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ON MEANS OF BANACH-SPACE-VALUED FUNCTIONS

Ryoraro SATO

ABSTRACT. We continue to study relations among exponential and poly-
nomial growth orders of the y-th order Cesaro means (v > 0) and of the
Abel mean for a Banach-space-valued function u on the interval [0, c0).
We have already studied the problem for a continuous function u. Now
we assume that u is a locally integrable function in a Banach space or
an improperly locally integrable positive function in a Banach lattice.

1. INTRODUCTION AND PRELIMINARIES
Let X be a Banach space. We define

Llloc([O, 50, X) = {  [0,00) = X ‘ u is Bochner integrable on }

[0, 0] for all 0 < b < c©

When X is a Banach lattice, we also define

Lilmprop. lOC([O’ OO), X-|-)

u is Bochner integrable on |a, b] for all
=<{u:[0,00) - X7 0<a<b<ooandf0 s)ds = :
limgo fal u(s) ds exists (111 X norm)

where XT denotes the positive cone of X. We note that L™ 1°¢([0, 00),
X71) is not a subset of L{°([0,00), X) in general.

Unless the contrary is explicitely specified, we assume below that

(A) w is a function in Ll"c([O o0), X) with X a Banach space, or

(B) u is a function in L™ P 1°¢([0, 00), X ) with X a Banach lattice.

Assuming that u is continuous on [0, c0), we have studied relations among
exponetial and polynomial growth orders of the ~-th order Cesaro mean
(v > 0) and of the Abel mean for u (cf. Chen-Sato-Shaw [3]). In this paper
we continue to study the problem under the assumption that u satisfies (A)

or (B); the aim is to generalize the results of [3] to such a function u. (See
also Chen-Sato [2], Li-Sato-Shaw [5]-[7], and Sato [9]-[12].)
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Let v > 0 be a real number. Then the y-th oder Cesaro mean ¢ of u over
0,¢] is defined as ¢} := u(0) and, for ¢ > 0,

u(t) if v =0,

= (kys1 ()7 (hy # u)(1),
where ko := dy, the Dirac measure at 0, and k- (t) := t7"1/T'(y) for t > 0 if
v > 0. In particular, it follows that ¢} = ¢! fg u(s)ds for all t > 0.

We note that under the assumption (A) [resp. (B)] the following hold.
(a) If 0 < v < 1, then the Bochner integral [ (¢t — )7~ u(s) ds [resp. [)(t —
s) 7 lu(s) ds = limgg fj(t—s)”‘lu(s) ds] does not necessarily exist for all ¢ >
0, but exists for dt-almost all ¢ > 0. (b) If v > 1, then the Bochner integral
fot(t — 8)Y Lu(s) ds [resp. fot(t — 5)7 lu(s)ds = limgyg fj(t — 8)7 tu(s) ds]
exists for all £ > 0, and the function t — fg(t — 5)7lu(s) ds becomes
continuous on (0,00) and satisfies

[ =t as

Further we note that if u satisfies the additional hypothesis ||xq, 5t[lcc < 00
for all 0 < a < b < o0, then fg(t — 5)7 lu(s) ds exists for all v > 0 and

t > 0, and the function ¢ — fot(t — 5)7"u(s) ds becomes continuous on
(0,00); but in general (2) cannot be expected for 0 < v < 1. (For example,
let u(s) := s°~1 for s > 0, where 3 > 0. Then u € L{¥¢(]0,00),R*), and
fot(t —8) " tu(s)ds = fot(t — 5)7 Bl gs = AL fol(l —s)7 Bl ds =
781 B(,B). It follows that limyo fg(t — 5)7lu(s)ds = oo whenever
0<y<1-p)

For \ € C with Re\ > 0 the Abel mean ay of u is defined as

2 1i
(2) i

=0.

