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ON POSITIVE INTEGERS OF MINIMAL TYPE

CONCERNED WITH

THE CONTINUED FRACTION EXPANSION

Yasuhiro Kishi, Sayaka Tajiri and Ken-ichiro Yoshizuka

1. Introduction

In [3], Kawamoto and Tomita introduced the notion of the “minimal type”
concerned with the continued fraction expansion for approaching Gauss’
Conjecture. Let us explain it as follows:

Let α be a quadratic irrational whose continued fraction expansion is of
the form

α = [a0, a1, a2, . . . , aℓ] (the periodic part begins with a1),

ai = aℓ−i (1 ≤ i ≤ ℓ− 1) (the symmetric property holds).

(These properties hold if, for example, a quadratic irrational α is an algebraic
integer.) Then we call the string a1, a2, . . . , aℓ−1 the symmetric part of the
continued fraction expansion of α. For such α, we define nonnegative integers
pi, qi, ri by using the partial quotients ai (0 ≤ i ≤ ℓ):

(1.1)







p0 = 1, p1 = a0, pi = ai−1pi−1 + pi−2 (2 ≤ i ≤ ℓ+ 1),

q0 = 0, q1 = 1, qi = ai−1qi−1 + qi−2 (2 ≤ i ≤ ℓ+ 1),

r0 = 1, r1 = 0, ri = ai−1ri−1 + ri−2 (2 ≤ i ≤ ℓ+ 1).

For brevity, we put

A := qℓ, B := qℓ−1, C := rℓ−1,

and define linear polynomials g(x), h(x) and a quadratic polynomial f(x)
by

g(x) = Ax− (−1)ℓBC, h(x) = Bx− (−1)ℓC2, f(x) = g(x)2 + 4h(x).

Moreover, let s0 be the least integer x for which g(x) > 0. We remark that
g(x), h(x), f(x) and s0 are determined only by the symmetric part because
A,B and C do not depend on a0, aℓ.

Definition 1 ([3, Definition 3.1]). Let d be a non-square positive integer.
By results of Friesen [1] and Halter-Koch [2], d is uniquely of the form
d = f(s)/4 with some integer s ≥ s0, where f(x) and s0 are obtained as
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above from the symmetric part a1, a2, . . . , aℓ−1 of the continued fraction

expansion of
√
d and ℓ is the minimal period (cf. [3, Theorem 3.1]). If

s = s0, that is, d = f(s0)/4 holds, then we say that d is a positive integer

with period ℓ of minimal type for
√
d. When d ≡ 1 (mod 4) in addition,

d is uniquely of the form d = f(s) with some integer s ≥ s0, where f(x)
and s0 are obtained as above from the symmetric part a1, a2, . . . , aℓ−1 of the

continued fraction expansion of (1 +
√
d)/2 and ℓ is the minimal period. If

s = s0, that is, d = f(s0) holds, then we say that d is a positive integer with

period ℓ of minimal type for (1 +
√
d)/2.

Furthermore, for a square-free positive integer d, we say that Q(
√
d) is a

real quadratic field with period ℓ of minimal type, if d is a positive integer
with period ℓ of minimal type for

√
d when d ≡ 2, 3 (mod 4), and if d

is a positive integer with period ℓ of minimal type for (1 +
√
d)/2 when

d ≡ 1 (mod 4).

Also, they proved in [3] the following:

Theorem ([3, Proposition 4.4]). There exist exactly 51 real quadratic fields

of class number 1 that are not of minimal type, with one more possible

exception.

For any positive integers ℓ and h, on the other hand, Sasaki [6] and
Lachaud [5] showed that there exist at most finitely many real quadratic
fields with period ℓ of class number h. Hence we have to examine a con-
struction of real quadratic fields of minimal type in order to find many real
quadratic fields of class number 1. Thus, the following problem arises.

Problem. For each positive integer ℓ, do there exist (infinitely many) real
quadratic fields with period ℓ of minimal type?

For this problem, the following are known.

