, we should see that if Dy is the
typical homotopy for (a2, E™as; As), then D) is the typical homotopy for

(E™M Mgy FrTmitnzg s pri=mi Ay This is easy to prove. O
Proposition 5.4. If (a1,a2,as3,a4; A1, A2, A3)n, ny s an admissible repre-
sentative of (4.1) and Djy : ig, o [ag, As, E™a3] ~ (a2, Az, E™a3) o qpraag,
then (Eay,az,a3,a4; EA1, A2, A3)p, 41,0, 95 admissible and

E{A1, Ay, Ay; DYV —{EFA;, Ay, Ag; Do}V

ni,n2 n1+1,n27

E{Al, AQ, A3}(k) C —{EAl, Ag, Ag}(k) (k = O, 1, 2, 3)

ni,n2 n1+1,n2

Proof. Let B : [a1, A1, E™as] o ( 321)_1 o E™ (a9, Ag, E™a3) ~ % and By :

[ag, Ay, E™a3) o (E™as3, E™ As, E™ay) ~ . By (2.3) and Lemma 2.4, we
have

E([al,Al,Enlag] @) (wnl)_l o F™ (QQ,AQ,EnQG;),))

az

== [Eal,EAl,E”1+1a2] o) ( 321—’_1)_1 o En1+1(a2,A2,En2CL3).

Hence EB; : [Eal,EAl,Eanag] o (wg‘;“)_l o EM*t(ay, Ay, E™2a3) ~ *.
As is easily shown, we have

E(B]_ o CEnl qE"’L2a3(1a

)) — EB]_ O CEn1+1qEn2a3{1Ea

E™M Dy LE™MFID,)’



QUASI TERTIARY COMPOSITIONS AND A TODA BRACKET 41

It then follows from Lemma 2.4 that

E<[a17 Bl © CEnlqE"QG?’(lal 75"1 DQ)’ E™ [a’25 AQ? En2a3H

o} (Enl [QQ, Az, En2 ag], ETM Bg, E’n1 (E"Qag, Enz Ag, En2a4)))

~ —[Fa, EB; o CE™ " qgnag,, o , B ay, Ay, E™ag]]

) ,En1+1D2)

(¢] (Enﬁ_l [CLQ, AQ, E”2a3], En1+1BQ, En1+1(En2 as, EnQ A3, E”2a4)) .

This implies the first containment. Similarly we obtain other containments.
OJ

The following lemma can be proved by giving a homotopy. We omit
details.

Lemma 5.5. If (a1, a2,a3,a4; A1, Aa, A3)n, ny 15 an admissible representa-
tive of (4.1), B and B’ are null homotopies of [a1, A1, E™as) o ( ”1)_1 o

a2z

E"™ (ag, Ay, E™a3), and D3 : iq, 0 [ag, Az, E™a3] ~ (ag, Az, E™a3) o qEnr2qs,
then

d(B o C’E"lqEnza?)(la B'o CEnl(]E@ag(la

1,EnlD2)’ 1,EnlD2))

~ d(B,B') o EMggna,,.

The essential part of the following result can be seen in [13, §4].

Proposition 5.6. If (a1,a2,as3,a4; A1, A2, A3)n, ny @5 an admissible repre-
sentative of (4.1) and Dy : ig, o [ag, Az, E™a3] ~ (a2, As, E™a3) o qgraqs,
then {Al,AQ,Ag;DQ}Sl)m is a coset of

[E™MF2 42Xy, Xo] o ™42 20y + 0y 0 EM[E™ 2 Xy, X)).

Proof. Take following null homotopies arbitrarily

B17Bi . [a17A17En1a2] © ( nl)_l OEnl(a27A27En2a3) = *,

az
Bg, Bé : [CI,Q, Ag, E"2a3] o (E”2a3, En2A3, E”2a4) ~ k.
Then, by Lemma 2.8, Corollary 2.13 and Lemma 5.5, we have

! mn mn mn
a1, By o CE" ggn ~ E™as, Ay, E™q
[ 1, P1q dF 2a3(1a1,E”1D2)’ [ 2y 412, 3]]

© (Enl [a27 A27 En2a3]7 EnlBé? E™ (EnQCLS; EnzA?)y En2a4))
~ d(By, B}) o EM*n2tly,

+ [a’17 Bl o CEnIQEn2a3(1a Enl [a27A27 En2a3]:|

1,En1D2)’
@) (Enl [CLQ, AQ, E™ ag], Eﬂh BQ, E™ (E”2a3, EnQ A3, En2a4))
+ayo(=1)""E™d(Bs, B)).
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If we fix By, By and take all possible Bf, B), then the assertion follows from
Lemma 2.8(1)(g). O]

Corollary 5.7. Under the notations of Theorem 4.9, its proof and ®1, P
after Definition 4.12, we have the following three results.
(1) If &1 NPy = {0}, then
{Ala A27 AS; D2}7(%11),n2 = {Ala A27 A3}£111),n2 = {Ala A2a A3}£121),n2 :
(2) If &1 = {0}, then
{ala [0,2, A27 En2a3]a (En2a37 En2A37 En2a4)}n1

is equal to the three sets in (1).
(3) If &y = {0}, then

{la1, A1, E™as) o (¥722) 71, (a2, A, E"2a3), —E™ g},
is equal to the three sets in (1).
Proof. Suppose &1NPy = {0} and take x € {A;, As, As; DQ},(}B,”Q arbitrarily.
Then
{a1,lag, As, E™as], (E™*as, E™ As, E™ay)}n,
=z 4+ ® +a; 0 EM[E’E™X,, X1],
{[a1,A1, E™as) o (¢2) 7, (ag, Ag, E™ag), —EE™ay}n,
=z + [EMT2E™ X35, Xo) o EMT2E™ay + @,
By taking their intersection, we have
{A1,42, A3}

ni,n2

=+ [EMT2E"™ X3, Xol o B2 E"2qy 4 ay 0 B [E*E™ Xy, X,

which is {41, Aa, As; Dz}%ll)’n2 by Proposition 5.6. This proves (1).
The set Indet{ A1, As, As; Dg}gl),n2 is equal to

Indet{ay, [as, A2, E™ag], (E™a3, E™ A3, E™ay) }n, ®; = {0}
Indet{[al, A, E™ CLQ] o ( 321)71, (ag, Ao, E”Qag), —E”2+1a4}n1 by = {0} ‘
Hence (2) and (3) hold. O

The next result shows that {A1, As, Ag}ﬁ,,’“l)m (k =1,2,3) depend on ho-
motopy classes of A; (i =1,2,3).

Proposition 5.8. If (a1,as2,a3,a4; A1, A2, A3)p, ny is an admissible rep-
resentative of (4.1), Da : iq, o [ag, A2, E"ag] ~ (a2, As, E™a3) o qgr2qs,
Ay ~ A rel EMt2 Xy Ay ~ Al rel E™ X3, and Az ~ Ay rel Xy, then
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(1) {{A1,A2,A3; 5)2}531),7@2 = {Aﬁ,Am%%; D2}7(111),n2
{A1, A2, As}nin, = {All,AQ,A3}nl’n2 (k=0,1,2,3),

(2) {A1, Az, As} ) n, = {Ar, Ay, As}i, (k= 1,2,3),

®) {{Al’ o el = U D
{A1, Ag, A3}t ne = {Al,Ag,Ag nime (K=0,1,2,3).

Proof. We prove assertions only for { },(111),712, because others are obvious from
it and (2.6).
(1) Let By : [a1, Ay, E™ag] o (¢71) ™' o E™ (ag, Ag, E™a3) ~ *. Let K :

CEME™ Xy x I — Xy be a homotopy from A to A; relative E™ E™ X5,
We define B} : CE™ T2l X3 5 X by

Bi(y t) _ {[al7K2t7En1a2] o (,¢321)_1 o E™ (a27A2?En2a3)(y)

IA A
~ <~
IA A
— Nl

Bl (y7 2t — 1)

o= O

where y € EM 21 Xy and Koy = K|opm pre x,x 213 Then

Bi . [al,All,Enlag] o <¢n1>—1 o ™ (ag,AQ,E”Qag) ~ k.

az

It is not difficult to construct a homotopy from Bi o CE™qEn2q, 1

1,En1D2)
to Bjo CEnIQEn2a3(1
\+ta

Bm1Dy) relative E™ (E™ X9 Upgnag, CE™ X3). We

17

omit details. Hence {A], Ay, Ag; DoY)y = {A1, Ao, Ag; DYV L by (2.6).
(2) Let H : Ay ~ Al rel E™X3. Define U : (E™2 XoUgnq, CE"2X3)x I —

X; and ¥ : EE™ X3 x I — X} Ug, CE™ X, by

U(xo,t) = ag(xe), V(xs As,t) = H(zs A s,t) (ze € E™ Xy, x3 € E™ X3),

\If/(llig NS, t) = {

Then

E™ Al1-2s) 0<s<i
az(ws) A ( s) L ) (z3 € E™X3).
H(xs A (25 —1),1) 5<s<1
U : [ag, Ao, E™ag] ~ [ag, A, E™a3] rel E™ Xo,
\If/ . (ag,Ag,En2a3) ~ (CL2,A/2,En2a,3).
Given three homotopies

Bl . [CLl,Al,Enlag] ¢ ( 221)_1 @) Enl(ag,Ag,En2a3) X Xk,
B2 : [CLQ,AQ,EnQCL;;] o (Engag,EnQAg,EnQCm) X~ X,
Dy tig, o ag, Az, E™ag] ~ (a2, A2, E™a3) 0 qpr2as,

we define three homotopies

B :la1, A1, E™as] o (¢”1)_1 o E™ (ag, Ay, E™ag) ~ *,

az
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/. ! n n n n ~
32 : [ag, 2,E 2&3] O (E 2&3,E 2A3,E 2&4) >~ X,
I I m ~ I m
D2 tlgy © [CL2,A2,E 2a3] =~ (CLZ,AQ,E 2@3) O qE™2q5

as follows:

Bi(x3 N3 A s1,t)

_ [al,Al,E 1&2] ( n1) 1(‘1’/(333/\5,1—275)/\81) OStS%
Bl(xg/\s/\sl,Qt—l) %Stﬁl’
1 , As, AS),1—2t) o<t<i
Bifoans,g = { o Anadleans)1-2) 0stsi
Bo(xg N5,2t — 1) 5 <t<l1
iy 0 ¥(x,1 — 3t) 0<t<i
Djy(x,t) = { Do(z,3t — 1) 1<t<i,
U'(gpraqy(z),3t —2) 2<t<1
(r3 € E™ X3,x4 € E™Xy,51 € S5, t€l,x €

€ E" Xy UEn245 CEnQXg)

Consider the following diagrams, where h; (0
respective spaces:

IN

i < 3) are identity maps of

Xy 2 EmX,

:J/ho :J/Enlhl

X() — Eanl
al

a2,A2,E™2a3 En2a3,En2A3,En2a4
X, {2A2ERBL s X Uiy CE™ X5 & )

EE™ X,

I I I

X +—— E™X, UEgn2g, CE™ X5 « EE™ X,

[GQ,AQ,En2a3]

(E™2a3,E"2 A3, E™2ay)

Let D3 : EE™ Xy x I — E"™ X9 Ugna,, CE" X3 be the constant homotopy
of (E™ag, E™ A3, E™ay). Define

Bl BloCE qgn 2a3(1

B, = B, o CE™ _
1 E™M D3)’ 1 1°¢ QE"2a3(1al,En1D§)

We shall prove

(5.5) By ~ Bi(l B rel E™(E™ X9 Ugnaq, CE™ X3),
ay»