oo t
(3) ay = ay(u) == )\/ e Mu(s)ds =\ lim [ e u(s)ds
if the limit exists. The abscissa of convergence o(u) of the Laplace integral
U(A) = [o7 e Mu(s) ds = limy_yoq fg e~*u(s) ds is defined as

t
o(u) := inf {Re/\ : lim e_’\su(s) ds exists}.
=00 Jg
u is said to be Laplace transformable if o(u) < oo. It is known that the
Laplace integral u(\) exists for all A € C with Re\ > o(u), and the vector-
valued function w : A — u(\) is analytic on the domain {\ € C : Re\ >
o(u)} (see e.g. Theorems 1.4.1 and 1.5.1 of [1]). If the function s +— e~ *u(s)
is Bochner integrable on [0,00) for some A = \g, then, for all A € C with
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ReA > Ao, the Bochner integral [;° e~ **u(s) ds exists and it agrees with T(\)
by the dominated convergence theorem. In particular, we have \g > o(u).

The function u is said to be dt-exponentially bounded if ||u(t)| < Me*
for some M > 0, w € R and dt-almost all ¢ > 0. If there exist M > 0,
K >0 and w € R such that |Ju(t)|] < Me“! for dt-almost all t > K, then u
is said to be dt-exponentailly bounded (at co), and we write ||u(t)|| = O(e*?)
(mod dt) as t — co. We then define the dt-exponential growth order wo(u)
of u (at o0) as

wo(u) :=inf{w € R : ||Ju(t)|| = O(e“?) (mod dt) as t — co}.

It is clear that [;° e *u(s)ds = lim;—oc fg e Mu(s) ds exists for all A with
ReX > wg(u). It follows that o(u) < wg(u). When wo(u) < 0, u is said to
be sub-exponential. When o(u) < 0, one can define the growth order cg(a.)
of a. (at 0) as

(4) ap(a.) :==inf{a € R : |lay]| = O(A"%) as A | 0}.

Similarly, one can define the dt-polynomial growth order ag(u) of u (at co)
as

(5) ap(u) :==inf{a € R : ||u(t)| = O(t*) (mod dt) as t — oo},

where ||u(t)|| = O(t*) (mod dt) as t — oo [resp. t — +0] means that there
exist M > 0 and K > 0 such that ||u(t)|] < Mt* for dt-almost all ¢t > K
resp. 0 < t < KJ|. If ag(u) < oo, then u is said to be dt-polynomially
bounded (at oo).

Finally, ||u(t)|| = o(t*) (mod dt) as t — oo [resp. t — +0] means that
for any € > 0 there exists K > 0 such that ||u(t)|| < et® for dt-almost all
t > K [resp. 0 < t < K]. If there exists x € X such that ||u(t) — z| = o(1)
(mod dt) as t — oo [resp. t — +0], we write z = limy_, u(t) (mod dt) [resp.
x = limy, 1o u(t) (mod dt)].

2. ESTIMATES OF GROWTH ORDERS

The next lemma is formulated and proved in [3] (see Lemma 2.1 therein).

Lemma 2.1. Let v > 0. Then the Laplace transform E7 of ky is given as

ky(A) = A7 for all X > 0. Therefore, for all r,s > 0, ky4s = kyks so that
ky x ks = kyys, where k, x ks denotes the convolution of k, and k.

Lemma 2.2. Suppose assumption (A) holds. Lety, B > 0. Then (k,*u)(t)
exists for dt-almost all t > 0, and the function t — (k, * u)(t) belongs to
L¢([0,00), X). Further

(6) (kg * (ky x u))(t) = (Kyip o u)(t)
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for dt-almost all t > 0.

Proof. Define up(s) := x|o,p)(s)u(s) for D > 0. Then up € L1([0,00), X)
and (k, *u)(t) = (ky * up)(t) for all 0 < ¢ < D. Thus by Fubini’s theorem

D D rt
[ 10 @nar< [ [ k- st asa
-/ ([ @) < ( / k) ) < o

It follows that (k, * u)(t) exists for dt-almost all ¢ > 0, and the function
k+ * u belongs to LY¢([0,00), X). Similarly

(kg * (ky x w))(t) = (kg * (ky x up))(t) = (kg * ky) * up)(t)

= (k1 *up)(t) = (ky4p x u)(t)
for dt-almost all 0 < ¢ < D, where the third equality comes from Lemma
2.1. This completes the proof. [l

Lemma 2.3. Suppose asumption (B) holds. Let v, B> 0. Then (ky*u)(t)
exists for dt-almost all t > 0, and the function t — (k, * u)(t) belongs to

Limpmp' 0¢(10,00), X 1). Further (6) holds whenever either side of (6) eists.