Theorem ([3, Example 3.4, Example 3.5], [4, Theorem 1.1]). (1) Only

Q(
√
5) is a real quadratic field with period 1 of minimal type.

(2) There does not exist a real quadratic field with period 2, 3 of minimal

type.

(3) Let ℓ ≥ 4 be an even integer with 8 ∤ ℓ. Then there exist infinitely many

real quadratic field with period ℓ of minimal type.

In this article, we study quadratic irrationals
√
d (resp. (1+

√
d)/2) whose

continued fraction expansion has the symmetric part b, t, t, . . . , t, b and give
a necessary and sufficient condition for such d to be a positive integer with
period ℓ of minimal type for

√
d (resp. (1 +

√
d)/2). As a consequence, we

can show the following result:
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Main Theorem (Theorem 3). Let ℓ ≥ 4 be an integer. Then there exist

infinitely many positive integers d with period ℓ of minimal type for each
√
d

or (1 +
√
d)/2.

2. Preliminary

Let ℓ be a positive integer and a0, . . . , aℓ be positive integers which satisfy
the symmetric property ai = aℓ−i (1 ≤ i ≤ ℓ − 1). Define nonnegative
integers pi, qi, ri by (1.1). Then it is well-known that

pi = a0qi + ri (0 ≤ i ≤ ℓ+ 1),(2.1)

piqi−1 − pi−1qi = (−1)i (1 ≤ i ≤ ℓ),(2.2)

qℓrℓ−1 − q2ℓ−1 = (−1)ℓ−1.(2.3)

(See, for example [3,(2.4)], [3,(2.3)], [3,(2.6)], respectively.) Moreover, for a
variable λ, we have

(2.4) [a0, . . . , ai, λ] =
λpi+1 + pi
λqi+1 + qi

(0 ≤ i ≤ ℓ).

(See [3,(2.2)].)

Theorem 1. Under the above notation, put k := a0, s := (2k+(−1)ℓBC)/A
(resp. s := (2k− 1+ (−1)ℓBC)/A) and d := f(s)/4 (resp. d := f(s)). Then

we have

(2.5) d = k2 +
2kB + C

A
(resp. d = (2k − 1)2 + 4

(2k − 1)B + C

A
)

and d is a positive rational number with d 6∈ Q×2. Moreover, the continued

fraction expansion of
√
d (resp. (1 +

√
d)/2) is

(2.6)
√
d = [k, a1, . . . , aℓ−1, 2k] (resp.

1 +
√
d

2
= [k, a1, . . . , aℓ−1, 2k − 1]).

Proof. Like the proof of [3, Theorem 3.1], we put

α = k (resp. α = k − 1), aℓ = 2k (resp. aℓ = 2k − 1).

Then by the definition of s, we have

g(s) = As− (−1)ℓBC = aℓ.

By using (2.3), we have

h(s) = Bs− (−1)ℓC2 =
aℓB + (−1)ℓB2C

A
− (−1)ℓC2

=
aℓB + C(−1)ℓ(B2 −AC)

A
=

aℓB + C

A
.
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Hence we see from the relation f(s) = g(s)2 + 4h(s) that (2.5) holds and d
is a positive rational number.

Next we consider an irrational number

ω := [k, a1, . . . , aℓ−1, aℓ]

to prove (2.6). By using (2.1), (2.2) and (2.3), we have

pl = kA+B,

pℓ−1 = (pℓqℓ−1 − (−1)ℓ)/qℓ = {(kqℓ + qℓ−1)qℓ−1 − (−1)ℓ}/qℓ
= kqℓ−1 + (q2ℓ−1 − (−1)ℓ)/qℓ = kB + C.

Since

α+ ω = [aℓ, a1, . . . , aℓ−1, aℓ] = [aℓ, a1, . . . , aℓ−1]

by the definition of α, we see from the case i = ℓ−1, λ = α+ω in (2.4) that

ω = [k, a1, . . . , aℓ−1, aℓ, a1, . . . , aℓ−1]

= [k, a1, . . . , aℓ−1, α+ ω] =
(α+ ω)pℓ + pℓ−1

(α + ω)A+B
.