(5.6) By ~ B2(\1/ Ds) rel EE™ Xy.
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Before proving these relations, we deduce the assertion (2) from them. If
these relations hold, then (hg, hi, ha, h3;14,, ¥, D3) is a map between repre-
sentatives of null triples

(CLl,[CLQ, A27 En2a3]7 (En2a37 En2A37 En2a4); El; B2)n1
— (alv [CLQ, /27 En2a3]7 (En2a3a EnQA?): En2a4); Ni? Bé)nl
It follows from Proposition 4.11 that

[a’17Bl o CE™ QE”2a3(1a1 Em™ Ds)’ E™ [a’27 A27 En2a3ﬂ

@) (Enl [(12, AQ, E”2a3], Enl BQ, E™ (En2 as, E’nQAg, E™ CL4))

ﬁ[al, Bi o) CEnlqEn2a3(1 ,Enl [CLQ, /2, E”Qagﬂ
\la

L E™M DY)
o (E™ [ag, Ay, E"ag], E™ By, E™ (E™ a3, E™ A, E™ay))

so that {Al,Ag,Ag;Dz}Sﬁm C {Al,A’Q,Ag;Dé}%{nz which are the same
since they have the same indeterminacies. This proves (2).
Now we prove (5.5). We decompose I x I = K; U---U Kjq as follows: let
(s,t) € I x I and
Ky ={(s,t)]|s <1/3}, Ko ={(s,t)|0<3s—1<t},
27 9 9 3

K3={(87t)\%9—%§t§38—1}, Ky={(st)| g8~ g <t< 5~ 1h
K5:{(s,t)|§s—1—94§t§i—;3—%},
Kﬁz{(s,tﬂ%s—?StSi—zs—%},
K7:{(s,t)|§s—3§t§¥s—§},
ng{(s,t)|1—583—%§t§gs—3},

18 12
Ko ={(s,t)[3s =2 <1 < ES— g}, Ko ={(s,t) |t < 3s—2}.

If we defineu : K1U---UKg — 1T andv: K;U---U K9 — I by moving
respectively (s,t) to

.

0 (s,t) € Ky

3s—1 (s,t) € Ky 27s — 5t — 18  (s,t) € K7
)i (.)€ Ky ) -18s+ 50412 (s,0) € Ky

—27s+ 13t +9 (s,t) € Ky 185 — 5t — 12  (s,t) € Kg

27s — 13t —9  (s,t) € K5 3s—2 (s,t) € Ko
(35— 3t —1 (s,t) € Kg
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then the map © : CE™(E" X9 Ugnaq, CE™X3) X I — X which moves
(x Ns1 As,t) to

a1 (P (z,u(s,t)) A sy) (s,t) € K14
[a1, A1, E™as) o ( gg)_l(Dg(x,u(s,t)) A s1) (s,t) € K5 U Kg
a1, Ay, E™ag) o (¢71) (W (grnzas (1), v(s,t)) A s1)  (s,t) € K7 UKy
Bi(qgr2as(x) A s1,0(s,t)) (s,t) € Ko U Kjg
(x € E™ X9 Upnagy CE™X3,51 € ", s,t €, K14=K,U---UKy),

is well defined and © : By ~ Ei

—11,4,,EmM10)
This proves (5.5).
If we define w: I x I — I by

(

rel E™(E™ Xy Ugnaq, CE™X3).

3s t>3s

t 35 <t<3s
w(s,t) = ¢ —6s + bt gsgtggs,

6s — bt sgtggs

S t<s

\

then the map ® : CEE™ X, x [ — X; which moves (z A s,t) to

= 6
\P((En2a3,EnQAg,EnQCM)(x)aw(S?t)) t > gs (ZC c EEn2X4)
Ba(z,w(s,t)) t<zs

is a homotopy from Bs to B} (¥.D3) relative EE™2 Xy. This proves (5.6).
—_— /3

We omit the proof of (3), because it is easier than (2). O

The following two examples suggest that it is worth to consider { %kl)m

for k =1, 2.

Example 5.9. Since {n3,v/,86}1 > 0 and {V/,85,v5}1 = {0} by [19,
pp.54-56], it follows from Proposition 4.4 that (n3,v',8ts,v5)1,1 is admissible.
If (n3,v', 85,055 A1, A, Az)1,1 is admissible, then so is (n3,v',8us,v5; A1 +
v'ng, Az, A3)11 by Corollary 2.13. Hence, it follows from Corollary 4.7(2)
that (n3,v',8ts,vs; A1, Ag, Az)11 is admissible for any Ay : nzoEv' o~ %, Ag :
V'o8ug =~ * and Az : 8ts0ovs ~ x. Take ug € {n3, [V, Aa, 8¢], (8L6,EA3,I/6)}1.
It follows from [19, Chapter VII, ChapterXIII] that m12(S®) = Z2{us3,m364}.
By indeterminacies, 5.1 and 5.6, we have

w3 + Zo{nzes} = {A17A2>A3;D2}(13 = {A1;A27A3}$%
- {A17 A27 A3}j([?i = {7737 [V/?A27 8L6]7 (8L67 EA?)? VG)}I
for any Dy : i, o [V, Ag, 8ug] ~ (V, A2, 81g) 0 g, -
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Example 5.10. Since {v7,m9,2t10}1 C 712(S7) = 0 and {ng,2t9,T9}1 3
0 by [19, (10.1)], (v7,7m9,2t9,V9)1,1 s admissible by Proposition 4.4. Let
(v7,m9, 2t9, Ug; A1, Az, A3)11 be any admissible representative and take k7 €
{vz,[n9, Az, 2t10], (2L10,EA3,E10)}1 arbitrarily. It follows from [19, pp.95-

101, Chapter XIII] that m91(S7) = Z4{k7} ® Zg{o'o14} © Z3 and the Hopf
invariant H : m91(S7) — m21(S'3) = Z2{e13, 713} is surjective.

(1) All of the following sets are equal to k7 + Zo{4o'o14}.
{Al,Az,A3;D2}ﬂ, {A1,A2,A3}§]f1), {vr, I, Az, 2110, (2010, E A3, T10) 11,
_{Ala EAQ; EQA?); DIQ}(I)a _{Ala EAQ) E2A3}(k)a
_{V77 [77107 EAQa 21‘11]7 (2L117 EZA?H ﬁll)}?
where k = 1,2 and Dy : iy, o [n9, Az, 2t10] =~ (09, A2,2t10) © g2,,, and D :

ino © [0, EAg, 2011] 2 (mo, EAg, 2011) © gau,,
(2) (A1, Ay + 12, A3)11 and (A, Aa, A3 + 1v3)11 are admissible and

(5.7) —R7 + 22{40/0'14} - {Al, EAQ, E2A3}(1)
= {4y, g+, AsHY] = (A0, 4o, 45 + 53,
(5.8) K7 + 22{401014} = {Ah EA% E2(A3 + VS)}(D

= {A1, B(As +0d), B2 A}V = {Ar, Az, A3},
(3) H(H7) =713 and H(O'/0'14) = €13 + V3.
Proof. We shall use the following equalities:

(59) V7 O ET('QQ(Sg) = V7o 7T21(Slo) = Z2{40'/0'14},
(5.10) {vr, 15, 71111 = {vr,mo, i1} = Urvis + Zofdo 014},
(5.11) 77V125 = 2Ky (rnod 40'/014)

which follow from [19, Lemma 5.14, Theorem 7.4, (10.7)], [19, Proposi-
tion 1.2, Lemma 6.2, Lemma 6.5] and [19, Lemma 5.4, Lemma 10.1, (10.7)],
respectively.

(1) Since [S¥ Usg,,,C S'2,87] = Zo{v? 0 q2,,,} by a Puppe sequence and
V213 = 0 by [19, (7.17),(7.18)], it follows from (2.2) that

[E2(S'° Ug,,, €' S1),87] 0 E2(2010, EA3, 710)
= [E(S'! Uz, O SM), 8] 0 E(2u11, E2A3,711) = 0.
Hence from Corollary 5.7 we have
{AlaA2aA35D2}ﬂ = {A17A27A3}ﬂ = {vr, [m9, A2, 2010], (210, EA3, 710) }1,
{A1, EAy, E*A3; DLYY = {A), EAy, B2 A3}V
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- {V77 [n107 EAQ; 21’11]7 (2L117 E2A37711)}

of which indeterminacies are Zo{40'c14} by (5.9). Therefore, for the six sets
of (1), the first three are equal and so are the last three. By Proposition 5.3,
we have {Al,Ag,Ag}ﬁ C —{Ay,EAy, E?A3}1). Hence they are the same
because of indeterminacies. This completes the proof of (1).

(2) Since {Ay, EAy, E2A3}Y = —{w7, [n9, Az, 2u10], (2010, EA3, 710) 1 =
—k7 + Zo{do'o14} by (1), we obtain (5.7).

By Corollary 2.13, (Al, A2 —|— 773, A3)171 and (Al, AQ, A3 —|— Vg)l,l are admis-
sible. We have

{Al, EAQ, 52(A3 -|- Vg)}(l)
= {vz7, [mo, EA2, 2u11], (2u11, E*(As + 1), 711)}  (by (1))
= {V7, [7]10, EAQ, 2L11], (2L11, EQA:J,,?H) + 7:2L11 O V%l} (by 2.5 and (25))

C {V77 [77107 EAQ; 2L11]7 (2[/11) E2A37vll)} + {V77 [7710) EAQ; 2L11]7 i2L11 o V%l}
(by [19, Proposition 1.6])

C {vr, [mo, EAs, 2u11], (2u11, E* A3, T11)} + {v7, mo, v }
(by [19, Proposition 1.2])
= k7 + Zo{40'014}  (by (1), (5.10) and (5.11)).
Hence (5.8) is obtained. Also

{A1, A2 + 7737143}53 = {vr1, [9, A2 + 03,2010, (210, EA3,710) },  (by (1))
= {vr, ([n9, A2,2t10] V.03 © 024, (2b10,EA3,?10)}1 (by (2.4))

> {7, 9, A2, 2t10) V.15, 02,1 © (2L10,EA37310)}1
(by [19, Proposition 1.2])

= —{vz, 9, Az, 2010) V.05, ( — (2010, E A3, 710) Vo) obge},  (by 2.7)
= —({W, (9, A2, 2110, —(2610,EA3,710)}1 + {1/7,7737?11}1) (by 3.5)
= —k7 + Zo{do'o14} (by (5.10) and (5.11)).

Hence {A;, As + ng,Ag}ﬂ = —K7 + Zo{40'014}. Then other equalities of
(2) are obtained from (1).
(3) By [19, Proposition 2.2, Lemma 5.14, Lemma 6.4], we have

(5.12) H(O'/0'14) :H(U/)0014:771300'14:613 + 713.
Since k7 € {v7,[n9, Az, 2t10], (2t10, EAg,ﬁlo)}l, we have

H(K7) E{H(V7), [7]9, AQ, 2L10], (2L10, EA:},, 310)}1 (by [19, PI’OpOSitiOl’l 23])
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= Indet{H (v7), [19, A2, 2t10], (210, E A3, 710) 11
(since H(v7) = 0: 80 — g13)
[E2(810U 2010€ 1)7813] OE2(2L10afEIVA37510)
= ZQ{E q2L10} o E? (2L10, E’Ag,ﬁlo) = Zg{ﬁlg} (by (22))

Therefore H(k7) = 713 by (5.12) and the surjectivity of H. This completes
the proof. [

Proposition 5.11. Suppose that (a1, a2, a3, as; A1, Az, A3)n, n, is an admis-
sible representative of (4.1) and that as € oy € [ X5, X4| and Ay : agoas ~ *
are given.

