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SUMS OF TWO BIQUADRATES

AND ELLIPTIC CURVES OF RANK ≥ 4

F.A. IZADI, F. KHOSHNAM and K. NABARDI

Abstract. If an integer n is written as a sum of two biquadrates in
two different ways, then the elliptic curve y2 = x3

− nx has positive
rank. We utilize Euler’s parametrization to introduce some homoge-
neous equations to prove that En has rank ≥ 3. If moreover n is odd
and the parity conjecture is true, then the curve has even rank ≥ 4.
Finally, some examples of ranks equal to 4, 5, 6, 7, 8 and 10, are also
obtained.

1. Introduction

In this paper, we consider the family of elliptic curves defined by

En : y2 = x3 − nx,

for positive integers n written as sums of two biquadrates in two different
ways, i.e.,

n = p4 + q4 = r4 + s4,

where gcd(p, q) = gcd(r, s) = 1. Such a solution is referred to as a primitive
solution. In what follows we deal with numbers n having only primitive solu-
tion. This Diophantine equation was first proposed by Euler [7] in 1772 and
has since aroused the interest of numerous mathematicians. Among quartic
Diophantine equations it has a distinct feature for its simple structure, the
almost perfect symmetry between the variables and the close relationship
with the theory of elliptic functions. The latter is demonstrated by the fact
that this equation is satisfied by the four elliptic theta functions of Jacobi,
ϑ1, ϑ2, ϑ3, ϑ4, in that order [19]. Here in this note, we show that it also has
an obvious relationship with the theory of elliptic curves. To this end, we
need some parametric solutions of the equation for which we use the one
that was constructed by Euler as:

(1.1)















p = a7 + a5b2 − 2a3b4 + 3a2b5 + ab6,
q = a6b− 3a5b2 − 2a4b3 + a2b5 + b7,
r = a7 + a5b2 − 2a3b4 − 3a2b5 + ab6,
s = a6b+ 3a5b2 − 2a4b3 + a2b5 + b7.

(See Hardy and Wright [8] page 201, equation No.(13.7.11)).
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Our main result is the following:

Theorem 1.1. If the Euler parametrization is used to represent the integer

n as a sum of two biquadrates in two different ways, then the curve En has

rank ≥ 3. If moreover n is odd and the parity conjecture is true, then the

curve has even rank ≥ 4.

Remark 1.2. Our numerical results suggest that the odd ranks for even
numbers should be at least 5.

It is easy to see that the two different integers n1 and n2 having primitive
solutions are distinct modulo Q∗4. For let n1 and n2 be two such numbers
in which (p1, q1, r1, s1) is the solution for n1 and n2 = k4n1 for non-zero
rational number k. It follows that (kp1, kq1, kr1, ks1) is a solution for n2
which contradicts our assumption for n2 having only primitive solution. We
see that this condition is sufficient for the curves En1

and En2
to be non-

isomorphic over Q (the dependence modulo Q∗k for k = 0, 1, 2, 3 expresses
one curve as the quartic twists of the other; Cf. [15] Prop. 5.4, Cor. 5.4.1,
Ch.X). However, it is not plain that there are infinitely many integers having
primitive solutions. To remedy this difficulty, Choudhry [4] presented a
method of deriving new primitive solutions starting from a given primitive
solution. This makes it possible to construct infinitely many non-isomorphic
elliptic curves using the primitive solutions of the biquadrate equation.

2. Previous works

For questions regarding the rank, we assume without loss of generality
that n 6≡ 0 (mod 4). This follows from the fact that y2 = x3 − nx is 2-
isogenous to y2 = x3+4nx. These curves form a natural family in the sense
that they all have j-invariant j(E) = 1728 regardless of the different values
or various properties that the integers n may have. There have been a lot
of investigations concerning the distribution of ranks of elliptic curves in
natural families, and it is believed that the vast majority of elliptic curves
E over Q have rank ≤ 1. Consequently, the identification of elliptic curves
of rank ≥ 2 is of great interest.