Proof. The function up(s) = x|, p)(s)u(s) satisfies up € Lzmpmp ¢ (10, 00),

X*)and u—up € L([0,00), XT) for all D > 0. Since fo ky(t—s)up(s)ds
exists for all ¢ > D, we apply Lemma 2.2 to obtain that

/Okzy(t—s)u(s)ds:/o kzw(t—s)uD(s)ds%—/O ky(t —s)(u—up)(s)ds

exists for dt-almost all ¢ > D. Consequently (k- * u)(t) exists for dt-almost
all t > 0, and the function t — (ky * u)(t) becomes a positive X-valued
strongly measurable function on (0, c0).

We next prove that the function k. u belongs to L™ P1¢([0, 00), X ).
For this purpose, let 0 < § < e. If0<77<5and5<t<e then

H(k‘v*u)(t)—/n ky(t — s)u ds‘—H/ (t — s)u(s) ds”

< max {k, (0 — 1), }H/ ds‘—>0 as n 0.

Since the function t — fn k,(t — s)u(s)ds is Bochner integrable on [, €], it

follows that the function k, * u is Bochner integrable on [d, €]. Further we
have
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/;(kw*u)(t)dt:/;{/Otkv(t—s)u(s)ds} = gy ;{/ntkw(t—s)u(s)ds}dt

(by Lebesgue’s convergence theorem)

:1771%/776{/;k7(t—5)dt} u(s)ds+/66{/sek7(t—s)dt} u(s) ds

(by Fubini’s theorem)

:/05 {/6 kw(t—s)dt} u(s) d5+/;{/: /@(t—s)dt} u(s)ds € X+,

Given n > 0, we can choose €~ > 0 so that

/ k (s)ds <n and H/ ds‘<77
0

Then 0 < § < € < €~ implies
+H/ {/ t—s)dt} u(s)ds

| ] < (-}
<o [ utas]| +n] [ upas] < 202

Hence || [5(ky *u)(t)dt| — 0 as e | 0 with 0 < § < e. It follows that
fol(k:7 * w)(t)dt = limgy fal(k:7 * u)(t)dt exists, and thus k, x u €
inmprop. lOC([O, OO), X.|_)

Let t > 0 be such that (kg * (ky * u))(t) exists. Then

(kg*(kyxu))(t) = / kg(t—s)(ky*u)(s)ds = lim h kg(t—s)(kyxu)(s)ds

€l0

Writing P(e) := ft “kg(t — s)(k * u)(s)ds, where 0 < 2¢ < ¢, we see that

€

Ple) = lim :_6 ot — s) { /n ) ky(s—r)u(r)dr} ds

140

(by Lebesgue’s convergence theorem)
€ t—e
= lim {/ kg(t — s)ky(s — r)ds} u(r)dr

no J,
+/:_6 {/TH kst s)kv(s—r)ds}u(r)dr

(by Fubini’s theorem).
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Since

lim [ { / T (= )k (5 — r)ds} u(r)dr < /0 kst = ryu(r)dr

o Jy

< max{kyy5(t), ky15(t — € }/ r)dr — 0

as € J 0, and since
t—e

t—e t—e
161%1 6 { /T kg(t —s)k(s —r) ds}u(r) dr = 161?01 6 kyig(t —r)u(r)dr

(by Lemma 2.1)

whenever either side of this equation exists, it follows that

t—e
(kg * (ky *u))(t) = 11%1 P(e) = hin kyig(t —r)u(r)dr.
Hence (k45 * u)(t) exists, and (ky4g * u)(t) = (kg * (ky *u))(2).
Similarly, if (ky4p * u)(t) exists for some ¢ > 0, then the existence of
(kg * (ky *u))(t) can be proved. We may omit the details. O

Theorem 2.4. (Cf. Theorem 2.2 of [3].) Suppose assumption (A) or (B)
holds. Let v > 0, and 8 > 0. Then the following hold.