Hence we get

Aω2 + (αA+B − pℓ)ω = αpℓ + pℓ−1

and by the above,

Aω2 + (α− k)Aω = αkA+ aℓB + C.

Since ω > 0 and ω2 = k2 + (aℓB +C)/A (resp. ω2 − ω = k(k − 1) + (aℓB +
C)/A), we see from (2.5) that

ω =

√

k2 +
aℓB + C

A
=

√
d

(resp. ω =
1 +

√

1 + 4k(k − 1) + 4aℓB+C
A

2
=

1 +
√
d

2
).

Hence we obtain d 6∈ Q×2 and the desired continued fraction expansion.
Thus the theorem is now proved. �

Remark 1. Since As ∈ Z, B(As)− (−1)ℓAC2 = aℓB+C as we have seen in
the above proof and A is co-prime to B by (2.2), we have

s ∈ Z ⇐⇒ A | 2kB +C (resp. A | (2k − 1)B + C),

k being a positive integer. By (2.5), the last condition is equivalent to d ∈ Z
(resp. d ∈ Z and d ≡ 1 (mod 4)).
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3. Quadratic irrationals with special type of continued

fraction expansion

In this section, we study quadratic irrationals α(j) (j = 1, 2) whose con-
tinued fraction expansions are of the form

(3.1) α(j) = [k, b, t, t, . . . , t, b
︸ ︷︷ ︸

n

, k(j)],

{

k(1) = 2k,

k(2) = 2k − 1

with (not necessary minimal) period n+ 1 ≥ 4.
For positive integers b, k, t, define infinite sequence of integers {Si} by

S0 = 1, S1 = 0, Si = tSi−1 + Si−2 (i ≥ 2)

and two finite sequences of integers {Li} and {Hi} by

L1 = 1, L2 = b, Li = tLi−1 + Li−2 (3 ≤ i ≤ n), Ln+1 = bLn + Ln−1,

H1 = k, H2 = bk + 1, Hi = tHi−1 +Hi−2 (3 ≤ i ≤ n), Hn+1 = bHn +Hn−1.

Then we have the following:

Proposition 1. Let the notation be as above. Then we have
√

k2 +
2kLn + Sn

Ln+1
= [k, b, t, t, . . . , t, b

︸ ︷︷ ︸

n

, 2k],

1 +
√

(2k − 1)2 + 4 (2k−1)Ln+Sn

Ln+1

2
= [k, b, t, t, . . . , t, b

︸ ︷︷ ︸

n

, 2k − 1].

Proof. From the definition, pi, qi, ri which are obtained from the continued
fraction expansion of quadratic irrational α(j) with (3.1) can be expressed
by {Si}, {Li}, {Hi} as

pi = Hi (1 ≤ i ≤ n+ 1),

qi = Li (1 ≤ i ≤ n+ 1),

ri = Si (0 ≤ i ≤ n),

pn+2 = k(j)Hn+1 +Hn,

qn+2 = k(j)Ln+1 + Ln.

Then the proposition is obtained from Theorem 1 immediately. �

Next we will give a necessary and sufficient condition for d to be a positive
integers d with period n+1 of minimal type for

√
d (resp. (1+

√
d)/2), where

α(1) =
√
d (resp. α(2) = (1 +

√
d)/2) with (3.1) and n is odd.
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Theorem 2. Let n ≥ 3 be an odd integer.

(1) Let d be a rational number with
√
d = [k, b, t, t, . . . , t, b

︸ ︷︷ ︸

n

, 2k]

and suppose that d = f(s0)/4. Then d is a positive integer with period n+1

of minimal type for
√
d if and only if one of the following conditions holds:

(a) t is even, n = 3 and b ∤ t;
(b) t is even, n > 3 and b 6= t;
(c) t is odd, b is even, n 6≡ 0 (mod 3) and s0 ≡ 0 (mod 2);
(d) t is odd, b is odd, n 6≡ 2 (mod 3) and s0 ≡ 0 (mod 2).