(1) We have

(A, Ay, A3}V o (—EMFn2t2gy)

ni,ns
C (=1)"*{a1, a2, E™([as, A3, a4] o (a4, Ag,a5)) }n,-
(2) If moreover (az,as,aq,as; Aa, Az, Ay)n, is admissible, then
{A1, A2, A} ), 0 EMH 205 0 (1) (g 0 " { Az, A, A} )
O (=1)"*"2 (ay 0 E"{[ag, A2, E™ag] o (¢Z§)_1, (a3, A3, a4), —Eas }p,)
S (1) (ag 0 B {4y, A5, A4} D),
{al,ag,ag,a4,A1,A2,A3}nl - o EMtn2t2y,
= {a1, az, a3, a4; Al,Ag,Ag,DQ}m no o Eritnat2,,
= (=1)™ "2 (aq 0 E™{ag, as, as, as; Az, As, Au; Dé}%))
= (—1)™""2 (e 0 E™{ag, a3, as,as; A, As, A4}(1))
for any D : ig, o [ag, A2, E™as] ~ (a2, Aa, E™a3) o qprag, and DY :
iay © a3, A3, aq] ~ (a3, A3, a4) © qa, -
Proof. We have
{a1,as, a3, ay; Al,Ag,Ag}m oy
C {a1, a2, A2, E™as3], (E”Qag,E"QAg,, E"a4)}p, o (—E™MT2T24y)
(by 4.12 and 5.1)
C {a1,[az, Ag, E™a3), (E™a3, E™ A3, E"2ay) o (—E"ag)},,
(by [19, Proposition 1.2(i)])
= {ay, [az, Az, E™ag), (E"*as, E™ As, E™ay) o qgnagq,

o (E™ay, E™ Ay, E™as)},  (by (2.2))

(_En1+n2+2a5)
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= {ay,[az, Az, E™a3],ign24, © [E™ag, E”2A3,En2a4]
o (E™ay, E™ Ay, E"2a5)},, (by 3.6)
C {a1, a9, [E™ a3, E™ As, E™ay) o (E™ay, E™ Ay, E™as5) }n,
(by [19, Proposition 1.2(ii)])
= {ay, a9, E™([ag, A3, a4 o (as, Ay, a5)) o (1x, AT(S",8M)},,  (by 2.4)
= (—1)"*{a1, a2, E"([as, A3, a4] o (a4, A4, a5)) }n,-

This proves (1).
We have

{Ar, Ao, A3}, 0 B s
— (—1)m+ ([al, Ay, E™ag] o (v1) ! o E™ {ig, o [ag, Ay, E™as),
(E"2a3,E"2A3,E”2a4),E”2+1a5})
(by [19, Proposition 1.4])
S (1) (a1 0 B {[ay, Ay, B g, (E™ag, E™ Ay, B™ay),
En2+1a5}) (by [19, Proposition 1.2(iv)])

= (—1)mtne (al o E™{[az, A, E™ag] o (¢n2)_1,En2 (az, Az, a4),

as

E”Q(—Eag,)}) (by 2.4)
D (—1)n1+n2 (Oél o Enl{[QQ,AQ,Emag] o ( nz)—l’ (as, Az, ayq), —Ea5}n2>

a3

C (_1)n1+n2 (Oél % Enl{[anAQvEnQa?)] % ( g;)_la (CL3,A3,CL4) © Gay;

(a4,A4,a5)}n2> (by [19, Proposition 1.2(ii)] and (2.2))

= (=1t (041 o Enl{Az,A&Azx}g)-
Hence

{Al, AQ, A3}7(131),n2 o) E”1+”2+20z5 N (_1)n1+n2 (061 o ™ {A2, A37 A4}S§)

D) (—1)n1+n2 (Oél o Enl{[a2,A2,En2a3] o ( 332)—1, (as, As,aq), —Ea5}n2)
D) (_1)n1+n2 (O,/l o F™ {AQ, A3, A4}£z22))

Therefore we have the first part of (2).
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It suffices for the rest of (2) to show
a1 0 E™{ay, a3, as, as; Az, Az, Ag; Dy},

— (_1)n1+n2 {ala az, az, a4; A17 A27 A37 D2}(1> o Enl+n2+2a5

ni,n2

(5.13)

for every Dy and D). By Lemma 2.4, we have

[az, Ay, E™ag] o (¢}2) " o E™ (a3, A3, a4)

= [ag, Az, E™a3) o (E™2a3, E" A, E™ay) o (1x, A7(S%,8™)).
Hence null homotopies

B! : las, A, E™ag] o ( 232)_1 o E™ (a3, A3, aq) = *,
By : [ag, As, E™ag) o (E™ a3, E™ A3, E™ay) ~ x
correspond bijectively each other by the equality
(5.14) By = BjoC(1x,A7T(8",8")) id.e. ByoC(lx,AT(S',8™)) = Bj.
Any element of oy o E™{ag, a3, aq,as; A, As, Ay; D}, (L ) has a form
fi=ajoE™ ([[GQ,AQ,EnQCLg] o (¢3§)_1, 1, E™ (a3, A3, a4)]
o (E”2 (a3, As, ay), Emmwé’pé), —E”2+1a5)),

where B : [as, A3, a4] o (a4, Ay, a5) >~ % and D% : qq, © (a4, Ag,a5) ~ —FEas.
Let H be any null homotopy of a; o E™[as, As, E™a3]. We have

fzaloEnl(Haz,Az,E”2a3], ia( nz)iloEm(a3,A3,a4)}

@
o (672) 1 Ulepmapx,) o (E™ (a3, As, as), E™ig, 0 By 2P,
—E”2+1a5)) (by 2.2(3))
~ la1, H, E™ [a, Ay, E™a3]]
o (B [az, Ay E™as], B By, E™ ((432) ™" 0 B™ (a3, As, 1))

1
O (1En2+1X4 A T(S ’Snl)) © Enlq(rl/)gg)_10En2(03,A37a4)

o E™ ((Wi2) ' Ulcprpy,)

o E" (EnQ(ag,Ag,CM) En2 B/ (D D5 ,—E"2+1a5) (by 38)
~ [al,H E" 1[&2,A2,E 2&3]]

(Em lag, Ag, E™ag], E™ By, E™ ((¢42)~ 1°En2(a37143,a4)))

o (Lgny+1x, AT(S',8™)) 0 EMHm2 2, (by (2.2))
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= [a1, H, E™[ag, Ay, E™a3]] o (¢! ])_1

[a2,A2,E™2a3

OEnl([a2)A2)En2a3]7 i)( 332)_1 OEnQ(a37A3va’4))
1 ny gl 1 1 an1 En1+n2+2 by 2.4
o (Ignatix, AT(S™,SY)) o (Lgnatix, AT(S',8™)) o as (by 2.4)
1
- [al?H? E™M [ag,Ag,EnQCLg]] © (¢&;7A2,E”2a3])
o E™ ([ag, Ag, En2a3], i, ( 332)_1 o B™? (CL3, Ag, a4)) ©) E"1+”2+2a5
= [CLl?H? E™ [CL2,A2,En2a3]] o (wnl ])_1

[CLQ,AQ,E”Q as

o B™ ([CLQ,AQ,En2a3], Bs o C(1X4 N T(Sl, SnQ))7

(E™ag, E™ A, E™ay) o (1x, A7(S", Snz)) o EMtnatiay
(by (5.14) and 2.4)
- |:CL1,H, E™ [a27A27En2a3]] o (¢n1 ])_1

[QQ,AQ,EnQ as

© Enl <([a2’ A27 En2a3]7 BQ? (En2a37 EnQBQa En2a4)>

o B(lx, A7(S, 8"2))) o Emtnat2os (hy 2.2(1))
= a1, H, E™ [ag, Ay, E™a3]]
o (Em lag, Ao, E™ag], E”lBg, E™(E™as, E”2A37 E”2a4))
°© <1E"2+1X4 AT(S Snl)) o pmtl (1X4 AT(S, Sn2)> o EMTnat2,,
(by 2.4)
~ (=1 [al,H, E™ [(ZQ,AQ,EnQagH o (E”l [a2,A2,En2a3],EmB2’
E™(E™ags, E™ As, E"™ay4)) o EM 17212,

If we take H = B; o CETMQETQQB(I where

17En1D2)’
Bl . [al,Al,EmaQ] ©) ( nQ) @) Enl (GQ,AQ,EnQCbg) ™~ ok,

a2

then we know that

fe (=12 a1 as,a3,a4; A1, Ay, Ag; Do} o Eritnet2ay

ni,na
so that
1
Oé]_OEnl{a27a37a4,a5;A2’A3’A4;Dé}%2)
C (—=1)M*™2{ay, ag, a3, aq; A1, Ag, Az; Do}V, o Emtn2tlog

ni,n2

If (5.14) holds, then, by tracing the above discussion reversely, we obtain

n . ./ (1
OélOE 1{0'27 as, a4, as; A27 A37 A47 D2}7(’L2)
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1 2
D (—1)n1+n2{a1,a2,a3,a4;A1,A2,A3;DZ}%l)’nQ o EMtnat2y,

Hence we obtain (5.13). O
We owe the next remark to Oguchi [13].

Remark 5.12. The hypotheses of Proposition 5.11 are satisfied if one of
the following five conditions holds.

(1) {a17a27En2a3}n1 = {0}7 {052,043,044}712 = 07 {@3,0&4,0&5} = {O}
(2) {O{l,O{Q,En2043}n1 = 07 {a27a37a4}n2 — {0}7 {043,0447045} > 0.
(3) {(){1,@2,En20é3}n1 = 07 {042,063,044}712 = 07 {Oég,Oé4,0é5} - {0})

G+ Gy = [E™ X3, X1].
(4) {a1, a2, E™as}n, 20, {ag,as,a4}n, 20, {a3,a4,a5} 30,
G1+Go = [E™T X3, X;), G3+ Gy =[EXy, Xol.
(5) {a1,a2, E™as}n, 20, {ag,as,a4}pn, 20, {as,aq,a5} 50,
G1+ Gy = [E™M X3, X1], G3+4 Gy = [EXy, Xa).

Here Gy, Gy are subgroups of [E™ "1 X3, X1] defined for (a1, ag, a3, 04)n, ny
wn Proposition 4.1, and G3,§4 are s_imilarly defined subgroups of [F X4, Xo]
for (o, a3, ay, as)n, . Also Gy and Gs are respectively the kernels of
Em oy (BT X, X — [EMT X, X)),
g, 0 E™ : [EXy, Xo] — [E™T1 Xy, X1].

Proof. The assertions for the cases (1), (2) and (3) follow from Proposi-
tion 4.6 and Proposition 4.1, respectively. Take a; € o; (1 <7 < 5). Assume
(4). Then there exist

Ay ta10E™ag >~ *, Ay i agoE™ag ~ x, Az, Ay : azoay =~ *, A} :agoas =~ *
such that [ai, A1, E™as] o (E™ag, E™ Ag, E™T™2qa3) ~ % and

T / /
[GQ,AQ,EnQClg] o (En2a3,En2A3,En2a4) X~ ok, [CL3,A3,CL4] ] (CL4,A4,CL5) ~ %k,

By the assumption, §(As, A5) = v3 + v4 with 3 € G3 and v4 € G4. Hence
ag o E™~y3 =0 and there exists v € [E X5, X3] such that ag oy = 74 0 Eas.
Take ¢; € v; (i = 3,4) and ¢ € y. Then

(5.15) az o E™c3~ %, agoc~cyoFas, d(As,A}) ~c3+cy

and so [ag, Ay, E™as) o (E™ag, E"(As + ¢3), E™ay4) ~ by Corollary 2.13
Hence (A, Aa, A3 + ¢3)n,m, is admissible. It follows from Proposition 2.6,
Lemma 2.8 and (5.15) that

A3 —l— C3 =~ (Aé —I— d(Ag,Ag)) —I— C3
~ A5+ (d(A5, As) + c3) ~ AL + (—cq) rel Xy
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so that
las,As + c3,a4] o (ag, Ay + (—¢), as)
~ [ag, Ay + (—ca), ad] o (ag, A} + (—¢), a5)
~ (—cy) o (—Fas) + |as, A§, aq] o (aq, A),a5) + az o (—c) =~ *.

