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INTERSECTIVE POLYNOMIALS WITH

GALOIS GROUP D5

Melisa J. Lavallee, Blair K. Spearman and Qiduan Yang

Abstract. We give an infinite family of intersective polynomials with
Galois group D5, the dihedral group of order 10.

1. Introduction

A monic polynomial f(x) with integer coefficients is called intersective if
it has a root modulo m for all positive integers m. Equivalently f(x) has a
root in the field of p-adic numbers Qp for all primes p. We call f(x) nontriv-
ially intersective if it is intersective but has no rational root. Henceforth
in this paper our polynomials are nontrivially intersective. It is known that
f(x) cannot be irreducible over Q. In fact if f(x) is irreducible over Q, then
there exist prime numbers p for which the congruence f(x) ≡ 0(mod p) can-
not be solved in Z as shown by Brandl, Bubboloni and Hupp [3, Propostion
1.2]. The existence of intersective polynomials depends on properties of the
Galois group. Let L denote the splitting field of f(x) and Gal(f) denote the
Galois group of f(x). Behrend and Bilu [2] gave a simple condition to decide
whether or not a polynomial is intersective. Sonn [11] gave a condition for
f(x) to be intersective as well as a method for constructing such polynomi-
als. To apply this method it suffices to check that Gal(f) is n-coverable for
some n > 0, that is Gal(f) is the union of conjugates of n proper subgroups,
the intersection of all the conjugates is trivial, and every decomposition
group G(p) for p a prime ideal in L is contained in a conjugate of one of
these proper subgroups. We recall that the decomposition group G(p) is the
set of elements σ ∈ Gal(f) such that σ(p) = p. This condition clearly holds
if Gal(f) is n-coverable and every decomposition group is cyclic. Having
checked this condition, it remains to determine a set of n monic polyno-
mials with integer coefficients, defining those subfields of L corresponding
to the n chosen proper subgroups. The product of these polynomials will
be intersective. Examples of intersective polynomials in general seem to be
scarce. A single example of an intersective polynomial with Galois group
D5 the dihedral group of order 10 is given in Sonn [12]. The notation D10

is also used for this group. The Galois group D5 has the added interest
that it is 2-coverable so that the constructed intersective polynomial has
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two irreducible factors. In this paper we give an infinite parametric family
of intersective polynomials with Galois group D5. We make use of a family
of polynomials studied by Lavallee, Spearman Williams and Yang in [7]. In
that paper it was shown that they define monogenic quintic fields, that is
algebraic number fields whose rings of integers have a power basis. While
the property of monogeneity is not necessary when constructing intersective
polynomials, it is helpful when dealing with parametric families. This is
due to the fact that we can employ a well known theorem of Dedekind on
ideal factorization to assist with the study of the decomposition groups. In
Section 2, we recall some known properties of the polynomials we study and
some facts about ideal factorization in number fields, including the theo-
rem of Dedekind. In Section 3, we prove our theorem, give an estimate for
density of the values of b for which db is squarefree and finish with some
examples of intersective polynomials using our theorem. In Section 4 we
consider some related examples. We state our main theorem next.

Theorem 1.1. There exist infinitely many integers b such that

(1) db := −4b3 − 28b2 − 24b− 47

is squarefree. Let b be such an integer. If we set

fb(x) = x5 − 2x4 + (b+ 2)x3 − (2b+ 1)x2 + bx+ 1

then the polynomial

gb(x) = fb(x)(x
2 − db)

is intersective and has Galois group D5. Moreover for infinitely many of the

integers b for which db is squarefree, the splitting fields of gb(x) are distinct.

2. The Parametric Family

The parametric family of polynomials

fb(x) = x5 − 2x4 + (b+ 2)x3 − (2b+ 1)x2 + bx+ 1

for b an integer was studied in [7]. We record some of the properties of these
polynomials and their related number fields, referring the reader to [7] for
details. The polynomial fb(x) is irreducible over Q for all integers b, and if
db, given by (1) is squarefree, then the Galois group of fb(x) is isomorphic to
D5. Now assume that db is squarefree. The quadratic subfield of the splitting
field of fb(x) is Q

(√
db
)

with discriminant db, and if θ is a root of fb(x) then

Q (θ) has field discriminant d2b , and is monogenic with ring of integers Z [θ] .
Moreover infinitely many of the fields Q (θ) are distinct.