Special cases of the family of the curves En and their ranks have been
studied by many authors including Bremner and Cassels [3], Kudo and Mo-
tose [10], Maenishi [11], Ono and Ono [13], Spearman [17, 18], and Hollier,
Spearman and Yang [9]. The general cases were studied by Aguirre, Cas-
taneda, and Peral [1].

The main purpose of Aguirre et al., [1] was to find the elliptic curves
of high rank in this family without restricting n to have any prescribed
property. They developed an algorithm for general n, and used it to find 4
curves of rank 13 and 22 of rank 12.
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Breamner and Cassels [3] dealt with the case n = −p, where p ≡ 5
(mod 8) and less than 1000. The rank is always 1 in accordance with the
conjecture of Selmer and Mordell. For each prime in this range, the authors
found the generator for the free part. In some cases the generators are rather
large, the most startling being that for p = 877, the x has the value

x =

(

612776083187947368101

7884153586063900210

)2

.

Kudo and Motose [10] studied the curve for n = p, a Fermat or Mersenne
prime and found ranks of 0, 1, and 2. More precisely,

(1) For a Fermat prime p = 22
n

+ 1,

E(Q) ∼=







Z/2Z for p = 3,
Z/2Z⊕ Z for p = 5,
Z/2Z⊕ Z⊕ Z for p > 5.

(2) In case p = 2q − 1 is a Mersenne prime where q is a prime,

E(Q) ∼=

{

Z/2Z for p = 3,
Z/2Z ⊕ Z for p > 3.

Maenishi [11] investigated the case n = pq, where p, q are distinct odd
primes and found a condition that the rank of Epq equals 4. This can be
done by taking natural numbers A,B,C,D and two pairs p and q satisfying
the equations:

pq = A2 +B2 = 2C2 −D4 = S4 − 4t4 (p = s2 − 2t2, q = s2 + 2t2).

Then using these equations one can construct 4 independent points on the
corresponding elliptic curve.

Ono and Ono [13] examined the elliptic curves for n = b2 + b, where
b 6= 0,−1 is an integer, and showed that, subject to the parity conjecture,
one can construct infinitely many curves Eb2+b with even rank ≥ 2. To be
more precise they obtained the followings:

Let b 6= 0,−1 be an integer for which n = b2 + b, is forth power free, and

define T by

T := card{p | primes 3 ≤ p ≡ 3 (mod 4), p2 ‖ b2 + b}.

1. If b ≡ 1, 2 (mod 4) and T is odd, then E(b) has even rank ≥2.

2. If b ≡ 7, 8, 11, 12, 20, 23, 24, 28, 35, 39, 40, 43, 51, 52, 55, 56 (mod 64)
and T is even, then E(b) has even rank ≥2.

3. If b ≡ 3, 14, 19, 27, 36, 44, 59, 60 (mod 64) and T is odd, then E(b)
has even rank ≥2.

4. In all other cases, E(b) has odd rank.



54 F.A. IZADI, F. KHOSHNAM AND K. NABARDI

In two separate papers, Spearman [17], [18] gave the following two results:
(1) If n = p for an odd prime p written as p = u4 + v4 for some integers u
and v, then

E(Q) = Z/2Z⊕ Z⊕ Z.

(2) If n = 2p, where 2p = (u2 + 2v2)4 + (u2 − 2v2)4 for some integers u and
v, then

E(Q) = Z/2Z⊕ Z⊕ Z⊕ Z.

In recent paper Spearman along with Hollier and Yang [9] assuming the
parity conjecture constructed elliptic curves of the form E−pq with maximal
rank 4, here p ≡ 1 (mod 8) and q be an odd prime different from p satisfying

q = p2 + 24p+ 400.

Finally, Yoshida [20] investigated the case n = −pq for distinct odd primes
p, q and showed that for general such p, q the rank is at most 5 using the
fact that

rank(En(Q)) ≤ 2#{l prime; divides 2n} − 1.

If p is an odd prime, the rank of Ep(Q) is much more restricted, i.e.,

rank(Ep(Q)) ≤







0 if p ≡ 7, 11 (mod 16),
1 if p ≡ 3, 5, 13, 15 (mod 16),
2 if p ≡ 1 (mod 8).