Hence (Az, As + c3, A + (—c))n, is admissible. This proves the assertion
when (4) holds. The same argument holds for (5). O]

Proposition 5.13. (1) Suppose that (ai,az2,as,a4; A1, A2, A3)p, ny 05 an
admissible representative of (4.1) and that ag € oy € [Xo, X_1] and a5 €
as € [X5,X4] are given. Then (ag o a1, asz,as,as;ap o Ay, Az, A3)ny n, and
(a1,a2,a3,a4 0 as; A1, Az, Az 0 Cas)n, n, are admissible, and
OéoO{Cbl,a2,a3,a4;A17A2,A3}gi),n2
C {ag o a1,as, a3, as; a9 o A1, Ay, Az},

ni+n +2
{0,1,0,2,0,3,CL4,A1,A2,A3}n1 ;M2 o T2

C {al, ao,03,0a4 © as; Al, AQ,A3 o Ca5}n1 )
ag o {a1,az,a3,a4; A1, Aa, As; DZ}m no

C {ao cai,az,as,qq;apg o Al, AQ, Ag, Dg}n1 n2)
{CL1,az,ag,a4,A1,A2,A3,D2}n1 no o Emtnat2ag

C {a1,az2,a3,a4 0 as; Ay, Az, Az o Cas; Dg}gl)m

fork =0,1,2,3 and every Dy : ig,0[az, Az, E™a3] ~ (ag, Az, E™a3)oqEn244-
(2) Suppose the following data are given:

ﬁk € [EnkYkHYk‘—l] (k = 17273)7 Bﬂ S [K&YK—l](ﬁ =4, 5)7
BioE™Byo EMt2B3 =0, f30E™By=0, ByofB;=0.

If bk € Bk (1 <k< 5) and (bl o Enlbz,bg,b4,b5;Bl,BQ,Bg)n1+n2’n3 18 ad-
missible, then (B1,by 0 E™ Ba, B3)n, naotng 15 admissible and
k

{by 0 E™ by, b, by, bs; B1, By, B3}, o

- ( )nQ{blabQoEnzb37b47b57Blab2oEn2B27B3}
{bl o E 1627 b37 b47 b57 Bl7 B27 B37 DQ}n1+n2 ns

- ( )n2 {b17 bQ o En2b3) b47 b57 Blv b2 o En2B27 B3; DQ}nl ,no+ng?
where D2 : ibg o [b3, BQ, En3b4] ~ (b3, BQ, En3b4) O qgn3p, and

_]_ ~
Dfy = (by U lognatngy,) 0 (¥32) " 0 E™ Dy o (Y, x 11).

(k=0,1,2,3),

ni,n2+ns
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(3) Suppose the following data are given:
Bk‘ S [EnkYkHYk—I] (k = 172)7 65 < D/fayf—l] (6 — 3747 5)7
B1oE™By =0, B20E™P3=0, pPzofyopP;=0.

If bk c ﬁk (1 < k < 5) and (bl,bz,bg,b4 o b5;Bl,BQ,Bg)n17n2 18 admz’ssz’ble,
then (B1, B2 0o CE™by, B3)n, n, s admissible and

{b1, b2, bs, by 0 bs; By, By, Bs} )

ni,n2
C {b1,ba, b3 0 by, bs; B1, Ba o CE™by, B3} (k=0,1,2,3),
{b1,bg, b3, by 0 bs; By, By, Bs; Do}V

ni,n2

C {b17b27b3 o b47 b57 B17 B2 o CEn2b47B37D/2,}(1)

ni,ng’
where Dy : iy, o [ba, By, E™bs] ~ (by, By, E™b3) 0 qgnap, and D4 = Dg o
((1En2y2 U CEn2b4) X 1[).

Proof. We give a proof of the second containment of (2). Proofs of others
are similar or easy. Let

[b1 0 E™by, K1 0 CE™ ™ E™*2[bg, By, E™by]]

QEn3b4(1bloEn1 by 7En1+n2 DQ)’
o (E™+™ by, By, E™by], B H™ Ky, E™ 02 (E™3hy, B By, E"bs)) =: f
. EEME™EE™Ys — Y,

be any element of {b; o E"bo, b3, by, b5; B1, B2, Bs; Dg}gﬂ_m’m, where
K, :CE"EEE"Y, — Yy, Ky:CEE™Y; —>Y,
are respectively null homotopies of
[b1 0 E™Mby, By, E™T™3bs] o (431 7"2) 7! o E™M¥"2 (b, By, E™by),
[bs, Ba, E™by] o (E™by, E™ Bs, E™bs).
We define
K| = K1 0 CE™ (1gnsy, AT(S™,8%))
: [b1, B1, E" (bo E™?b3)] o (1&;21]5”263)_1 o E"(by E™%bg3, by E™2 B, E™2tnsp,)
~ %,
Kb =byo E™Kyo0C(1gnsy, AT(S™,8))
. [b2E™2bg, by E™? By, E™ 130, o (E™2 18, E"2 118 By 2 tnap) ~ «
We define an element of {by, byo E"2bs, by, bs; By, byo E™ By, Bs; Dg}ﬁlll),n2+n3
as follows:

b1, K} 0 CE™ ggntnany E™[by 0 E"2b3, by 0 E™ By, E"2 73]
1

,EM1 D)’
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o (E™ [by 0 E™bg, by 0 E™ By, E™1"b,), E™ K},
B (Eretnapy, pretna gy pretnap)) = g : EEM EE™E™Ys - Y.

By routine calculations, we can see f = go (1gnay; AT(S,8™2) Algny pg1)
(—1)"2g. Hence

{bl o Enlb?) b37 b47 b5a B17 B27 B37 D2}7(@11)_|_n2,n3
C (—1)"2{b1, by 0 E"2by, by, bs; B1, by 0 E™ By, By; Dy}
as desired. 0
6. TERTIARY COMPOSITIONS

Suppose that (4.1) is admissible and a; € o; (1 <7 < 4). Then we define
(6.1) {a, az, as, a}®), = J{A1, A2, 4530, (k=0,1,2,3)

where the union is taken over Aj, Ay, A3 with (a1, a2, a3, as; A1, A2, A3)ny ns
admissible. From (2.7), Lemma 2.9 and Lemma 2.10, it follows that (6.1)

for k = 2,3 depends only on «; so that we denote it by {a1, as, as, a4}§{‘;),n2.
We define

{ala a2, (3, 054}%1),7@ - U{ala az, ag, a4}7(1£1),n2 (e = O? 1)7

where the union is taken over a; € a; (1 < ¢ < 4). The one for ¢/ = 1 was
called the second derived composition in [13]. Now we obtain the following
four subsets of [E™ 242X, X,

0 1
{ala 2, a37a4}'§11),n2 - {Oél, a2, O3, 064}%1)’,”12

(6.2)
C {Oq, a9, a3, 014}%21)’712 - {ala Qg, 3, a4}1(131),n2'
These are called tertiary compositions. If 0 < m; < n; (i = 1,2) and

k=0,1,2,3, then, by Proposition 5.3, we have

k
{Oél, 2, O3, a4}7(7,1)7n2

C (=1) 7 fan, B g, B gy e )0

We omit the subscripts nq,n2 when n; = no = 0. For example, we abbre-
viate {al,ag,ag,a4}(()]f()) to {al,ag,ag,a4}(k). Note that {041,042,043,044}(2)
is contained in the Cohen’s 4-fold Toda bracket {a1, as, a3, a4} (see B.6).

It seems that, in some places of [13, §6], Oguchi did not distinguish
between the following three sets:

{ala az,as, CL4}(1), {a17 [a27 A27 a’3]7 (CL3, A37 CL4)},
{[CLl?Al; a2]7 (CLQ, A27 Clg), —ECL4}.
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As a consequence, his proofs of Proposition (6.12) and some other assertions
in [13] are incomplete.

We can not abbreviate {Al,Ag,Ag}%?nQ to {al,ag,ag,azl}?(ﬁ)m, while
Mimura [10] took this incorrect manner for & = 3 (see Proposition 7.4
below).

By Example 5.9 and Example 5.10, we have

Example 6.1. {n3,v/, 8, V5}§k1) = s + Zo{nseq} (k=0,1,2) and

{+K7} + Zo{40’ o014} C {v7, M0, 2L9,79}§(2 = {V7,779,2L9,ﬁg}ﬂ
= {v7,mo, 2L9,ﬁg}ﬁ C {£r7, £(ky+20'014)} + Zo{4o 014}
We give a revision of [10, Proposition 2.9 (0)]. We omit details.
Proposition 6.2. If one of the three conditions

a1 =0 and {ag, a3, 04}p, 30,
{a1,a2,a3}n, 20 and ay =0,

as =0 o0oraz =20
is satisfied, then (4.1) is admissible and {041,042,@3,044}7(111),,12 5 0.
By Proposition 5.4, we have the following generalization of [13, (6.11)].
Proposition 6.3. If (4.1) is admissible, then

k
E{al,ag,ag,azl}g?m C —{Eal,ag,ag,a4}( ) (]{5 = 0, 1,2,3).

ni1+1,n9

The following result is a revision of [13, Proposition (6.12)] and [10,
Proposition 2.12].

Proposition 6.4. With the hypotheses of Proposition 5.11, the set
{aq, g, as, 0z4}7({9’1)’n2 o EMTmtla s (1) 2q) 0 E™{ay, a3, ay, a5}7(132)
contains
{1,092, a3, 0‘4}7(101),712 o EMT a5 0 (—1)" 0y 0 E™ {ag, a3, au, a5}£zoz)
D {a1,a2,a3,a4; A1, As, A3}1(111),n2 o Bt t2ay
= (=1)"T2qy 0 E"{ag, a3, a4, as; Az, As, A4}£}2),

and the following two sets are not the same in general:

3 ni1+ng+2 ni+n n 3
{&1,0&2,0&3,0&4}7(11)7TL2OE 1 as, (_1) ' 2(){10E 1{&270437@47055}7(12)-
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Proof. Containments follow from (6.2) and Proposition 5.11(2). For the last
part of the assertion, consider the following sequence:

26 Og

g6 < g6 < g7 g8 < 03 gl3 (013 g
Null quadruples (2¢6, 06, 77, 03) and (0g, 77,03, 013) are admissible. Note that
{26, 06,17, Og}(k) o E%013 = {0} (k=0,1,2,3). We shall show

{067 7, Oga 013}(0) > _2V60'9.

If this holds, then 24 o {06,777,02,013}(3) > 216 0 (—2v09) = 4vgog # 0 by
[19, Theorem 7.3] and so the last part of the assertion follows.

In the rest of the proof, we prove the above containment.

Put 4, = vygom : CS® I B & 6 Ay = x: CSB® — g7, and
As = Ec' o : CSl4 5 Egl4 E—U>/ SS, where 7 are the quotient maps. Then
(6,17, %3, *13; A1, Ao, A3) is admissible.