(2) Let d be a rational number with

1 +
√
d

2
= [k, b, t, t, . . . , t, b

︸ ︷︷ ︸

n

, 2k − 1]

and suppose that d = f(s0) holds. Then d is a positive integer with period

n + 1 of minimal type for (1 +
√
d)/2 if and only if the following three

conditions hold:
(a) t is odd;
(b) b ∤ t if n = 3 and b 6= t if n > 3;
(c) either n ≡ 0 (mod 3) or s0 ≡ 1 (mod 2) if b is even, and either

n ≡ 2 (mod 3) or s0 ≡ 1 (mod 2) if b is odd.

Before the proof of Theorem 2, we will state properties of Si and Li.

Lemma 1. (1) For the parity of Si, the following holds:
(i) If t is even, then

Si ≡ 0 (mod 2) ⇐⇒ i ≡ 1 (mod 2).

(ii) If t is odd, then

Si ≡ 0 (mod 2) ⇐⇒ i ≡ 1 (mod 3).

(2) For the parity of Li, the following holds:
(i) If b and t are both even, then

Li ≡ 0 (mod 2) ⇐⇒ i ≡ 0 (mod 2) (1 ≤ i ≤ n),

Ln+1 ≡
{

1 (mod 2) if n ≡ 0 (mod 2),

0 (mod 2) if n ≡ 1 (mod 2).

(ii) If b is even and t is odd, then

Li ≡ 0 (mod 2) ⇐⇒ i ≡ 2 (mod 3) (1 ≤ i ≤ n),
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Ln+1 ≡
{

0 (mod 2) if n ≡ 0 (mod 3),

1 (mod 2) if n ≡ 1, 2 (mod 3).

(iii) If b is odd and t is even, then

Li ≡ 1 (mod 2) (1 ≤ i ≤ n),

Ln+1 ≡ 0 (mod 2).

(iv) If b and t are both odd, then

Li ≡ 0 (mod 2) ⇐⇒ i ≡ 0 (mod 3) (1 ≤ i ≤ n),

Ln+1 ≡
{

0 (mod 2) if n ≡ 2 (mod 3),

1 (mod 2) if n ≡ 0, 1 (mod 3).

Proof. We can easily prove by mathematical induction. �

Lemma 2. For 3 ≤ i ≤ n, we have

(3.2) L2
i−1 − LiLi−2 = (−1)i−1(b2 − tb− 1).

Proof. This is also proved by mathematical induction.
For i = 3, we see that

L2
2 − L3L1 = b2 − (tb+ 1) = b2 − tb− 1.

Assume that (3.2) holds for i = j (3 ≤ j ≤ n− 1). Then we have

L2
j−1 − LjLj−2 = (−1)j−1(b2 − tb− 1).

From the definition of {Li}, we have

L2
j − Lj+1Lj−1 = L2

j − (tLj + Lj−1)Lj−1

= Lj(Lj − tLj−1)− L2
j−1

= LjLj−2 − L2
j−1

= −(L2
j−1 − LjLj−2)

= (−1)j(b2 − tb− 1),

and hence (3.2) holds for i = j + 1. �

For the case b = t, the following holds:

Proposition 2. For a quadratic irrational α(1) =
√
d (resp. α(2) = (1 +√

d)/2) with a non-square positive integer d and (3.1), we assume b = t.
Then the followings hold.

(1) We have s0 = (−1)n+1Ln−2.

(2) d is not a positive integer with period n + 1 of minimal type for
√
d

(resp. (1 +
√
d)/2).
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Proof. When b = t, we have Sn = Ln−1, and hence

g(x) = Ln+1x− (−1)n+1LnLn−1,

h(x) = Lnx− (−1)n+1L2
n−1.

