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A CHARACTERIZATION OF THE

GLAUBERMAN-WATANABE CORRESPONDING BLOCKS

AS BIMODULES

Fuminori Tasaka

Abstract. We give a characterization of the Glauberman-Watanabe
corresponding blocks viewed as bimodules as a direct summand of a
restricted or an induced module from the block in terms of a vertex and
a multiplicity.

1. Introduction

Let p be a prime. Let O be a complete discrete valuation ring having an
algebraically closed residue field k of characteristic p and having a quotient
field of characteristic zero which will be assumed be large enough. Let b be
a (p-)block (idempotent) of a finite group G over O.

Below, for groups H1 and H2, an (OH1,OH2)-bimodule M will be identi-
fied with an O[H1×H2]-module in the usual way: (h1, h2) ·m = h1 ·m ·h2

−1

where (h1, h2) ∈ H1×H2 and m ∈ M .
By the action g1 · x · g2 = g1xg2 where g1, g2 ∈ G and x ∈ OG, block

(algebra) OGb is an indecomposable (OG,OG)-bimodule, and b has a defect
group D if and only if OGb has a vertex ∆D = {(d, d) ∈ D×D | d ∈ D},
see [3, Theorem 1].

For a block c which is a Brauer correspondent of b where H is a subgroup
of G containing NG(D), O[G×G]-module OGb and O[H×H]-module OHc
are the Green corresponding modules with respect to (G×G,∆D,H×H),
see [3, Lemma 4.2c] and [4, Theorem 2]. That is, as a bimodule OHc can

be characterized as a unique indecomposable direct summand of OGb↓G×G
H×H

with a vertex ∆D. Also as a bimodule OGb is characterized as a unique
indecomposable direct summand of OHc↑G×G

H×H with a vertex ∆D.
Let q be a prime such that q 6 ||G|. Let S be a cyclic group of order

q acting on G. Then with this action, we can consider the semi-direct
product G⋊S, denoted by E. Denote by G′ the centralizer CG(S) of S
in G. For an S-invariant irreducible character χ of G, there is a unique
irreducible character of G′, called Glauberman correspondent of χ, such
that its multiplicity (in fact, it is ±1 modulo q) in χ↓GG′ is not divisible
by q, and χ is a unique S-invariant irreducible character of G such that
its multiplicity (in fact, it is ±1 modulo q) in χ′↑GG′ is not divisible by q,
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see [2]. Assume that b has a defect group D centralized by S, and denote
by b′ the Glauberman-Watanabe corresponding block of b. That is, b′ is a
block of G′ such that Irr(b′) = {χ′ |χ∈Irr(b)=Irr(b)S}, see [9]. Let S̈ be a
subgroup of S×S(⊂ E×E) such that the canonical projections S×S → S×1

and S×S → 1×S induce isomorphisms from S̈ to S×1 and 1×S. Assume
that O contains q|G|2-th root of unity, see [7].

As in the case of the Brauer corresponding blocks, we can characterize the
Glauberman-Watanabe corresponding blocks viewed as bimodules in terms
of a vertex and a multiplicity as a direct summand of a restricted or an
induced module from the block.

Theorem 1.1.

(1) OG′b′ is a unique indecomposable direct summand of OGb↓G×G
G′×G′ with

a vertex ∆D and with a multiplicity not divisible by q. In fact, its
multiplicity is 1 modulo q.

(2) OGb is a unique S̈-invariant indecomposable direct summand of

OG′b′↑G×G
G′×G′ with a vertex ∆D and with a multiplicity not divisible by

q. In fact, its multiplicity is 1 modulo q.

We use Puig’s theory as described in [8]. A multiplicity module of an H-
algebra A for a group H with respect to a local pointed group Dγ is denoted
by VA(Dγ).

For finite groups H, H ′ and an (OH,OH ′)-bimodule M , EndO(M) has
an interior H×H ′-algebra structure, see [8, Example 10.6], and its subal-

gebra EndO(M)1×H′

consisting of 1×H ′-invariant elements has an interior
H-algebra structure determined by the left OH-module structure of M .
The proof depends in particular on Puig correspondence, see [5, 2.10.3] [8,
Section 19], and the following characterization of the bimodule inducing a
Morita equivalence, see [6, Proposition 6.5]:

(OH,OH ′)-bimodule M induces a Morita equivalence between block al-
gebras OHc and OH ′c′ of H and H ′ if and only if the structural map
OH → EndO(M)1×H′

induces an interior H-algebra isomorphism OHc ≃

EndO(M)1×H′

.