If the Legendre symbol (q/p) = −1 and q − p ≡ ±6 (mod 16), then

E−pq(Q) = {O, (0, 0)} ∼= Z/2Z.

If p, q are twin prime numbers, then E−pq(Q) has a non-torsion point (1, (p+
q)/2). If p, q be twin primes with (q/p) = −1, then

Epq(Q) ∼= Z⊕ Z/2Z.

In many cases above, they have the same j-invariant j(E) = 1728, have
the torsion subgroup T = Z/2Z, and have positive ranks. In spite of these
similarities our family has almost higher ranks among all the other families
and can be taken as an extension of the previous results. Before we proceed
to the proofs, we wish to make the following remarks.

Remark 2.1. In [2] Aguirre and Peral using the previous version of our
work proved the following two results.

Theorem 1. The family y2 = x3 − nx, with n = p4 + q4 has rank at least

2 over Q(p, q).

Theorem 2. The family y2 = x3 − nx, in which n given by the Euler

parametrization has rank at least 4 over Q(a), where a is the parameter and

b = 1.
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One may prove both results by a very straightforward way. Since the
specialization map is injective for infinitely many numerical values of the
parameters [15] (Appendix C, Theorem 20.1), it is enough to find one spe-
cialization such that the above curves have ranks at least 2 and 4 respectively.
For the first theorem, we note that, by the same reasons as in [2] not only
the point Q(p, q) = (−p2, pq2), but also the point R(p, q) = (−q2, qp2) is on
the curve, where

En : y2 = x3 − nx,

defined over function field Q(n, p, q) with n = p4 + q4. Then the specializa-
tion by (p, q) = (2, 1) gives rise to the points Q = (−4, 2) and R = (−1, 4).
Therefore by using the SAGE software, we see that the associated height
matrix has non-zero determinant 1.8567 showing that the points are inde-
pendent. For the second theorem, we see that the points Q1 = (−p2, pq2),
Q2 = (−q2, qp2), Q3 = (−r2, rs2) and Q4 = (−s2, sr2) are on the curve,
where

En : y2 = x3 − nx,

defined over function field Q(n, p, q, r, s) with n = p4+ q4 = r4+ s4, and the
specialized points by Euler parametrization (1.1) at a = 2, b = 1 gives rise
to

Q1 = (−24964, 549998), Q2 = (−3481,−1472876),

Q3 = (−17956, 2370326), Q4 = (−17689, 2388148).

By using the SAGE software we find that the elliptic height matrix associ-
ated to {Q1, Q2, Q3, Q4} has non-zero determinant 5635.73654 showing that
again the 4 points are independent.

Remark 2.2. We see that the map (u, v) → (−u2, uv2) from the quadric
curve: u4+v4 = n to the elliptic curve: y2 = x3−nx with n = u4+v4, takes
the integral points of the first to the integrals of the second. Now to find
the integral points of the quadric, it is enough to find the integrals of the
elliptic curve. This might suggest that to find n with more representations
as sums of two biquadrates, the corresponding elliptic curve should have
many independent integral points.

3. Method of Computation

To prove the theorem 1.1 , a couple of facts are necessary from the liter-
ature. We begin by describing the torsion subgroup of the family. To this
end, let D ∈ Z be a fourth-power-free integer, and let ED be the elliptic
curve

ED : y2 = x3 +Dx.
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Then we have

ED(Q)tors ∼=











Z/4Z if D = 4,

Z/2Z × Z/2Z if −D is a perfect square,

Z/2Z otherwise.

See ([15] Proposition 6.1, Ch.X, page 311). Since n = p4 + q4 is not −4 and
can not be a square, (see for example [5], Proposition 6.5.3, page 391), we
conclude that En has the torsion subgroup T = Z/2Z.

The second fact that we need is the parity conjecture which takes the
following explicit form (see Ono and Ono [13]): Let r be the rank of elliptic
curve En, then

(−1)r = ω(En)

where

ω(En) = sgn(−n) · ǫ(n) ·
∏

p2||n

(

−1

p

)

with p ≥ 3 a prime and

(3.1) ǫ(n) =

{

−1, n ≡ 1, 3, 11, 13 (mod 16),
1, n ≡ 2, 5, 6, 7, 9, 10, 14, 15 (mod 16).