By definitions, we have (17, Ag,*3) = * : ES3 — &7 U,,C S8, Put B; =
* @ [xg, A1,m7] © (07, Ao, #3) ~ * and take By : [n7, Ag, %3] o (%3, A3, *13) =~ *
arbitrarily. See the following homotopy commutative diagram:

(%3,A3,%13)
e_—

nr

*6

g6 q7 g8 v gld Egl4
H

[*6,A41,m7] (177,142,*2) *14

[n7,A2,%3]

Let G : (S8vS™)x T — 87 Un,C S® be the typical homotopy for (17, %2; As).

Then G(z,t) = x At for z € S8, G(S' xI) = *, and the map
BioCqg . C(sfvst)y =c0stveostt — gf

*67

satisfies By o Cq,s (C'S'") = % and

x6:G)
t—1) 1/3<t<2
BioCqs  _(zAt)= V(@ A3 ) 13 T /3 (z € S%).
 T8(144,G) * otherwise
Hence f = [*GyBl o CQ*5 ~9 [7777A27 *gH % ([777,1427 *2]7327 (*271437 *13))

8(1*6aG)
which is a map from E? 8§ to S is given by

ve(Eo'(x N2s —T)A2—=6t) 1/2<s<1,1/6<t<1/3

* otherwise

f(xASAL) = {

Thus f ~ —Vg O E20'/ ~ —2V60'9 so that {Al,AQ,Ag}(O) = {—21/60'9} by 5.6.
This proves the desired containment. [
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By Proposition 5.11(1) and Proposition 5.13, we have the following result
which contains revisions of [13, (6.9) except (iii)] and [10, Proposition 2.9
except (0)].

Proposition 6.5. With the hypotheses of Proposition 5.13, we have
ag o {a1, az, as, 044}%?”2 C {ag o ag, s, as, 044}51]61)@27
{ar, a2, 3, O‘4}7(f1),n2 o EM* 205 C {ay, 0, 003, g 045}1(1]?,”27
{810 E™ Ba, Bs, B, B}y oo © (=12 {8y, By 0 B™2 B3, B4, B} o
{61, B2, B3, Pa o 55}%1),712 C {B1, B2, B3 0 Ba, 55}%]?,712

for k=0,1,2,3. If moreover ay o a5 = 0, then
{ag, as, as, 044}%{712 o EMmtmt2o,  (—1)"2t! U{oq, ag, E™ A}y,
where the union is taken over A € {as, a4, a5} such that ag o E™\ = 0.

In the rest of this section, we revise [13, Proposition (6.9)(iii), Proposi-
tion (6.13)(i)] (cf. the last equality in [17]). We suppose that the following
data are given.

Q; € [EnZXZ,XZfl] (% = 1,2), o € [Xi,Xifl] (’L =3,4,5

a1o E"Mag =0, aioas=0, a €a; (1<1<5).

)

(6.3)

a
— —

To revise Proposition (6.9)(iii) of [13], we suppose (6.3) and
(6.4) ag 0 E™(agoay) = 0.
Let
(6.5) Ay :a10E™as ~ %, As:asoE™(azoay) =%, Asz:aqoas>=x*.

Lemma 6.6. (a1,as 0 E"ag, ay,a5; A1 o CE™Y"2a3, Ay, Ag)p, ny 1S admis-
sible if and only if (a1,az2,a3 0 as,as; A1, Az, a3 0 Ag)n, n, is admissible.

Proof. This follows from Lemma 2.2(4),(5). O

Lemma 6.7. If (a1,a2 o E™ag,a4,a5; A1 0o CE™T2a3, Ay, A3)py ny 5 ad-
massible, then

{a1,ay 0 E™a3, a4, a5;A; 0 CEM™2q3, Ay, A; GV

ni,n2

1 (1
— {a1,a9,a3 0 ay,as; A1, Ag, a3 o Az; G'}Y

ni,n2

where G and G' are the typical homotopies for (as o E™as, E™ay; As) and
(az, E™ (a3 0 ay); Ag), respectively.
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Proof. From the definitions of typical homotopies G and G , the following
square is strictly commutative:

(E™ X3 Upnza, CE™X4) x I —2—5 Xi Uggommnaa, CE" X3

(En2a3UlcEn2X4)X1[l J/1X1U0En2a3

(E™ X3 Upna (agoas) CE™X4) x I —5— X, U,, CE™X,

Hence E™ (1x, UCE™a3) 0 EMG = EMG' o (E™(E™ag3Ulcpnax,) x 11).
On the other hand, by Lemma 2.2 and Lemma 2.4, we have

[al,Al, Enlag] o ( nl)_l o B™ (ag, Ag, E™ (ag o a4))

az
= [a1, A1 0 CE™T2a3, E™ (a3 0 E™a3)| o (Y pnag,)
o B™ (CLQ o En2a3, AQ, E™? a4),
laz, A2, E™ (a0 a)] o (E™ (a3 o ay), E™ (ag o As), E™as)
= [CL2 o E"Qag, Ag, E”2a4] o) (En2a4, EnQAg, E”2a5).

Let By and B> be any null homotopies of the above maps, respectively. Then
routine calculations show

[al, Bjo CEnlqE"2“4/1a E™as o E™ag, Ao, En2a4H

1,177%1@)7
© (Enl [a’2 © En2a37 A27 En2a4]7 EnlBZ, E™ (En2a4, EnQAg, En2a5))
= [(11, Bl oCE™ qEnz( E™ [CLQ, AQ, E™? (a3 ] (M)H

a30a4) (1a1 ,Enl é/)’

o (E™ [ag, Az, E™ (a3 0 a4)], E™ By,
E™(E"™ (a3 0 ay), E™ (az o As), E™as)).
Therefore we obtain the assertion. ]

Proposition 6.8. If (a1, a2, a3 0 as,as; A1, Az, a3 0 A3)p, n, s admissible,

then

{a1,as 0 E™as, ay, 045};01)’712
(6.6) and {aq, ag, a3 o a4,oz5}£101)’n2 have a common element.
Proof. This follows from Lemma 6.6 and Lemma 6.7. O

A revision of [13, (6.9)(iii)] is
Corollary 6.9. We have (6.6) if (6.3) and (6.4) satisfy one of the following

three conditions.

(6.7) {ar, a2, E™(az o ag)ln, 20, {ag,a30aq,a5}n, = {0},
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(6 8) {Oél, a2, E™? (a3 © a4>}n1 = 07 {Oég, Qa3 O 04, a5}n2 = 07
' G1+ Go = [E™M1 Xy, X4], ag0E™[EX5, Xo] = {0},

{ala Q2 © En2a37 En2a4}n1 = 07 {a2 o En2a37 Qy, 045}712 = 07
(6.9) Gl + Gy = [E™T1 Xy, X4],
[E”1+"2+1X3,X0] o En1+n2+1a4 — {0}7

where G, Gy and G, GY are ones defined in Proposition 4.1 respectively for
(Oél, Q2,03 0 04, a5)n1,n2 and (0517 Qg O En2a37 ay, a5)n1,n2 .

Proof. Under (6.7), there is (6.5) with (a1, a2, as0a4,as; A1, A2, a30A43)n; n,
admissible.

Suppose (6.8). Then there exist A, A2 and A% : ag o ag 0 a5 ~ * such
that (a1, a2, a3 o as,as; A1, Aa, A5)n, n, is admissible. We have ag o Az ~
AL+ d(AS, a3 0 Ag) rel X5. From (2.6) and Corollary 2.13, we have

[CLQ,AQ, E™ (a3 o a4)] o (En2 (a3 o a4), En2 (a3 o) Ag), E"2a5)
~ [CLQ, A2, E™? (CL3 o a4)] o (En2 (a3 o) a4), EnzAg, E”2a5)
+ ag o (—1)"E™d(A5, a3 0 A3)
~ % (by the assumption).

Hence (a1, a2, a3 o as,as; A1, Az, a3 0 Az)p, n, is admissible.
By the similar argument, if (6.9) holds, then there exists (6.5) such that
(a1,a90 E™ag, a4, a5; Ay o CE™MT"2q3 Ay, A3)p, my 1s admissible. This com-

pletes the proof. O
In order to revise Proposition (6.13)(i) of [13], suppose (6.3) and

(6.10) agoay =0.

Let

(6.11) Ay a0 E™ag ~x*, Ab:azoaq~%*, Asz:a40as>*.

By Lemma 6.6, (a1, a2 o E™as, a4, as; A1 o CE™T™2a3, a9 0 E"2 AL, A3)n, no
is admissible if and only if (a1, a2, a3 0 as,as; Ai, a2 0 E™ AL ag 0 A3)p, n, 1S
admissible.

Proposition 6.10. If (a1, a2, a3 0 aq,a5; A1, a0 E”QA’Q, a3 0 A3)n, n, 1S ad-
missible, then

[a17A17En1a2] o (EnlaQ;EnlBQ?
E™M E™ ([ag, Ay, a4 o (as, Az, a5)) o E™ (1x; A 7(S"2, Sl)))

~ [al, B1 o CE™ qpny( E"ag, a9 o E"QA’Q, E™ (a3 o0 a4)H

CL'3>Oa4) (10,1 ’Enl é/)’
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o (E”1 lag, ag o EmAlz, E™ (a3 o ay4)], E”IBQ,

E™(E™(ag 0 ay), Ene (az o As), En2a5)),
where G : (B2 X9 Upna (agoaq) CE™ Xy) X I = X1 Uy, CE™ Xy is the typical
homotopy for (az, E™(ag o a4);ag o E™A)), and

By : a1, A1, E™asg) o (1%121)’1 o E™ (ag,as 0 E™ Al E™ (ag 0 ay)) ~ *,
By : [ag,as 0 E™ A, E™ (az 0 as)] o (E™(ag 0 as), E™ (a3 o Ag), E™a5) ~ .

Before proving this proposition, we give two corollaries which are revisions
of Proposition (6.13)(i) of [13] (cf. the last equality in [17]).

Corollary 6.11. If (a1, a2,a30ay4,as; A1, as oE”QA’Q,ag 0 A3)ny ny 1S admis-
sible, then the following two sets have a common element:

(_1)712 {Ql, az, EnQ([a?)? Al27 CL4] o (CL4, A37 a5)>}n17

. o Al 0
{a1,a2,a3 0 ag,as; A1, a3 0 E" A5, a3 0 A3}7(~Ll),n2~

Proof. This follows from Proposition 6.10. OJ

Corollary 6.12. If (6.3) and (6.10) satisfy ag o E™{as,a4,a5} > 0 and
ai o EM[E™ X, X1] = {0}, then there exists X € {as, a4, a5} such that
ag o E™ X\ =0 and the following three sets have a common element
(_1)n2 {ala a2, EnQ}\}np {0417 Qg, (X3 O (g, 065}7(101),712,
{a1, 000 E"a3, a4, a5},

Proof. First we show that under the assumptions there exists (6.11) such
that (a1, ag0 E™as, ay,as; AjoCE™1"2a3, as0 E™ A}, A3)p, n, is admissible.

By the assumption ay o E™2{as, a4,a5} > 0, there exist A, : azoag ~ *
and A3 : a4 0 a5 ~ * such that ag o E”Q([ag,A’Q,m] o (a4,A3,a5)) ~ %. Since

ag o E™ ([ag, Ay, as] o (as, Ag,a5)) = ag 0 E™[ag, Ay, as) o E™ (a4, Az, as)
= ag o [F™ag, E”ZA'Q, E™ay] o (E™ay, E”QA;),,E”Q%) o (1x, AT(S',8™))
(by 2.4)
= [ag 0 E™ag,ap 0 E™ A, E™ay) o (E™ay, E™ A3, E™as)
o (1x; AT(S',8™)),
we have
(6.12) [ag 0 E™ag, as 0 E™AY, E™ay] o (E™ay, E™ Ag, E™as) ~ .