(i) If t > 0 and [xj0,5(-)¢ [l < 00, then || 7 < xpo.0()¢ [loe-
(ii) If Hc7|| < MeYt for some M > 0 and w > 0 and dt-almost all t > 0,

then ||ctJr | < Me*t for dt-almost all t > 0.
Furthermore, the function Fy(y) = max{wg(c’),0} is decreasing on
0, 00).

Proof. (i) Using Lemmas 2.2 and 2.3, we have for dt-almost all £ > 0

+
[ t)

)7 I (Kt 5 u) (B)]
£) 7 [ (g * (ks ) (£)]]
£) (kg * (k) ()]
s48+1(8) 7 (g * kya1) () xp0,0 ()7 lloo
= X0 ()¢ loo < 00

Y+5+1

y+8+1
= v+8+1
<

(k
(F
(
(

~~ I~ I/~

(ii) Since the hypothesis implies ||x[o(-)¢”[|oc < Me®* for all t > 0, it

follows from (i) that ||¢] 7| < Me®t for dt-almost all ¢ > 0.
To prove Fy(vy) > Fyo(y+ ), suppose w > Fy(y). Since w > wq(c!), there
exist M > 0 and K > 0 such that ||¢/| < Me®! for dt-almost all t > K.
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Then we write

T~ (e pn(t (/ /) st — s)u(s)ds = I+ I1.

Here if assumption (B) holds, then for all ¢ > 2K

K
/ (t — )P Yu(s) ds
0

/OK (1 - §>7+ﬂ—1 u(s) ds

M, K
< 2 maxga/2y oy |
0

where M,;, denotes an absolute constant not necessarily the same at each
occurence. Similarly if assumption (A) holds, then for all £t > 2K

(1725 1 / Juu(s)]| ds.

1] = (k’y—i-ﬂ—l—l(t))_lMab

_ Mab t’H—B—l

6

Thus, in either case,
1] = 0(t™Y) (t - oo).
Next, since ur (s) = x|, x)(s)u(s), we have

1 = )| [ st = )0 = )

(g1 (£) ™ (g # (B # (u — u) ) (1))

for dt-almost all t > K, where (ky * (u —ug))(s) =0 forall 0 <s < K.
Suppose assumption (B) holds. Then, since

[(Fy o (u = ug))(8)]] < [(ky % w)(s)]| = Bya(s)led || < Bya (s)Me™
for ds-almost all s > K, it follows that

1| = <k7+5+1<t>>—1| [ w51k = (w = w9 s

< (hbpgar (D) /K kit — )k a1 (s) Me® ds

< (hyuara ()M [t = )k (5)ds

= (kg (6) 7 M (kg + k) (8) = Me
for dt-almost all £ > K. Consequently for dt-almost all ¢ > 2K
I2) < I+ 1T < O@™") + Me™,
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and hence ||cz+'8|| = O(e"!) (mod dt) as t — oo by the fact that w > 0.
Therefore w > Fy(v + ), and Fo(vy) > Fo(vy + ).
Next suppose assumption (A) holds. Then

(Fy x urc)(s) = (ky x u)(s) = (ky * (u = ur))(s)
for ds-almost all s > 0. Since ||[ux(t)]] = 0 on [K,00), and the func-
tion ¢ +— |lug(t)|| belongs to Li°¢([0,00),R*), it follows easily that 0 <
G (Jlug ()]]) = o(e®?) as t — co. Thus for dt-almost all ¢ > K

I = Gasa) | [ bt = 510k, (0= ) o) s

IN

(k) (| [ stt = )ty s

+ [ kg(t—sxm||uK<->||><s>ds)

< (ks (D) /K Ba(t — 8)kypn (3)Me™ ds + &2 (Jure ()]
< Me" 4 o(e"t) = O(e™).

Hence ||¢] 7| < ||T]|+||1]| < O(t~Y)+0(e*t) = O(e®!) (mod dt) as t — co.
This completes the proof. [

Remarks. (a) It is clear that LY™P-'°([0,00),RT) is a subset of
Ll¢([0,00), R). But if X is a Banach lattice, then L™ !¢([0, 00), X 1) is
not necessarily a subset of L!?([0,00), X). To see this we give the following

example.