(1) By using Lemma 2, we have

g((−1)n+1Ln−2) = (−1)n+1Ln+1Ln−2 − (−1)n+1LnLn−1

= (−1)n+1{(tLn + Ln−1)Ln−2 − LnLn−1}
= (−1)n+1{tLnLn−2 + Ln−1(Ln−2 − Ln)}
= (−1)n+1t(LnLn−2 − L2

n−1)

= (−1)n+1t(−1)n(t2 − t2 − 1) = t > 0,

g((−1)n+1Ln−2 − 1) = t− Ln+1 = L1 − Ln+1 < 0.

Thus we get

s0 = (−1)n+1Ln−2.

(2) By also using Lemma 2, we have

h((−1)n+1Ln−2) = (−1)n+1LnLn−2 − (−1)n+1L2
n−1 = 1,

and hence

f((−1)n+1Ln−2) = t2 + 4.

First, assume on the contrary that d is a positive integer with period n+1
of minimal type for

√
d. Then we have

d =
f((−1)n+1Ln−2)

4
=

(
t

2

)2

+ 1.

Hence the integer part k of
√
d is k = t/2, and so t = 2k. Then we have

√
d = [k, 2k, 2k, . . . , 2k] = [k, 2k].

This contradicts that the minimal period is n+ 1.
Next we assume that d is a positive integer with period n+ 1 of minimal

type for (1 +
√
d)/2. Then we have

d = f((−1)n+1Ln−2) = t2 + 4.

It follows from d ≡ 1 (mod 4) that t is odd. Since

t2 < (t+ 1)2 < t2 + 4 < (t+ 2)2 if t = 1,

t2 < t2 + 4 < (t+ 1)2 < (t+ 2)2 if t ≥ 3,
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the integer part k of (1 +
√
d)/2 is k = (t + 1)/2, and hence t = 2k − 1.

Therefore, we have

1 +
√
d

2
= [k, 2k − 1, 2k − 1, . . . , 2k − 1] = [k, 2k − 1].

This contradicts that the minimal period is n + 1. The proof is now com-
pleted. �

Proposition 3. Let n ≥ 3 be an integer.

(1) Let d be a non-square positive integer with
√
d = [k, b, t, t, . . . , t, b

︸ ︷︷ ︸

n

, 2k].

Assume that d = f(s0)/4. Then the minimal period is n + 1 if and only if

b ∤ t when n = 3 and b 6= t when n > 3.
(2) Let d ≡ 1 (mod 4) be a non-square positive integer with

1 +
√
d

2
= [k, b, t, t, . . . , t, b

︸ ︷︷ ︸

n

, 2k − 1].

Assume that d = f(s0). Then the minimal period is n+1 if and only if b ∤ t
when n = 3 and b 6= t when n > 3.

Proof. (1) First suppose that n = 3. Then the minimal period is 4 if and
only if t 6= 2k. Hence we have only to show that

b | t ⇐⇒ t = 2k.

Suppose that b | t. It is obtained from the symmetric part b, t, b that

g(x) = (tb2 + 2b)x− (tb+ 1)t,

h(x) = (tb+ 1)x− t2.

From the definition of s0, it must hold that

g(s0) > 0, g(s0 − 1) < 0.

Then we have inequalities

t

b
− t

b(tb+ 2)
< s0 <

t

b
+ 1− t

b(tb+ 2)
.

By the assumption b | t, therefore, we have s0 = t/b, and hence

d =
f(s0)

4
=

g(s0)
2

4
+ h(s0) =

(
t

2

)2

+
t

b
.
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It follows from b | t and d ∈ Z that t is even. Since
(
t

2

)2

<

(
t

2

)2

+
t

b
<

(
t

2
+ 1

)2

,

the integer part k of
√
d is k = t/2. Then we have t = 2k.

Conversely, suppose that t = 2k, that is,
√
d = [k, b, 2k, b, 2k].