As we see from the parity conjecture formula, the key problem is to calcu-

late the product
∏

p2||n

(

−1
p

)

. For this reason it is necessary to describe the

square factors of the numbers n if there is any. Before discussing the general
case, we look at some examples:

(p, q, r, s) = (3364, 4849, 4288, 4303) with 172|n,
(p, q, r, s) = (17344243, 6232390, 12055757, 16316590) with 972|n,
(p, q, r, s) = (9066373, 105945266, 5839429, 105946442) with 172|n,
(p, q, r, s) = (160954948, 40890495, 114698177, 149599920) with 412|n.

These examples suggest that the prime divisor of the square factor of n
is of the form p = 8k + 1. We will see that not only this divisor but also
other odd prime divisors of n are of that form according to the following
proposition.

Proposition 3.1. Let n = u4 + v4 be such that gcd(u, v) = 1. If p|n for an
odd prime number p, then p = 8k + 1.

Proof. We have already know that n is not divisible by 4. We use the
following result from Cox [6]. Let p be an odd prime such that gcd(p,m) = 1
and p|x2 +my2 with gcd(x, y) = 1, then (−m

p
) = 1. From one hand for n =
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u4+v4 = (u2−v2)2+2(uv)2, we get (−2
p
) = 1 which implies that p = 8k+1

or p = 8k+3. On the other hand, for n = u4 + v4 = (u2 + v2)2 − 2(uv)2, we
get (2

p
) = 1 which implies that p = 8l + 1 or p = 8l + 7. Putting these two

results together we get p = 8k + 1. �

Remark 3.2. If n = p2m for an odd prime p, then p = 8k + 1 from which
we get (−1

p
) = 1. This last result shows that the square factor of n does

not affect the root number of the corresponding elliptic curve on the parity
conjecture formula.

Remark 3.3. First of all, by the above remark, we have

ω(En) = sgn(−n) · ǫ(n).

On the other hand, for n = p4 + q4, we note that

p4 ≡ 0 or 1 (mod 16),

q4 ≡ 0 or 1 (mod 16).

For odd n we note that

n ≡ 1 (mod 16).

Now the parity conjecture implies that

ω(En) = sgn(−n) · ǫ(n) = (−1) · (−1) = 1.

For even n we have n ≡ 2 (mod 16) and therefore ω(En) = −1 in this case.

Finally, we need the Silverman-Tate computation formula [16] (Ch.3 §.5,
p.83) to compute the rank of this family. Let G denote the group of rational
points on elliptic curve E in the form y2 = x3 + ax2 + bx. Let Q∗ be the
multiplicative group of non-zero rational numbers and let Q∗2 denote the
subgroup of squares of elements of Q∗. Define the group homomorphism φ
from G to Q∗/Q∗2 as follows:

φ(P ) =







1 (mod Q∗2) if P = O,
b (mod Q∗2) if P = (0, 0),
x (mod Q∗2) if P = (x, y) with x 6= 0.

The image φ(G) consists of b and mod Q∗2 together with those b1 mod
Q∗2 with b = b1b2 such that the equation

(3.2) N2 = b1M
4 + aM2e2 + b2e

4 (M 6= 0)

has a solution in N, M, e ∈ Z

Similarly we take the dual curve y2 = x3 − 2ax2 + (a2 − 4b)x and call
its group of rational points G. Now the group homomorphism ψ from G to
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Q∗/Q∗2 defined as

ψ(Q) =







1 (mod Q∗2) if Q = O,
a2 − 4b (mod Q∗2) if Q = (0, 0),
x (mod Q∗2) if Q = (x, y) with x 6= 0.

Then the rank r of the elliptic curve E satisfies

(3.3) 2r+2 = |φ(G)||ψ(G)|.