Ezample 1. Let X = ly = {(an), : an € R, >2° a2 < oo}, with
[(an)eq |l := (320°,a2)/2. For each n > 1, let u, be the continuous
nonnegative function on (0, 00) defined by u,, = non [(n+1)", n=!], u, =0
on [0, (n+2)"HU[n " 4 (n(n+1))~t, 0o), and u,, is linear on [(n+2)~1, (n+
)~ and [n71, n=t + (n(n +1))7!]. Define a function u : [0,00) — X by
u(s) = (un(s))o2 ;. It is clear that u is continuous on (0,00). If 0 < s < 1,
then there exists a unique n(s) € N such that

1 1
—n(s)—|—1 <s< @
By the definition of u,) we have u,)(s) = n(s), and thus [Ju(s)| >
Up(s)(s) = n(s) ~ s~ 1. Here a(s) ~ b(s) means that both the ratios a(s)/b(s)
and b(s)/a(s) are bounded on the domain considered. Since fol s7tds =

oo, it follows that fol |lu(s)||ds = oo. Next we show that fol u(s)ds =
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lim, g fal u(s)ds exists. For this purpose, note that by the definition of
Un

n n n 2

@n ‘:/0 un($)ds = 5 T Tt D) T D a1 2

It follows that (a,)>2, € X, and

1 1
/ u(s)ds = h?ol/ u(s)ds = (an)pey (in X-norm).
0 a a

(b) The following example shows that there exists a nonnegative real-
valued function u on the interval [0, 00) such that u is continuous on (0, c0)
and [ u(s)ds
< oo, but fol lds = 0o (ie., ¢/ ¢ LI 1¢([0, 00), R1)) for all 4 > 0.
This implies that o(¢”), where v > 0, cannot be defined in general, although
o(ky * u) can be done because k, * u € L([0,00),R") by Lemma 2.2.
We note that if the vector-valued function w : ¢ — X is continuous on

[0,00), then the function ¢ — ¢ is also continuous on [0,00) and satisfies
o(c’) = o(ky *u) for all v > 0 (see Theorem 2.3(i) of [3]).

Ezample 2. Let u be a nonnegative real-valued function on [0, c0) such that
u is continuous on (0, c0), fol u(s)ds < o0, fol u(s)|log s| ds = oo, and u = 0
on [1,00). Then we have fol s ds = oo for all v > 0.

To see this, let 0 < v < k, where k is a positive integer. Then, by Fubini’s
theorem,

1czdt _ [ - t(t—s)'y_lu(s)ds = [ t%(t—s)v—lu(s)dsdt
0 o \I"Jo o Jot
_ /01 </1 . 3)7_1dt> u(s) ds,

and, by the fact v — 1 < k,

1 1 -1 1 k
/l(t—s)v—ldtzy/ 1(1—f)W dtzfy/ 1(1—5) dt
L 1 t 1 t
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for all 0 < s < 1. Here
k

11 k 11 L 1 l
/55(1_3) dt = /SgdH;(l)(_l)l/s tl%dt
= —logs+ Z ( l;: )(—1)lsl /1 ¢ gy
=1 s

k R/
= —logs—l—Z(];>(—1)l-l lS
=1

B

for all 0 < s < 1, whence

/01 G dt > v/ol ) logslds 473 (7)) /0 ey = o

=1

Theorem 2.5. (Cf. Theorem 2.3 of [3].) Suppose assumption (A) or (B)
holds. Then the following hold.
(i) For all v > 0,

(7)  max{o(k, *u),0} = max{wg(ky+1 * u),0} = max{wy(c?™),0}.
Consequently, the function Fi(vy) := max{o(ky, * u),0} is decreasing on
0, 00).

(ii) For all X € C with ReXA > max{co(u),0} and v > 0,

(8)  ay=H /0 M (k% u)(t) dt = AT /0 e Mo 1 (D) dt.