Then by Proposition 1, we have

d = k2 +
tL3 + S3

L4
= k2 +

t(tb+ 1) + t

tb2 + 2b
= k2 +

t(tb+ 2)

b(tb+ 2)
= k2 +

t

b
.

Since d ∈ Z, we get b | t.
Next suppose that n > 3. If b 6= t, it is obviously that the minimal period

is n + 1. If b = t, we have seen in Proposition 2 that the minimal period is
not n+ 1.
(2) First suppose that n = 3. Then the minimal period is 4 if and only if
t 6= 2k − 1. Hence we have only to show that

b | t ⇐⇒ t = 2k − 1.

Suppose that b | t. It is obtained from the symmetric part b, t, b that
s0 = t/b as we have seen in the proof of (1). Then we have

d = f(s0) = t2 +
4t

b
.

It follows from b | t and d ≡ 1 (mod 4) that t is odd. Since

t2 < (t+ 1)2 < t2 +
4t

b
< (t+ 2)2 if b = 1,

t2 < t2 +
4t

b
< (t+ 1)2 < (t+ 2)2 if b ≥ 2,

the integer part k of (1 +
√
d)/2 is k = (t+ 1)/2. Hence we get t = 2k − 1.

Conversely, suppose that t = 2k − 1, that is

1 +
√
d

2
= [k, b, 2k − 1, b, 2k − 1].

Then by Proposition 1, we have

d = (2k − 1)2 + 4
tL3 + S3

L4
= (2k − 1)2 +

4t

b
.

Since d ≡ 1 (mod 4), we obtain b | t.
Next suppose that n > 3. If b 6= t, it is obviously that the minimal period

is n + 1. If b = t, we have seen in Proposition 2 that the minimal period is
not n+ 1. �
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Proof of Theorem 2. Noting that n is odd, we see from Lemma 1 that

(3.3) g(x) = Ln+1x− LnSn ≡ 0 (mod 2) for any integer x,

if t is even, and
(3.4)

g(s0) ≡ 0 (mod 2) ⇐⇒
{

n 6≡ 0 (mod 3) and s0 ≡ 0 (mod 2) if b is even,

n 6≡ 2 (mod 3) and s0 ≡ 0 (mod 2) if b is odd,

if t is odd.
(1) From the definition, d is a positive integer with period n+1 of minimal

type for
√
d if and only if d ∈ Z and the minimal period is n+ 1.

When t is even, it follows from (3.3) that

d =
f(s0)

4
=

(
g(s0)

2

)2

+ h(s0) ∈ Z.

Moreover, by Proposition 3 we see that

the minimal period is n+ 1 ⇐⇒
{

b ∤ t if n = 3,

b 6= t if n > 3.

When t is odd, it holds that t 6= 2k. Then we see from Proposition 3 that
the minimal period is n+ 1. Since

d =
f(s0)

4
=

(
g(s0)

2

)2

+ h(s0),

we see from (3.4) that

d ∈ Z ⇐⇒ g(s0) ≡ 0 (mod 2)

⇐⇒
{

n 6≡ 0 (mod 3) and s0 ≡ 0 (mod 2) if b is even,

n 6≡ 2 (mod 3) and s0 ≡ 0 (mod 2) if b is odd.

(2) From the definition, d is a positive integer with period n+1 of minimal

type for (1 +
√
d)/2 if and only if d ≡ 1 (mod 4) and the minimal period is

n+ 1.
If t is even, then by g(s0) ≡ 0 (mod 2), we have

d = f(s0) = g(s0)
2 + 4h(s0) ≡ 0 6≡ 1 (mod 4).

Hence d is not a positive integer with period n + 1 of minimal type for
(1 +

√
d)/2.

Suppose that t is odd. Then by Proposition 3 we see that

the minimal period is n+ 1 ⇐⇒
{

b ∤ t if n = 3,

b 6= t if n > 3.
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Since d = f(s0) ≡ g(s0)
2 (mod 4), we see from (3.4) that

d ≡ 1 (mod 4) ⇐⇒ g(s0) ≡ 1 (mod 2)

⇐⇒
{

n ≡ 0 (mod 3) or s0 ≡ 1 (mod 2) if b is even,

n ≡ 2 (mod 3) or s0 ≡ 1 (mod 2) if b is odd.