The proof of our theorem requires the following propositions concerning
ideal factorization in algebraic number fields. For the first proposition, F
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and K denote algebraic number fields and DK denotes the ring of integers
of K. We only state that part of this proposition which we will use.

Proposition 1. [8, Cor. 4.100] Let K/F be a Galois extension of number
fields with p a prime DK-ideal. If p is unramified in K/F then the decom-
position group of p is cyclic.

The next proposition concerns the factorization of primes in a composite
of two extensions of the same field. For notation, K, K1 and K2 denote
algebraic number fields and R denotes the ring of integers of K.

Proposition 2. [9, p. 159] If p is a prime ideal of R unramified in both K1/K
and K2/K then it is also unramified in the composite extension K1K2/K.

For the next proposition we use the notation irrQ (θ) to denote the monic
minimal polynomial in Z [x] of the algebraic integer θ. In addition we use
the notation ind(θ) to denote the index of θ, as defined by the equation

ind(θ) =

√

D(θ)

d(K)

where D(θ) is the polynomial discriminant of irr(θ) and d(K) is the field
discriminant of K = Q (θ) .

Proposition 3. [1, Cor. 10.5.1] Let K = Q (θ) be an algebraic number field
with θ ∈ OK the ring of integers of K. Let p be a rational prime. Let

f(x) = irrQ (θ) ∈ Z [x] .

Let − denote the natural map Z [x] → Zp [x] , where Zp = Z/pZ. Let

f(x) = g1(x)
e1 · · · gr(x)er ,

where g1(x), . . . gr(x) are distinct monic irreducible polynomials in Zp [x] ,
and e1, . . . , er are positive integers. For i = 1, 2, . . . , r, let fi(x) be any monic
polynomial of Z [x] such that f i = gi and deg(fi) = deg(gi). Set

Pi = 〈p, fi(θ)〉 , i = 1, 2, . . . , r.

If ind(θ) 6≡ 0(mod p), then P1, . . . , Pr are distinct prime ideals of OK with

〈p〉 = P e1
1 · · ·P er

r ,

N(Pi) = pdeg fi , i = 1, . . . , r.
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3. proof of theorem

Proof. The fact that there are infinitely many integers b such that

db = −4b3 − 28b2 − 24b− 47

is squarefree follows from a theorem of Erdös [5]. It was noted in [12] that
D5 is 2-coverable with the subgroup of order 5 and a subgroup of order
2. In order to construct intersective polynomials, then as stated in the
introduction we first show that the decomposition group G(p) is cyclic for
each prime ideal p in the splitting field L of fb(x). If p is unramified in L
then G(p) is cyclic by Proposition 1. Now let p be a ramified prime in L
lying above the rational prime p. Since Gal(fb) ≃ D5, G(p) is cyclic if and
only if G(p) is a proper subgroup of D5. As Gal(fb) acts transitively on
the set of prime ideals in L lying above p we deduce that G(p) is a proper
subgroup of D5 if there are at least two prime ideals in L lying above p. If
θ denotes a root of fb(x), then L is the compositum of Q (θ) and Q

(√
db
)

so that p must ramify in at least one of these fields by Proposition 2. We
recall from Section 2 that these fields have discriminants db and d2b which
obviously contain the same prime factors. Therefore p must ramify in both
of these fields and in particular in Q (θ). If only one prime ideal p in L
lies above p it follows that only one prime ideal of Q (θ) lies above p. Since
Q (θ) is monogenic with ring of integers Z [θ] we have ind(θ) 6≡ 0(mod p).
Therefore we can apply Proposition 3 and conclude that the only possible
factorization of fb(x) modulo p, consistent with the previous statements
about the factorization of a ramified ideal 〈p〉 leads to r = 1 and e = 5 so
that

(2) fb(x) ≡ (x+ t)5 (mod p),

where t is an integer. Equating each coefficient of fb(x) − (x + t)5 to zero
modulo p gives us a set of congruences from which we will derive a contra-
diction. The coefficient of x4 is

−2− 5t,

and the constant term is

1− t5,

each of which is divisible by p. From the identity

(625t4 − 250t3 + 100t2 − 40t+ 16)(−2 − 5t)− 55(1− t5) = −7 · 11 · 41,
it follows that the prime p must be one of 7, 11 or 41. Suppose that p = 7.
Since

−2− 5t ≡ 0 (mod 7),
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we have

(3) t ≡ 1 (mod 7).