Proof. (i) It is known (cf. [1, p. 31]) that o(u) < oo if and only if wo(1 *
u) < oo, and max{o(u),0} = max{wy(l * u),0}. Applying this to the
function ky * u € LI¢(]0,00), X) U L™ 1¢([0, 00), X ), and using the
equations 1% (ky*u) = ky41 *u (by Lemmas 2.2 and 2.3) and (ky11*u)(t) =
[ )]t = (/D (v 4 2))] ™ for di-almost all ¢ > 0, we deduce (7) at
once. Since Fi(v) = Fy(y + 1) for v > 0, F} is decreasing by Theorem 2.4.

(ii) The case v = 0 is trivial, and so we consider the case v > 0. Let A be
such that ReA > max{co(u),0}. Since max{o(u),0} > max{wo(1l*u),o(ky *
u),0} > wo(ky41 * u), integration by parts gives

b e My = h e M1 xu
/O Wt = A /0 (1% u)(#) dt,
/ e Mk, xu)(t)dt = )\/ e M1 % (b +w))(t) dt
0 0

_ ) /Oooe_M(k,yH*U)(t)dt (by (6)),
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and Fubini’s theorem yields
o oo

A / Nl +u)t)de = \lim / e My« (Lxu))(B)dt (by (6))
0 NI

o t
= A lim/ / e_A(t_s)kv(t —5)e (1« u)(s) dsdt

= Alim (/OOO e M (t) dt - /noo e (1 xu)(s)ds

nd0
- [ " / N 0 defe (1) s) )

= Alim ()\_7 /7700 e (1% u)(s)ds

740
+ /On { /: e M (t) dt}e‘As(l % u)(s) ds)
= A7 /OOO e (1% u)(s)ds
= A7 /oo e Mu(s)ds = A0 gy,
which completeos the proof. ]

Remarks. (a) Let u # 0 be a function in LY¢([0,00), X). If o(ky xu) > 0
for some v > 0, then, by Theorem 2.5(i), o(ky *xu) > o(kg*u) for all B > ~.
Thus the function v +— o(k, * u) is nonnegative and decreasing on [0, D(u)),
where
D(u) :==inf{y >0 : o(ky*u) <0}

and we have o(k, xu) <0 for all v € (D(u), co). Here we would like to note
that if D(u) # oo, then:

(i) U(kD(u) * u) <0y

(ii) {y>D(u) : o(ky*u)# 0} is a finite set.

To see this we make the following preparations: Suppose o(u) < 0, with
u # 0, and define

9) U(N) = /000 e Mu(t) dt (ReA > o(u)).

It is known (cf. [1, Theorem 1.5.1]) that the vector-valued function U is
ananlytic on {A : ReA > o(u)}. Further we note the following:

(I) IfFU(0) # 0, then o(k, *u) = 0 for all v > 0.

To see this, let v > 0 and A > 0. We have by Theorem 2.5(ii) that

/ h e M (ky xu)(t)dt = X7 / b e Mu(t)dt = XTTU(N),

0 0
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so that -
i | [ ]| = grrroon =

which implies o(ky * u) = 0.

(IT) If U(0) = 0, then (since u # 0 implies U # 0) there exists ng € N and
an analytic function W on {\ : Re\ > o(u)}, with W (0) # 0, such that
(10) UN) = AW (A) (ReX > o(u)).

Then we have
0>o0(u) >o(ky*xu)>... >0(ky, xu), and
o(kyxu)=0 forall 0 <y &{1,2,... ,np}.

To see this we use the fact that [ u(t) dt = U(0) = 0. Then by Theorem
1.4.3 of [1], o(u) = wo (k1 *u). Since wo(ky * u) > o(ky * u), it then follows
that 0 > o(u) > o(k; *u). Applying this together with (8)—(10) we see
inductively that

/Ooou(t)dt:/ooo(kl cu)(t)dt = ... :/Ooo(k:no_l*u)(t)dtzo,

and

0>0(u) >oa(krxu) > ... > 0c(ky, *xu).
Next, let 0 < v & {1,2, ... ,no}. To prove o(ky *u) = 0, we assume the
contrary: o(ky *u) < 0. Since W(0) # 0, there exists * € X* such that
(W(0), =*) # 0, where X* is the dual space of X. Then the complex-valued
function
<f000 e_)‘t(k;7 xu)(t)dt, =*)

(W), =)

is analytic on {\ : |\| < €} for some € > 0. But by Theorem 2.5(ii)

AU, ) % e <)) dt, 27)

(W(A), z*) (W(A), =)
for all A\ > 0. This is a contradiction, because ng—~v ¢ Ny := {0} UN implies
that the function A — A"~ (X > 0) cannot be extended analytically to the
domain {\ : |A| < e}. Hence we must have 0 < o(k, *u) < max {o(u),0} =
0 by Theorem 2.5(i).