Since ag o ag ~ *, we have {a1, a2, E" (a3 o ay)}n, 2 0. Hence there exist
Ay :apo E™ag ~ x and Af : ag 0 E™ (a3 o ag) ~ * such that

[al, Al, E”laz] o) (Enl as, EnlA/QI, E™M E™? (CL3 9] a4)) ~ X,
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By the lemmas 2.2, 2.4, 2.8 and Corollary 2.13, we have
« ~ [a1, A1, E™ag] o (E™ag, E™ AY, E™ E™ (a3 0 ay))
= [al, Al, Enl ag] @) (1E”1X1 U CEn1+n2CL3)
o(E™ag o E™™2qg, EnlAg, E™Mtn2g,)
= [a1, A1 o CE™ 1 2a3, E™ (a3 0 E™a3)]
o (E™agy o0 E™MT2qg, E”lAg, E™Mt20,)
~ lay, Ay o CE™MT™a3, E™ (a3 0 E™ag)]
o (E”1 (ag o E™ag), E™ (ag o EnQAIQ +d(az o E”QA'Q, AY)), E"1+n2a4)
~ [al, Aj o CE™T™2q3, E™ (ag o Emagﬂ
o (E™(az o E™ag), E™ (ag 0 E™ Ab), E™MTM2qy)
+ay 0 (~1)" E™d(ay 0 B ), AY)
~ [al, Aj o CE™T™2q3, E™ (ag o E”Qag)}
o) (Enl (CL2 o E"2a3), Enl (CLQ o EnQAé), En1+n2a4)
(by the assumption a; o E™[E™ X, X;] = {0}).
Hence
[al, Aj o CE™T™2q3 E™ (ag o En2a3)}
o (E™ (ag o E™ag), E™ (ay o E”QA’Q), EMT2g,) o~ x,

Therefore we have obtained the desired (6.11) from (6.12).
Now the assertion follows from Lemma 6.7 and Corollary 6.11. [

Proof of Proposition 6.10. Consider the following diagrams:
Xo <2 Em X,
1X0l 1‘11 lEnllxl
Xo <2 Em X,

az Em™2(azoas)

X En2 X, EnEXs
1X1 l 1(12 lZE’rQ (agay) DS llXE,/\T(Sl:SnQ)
X1 I — En2X2 UEn2(a oa, ) CEn2X4 o EEn2X5
a3 3004 Y as

where we have used abbreviations

CL_QZ [a27a2OE”2A,27En2(a3Oa4)]7 CL_3: [CL3,A/2,CL4], dt’) — (CL4,A3,CL5),
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—~—

Em2a5 = (E™(ag 0 a4), E™ (a3 o A3), E™as)
and the homotopy
D3 : iprg (gg0a0) © B (lag, AY, as] o (a4, Az, a5))
~ (E™(ag o as), E™ (ag o As), E™a5) o (1x, A7(S',8™))
which is defined by
Ds(x5 NS A s9,t)
Ah(as(zs) A (1—2s)(1—2t)) Asy 0<s<1i
= as(zs) Asa A (1—2s)(2t — 1) 0<s<3
as(As(zs A (25 — 1)) A sg % <s<1
(x5 € X5,50 € S"2,s,t € I).
We shall prove the following three relations.

[ag, a2 0 E™ Al E™ (a3 0 ag)] o (E™(ag o a4), E™ (a3 0 As), E™as)

<613) n / n 1
= ag o E™ ([as, Ay, ay] o (as, A3, a5)) o (1x; A7(S™,S1)),
Ay = By o OE™ qpra(agoas) ;0 2y © OB B (az0as)
(6.14) e EE) g B 1)
rel E"E™? X,
By o C(1x, A7(8',8™))
(6.15)

~ By o C(1x, AT(S',8™2)) rel E"EXs.

(1(12 5D3)
If they hold, then the above diagram consists of null triples and the following
quasi-map is a map.

(Lxs 1x1, imm2 (agoas)s 1xs AT(S',8™); 10, 1ag, Ds3) -
(al,ag,E”Q([ag, b,a4] o (ag, Az, as)); Ay, Ba o C(1x, A T(Sl, S"Q)))n
— (al, [ag, ag o E”QA’Q, E™ (a3 o ayq)],
(E™ (a3 0 as), E™(ag o Az), E™as);
B1 o CE™qpn, (azoas) |

1

1 JE™ é’)’ B2>n1

Hence, by Proposition 4.11, we have
[ala Ala EnlaQ] © (En1a27 Enl (BQ © C(1X5 A T(Slﬁ SnQ)))v
E™ME"([a3, Ay, a4] o (a4, A3, a5)))

~ [CLl, B1 o CEnlqEng( Em™ [CLQ, a9 O EnzAIQ’ E™? (a3 o CL4)H

a3oa4)(1a1,§”16~¥/)7

o (E”1 lag, as o E"QAIQ, E"™ (a3 0 ay)], E”lBg,
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E™(E™(ag 0 a4), E™ (a3 o As), E™ag))
o EE™ (1x, AT(S',8™)).

Pre-composing EE™ (1x, A 7(S™2,S!)) to both sides, we have the assertion
of Proposition 6.10 by Lemma 2.2(1), Lemma 2.4 and (6.13).

To complete the proof, we should prove (6.13), (6.14) and (6.15).

(6.13). This is easily obtained from Lemma 2.2 and Lemma 2.4.

(6.14). Since the first two squares of the above diagrams are strictly
commutative, it can be easily seen that

CE™ gour (asoas)

Bio CE g asons) ;i

(lay B Loy)

~ f := B1o CE™ qpm ggoar) 0 CE™igns (ag0a,) Tel E™E™ Xo.

From definitions, we have

A1($2/\82/\51,0) OStS%
flza AsaAst At) =< Aj(xo A sa A sy, 3t —1) %gtg%,
Al(l'g/\SQ/\Sl,l) %Stﬁl

where x5 € Xy, s; € S™ (i =1,2), t € I. Hence f ~ A; rel E™ E™ X,.
(6.15). From definitions, the map

By o C(1x, AT(Sh,8™)) :CE™EX5 — X,

(1a23D3)
moves (x5 ASAsa At) (x5 € X5,50 € S™,s,t € 1) to
((as(Al(as(zs) A (1 —25)) A s9) 0<s<i 0o<t<i
az(Ah(as(z5) A (1 —25)(3—6t)) Asy) 0<s<3, +<t<1
q az(Ah(as(zs) A (1—2s)(6t —3)) Asg) 0<s<i, §<t<2
as(as(As(xs A (2s —1))) A s2) % <s<1,0<t< %
| Ba(25 A sy A5 A (3t —2)) 0<s<1, 2<t<1
Let E; :CE"™ EXs — X1 be defined by
Bo(x5 AS A s9,t)
| ByoC(1x, AT(S',8™2)) (x5 AS A s2,0) 0<t<?2
| B2oC(lx, AT(SH,8™)) (w5 ASA S, 3t —2) 2<t<1
az(Ah(as(zs) A(1—2s))Asy) 0<s<3 0<t<2
= qaz(az(Ag(z5 A (2s — 1)) Asg) £<s<1,0<t<2
By (x5 A sa A5 A (3t —2)) 0<s<1, 2<t<1
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Then, as is easily seen, By ~ By o C(1x. A 7(SY,8™)) rel E™EX5. Let
H:CE™EXs5 x I — X1 be the map which moves (x5 AS A s2 At,u) to

az(Aj(as(xs) A (1 —2s)) A s2) (s,t) € Ky
az(Ab(as(xs) A (u(l —2s) + (1 —u)(1 —2s)(3 —6t))) As2) (s,t) € Ko
S ag(Ab(as(zs) A (w(l —2s8) + (1 —u)(1 —2s)(6t — 3))) Asa) (s, t) € K3,
az(asz(As(zs A (28 —1))) A s2) (s,t) € Ky
| B2(w5 A s2 ASA (3t —2)) (s,t) € Ks
where x5 € X5, s9 € §"2, s,t,u € [ and K1 = [0 ,%] x |0, %], Ky =10, %] X
[3,4], K3 =1[0,3] x [3,3], Ky = [5,1] x < [0, 2], K5 = [0,1] x [3,1]. Then
H : ByoC(lx. AT(St, S”Q))(la27D3) By rel E™EX5. Hence we have
(6.15). This completes the proof of Proposition 6.10. O

7. SECONDARY AND TERTIARY COMPOSITIONS IN SU(3)

We use results and notations of Mimura-Toda [12] for homotopy groups
of SU(3). For example, m3(SU(3)) = Z{i}, where i : §3 = SU(2) — SU(3)
is the inclusion map, m4(SU(3)) = 0, m5(SU(3)) = Z{[2t5]}, m6(SU(3)) =
Zg{i*l/}@z;z,, 7T7(SU(3)) =0, WS(SU(B)) = Z4{[2L5]V5}@Zg, 7T9(SU(3)) = 73,
and 7T10<SU(3)) = ZQ{[V5?7§]} D 215.

We denote the cofibre sequence ™! &
(Cofib),,. Let

M1 €[S" Uz, ", 8" (n>4), 0, € mpia(S" Un,, ) (n > 3)

be an extension of 1,1 and a coextension of 7, respectively. It follows from
a Puppe sequence and a stable homotopy exact sequence of (Cofib),, that
the orders of groups [S™ Uy, €™, 8" 1] and 7,12(S" Ug,, €™ 1) for n > 4 are
4. On the other hand, if n > 4, then 7,—' o, = £E™ 4 of which the
order is 4 by [19, (5.4), (5.5), Lemma 5.4, Proposition 5.6]. Hence

[S" Uz, "™, 8" Y = Zy{m 1}, 2t =n2_10qa, (n>4),
7Tn+2(sn U2Ln€n+1) = Z4{%l}a 2%1 =12, © 777% (n > 4)*-

q2.y, 1 2Ln 2t

Sn U2Ln n—|— Sn <_n Sn by

Lemma 7.1. We have

{[2e5), 4vs, ms} = {[2es]75", 206", ms} = {25175 i © 15, M8}
which consist of a single element, and [2u5]75 € Exta,, ([2t5]15) and
(7.1) 216" € Coexta,, (*6)-

*This holds also for n = 3.
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Proof. Since E?V' = 2v5 by [19, Lemma 5.4], we have 4v5 = 2(75' o 7g') =
75 o 21’ and
{[2e5], 4vs,ms} = {[2e5], 75" 0 270", ms }
D {[265)75", 206 s} = {[2¢5]75 s i © M55 s}

where [205]75" € Exta, ([2t5]15) and 276" € Coexta,, (0g) by Lemma 2.3. The
indeterminacy of {[2t5],4vs,m8} is mo(SU(3)) o g + [2t5] o m10(S°) = 0 by
[12]. This completes the proof. O

To determine {[2¢5]75', i2,5 © N3, Ns}, we use the following null quadruple:
(7.2) SU3) L2 g6 (26 g6 Do gr g8

Lemma 7.2. (1) {[2¢s5]ms,2t6,06} = {0}.
(2) {2L6a06)777} > 0.
(3) ms(S°) 018 C 26 0 9 (SY).

(4) [2t5]m5 =i oV in mg(SU(3)).

(5) ([2t5]m5, 2t6,06,17) is admissible.

Proof. We have (1) and (2), since

{[2t5]m5, 216,06 } = Indet{[2:5]ns5, 2t6,06} = [2t5]75 © T5(S®) = {0} (by [10]),
{216, 06,17} = Indet{2t4,06,m7} 2 0.