Theorem 2 is completely proved. �

4. Main Theorem

The following is the key proposition for the proof of our main theorem
(Theorem 3).

Proposition 4. Let n ≥ 3 be an odd (resp. an even) integer and let s0 be

an integer which is obtained from the symmetric part a1, a2, . . . , an as in

§1. Moreover, we put m := max{a2, a3, . . . , an−1} and define nonnegative

integers ui by

u0 = 1, u1 = 0, ui = mui−1 + ui−2 (i ≥ 2).

If a1 ≥ un, then we have s0 = 1 (resp. s0 = 0).

Proof. Recall that

g(x) = qn+1x− (−1)n+1qnrn.

Now we suppose that a1 ≥ un. Then by the definition of ui, we have un ≥ rn,
and hence a1 ≥ rn. This gives that

qn+1−qnrn = anqn+qn−1−qnrn = (an−rn)qn+qn−1 = (a1−rn)qn+qn−1 > 0.

If n is odd, then we have

g(0) = −qnrn < 0,

g(1) = qn+1 − qnrn > 0,

and so s0 = 1. If n is even, then we have

g(−1) = −qn+1 + qnrn < 0,

g(0) = qnrn > 0,

and so s0 = 0. �

For the case where the symmetric part is the string b, t, t, . . . , t, b, the
converse of Proposition 4 is true. Namely,

Proposition 5. Let n ≥ 3 be an odd (resp. an even) integer and let s0 be

an integer which is obtained from the symmetric part b, t, t, . . . , t, b. Then

we have

b ≥ Sn ⇐⇒ s0 = 1 (resp. s0 = 0).
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Proof. The “⇒” part is easily proved using Proposition 4. Indeed, we have
m = t in this case. Hence it holds that ui = Si (i ≥ 0) and a1 = b.

Let us prove the “⇐” part. First, we consider the case where n is odd and
s0 = 1. Suppose, on the contrary, that b < Sn. Then we have b− Sn ≤ −1,
and hence

g(s0) = Ln+1 − LnSn = bLn + Ln−1 − LnSn = (b− Sn)Ln + Ln−1

≤ −Ln + Ln−1 = −(t− 1)Ln−1 − Ln−2 < 0.

This contradicts g(s0) > 0. Therefore we get b ≥ Sn.
Next, we consider the case where n is even and s0 = 0. Suppose, on the

contrary, that b < Sn. Then by −(b− Sn) ≥ 1, we have

g(−1) = −Ln+1 + LnSn = −(b− Sn)Ln − Ln−1

≥ Ln − Ln−1 = (t− 1)Ln−1 + Ln−2 > 0.

This contradicts s0 = 0. Hence we have b ≥ Sn. �

Theorem 3. Let ℓ ≥ 4 be an integer. Then there exist infinitely many

non-square positive integers d with period ℓ of minimal type for each
√
d

or (1 +
√
d)/2 whose continued fraction expansion has the symmetric part

b, t, t, . . . , t, b.

Proof. Let ℓ ≥ 4 be an integer and put n := ℓ− 1. Recall that

g(x) = Ln+1x− (−1)n+1LnSn,

h(x) = Lnx− (−1)n+1S2
n.

First we consider the case where n is odd. Suppose that t is even (resp.
odd) and b is a positive integer with

(4.1) b ≥ Sn,

{

b ∤ t if n = 3,

b 6= t if n > 3.

By Proposition 5, it follows that s0 = 1, and hence

f(s0) = g(s0)
2 + 4h(s0) = L2

n+1 − 2Ln+1LnSn + 4Ln + S2
n(L

2
n − 4).