Proofs of (i) and (ii). If o(kp(,) * u) > 0, then there must exist 1, 72
such that D(u) < y1 <72 < D(u) +1 and o(ky, ¥ u) < 0 for i = 1,2. But
this contradicts (II) because 0 < y2 — 1 < 1 (replace u with k., *u in (II)).

Hence we must have o(kp,) * u) < 0, and (ii) is direct from (I) and (II).
U

(b) To explain the behaviour of the function v +— o (k. *u) on [0, 00) we
give the following examples.

A=

APV =



ON MEANS OF BANACH-SPACE-VALUED FUNCTIONS 157

Example 3. Let Ao > 0, and define u(t) := ¢! for ¢ > 0. Then

1 t 1 €>\0t - Aot )
_ _ gy lphes gg — — Y15
(11)  (ky *xu)(t) ) /0 (t—s)" e %ds T0) Ao /0 s7 e ds

for all v > 0 and ¢ > 0. Since lim;_, f())‘ot s77le™5ds = T'(y) > 0, it follows
that o(ky xu) = o(u) = A\g > 0 for all v > 0. (See also Theorem 2.7 below.)

Example 4. Let u(t) := sint for t > 0. Then o(ky *u) = o(u) = 0 for all
v > 0. This will be proved in Example 7 below.

Ezample 5. Let f € C*°(]0,00),R) be such that f(¢t) = 0 on [0, 0], where

0 <8 <logk, —cose’ < f(t) < 0 on [4logF], and f(t) = —cose’ on
log §,00). Define u(t) := f”(t) for t > 0. Then the following holds.
1~ (0<~y<1),
12) ok 1) — (11 El <7)< 2),
0 (v > 2).
To see this we first note that u(t) = f”(t), (k1 *w)(t) = f'(¢t) and (kg *

w)(t) = f(¢t) for all t € [0,00), and

f"(t) = el sinet + e* cos e on [log %, c0),
(13) f'(t) = e'sine’ on [log 5, 00),
f(t) = —coset on [log g, OO)

(I) We prove o (ks *u) = —1. To do this, let 0 < A < 1. Since integration
by parts gives

b 1 b 1 b
/ e Msinel dt = l—e_)‘t sin etl + = / e(1=Mt cog et dt,
0 —A =0 A Jo
it follows that

/ e Msinel dt = —sin 1 + — / 1=Vt cos et dt.
0 A A Jo

This shows that o(cose’) < —1. Since (kg *u)(t) + cose’ =0 on [log §, o),
it follows that (kg * u) = o(— cosel) = o(cose’) < —1.
Next suppose A > 1. Putting, for n > 1,

s(n,1) :=log <2n7r — g) and  s(n,2) :=log <2n7r + %) ’

we have

/S(nz) eM cos el dt 2 —= / it = 1 (€>\S(n’2) B eAS(n?l))
s(n,1) \/_ (n,1) \/5)\
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= % ((2n7r—|— g)A - (2n7r— %>A> > ;—2 (2717T— %)/\—17

and, by the assumption A > 1,

lim (2n7r — E>>\_1 = 00.
n—00 4

It follows that limp_, fob eM cos el dt does not exist, and thus o(cose’) > —1.
Consequently (kg * u) = o(cose’) = —1.