For a direct summand X of a module Y , the multiplicity of X in Y is
denoted by m(X,Y ).

2. Reduction to the case D ✁G

Lemma 2.1. The statement of Theorem 1.1 holds if the statement of The-
orem 1.1 holds in the case D ✁G.
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Proof Let c be a block of N = NG(D) which is a Brauer correspondent
of b, and let c′ be a block of N ′ = NG′(D) which is a Brauer correspondent
of b′. Note that c′ is a Glauberman-Watanabe correspondent of c, see [9,
Proposition 4(i)].

(1) Considering Green correspondence with respect to (G×G,∆D,N×N),

we have OGb↓G×G
N×N ≃ ONc⊕X for an O[N×N ]-module X any of whose in-

decomposable direct summands has a vertex not N×N -conjugate to ∆D.
Then, since the statement of Theorem 1.1(1) holds for ONc by the as-

sumption and none of the indecomposable direct summands of X↓N×N
N ′×N ′ has

a vertex ∆D, we have OGb↓G×G
N ′×N ′ ≃ ON ′c′⊕Y for an O[N ′×N ′]-module Y

any of whose indecomposable direct summands with a vertex ∆D has a
multiplicity divisible by q.

On the other hand, Green correspondence with respect to
(G′×G′,∆D,N ′×N ′) induces a multiplicity preserving bijection between the

indecomposable direct summands of OGb↓G×G
G′×G′ with a vertex ∆D and the

indecomposable direct summands of OGb↓G×G
N ′×N ′ with a vertex ∆D.

Hence, noting that OG′b′ and ON ′c′ are the Green corresponding mod-
ules, we have the statement.

(2) Firstly, we note that for a group H, a subgroup K of H and an
indecomposable OK-module Z with a vertex R, if an indecomposable direct
summand of Z↑HK does not have a vertex R, then its vertex has an order
strictly smaller than |R|.

Considering Green correspondence with respect to (G′×G′,∆D,N ′×N ′),

we haveON ′c′↑G
′×G′

N ′×N ′ ≃ OG′b′⊕X for anO[G′×G′]-moduleX none of whose
indecomposable direct summands has a vertex ∆D. Hence, the indecom-
posable direct summands of OG′b′↑G×G

G′×G′ with a vertex ∆D are the inde-

composable direct summands of ON ′c′↑G×G
N ′×N ′ with a vertex ∆D, and so we

consider ON ′c′↑G×G
N ′×N ′ .

By the assumption, we have ON ′c′↑N×N
N ′×N ′ ≃ ONc⊕Y for an O[N×N ]-

module Y any of whose S̈-invariant indecomposable direct summands with
a vertex ∆D has a multiplicity divisible by q. Note that Y is S̈-invariant
since ON ′c′↑N×N

N ′×N ′ and ONc are S̈-invariant. We have ON ′c′↑G×G
N ′×N ′ ≃

ONc↑G×G
N×N⊕Y ↑G×G

N×N .

OGb is a unique indecomposable direct summand of ONc↑G×G
N×N with a

vertex ∆D, considering Green correspondence with respect to
(G×G,∆D,N×N).

Let M be an S̈-invariant indecomposable direct summand of Y ↑G×G
N×N

with a vertex ∆D, and let L be an indecomposable direct summand of
Y such that M |L↑G×G

N×N . Then L has a vertex ∆D. If L is S̈-invariant, then
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q |m(L, Y ) and so q |m(M,Y ↑G×G
N×N ). If L is not S̈-invariant, then we have

M ≃ M ti | (L↑G×G
N×N )ti ≃ Lti↑G×G

N×N and Lti |Y for any ti ∈ S̈ and we have

Lti 6≃ Ltj if i 6= j. Hence, any S̈-invariant indecomposable direct summand
of Y ↑G×G

N×N with a vertex ∆D has a multiplicity divisible by q.
Hence, we have the statement. �

3. The case D ✁G

In this section, we assume
D ✁G

and show Theorem under D ✁G.

We cite the facts used later from [7]. (Note that q 6 |n(V, V ′) in the state-
ment of [7, Lemma 3.2(ii)] is a misprint of q 6 |n(U ′′, U).)

Lemma 3.1. ([7, Lemma 3.2]) Let H be a group acted by S with q 6 ||H|.