Since p is ramified we have

db ≡ 0 (mod 7),

so that

(4) b ≡ 4 (mod 7).

However the coefficient of x3 in fb(x)− (x+ t)5 is

b− 10t2 + 2,

which is not divisible by 7 if (3) and (4) hold. If p = 11 we are led in the
same way to the congruence

(t, b) ≡ (4, 4) or (4, 7) (mod 11),

The pair (4, 4) is omitted because db is not squarefree, while the remaining
pair (4, 7) yields a contradiction as in the case p = 7. For the case p = 41
we are led to the congruence

(t, b) ≡ (16, 25) (mod 41)

and this possibility leads to the same type of contradiction as in the case
p = 7. Hence (2) is impossible. Thus, we conclude that more than one prime
ideal in L lies over p, so that all of the decomposition groups are proper and
hence cyclic. The method of construction for an intersective polynomial
when Gal(f) ≃ D5 requires us to form the product of fb(x) with a defining
polynomial for Q

(√
db
)

, thus

gb(x) = fb(x)(x
2 − db)

is intersective and has Galois group D5. Finally, since infinitely many of the
algebraic number fields Q (θ) are distinct as noted in the introduction to
Section 2, we have that infinitely many of the splitting fields Q

(

θ,
√
db
)

of
gb(x) are distinct. �

Remark. The frequency with which the quantity db is squarefree is clarified
by a theorem of Hooley on the squarefree values of cubic polynomials given
in [6]. This theorem implies that for a positive constant C we have

S(b, x) ∼ Cx

where

S(b, x) = # {b : |b| ≤ x and db is squarefree} .
Thus the set of integers b for which db is squarefree has positive density.
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We close this section with some examples of intersective polynomials ob-
tained from our theorem.

Example 1. For the following values of b we construct intersective polyno-
mials using our theorem. All of the roots in C of the first two intersective
polynomials are real, while in the last two examples only one root is real.
The splitting fields of these polynomials are distinct.

b db Intersective Polynomial

−9 817 (x5 − 2x4 − 7x3 + 17x2 − 9x+ 1)(x2 − 817)

−8 401 (x5 − 2x4 − 6x3 + 15x2 − 8x+ 1)(x2 − 401)

0 −47 (x5 − 2x4 + 2x3 − x2 + 1)(x2 + 47)

2 −239 (x5 − 2x4 + 4x3 − 5x2 + 2x+ 1)(x2 + 239).

4. Related Examples

For the purpose of comparison with the D5 polynomials that we made use
of in this paper we consider dihedral quintic trinomials x5 + ax+ b where a
and b denote rational numbers. A parametrization of these polynomials is
given by Roland, Yui and Zagier [10]. It was shown in [13] that the quintic
fields defined by these polynomials have a common index divisor of 2, so
that none of these fields are monogenic. Nevertheless some of them give rise
to intersective polynomials.

Example 2. If f(x) = x5 + 11x + 44 then Gal(f) ≃ D5. It can be checked
that all of the decomposition groups are cyclic. To deal with the ramified
primes and associated decomposition groups, algorithms for factoring ideals
are given in Cohen [4]. The quadratic subfield of the splitting field of f(x)
is Q

(√
−2

)

and so the method used in [12] shows that

(x5 + 11x+ 44)(x2 + 2)

is intersective.

Example 3. If f(x) = x5−5x+12 then Gal(f) ≃ D5. The quadratic subfield
of the splitting field is Q

(√
−10

)

. However there is a single ideal lying above
5 in the splitting field of f(x) and the decomposition group of this ideal is
all of D5. Following the method in [12] yields the polynomial

(x5 − 5x+ 12)(x2 + 10),

which is not intersective since it has no root modulo 25.
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