4. Proof of Theorem 1.1

The following facts are important tools in the proof of our main result.
Put

A = b4 + 6b2a2 + a4,

B = b8 + 2b6a2 + 11b4a4 + 2b2a6 + a8,

C = b8 − 4b6a2 + 8b4a4 − 4b2a6 + a8,

D = b8 − b4a4 + a8.

Remark 4.1. Note that the above expressions arise from the factorization
of n by using the Euler parametrization (1.1), namely we have

n =(b4 + 6b2a2 + a4)(b8 + 2b6a2 + 11b4a4 + 2b2a6 + a8)·

(b8 − 4b6a2 + 8b4a4 − 4b2a6 + a8)(b8 − b4a4 + a8).

We may write C = (a2 − b2)4 + 2a4b4, and D = (a4 − b4)2 + a4b4. These
expressions together with the expressions for A and B show that all the
numbers A, B, C, and D are positive and satisfy n = ABCD.

Lemma 4.2. We have the following properties:

1. A is non-square.

2. D is non-square.

Proof. For part 1, we get the diophantine equation x4 + 6x2y2 + y4 =
z2, which has only the solutions x2 = 1, y = 0 and y2 = 1, x = 0 (see
[12] page 18). Similarly, for part 2, we consider the diophantine equation
x4 − x2y2 + y4 = z2, which has only the trivial solutions x2 = 1, y = 0 and
y2 = 1, x = 0 (see [12] page 20). �

Lemma 4.3. Let gcd(a, b) = 1, where a and b have opposite parities, then

AC, and BD are non-squares.

Proof. Since A and D are non-squares, it is sufficient to show that
gcd(A,C) = 1 and gcd(B,D) = 1. We prove the first assertion, the sec-
ond one is similar. First of all, since gcd(a, b) = 1 and a and b have opposite
parities , A and D are not divisible by 2. Secondly, we show that they are
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not divisible by 3 and 11. To do this we may write A = a4 + b4 + 6a2b2

and D = (a4 + b4)2 − 3a4b4. If 3 divides either A or D, then it divides
a4 + b4 which is not the case by Proposition 3.1. For p = 11 we may write
A = (a2+b2)2+(2ab)2 and D = (a4−b4)2+(a2b2)2. Since gcd(a2+b2, 2ab) =
gcd(a4−b4, a2b2) = 1, it follows that none of A and D are divisible by primes
of the form 4k+3, in particular by 11. Next we have the following identities:

B = A(A− 10a2b2) + 33a4b4,

C = A(A− 16a2b2) + 66a4b4,

B = D + 2a2b2A,

D = (C + a2b2)(4a4 − 9a2b2 + 4b4),

16D = (4a4 − 9a2b2 + 4b4)(4a4 + 9a2b2 + 4b4) + 33a4b4.

Let p be a prime dividing both A and C. Clearly p is different from 2, 3,
and 11. From the second relation p divides one of the numbers a or b ,say
a. This implies that p divides D by the third relation and b by the fourth,
which is a contradiction. �

The following corollary is an immediate consequence of the above lemma.

Corollary 4.4. Let b1 = BD, b2 = −AC, n = −b1b2, where A, B, C, andD
defined as before, then the elements of the sets {1,−n,−1, n, b1,−b1, b2,−b2}
and {1, 2, n, 2n} are distinct modulo Q∗2.

Proof. Without loss of generality we check only the assertion for the
positive numbers in both sets. By construction we know that the numbers
n, b1 and −b2 are all non-squares. These imply that

n

1
= n 6≡ 1 (mod Q∗2),

n

b1
= −b2 = AC 6≡ 1 (mod Q∗2),

n

−b2
= b1 = BD 6≡ 1 (mod Q∗2),

b1
−b2

=
BD

AC
=

n

(AC)2
6≡ 1 (mod Q∗2),

2n

n
= 2 6≡ 1 (mod Q∗2).