Let Γ = H ⋊ S and H ′ = CH(S). Let Ã be a simple k-algebra having

a Γ-algebra structure. Let Z̃ be a unique simple Ã-module, which has the
k∗Γ̂-module structure associated with the Γ-algebra structure of Ã, see [8,

Example 10.8]. If a direct summand U of Z̃↓ΓH′ is simple projective and

there exists an S-invariant simple projective direct summand V of U↑HH′ such

that q 6 |m(V,U↑HH′), then any S-invariant indecomposable direct summand of

U↑HH′ not isomorphic to V has a multiplicity divisible by q.

Lemma 3.2. ([7, Corollary 4.5, Theorem 4.9]) Any indecomposable direct

summand of OGb↓G×G
G×G′ has a vertex ∆D, and there is a primitive idempotent

f ∈ (OGb)G
′

such that OGf is a unique indecomposable direct summand

of OGb↓G×G
G×G′ with a multiplicity m not divisible by q. In fact, m ≡ ±1

(mod q). Similar for OGb↓G×G
G′×G and fOG. Moreover, OGf and fOG

induce a Morita equivalence between OGb and OG′b′. In particular, fb′ = f ,
fOG ⊗OG OGf ≃ OG′b′ as (OG′,OG′)-bimodules and OGf ⊗OG′ fOG ≃
OGb as (OG,OG)-bimodules.

Proof of Theorem 1.1(1) Since we have OGb↓G×G
G′×G′ ≃ OGb↓G×G

G′×G ⊗OG

OGb↓G×G
G×G′ , the statement follows from Lemma 3.2. �

Next, we show Theorem 1.1(2). Below, let an idempotent f and an integer
m be as in Lemma 3.2.

Note that OGb is S̈-invariant, since there is some unit element us of
OGb such that s−1us is in the center of OGb and so we have OGb(s1,s2) ≃
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s−1
1 OGbs2 ≃ s−1

1 us1OGbu−1
s2 s2 ≃ OGb, see [9, p.551 and Proposition 1].

Similarly, OGf is also S̈-invariant.
Note also that OGb are covered by q isomorphic blocks and the restriction

↓ E
G gives an isomorphism between the category of theOE-modules in a block

covering b and the category of the OGb-modules which preserves a vertex of
the modules, see [9, p.553]. Similar for b′ and the blocks of E′ covering b′.

Lemma 3.3. OGb is an S̈-invariant indecomposable direct summand of
fOG↑G×G

G′×G with a vertex ∆D and with a multiplicity not divisible by q.

Proof Since b
(

fOG↑G×G
G′×G

)

≃ OGb↓G×G
G×G′ ⊗OG′ fOG, the statement follows

from Lemma 3.2. �

Let E′ = G′S and let b̂′ be a block of E′ covering b′.
Noting that b′ and b are covered by isomorphic blocks of E′ and E, we

have fOG ≃ f̂OE↓E
′×E

G′×G for some primitive idempotent f̂ ∈ (OEb)E
′

such

that b̂′f̂ = f̂ and let b̂ be a block of E such that b̂f̂ = f̂ , see [7, Lemma

5.3]. Then f̂OE⊗OEb̂− ≃
(

OE′b̂′⊗OG′b′ fOG⊗OGbOEb̂
)

⊗OEb̂− induces a

Morita equivalence between OE′b̂′ and OEb̂, and so by [6, Proposition 6.5]

we have EndO(f̂OE)1×E ≃ OE′b̂′ as interior E′-algebras, which is used in
the proof of Lemma 3.4(viii)⇔(ix).

Let Dγ′ be a defect pointed group of OE′b̂′. We also denote by Dγ′ the

corresponding local pointed group of IndEE′(OE′b̂′) through the canonical

embedding from OE′b̂′ to ResEE′IndEE′(OE′b̂′), see [8, Proposition 15.1].
In Lemma 3.4(x), S(⊂ E) and its image in NE(Dγ′)/D is identified.

Lemma 3.4. There is a multiplicity preserving bijection between the fol-
lowing sets:

(i) The isomorphism classes of the S̈-invariant indecomposable direct sum-

mands of OG′b′↑G×G′

G′×G′ with a vertex ∆D.

(ii) The isomorphism classes of the S̈-invariant indecomposable direct sum-

mands of OE′b̂′↑E×E′

E′×E′↓
E×E′

G×E′ with a vertex ∆D.