Since ng ong = 4vg = 214 0 215, we obtain (3). If we apply [12, Theorem 2.1]
for a = 15, B = 214, v = 14, then we have [215]n5 = i o /. Hence we obtain
(4) by [12, Theorem 4.1]. By Proposition 4.4, (1) and (2), we have (5). O

Let Aq : [2u5]m50206 = *, Ag : 2u50%g =~ *, and Az : *gon; ~ *. Then there
exists uniquely a map A,, : $57™ — g% for m = 2, 3 such that A, = A, o,
where 7 : C §6Tm~1 5 Fgbtm—1 — ¢6+m i5 the quotient map.

Lemma 7.3. ([2t5]n5, 2t6, *6, N7; A1, A2, A3) is an admissible representative
of (7.2) if and only if the pair of homotopy classes of As and As is one of
(02,02), (02,4v5), (n2,2v6) and (N3, —2vg). In that case, we have

{[2e5]75", 24 © Ag,mg} = {A1, Ag, A3}

~ o~ 2] A, = n2
={iov 216V A, (A3 V1s) 0O} = s3] 2 ng .

Proof. Since m7;(SU(3)) = 0 by [12], it follows from Lemma 7.2(4) that
[S6 Ug,e”, SU(3)] = Zaf[2t5]7M5'} and

(7.3) [[2L5]’r]5, Aq, 2L6] ~ [2L5]%/.
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We easily have

(74) [2L6,A2, *6] = 2L6M121\2 : S6 V SS — S6,
(75) (2L6, AQ, *6) ~ igLﬁ o) A\Q.
Also

(x6, Ag,m7) = in 0 (~Bny) + i1 0 Ay = iy 0 A3 + iz 0 (—Enpy)
(since mo(S° Vv S®) is abelian)
= (A\g V (—En7)) o fge ~ (A\g Vng)obge (since —Eny ~ng),
where 77 : 85 — §0 Vv 8% and iy : §8 — SV S® are the inclusion maps. Hence
(7.6) (6, Az, 17) =~ (23 V) o Ogo.
If ([2t5]m5, 2u6, %6, M7; A1, A2, Ag) is admissible, then
0 == [2u6, Aa, %6] 0 (x6, Ag,m7) = 245 + Ay o 15
by (7.4), (7.6) and Lemma 2.1 so that the pair of homotopy classes of A,
and As is one of the four pairs (03, 08), (0%,4v6), (n3,2v6) and (03, —2vg).
Conversely if the pair is one of the four pairs, then, as is easily seen,

([2L5]7]5, 2L6, *6, M7; Al, AQ, Ag) is admissible.
Suppose ([2t5]n5, 2t6, *¢, n7; A1, A2, A3) is admissible. We have

{Ay, As, Ag}(3) = { [[2L5]775, Ay, QLG} . (2t6, Ag, %6) © g, (%6, As, 777)}
= {[205]775 s © A2 © Gugs (A3 V1) 0o} (by (7.3), (7.5), (7.6))
> {[265]75, g © Az, ms}  (by Proposition 1.2(ii) of [19]),

Indet{A;, Ay, A3}

— [STVS?,SU(3)] o (EA3 V 19) 0 gi0 + [2u5]75" 0 T10(S® Us,ee”)

— [2t5]75" 0 m10(S® Ug,ee”)

(since m7(SU(3)) = 0 and m9(SU(3)) = Zs by [12])

= [2u5]75" © Zo {6’ o3} = 0.

Hence {Ay, As, A3}3) = {[2u5]75 2y, © A, ng} and they consist of a single
element. We also have

{A1, Ag, A5}®) = {[[2u5]n5, A1, 206), s © [2t6, A2, %6], (x6, As, 17)}
= {[205]75 iz © (266 V. A3), (A3 V mg) 0 e} (by (7.3), (7.4) and (7.6))
= {[2u5]5, 206 V. Ag, (A3 V 1g) o 6o} (by [19, Proposition 1.2])
—{ior, 216V Ay, (A3 Vijg) 00} (by 7.2(4))
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€ {i,v o (2L6M21\2), (121\3 V 1ng) o O} = {1, 20/ V (V' o 121\2), (A\g V 1g) 0 f0ge}
C 7T10(SU(3)).

Let p : SU(3) — S° be the canonical bundle projection. Then it follows from
Proposition 1.4 of [19] that

po{i, 20/ V (Vo Ay), (121\3\/778)0939} = —{p, i, 2V’M(V'ogg)}o(Egg\/ng)OGSm.

Let x € {0,1} satisfy Ay = zn3. Since 2/ = n3 and v/ng = n3vy by [19,
(5.3),(5.9)], we have

{p, i, 2/ Vav'nd} = {p, i, n3 o (N3 V.axvanz)} D {p, i, n3} o (N Vavsng).

Let j: §3 Uy, C gt SU(3) be the inclusion map. Since i = jo4,,, it follows
from Lemma 3.2 that

{pv i) 773} i {poj, inS’ 773} = {%37 Z.7]37 773} > L5

so that {p, i, 13} = 15 + Z{2t5} and {p, i, 13} o (N2 V xvsns) = 12 V xv50s.
Hence

pod{i, QV/M(VIO;{Q), (23\/778)0959} > —(7]52)M[L’I/5778)O(E121\3\/?79)09810 = 2Usn3.

On the other hand, since m19(SU(3)) = Zo{[vsn3]} ®Z15{i.a} by [12], where
 is a generator of 719(S?) & Zi5, and since 7m19(S°) = Z2{vsn3} by [19], we
easily see that the indeterminacy of {i, 2/ V (V' 0 A), (A3V ns) 0fgo} is Z1s.
Therefore

{i, 20/ V (V' 0 Ay), (A3 V 1g) o Ogo } = x[vsni] + Z1s.
Hence {i o v/, 2ug V As, (A\g V ns) o fgo } = x[vsm3], since
4{iov, 26V Ay, (A3 V1) 0fget = vt o {ior), 26V Ay, (A3 V1) 0 o}
e {Y*oior/, 2V Ay, (A3 Vi) 0lge} = {0,2u6V Ag, (A3 V 1jg) 0 O }
= {0},
where ¥* : SU(3) — SU(3) is the map defined by *(z) = 2*. O
Proposition 7.4. If ([2t5]n5, 2t6, *6¢, n7; A1, A2, A3) is admissible, then
(A1, 45, 43) 9 = {([)”5”31 T (a2, 00} = Zasrd)
for 0 <k < 3.

Proof. By Proposition 5.1 and Lemma 7.3, we have the first equality. By
Corollary 4.7(1) and Lemma 7.2, every element of mg(S°) = {0,712} can be

the homotopy class of 22. Hence we obtain the second equality. [
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Proposition 7.5. The Toda bracket {[2t5]n5,4v5,m8} consists of a single
element [vsn3].

Proof. Take Aj : [2t5] 0 m5 0 21 =~ * arbitrarily. By (7.1), there exist A :
2u6 0 *¢ ~ * such that (2ug, A2, %) =~ 276’. Since 27’ =~ i, © 77(2;7 we have
Ay~ né by (7.5). By Lemma 7.2(1),(2),(3) and Corollary 4.7(1), there exists
As : xg oy =~ x such that ([2t5]ns5, 2t6, *6, m7; A1, Az, A3) is an admissible
representative of (7.2). It follows from Lemma 7.3 that {[2:5]75, 2776’ , 18} =
[sm3]. Hence we obtain the assertion from Lemma 7.1. 0]

8. HAMANAKA-KONO’S RESULTS

We use results and notations of [12] for homotopy groups of SU(4). For
example, m10(SU(4)) = Zg{[v7]} & Za & Z15. Recall that C,,, = S" U, e" 2
is the mapping cone of 1, for n > 2, and that i : §3 = SU(2) — SU(3) is
the inclusion map. Let j : C;, — SU(3) and i34 : SU(3) — SU(4) be the
inclusion maps, g3 : Cp, — S% and g¢g : Chg — §19 the quotient maps. Let
(, ) :[Chy,SU)] x m5(SU(3)) — [Cyy A SP,SU(3)] = [Cyg, SU(3)] be the
Samelson product [1].

Lemma 8.1. We have m4(SU(3)) = Zg{(i,1)}, ms(SU(3)) = Z12{(3, [25]) }
and 7T1()(SU(3)) = Zgo{<[2L5], [2L5]>}.

Proof. These are easily obtained from [2, Theorem 1] and [12]. O]

We shall prove the following Hamanaka-Kono’s results [4, Theorem 2.5,
Theorem 2.3] as a corollary to Proposition 7.5.

Proposition 8.2. (1) [C,,,SU(3)] = Zg{15(j, [2t5])} & Z3{40(j, [25])} &
Za5{2(q3(2es], [265]) }-

(2) [Cis,SUM)] = Zs{gs[vr]} © Zaliza,[2es]vs — g5[ve]} ® 25 © Zs and
i34, : [Chng, SU(3)] = [Cyg,SU(4)] is an isomorphism onto a direct summand,
where [2u5|vs € [Cpg, SU(3)] is an extension of [2us|vs with order 8.

Proof. Let §* 28 U, C'§"+1 1% gnt2 he the cofibre sequence for n > 2.
For simplicity, we put 4, = %,, and g, = ¢, . By [12], we have the following
exact sequence.

(81) 0 Zo{[vsi]} ® Zis 5 (O, SUB)| % Za{[20s]v5} @ Zs — 0

By [9, (3.1),Table 1,Lemma 3.2] and [19], (8.1) splits about odd components.
So it suffices to show that (8.1) does not split about 2-primary components.

Let [2u5]vs € [Cg,SU(3)] be an extension of [2¢5]vs. Then 45[2¢5]v5 is also
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an extension of [2¢5]vs with 8 - 45[215]v5 = 0. From now on, we take [2¢5]vs
with 8[2¢5]v5 = 0. We shall prove

(8.2) 42u5]vs = g5 [vsm3).

If this is established, then the 2-primary part of [Cy,,SU(3)] is Zg{[2t5]vs}
and hence (1) of Proposition 8.2 is obtained from Lemma 8.1 and (8.1).

Let ¢™ : SU(3) — SU(3) be defined by ¢™(z) = z™. We have 4 [2i5]vs =
Yo [2u5)vs € {1h*, [2u5]v5, M8} © g by [19, Proposition 1.9] and

(8:3)  Indet{)", [2t5]v5,m8} = m9(SU(3)) 0 9 + ¥ 0 mo(SU(3)) = Zys.
Hence it suffices for (8.2) to prove {¢*, [2u5]vs, s} = [v5n3] + Z15. We have
{0*, [2es]vs, s} C {07, 0% o [2us]vs, 18} = {407, [25] © 2v5, 78}
(since 1* = 1p? o )?)
S {? o [2u5], 2v5,mg} = {[2t5] 0 25, 2v5, M8}
C {[2t5], 2t5 0 2us, M8} = {[2u5], 4vs, s} = [vsm3]  (by 7.5),
(8.4) Indet{?, [2u5] 0 2us,m8} = mo(SU(3)) 0 ng + b 0 m1o(SU(3)) = Zy5.

Hence

{9, [2slvs, 8} = {4°, [265] © 2v5,ms} = [vsm3) + Zas
by (8.3) and (8.4). This proves (8.2) and completes the proof of (1) of
Proposition 8.2.

13,4

Next we shall prove (2) of Proposition 8.2. Let SU(3) —» SU(4) — §7
be the canonical SU(3)-bundle. By [12], we have the following commutative
diagram whose rows and columns are exact.