Finally, for n
2
and 2n

1
, we note that if gcd(a, b) = 1 and a and b have opposite

parities, then all of A, B, C, and D are odd numbers. Hence by letting
n = rs2 for odd and square-free r we get n

2
= 2r( s

2
)2 and 2n

1
= (2r)s2, where

2r is square-free in both equalities. On the other hand, if gcd(a, b) = 1 with
both a and b are odd numbers, then A = 2(2k + 1), C = 2(2m+ 1), and B
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and D are both odd. This implies that n is divisible by 4 which is not the
case by assumption on section 2. �

Proof of Theorem 1.1:

To prove the theorem, we use the fact (3.2) several times. In fact, we
show that

φ(G) ⊇ {1,−n,−1, n}.

The first two numbers 1 and −n are obvious from the definition of the map φ.
For the numbers −1 and n, we note that if n = p4+q4, then the homogenous
equation

N2 = −M4 + ne4

has solution e = 1, M = p, N = q2. Similarly for N2 = nM4 − e4 we have
M = 1, e = p, N = q2. Next from Remark 4.1, we know that

n =(b4 + 6b2a2 + a4)(b8 + 2b6a2 + 11b4a4 + 2b2a6 + a8)·

(b8 − 4b6a2 + 8b4a4 − 4b2a6 + a8)(b8 − b4a4 + a8).

Let b1 = BD, b2 = −AC, n = −b1b2 be the same as the Corollary 4.4. By
taking M = 1 and e = b, we have

b1M
4 = BD,

b2e
4 = −b4AC.

Then adding them up we get

K = b1M
4 + b2e

4 = (b8 + 2b6a2 + 11b4a4 + 2b2a6 + a8)(b8 − b4a4 + a8)

(4.1)

− b4(b4 + 6b2a2 + a4)(b8 − 4b6a2 + 8b4a4 − 4b2a6 + a8).

Now, using Sage to factor K, we get K = a4(a6 + b2a4 + 4b4a3 − 5b6)2.
Consequently, N = a2(a6 + b2a4 +4b4a3 − 5b6). Since φ(G) is a subgroup of
Q∗/Q∗2, we get

(4.2) φ(G) ⊇ {1,−n,−1, n, b1,−b1, b2,−b2}.

On the other hand, for the curve

y2 = x3 + 4nx

we have

(4.3) ψ(G) ⊇ {1, n, 2, 2n}.

Again the numbers 1 and n are immediate consequence of the definition
of the map ψ. For the numbers 2 and 2n we note that the homogeneous
equation

N2 = 2M4 + 2ne4
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has the solutionM = p+q, e = 1, andN = 2(p2+pq+q2), where n = p4+q4.
From Corollary (4.4), we know that the right hand side of (4.2), (4.3) are
distinct modulo Q∗2. Therefore from these observations together with Eq.
(3.3) we get

2r+2 = |φ(G)||ψ(G)| ≥ 4 · 8 = 32.

This implies that r ≥ 3. But from ω(En) = 1, the rank should be even.
Therefore we see that r is even and r ≥ 4.

4.1. Remark. If n is an even number written in two different ways as sums
of two biquadrates, then since ω(En) = −1 in this case, the rank is odd and
r ≥ 3.

5. Numerical Examples

We conclude this paper by providing many examples of ranks 4, 5, 6, 7,
8 and 10 using the Sage software [14].

Table 1. Curves with even rank

p q r s n = p4 + q4 = r4 + s4 rank

114732 15209 106696 81321 173329443404113736737 10

3494 1623 3351 2338 155974778565937 8

43676 11447 41591 28544 3656080821185585057 8

500508 338921 485288 378327 75948917104718865094177 8

502 271 497 298 68899596497 6

292 193 257 256 8657437697 6

32187 6484 29812 23109 1075069703066384497 4

7604 5181 7037 6336 4063780581008977 4
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Table 2. Curves with odd rank

p q r s n = p4 + q4 = r4 + s4 rank

989727 161299 913141 717447 960213785093149760746642 7

129377 20297 127037 66787 280344024498199948322 7

103543 47139 98049 72389 119880781585424489842 7

119183 49003 112199 83693 207536518650314617202 7

3537 661 3147 2767 156700232476402 7

266063 72489 230099 217443 5038767537882101285602 5

139361 66981 138631 72723 397322481336075317362 5

38281 25489 36001 30713 2569595578866824162 5
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