(iii) The S̈-invariant points of G×E′ of the interior E×E′-algebra

EndO
(

OE′b̂′↑E×E′

E′×E′

)

with a defect group ∆D.
(iv) The S-invariant points of G of the interior E-algebra

EndO
(

OE′b̂′↑E×E′

E′×E′

)1×E′

with a defect group D.

(v) The isomorphism classes of the S̈-invariant indecomposable direct sum-

mands of fOG↑G×G
G′×G with a vertex ∆D.

(vi) The isomorphism classes of the S̈-invariant indecomposable direct sum-

mands of f̂OE↑E×E
E′×E↓

E×E
G×E with a vertex ∆D.
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(vii) The S̈-invariant points of G×E of the interior E×E-algebra

EndO
(

f̂OE↑E×E
E′×E

)

with a defect group ∆D.
(viii) The S-invariant points of G of the interior E-algebra

EndO
(

f̂OE↑E×E
E′×E

)1×E
with a defect group D.

(ix) The S-invariant points of G of the interior E-algebra IndEE′

(

OE′b̂′
)

with a defect group D.
(x) The isomorphism classes of the S-invariant projective indecomposable

direct summands of VIndE
E′

(OE′ b̂′)(Dγ′)↓
NE(Dγ′ )/D

NG(Dγ′ )/D
.

Proof (i)⇔(ii): We have an isomorphism

OG′b′↑G×G′

G′×G′ ≃ OE′b̂′↑E×E′

E′×E′↓
E×E′

G×E′↓
G×E′

G×G′ ,

and the restriction ↓G×E′

G×G′ , which is compatible with the action of S̈, gives a

vertex preserving bijection between the isomorphism classes of (OG,OE′ b̂′)-
bimodules and the isomorphism classes of (OG,OG′b′)-bimodules.

(ii)⇔(iii): See [8, Example 13.4 and Proposition 18.11].

(iii)⇔(iv): Since the idempotents of the both sides of

EndO
(

OE′b̂′↑E×E′

E′×E′

)G×E′

=
(

EndO
(

OE′b̂′↑E×E′

E′×E′

)1×E′
)G

are the same and 1×S acts trivially on them, there is a multiplicity preserv-

ing bijection between the S̈-invariant points of G×E′ of EndO
(

OE′b̂′↑E×E′

E′×E′

)

and the S-invariant points of G of EndO
(

OE′b̂′↑E×E′

E′×E′

)1×E′

.
Moreover, the points of the former with a defect group ∆D correspond

bijectively to the points of the latter with a defect group D, since we have

TrG×E′

∆P

(

EndO
(

OE′b̂′↑E×E′

E′×E′

)∆P
)

= TrG×E′

P×E′

(

TrP×E′

∆P

(

EndO
(

OE′b̂′↑E×E′

E′×E′

)∆P
))

= TrG×E′

P×E′

(

EndO
(

OE′b̂′↑E×E′

E′×E′

)P×E′
)

= TrGP

((

EndO
(

OE′b̂′↑E×E′

E′×E′

)1×E′
)P)

,

for a subgroup P of D. Here, the second equality holds, since we have

OE′b̂′↑E×E′

E′×E′↓
E×E′

P×E′

∣

∣

∣
O↑E

′×E′

∆D ↑E×E′

E′×E′↓
E×E′

P×E′

≃ O↑E×E′

∆D ↓E×E′

P×E′

≃ ⊕(c1,c2)∈[∆D\E×E′/P×E′]O↑P×E′

∆D(c1,c2)∩(P×E′)

≃ ⊕(c1,c2)∈[∆D\E×E′/P×E′]O↑P×E′

(∆D(c1,c2)∩(P×E′))
(1,c−1

2
c1)
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(here, c1 is chosen so that c1 ∈ E′ since E = CE(D)E′ when D✁E, see the
proof of [9, Corollary 2]) and
(

∆D(c1,c2) ∩ (P×E′)
)(1,c−1

2 c1)
= ∆D(c1,c1)∩ (P×E′) = ∆D∩ (P×E′) = ∆P

and so TrP×E′

∆P is surjective by [8, Corollary 17.3(a)(c)].

(v)⇔(vi)⇔(vii)⇔(viii): Similar to (i)⇔(ii)⇔(iii)⇔(iv).