If we put

k :=
g(s0)

2
=

Ln+1 − LnSn

2
(resp. k :=

g(s0) + 1

2
=

Ln+1 − LnSn + 1

2
),

then k > 0 by g(s0) > 0. Noting the parity of n and t, it follows from
Lemma 1 that

Ln+1 ≡ Sn ≡ 0 (mod 2) (resp. Ln+1 − LnSn ≡ 1 (mod 2)),
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and hence k is a positive integer. Since

s0 =
2k + LnSn

Ln+1
(resp. s0 =

2k − 1 + LnSn

Ln+1
)

from s0 = 1, if we put

d1 :=
f(s0)

4
(resp. d2 := f(s0)),

then we see from Theorem 1 and Remark 1 that d1 ∈ Z, d1 6∈ Q×2 (resp.
d2 ∈ Z, d2 6∈ Q×2, d2 ≡ 1 (mod 4)) and

d1 = k2 +
2kLn + Sn

Ln+1
(resp. d2 = (2k − 1)2 + 4

(2k − 1)Ln + Sn

Ln+1
),

√

d1 = [k, b, t, t, . . . , t, b
︸ ︷︷ ︸

n

, 2k] (resp.
1 +

√
d2

2
= [k, b, t, t, . . . , t, b

︸ ︷︷ ︸

n

, 2k − 1]).

Then by Theorem 2, d1 (resp. d2) is a positive integer with period n+ 1 of
minimal type for

√
d1 (resp. (1 +

√
d2)/2).

There are infinitely many positive integers b which satisfies (4.1) for each
t because Sn does not depend on b. From this, the infiniteness is obtained.

Next, we consider the case where n is even. Let t be an even positive
integer and b an even (resp. an odd) positive integer with

(4.2) b ≥ Sn, b 6= t.

Then it follows from Proposition 5 that s0 = 0, and hence

f(s0) = S2
n(L

2
n + 4).

If we put

k :=
g(s0)

2
=

LnSn

2
(resp. k :=

g(s0) + 1

2
=

LnSn + 1

2
),

then k > 0. Noting the parity of n, b and t, it follows from Lemma 1 that

Ln ≡ 0 (mod 2) (resp. Ln ≡ Sn ≡ 1 (mod 2)),

and hence k is a positive integer. Since

s0 =
2k − LnSn

Ln+1
(resp. s0 =

2k − 1− LnSn

Ln+1
)

from s0 = 0, if we put

d3 :=
f(s0)

4
(resp. d4 := f(s0)),
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then we see from Theorem 1 and Remark 1 that d3 ∈ Z, d3 6∈ Q×2 (resp.
d4 ∈ Z, d4 6∈ Q×2, d4 ≡ 1 (mod 4)) and

d3 = k2 +
2kLn + Sn

Ln+1
(resp. d4 = (2k − 1)2 + 4

(2k − 1)Ln + Sn

Ln+1
),

√

d3 = [k, b, t, t, . . . , t, b
︸ ︷︷ ︸

n

, 2k] (resp.
1 +

√
d4

2
= [k, b, t, t, . . . , t, b

︸ ︷︷ ︸

n

, 2k − 1]).

By Proposition 3, we see from b 6= t that the minimal period is n+1. Hence
d3 (resp. d4) is a positive integer with period n+1 of minimal type for

√
d3

(resp. (1 +
√
d4)/2).

The infiniteness follows from the fact that there are infinitely many even
(resp. odd) positive integers b with (4.2) for each t. �

Remark 2. In [3], they classified three cases by the parity of A and C:
(I) A ≡ 1 (mod 2);
(II) (A,C) ≡ (0, 0) (mod 2);
(III) (A,C) ≡ (0, 1) (mod 2).

It is easily seen that d1, d3 and d4 are in Case (II), (I) and (III), respectively.
Furthermore, d2 is in Case (I) if either b is even, n 6≡ 0 (mod 3) or b is odd,
n 6≡ 2 (mod 3), and d2 is in Case (III) if either b is even, n ≡ 0 (mod 3) or
b is odd, n ≡ 2 (mod 3).
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