Zs — Zo{[vs ® nr|ns}

* *

Uk Mo

—— Zo{[vsn3]} @ Z1s e, Zo{[vsn3)} @ Zs{[v7]} @ Zas

*

qs q>8k

S — O

13,4,

— [07187 SU(3)] — [0778’ SU(4)]
Zo{n?}  —— Za{l2slos} ®25 —25  Zs{lvs © r]} @ Zs

13,4,

Zg{V7} oLy — i3 —_— ZQ{[V5 D 777]778}
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—  Zo{n?}

*

Mo
—— Zg{vi} Ly —— Z3
a3 = q7
— s [Cpe, ST —— Z3

3 -
g g

—  Zo{pr} —— O

>~ | ng

~

— Zo{n3}
Since ng([vs @ n7]ns) = [vsn?] @ 4[v7], we have the following commutative

diagram whose rows and columns are short exact, where 4¢3[v7] = ¢i[vsn3].

Zo{qilvsni)} @ Zis ——  Zg{@Gvr)} ®Z1s —— Zu{qivr}

[Cﬁsv SU(4>] — Z4{Q§V7}

3,4,

[Crg» SUB)]

s ;%

8 g

Zi{[2:5)vs} © Ly —— Za{2[vs ® 1]} © Zs
As seen in [9], the odd component of [C),, SU(3)] is Z15 @ Zs. Hence so

is about [Cyg,SU(4)]. Thus it suffices to see 2-primary components. Let

[2t5]v5 € [Chg, SU(3)] be an extension of [2¢5]vs whose order is 8. Then the
above discussion implies that the 2-primary part of [C),,SU(4)] is equal to

Zg{qilve)} @ Zafisa,[2ts5)vs — gi[v7]}. This completes the proof of (2) of
Proposition 8.2. [

Remark 8.3. Let map,(SU(3),SU(3)) be the space of based self maps of
SU(3). By (1) of Proposition 8.1, we can solve an ambiguity in [9, The-
orem 7.1]: 7s5(map, (SU(3),SU(3))) = Zs ® Zo ® Z3 ® Zs. Hence we have
determined T, (map, (SU(3),SU(3))) for n <11 [11, 9, 15].

APPENDIX A. A COUNTEREXAMPLE TO A PROPOSITION OF OGuUcCHI

Consider the following null quadruple.

€ 09 09 07
(A.1) g3 (B ql2 T2 g1z iz gl2 iz g9
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Calculations show that G; = {0} and Ga = m13(S'?) so that (A.1) satisfies
the hypotheses of Proposition (6.5)(i) of [18]. Also m14(S?) o E20], + 134 0
721 (S12) = Zo {21 014} by [19] and [14, (2.13)(7)]. Hence the following result
implies that {nse4,0%,,0%,07,}(® and {n3e4,0%,,0%,,07, are not cosets
of Zo{2p'014}. Therefore (A.1) is a counterexample to Proposition (6.5)(1)

of [13].
Example A.1. {n3eq, 0y, 0y, 7,10 = 72{2// 514, 'E6} .

Proof. Let A : CS? 583 A, :CS”? - 82 and 43 : CSY — S be null
homotoples of trivial _maps. Then we can write 4] = ;1\1 oT, A2 A\Q om and
As = Ason’, where Ay : ES'2 — 83, A, : ESU—$§2mﬂf1_E§9%Sm
are maps and 7 : OS2 -5 ES'?2 and 7' : ¢SSP — ESY are the quotient
maps.

First we show that (Aj, Ag, A3) is admissible if and only if A\Q ~ X,
We have [0y, Ag,+%] = 0V Ay and (¥9,, A3, +7,) ~ i, © As. AHence
[#0y, Ao, #95] o ( 12,A3,*12) ~ x. We have [n3eq, A1, *0y] = m3eqV A4 and
( 127142,*12) ~ 4 %9, © A27 Hence [7735471417*12] ( (1)27A27*(1)2) ~ 134 © Ag.
Since n3e4, : m13(S'?) — m13(S?) is injective, we have the desired assertion.

Let (A1, A, A3) be admissible. Take Bj : [17354,A1,>k12] o (xY,, Ag, xY,) ~
* arbitrarily. Since [¥)y, Ao, *05] o (x5, A3, ¥15) = *, any null homotopy
By & [x0y, Ag, #05] o (x 12,A3,*12) ~ x has a form By = Bg o m for any map
By : E281 =821 5612 Let G: (S12VvS™) x I — $!12v §!3 be the typical
homotopy for (x{y, *{5; A2). Then

f= [773547 Byo Cq*12( ) [ 129 Aa, *12]] © ([*(1)27 A, *(1)2]7 By, (*927 As, *L))

is a map from E25819 to S such that

) (—A1)(As(x A 25 —T) NGE—T) $<s<1, $<t<g
f(@ASAT) = m3egBo(x ANSA2E— 1) 1<t<1
* otherwise

Then f ~ (—121\1) OEA\:), + n354§2. This can be proved by giving a homotopy.
We omit details. Then {nzey, *)y, ¥0s, *19; A1, Aa, As; G}(l) = (—A1)oFAs+
n3e4 © m21(S'?). Therefore
{n3€4, #3, %09, 12} © = m13(S%) 0 Eman(S"?) + msea o w21 (™)
= Z%{Q,LLIO'M, V/§6}.
This completes the proof. [
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APPENDIX B. COHEN’S HIGHER TODA BRACKETS

Definition B.1. A finitely filtered space is a space X together with subspaces
Fo X ={x} CF1X C F5X C -+ of X such that F, X = X for some n and
pairs (Fri1X,FpX) (kK > 1) have homotopy extension property, that is,
cofibred pairs.

Definition B.2. Given an integer n > 2 and a sequence of maps

asz Qn

X, 2 X, ¢ X,

we say that the finitely filtered space X is of type (ag,--- ,ay) if and only if
F,X = X and there are homotopy equivalences gy, : EkX;H_l - Fr1 X/ Fp X

for 0 < k <n—1 such that following diagrams are homotopy commutative
for1 <k<n-—1.

E*ajq

FEEF1X, —— FFX, <———— EFX, .

Egk1l :lgk

E(FX/Fp1X) — EF.X — Fo X/FLX
q

Here q : Fy X — FpX/F,_1X are the quotient maps and § are connecting
maps of the cofibre sequences Fy 1 X/Fp X «— Fp 1 X = X 1<k<
n—1). We put

jix: X1 =E°X; &% B X C X,

-1
ox: X = F, X 5 B, X/F, X 9 gty

-1

where (gn—1)"" is a homotopy inverse of gp—1.

Definition B.3. Given an integer n > 2 and a sequence of maps

a a a n an+1
Xo 23— X 2 Xo 2 o X,

X?’L—|—17

the (n + 1)-fold Cohen’s Toda bracket {ai,as, -+ ,a,11}C is the set of all
0 € [E"1X,.11,X0] such that there are some space X of type (az,...,a,)
and maps g, h which make the following diagram homotopy commutative and
0 is the homotopy class of h o g.

Enian—{—l

Enila'nrkl
g

En-lx, XX x

oXx
L /
al

Xo
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az

Proposition B.4. If Xj < X; <2 Xy <2 X3 is a null triple, then

{a1,a2,a3} C {a1,a2,a3}°.
Proof. There is a cofibre sequence

—FEas lag az

EX| 2 EX; +1— X U,, CX; < X « X,

which gives the following homotopy commutative diagram:

EX, —— EX, 2% EX,
| |
EXl _ EXl T (Xl Ua2 CXQ)/Xl

We construct a space X of type (aq) as follows:
X = X1 Uy, CXo = F, D Fy = X,
Go=1x, : X1 > F, ¢ =—lpx,: EXs — EXy = Fy/F,.
Then
ix Xi=FR CFh=X, ox:X=F »FK/F =FEX, —% EX,.

Take any element aj o a3 € {aj,a2,a3}. Then we obtain the following ho-
motopy commutative diagram.

FX
oy 3 X3
_ as
EXy <—— EXy <—— X <2 — X; <= Xj
ar /
ail
Xo
Hence aj o a3 € {al,ag,ag}c. Therefore {a,a9,a3} C {al,ag,a3}c. O

Remark B.5. In some cases, {a1,a2,a3} ; {a1,a2,a3}¢. For example,

(1) {25, v5ms, 209} = {vsm3} S Zo{vsmd} = m10(S?) = {25, vsms, 209 }C .

(2) Let HP" be the quaternionic projective n-space and p™ : §¥"+3 —
HP™ the canonical projection. Then {*%,p1,2E3p1}C contains 0,
while {x3,p',2E3p'} is empty, that is, the triple (05,p',2E3pt) is
not a null triple.

Proof. (1) We define a space X of type (v5mg) as follows.
X:S5\/810:F27 F1:S57 90:L5:S5_>S57 glz_bg:sgésga
ix  Fy C Fy, O'XZF21>F2/F1=SN _AO Slo.
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The following diagram is homotopy commutative.

SlO

y (¥*V—2110)00 , g9

gqlo g5\ g0 JX g5

oxX
215 V *

25
<E
Hence we have {2t5,v51g,2t9}¢ > (25 0) o (0 V —2119) © Ogg = 0 by
Lemma 2.1. On the other hand, it follows from [19] that m10(S%) = Zo{vsn3
Indet{2:5, v5ms, 219} = 0 and {2L5,V4777,2L8}1 > vsn? by [19, Corollary 3. 7]
Therefore {2t5,v5ns,2t9} = {vsn3} which does not contain 0. Hence (1) is
proved by B.4.
(2) We can write
pt = avy + bEV + caq(4) € m7(S?) = Z{ns} @ Zy{EV'} @ Zs{a1(4)},
where a, b, c € Z with |a| = |c| = 1. The space HP? is of type (p'):
PP=g'u,Cs"=F, F =8, g=u:8"—8,
gr=—15:8" =8 j=jgp: =8 CF=HP,
ogpe = (—tg) 0 q : HP? 5 HP?/HP' = §* =¥ &,

Recall from [7, (2.10a)] that ¢ o p" = £nE*"4p! so that q o (Fp") =
—nE"4pl where ¢ : HP" — ]I-]IP"/]H[P"_1 = §% is the quotient map.
Then we have the following homotopy commutative diagram.

Sll = Sll SlO
4.1 3,1
- 1
J p
S8 - SS - HP2 S4 S7

ES
*3

S3

Hence we have {0}, p',2E3p'}¢ 5 00 (Fp?) = 0. On the other hand, since
pl o (2E3p') = (2 + 4ab)v? — a1(4)a1(7) is not null homotopic, the triple
(01, p',2E3pY) is not a null triple so that {03, p', 2E3p'} is not defined. [

Proposition B.6. If a null quadruple (4.1) with n1 = no = 0 has an
admissible representative (a1, as,as, aq; A1, As, As), then

{[CLl,Al,CLQ], (CLQ,AQ,CL?,), —ECL4} = {[CLl,Al,CLQ], —(CLQ,AQ,CL?,),EG4}
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- {a17a27a37a4}c7
{a17a27a37a4}(2) - U{[al,Al,CLQ], (CL2,A2,G3), _Ea4} - {alaazaa37a4}c7

where the union is taken over Ay, Ao, As with (a1, a2, as,aq; Ay, Az, A3) ad-
missible.

Proof. We define a space X of type (ag,a3) as follows.

X = (X1 Ug, CX2)U_g; CEX3 = Fy 5 By = Xy Uy, CXy 5 Fy = X3,
go=1x,: X1 = F1, g1 =—1gx,: EXy = EXy = Fy/F7,
g2 = —lpex, : B*X3 — E*X;3 = F3/ P,
where a3 = (ag, A2, a3). Then
ix X1 =F CFR=X, ox:F— F/F=EX; — E>X;.

We obtain the assertion from the following homotopy commutative diagram,
where a1 = [a1, A1,as2], @1 is an extension of a; with respect to —as, and
Fay is a coextension of Fay4 with respect to —as.

E2X4 EX4

E2
a4 Fay

—E26L4 E—lel

X3 <— E*Xg~——— X L— )
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