(iv)⇔(ix): There are isomorphisms of interior E-algebras

EndO
(

OE′b̂′↑E×E′

E′×E′

)1×E′

≃IndE×E′

E′×E′

(

EndO
(

OE′b̂′
)

)1×E′

≃IndEE′

(

EndO
(

OE′b̂′
)1×E′

)

≃IndEE′

(

OE′b̂′
)

.

Here, for the first isomorphism, see [8, Example 16.4]. For the second iso-
morphism, note that

∑

i,j(gi, 1) ⊗O[E′×E′] xi,j ⊗O[E′×E′] (g
−1
j , 1) belongs to

IndE×E′

E′×E′

(

EndO
(

OE′b̂′
)

)

, where gi, gj ∈ [E/E′] and xi,j ∈ EndO
(

OE′b̂′
)

, is

1×E′-invariant if and only if xi,j is 1×E′-invariant for any i, j.

(viii)⇔(ix): There are isomorphisms of interior E-algebras

EndO
(

f̂OE↑E×E
E′×E

)1×E

≃IndE×E
E′×E

(

EndO
(

f̂OE
)

)1×E

≃IndEE′

(

EndO
(

f̂OE
)1×E

)

≃IndEE′

(

OE′b̂′
)

.

(ix)⇔(x): LetDδ be a defect pointed group of a point ofG of IndEE′(OE′b̂′).
Then Dδ and Dγ′ are conjugate by an element of E, see [8, Proposition 16.7
and Corollary 18.4]. In fact, they are conjugate by an element of G, since

a pointed group Dγ′ of OE′b̂′ is S-invariant. Hence, any point of G of

IndEE′(OE′b̂′) with a defect group D has a defect pointed group Dγ′ .
Then, the statement follows from Puig correspondence, see [8, Theorem

19.1], since the action of S is compatible with the correspondence, see for
example the first paragraph in p.341 of [7]. �

Lemma 3.5. VIndE
E′

(OE′b̂′)(Dγ′)↓
NE(Dγ′ )/D

NG(Dγ′ )/D
is projective and has a unique

S-invariant indecomposable direct summand with a multiplicity not divisible
by q.
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Proof VOE′b̂′(Dγ′)↓
NE′ (Dγ′ )/D

NG′ (Dγ′ )/D
is simple projective, since it is isomorphic to

a defect multiplicity module of OG′b′, see [8, Corollary 37.6(a)]. Through

the canonical embedding, VOE′b̂′(Dγ′)↓
NE′ (Dγ′ )/D

NG′ (Dγ′ )/D
can be viewed as a direct

summand of VIndE
E′(OE′b̂′)(Dγ′)↓

NE(Dγ′ )/D

NG′ (Dγ′ )/D
, see [8, Corollary 15.5], and we

have

VIndE
E′(OE′b̂′)(Dγ′)↓

NE(Dγ′ )/D

NG(Dγ′ )/D

≃VOE′b̂′(Dγ′)↑
NE(Dγ′ )/D

NE′ (Dγ′ )/D
↓
NE(Dγ′ )/D

NG(Dγ′ )/D

≃VOE′b̂′(Dγ′)↓
NE′ (Dγ′ )/D

NG′ (Dγ′ )/D
↑
NG(Dγ′ )/D

NG′ (Dγ′ )/D
,

see the proof of [1, Proposition 7.4] or the second paragraph of the proof of
[7, Corollary 3.6(ii)].

Hence, VIndE
E′

(OE′b̂′)(Dγ′)↓
NE(Dγ′ )/D

NG(Dγ′ )/D
is projective since

VOE′b̂′(Dγ′)↓
NE′ (Dγ′ )/D

NG′ (Dγ′ )/D
is projective, and for the remaining assertion, by

Lemma 3.1, it suffices to show that VIndE
E′

(OE′b̂′)(Dγ′)↓
NE(Dγ′ )/D

NG(Dγ′ )/D
has an S-

invariant simple direct summand with a multiplicity not divisible by q.
OGb is an S̈-invariant indecomposable direct summand of fOG↑G×G

G′×G
with a vertex ∆D and with a multiplicity not divisible by q, see Lemma
3.3. Noting an (OE,OE)-bimodule isomorphism OEb̂ ≃ OEf̂ ⊗OE′ f̂OE,

OEb̂↓E×E
G×E is an indecomposable direct summand of f̂OE↑E×E

E′×E↓
E×E
G×E such

that OGb ≃ OEb̂↓E×E
G×E↓

G×E
G×G (Lemma 3.4(v)(vi)). Let σ̈ be a point of G×E

of EndO
(

f̂OE↑E×E
E′×E

)

corresponding toOEb̂↓E×E
G×E (Lemma 3.4(vi)(vii)). Then

the localized algebra EndO
(

f̂OE↑E×E
E′×E

)

σ̈
is isomorphic to an interior G×E-

algebra EndO
(

OEb̂↓E×E
G×E

)

, see [8, Lemma 12.4]. The set σ̈ can be viewed

as a point σ̇ of G of EndO
(

f̂OE↑E×E
E′×E

)1×E
(Lemma 3.4(vii)(viii)). Note

that jEndO
(

f̂OE↑E×E
E′×E

)1×E
j = jEndO

(

f̂OE↑E×E
E′×E

)

j1×E for j ∈ σ̇ = σ̈. In

fact, we have jEndO
(

f̂OE↑E×E
E′×E

)1×E
j ⊆ jEndO

(

f̂OE↑E×E
E′×E

)

j1×E since j is
1×E-invariant, and we have

jEndO
(

f̂OE↑E×E
E′×E

)1×E
j ⊇ jEndO

(

f̂OE↑E×E
E′×E

)

j1×E since an

O[1×E]-endomorphism of j
(

f̂OE↑E×E
E′×E

)

can be extended to an O[1×E]-

endomorphism of f̂OE↑E×E
E′×E. Let σ be a point of G of IndEE′

(

OE′b̂′
)

corre-
sponding to σ̇ through the isomorphism

EndO
(

f̂OE↑E×E
E′×E

)1×E
≃ IndEE′

(

OE′b̂′
)

(Lemma 3.4 (viii)(ix)), and let V
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be an indecomposable direct summand of VIndE
E′

(OE′b̂′)(Dγ′)↓
NE(Dγ′ )/D

NG(Dγ′ )/D
cor-

responding to Gσ by Puig correspondence (Lemma 3.4(ix)(x)).
Then V is S-invariant and has a multiplicity not divisible by q.
Moreover, V is simple, since V can be identified with a defect multiplicity

module of the localized algebra EndO
(

f̂OE↑E×E
E′×E

)1×E

σ̇
, we have isomor-

phisms of interior G-algebras

EndO
(

f̂OE↑E×E
E′×E

)1×E

σ̇

≃EndO
(

f̂OE↑E×E
E′×E

)

σ̈

1×E

≃EndO
(

OEb̂↓E×E
G×E

)1×E

≃ResEG
(

OEb̂
)

≃OGb,

and OGb has a simple defect multiplicity module.
Hence, the assertion holds. �

Proposition 3.6.

(1) OGf is a unique S̈-invariant indecomposable direct summand of

OG′b′↑G×G′

G′×G′ with a vertex ∆D and with a multiplicity not divisible by
q. In fact, its multiplicity is m ≡ ±1 (mod q).

(2) fOG is a unique S̈-invariant indecomposable direct summand of

OG′b′↑G
′×G

G′×G′ with a vertex ∆D and with a multiplicity not divisible by
q. In fact, its multiplicity is m ≡ ±1 (mod q).

(3) OGb is a unique S̈-invariant indecomposable direct summand of

fOG↑G×G
G′×G with a vertex ∆D and with a multiplicity not divisible by

q. In fact, its multiplicity is m ≡ ±1 (mod q).

(4) OGb is a unique S̈-invariant indecomposable direct summand of

OGf↑G×G
G×G′ with a vertex ∆D and with a multiplicity not divisible by

q. In fact, its multiplicity is m ≡ ±1 (mod q).

Proof (1) Since b
(

OG′b′↑G×G′

G′×G′

)

≃ OGb↓G×G
G×G′b′, OGf is an S̈-invariant

indecomposable direct summand of OG′b′↑G×G′

G′×G′ with a vertex ∆D and with

a multiplicity m ≡ ±1 (mod q) by Lemma 3.2. Uniqueness part follows from
Lemma 3.4(i)(x) and Lemma 3.5.

(2) By symmetry (2) is equivalent to (1).
(3) It follows from Lemma 3.3, Lemma 3.4(i)(v) and (1).
(4) By symmetry (4) is equivalent to (3). �
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Proof of Theorem 1.1(2) The statement follows from Proposition 3.6(1)(4)
(or (2)(3)) and the similar argument in the fifth paragraph of the proof of
Lemma 2.1(2). �
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