(IT) To see that o(k, * u) = 0 for all v > 2, it is sufficient to check that
Jo " (kg xu)(t) dt # 0. (This is due to the fact that if v > 2, then o(ky *u) <
0 since o(ky * u) = —1 (cf. Theorem 2.5(i)), and limyg Hfo A k *

t)dt]| = limy o A~O72|| [57 e M (ko xu)(t) dt|| = limyyo A"O7D | [77(

t)dt|| = oo when [J (ko x u)(t)dt # 0.) Since (ko * u)(t) = f(t) on
[0,00), and f(t) > —cose! on [0,00) by the definition of f, it is also suf-
ficient to check that f “coseldt < 0. To do this, we put ¢t = logs. Then

fooo cosel dt = fl Lcos s ds, and the relations
‘ €8s cos(s + ) and coss = —cos(s+ )
S s+
yield

00 /2 5m/2
/ COSSds</ COSSdH/ €85 45 = A+ B.
1 S 1 S /2 S

w/2 w/2
A:/ COssds</ cossds =1—sinl,
1 1

S

Since

and

3m/2 4 /2
B:/ wds<——/ cossds:—i,
a2 (s+m)s 15w J_ 52 157

it follows that

0 oo
8
/ cosetdt:/ COSSals<A—i—B<1—sinl——<0,
0 1 S 157

which is the desired result.

(III) To see that o(ky *u) = 1 —« for all v € [0, 1), it is sufficient
to check that wo(kyt1 *u) = 1 —~ for v € [0, 1) (cf. Theorem 2.5(i)).
To do this, let 0 < v < 1. Since (k; * u)(t) = e'sine’ on [log 5, 00), it
follows easily (cf. Theorem 2.4) that wo(ky41 * u) = 1 — v if and only if
wo((ky *x €®sine®)(-)) = 1 — . Since wo((ko * e’sine’)(-)) = 1, we will prove
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the latter equality for 0 < « < 1. Define a real-valued function A on [0, c0)
by
t
A(t) :==T(7)(ky x e’sine®)(t) = / (t —s)7 " le* sine® ds.
0

Putting s = logr, we have
t

A(t) = / (t —logr) " tsinr dr.
1

Since the function r — (¢ —logr)?~! is increasing on the interval [1, '], and
sinr is a periodic function of r with period 27, if we let n(t) := max {k €
No : km < €'} for t > 0, then |A(t)] < M(t), where M(t) denotes the
maximum of the numbers

™ et
‘ / (t —logr)? 'sinr dr‘, ‘ / (t —logr)? sinrdr
1 n(t)m
and
’/ (t —logr)” 1sin7“d7"‘ (2 <1< n(t).
ik

Hence

et et et — y—1
Aol a0 < [ @ty tar< [T (S30)
et—m et—m €

where the last inequality comes from the left-hand inequality of the relations

(1) = (logy(er) < DG T o081y =

for all 1 < r < et. Thus

et —r et —

et
|A(t)] < et /t (et — ) tdr = 0=t~ =107,
er—T
and hence wo((ky * e*sine®)(-)) = wo(4) <1 —~.
To see the reverse inequality, suppose t = log(2nm + 7). Then as above

T 3T 2nm+m
Alt) = (/ —|—/ +... +/ )(t—logr)V_lsinrdr
1 T 2nm—m

2nm4m
> / (t —logr)" Lsinr dr
2

nm—1m

2nm+m
= / {(t —log )t — (t —log(r — 7r))7_1} sinr dr
2nm
1 277,7T+%T7r { L 1}
> — (t—logr)" " —(t —log(r —m))" "} dr.
\/§ 2n7r+i7r
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Here we note that if 1 < ¢! — 7 < r < e, then, by the right-hand inequality
of (14),

1 -
0<t—logr< ;(et —r) < et _77; = (14 o0(1))e (e —7)

e

as t = log(2nm 4+ 7) — 0o, and also by the left-hand inequality of (14),
t —log(r — ) >e f(e! — (r —m)).

Hence, by the inequality 1 — v > 0,

Gt—’)"

(t —logr)”t > < >7_1 = (14 o(1)) eX1 (e — )1t

et —m
as t = log(2nm + 7) — oo, and
(t —log(r — m))" ™t < eV (et — (r — 7))L,

Using these inequalities we obtain that

1=t p2nmtin
A) > /2 (14 o) —r) " — (& — (r—m) ') dr

\/§ n7T+%7r
6(1_7)t 2"”4—%7{'
- V2 / {(A+o(W)@2nr+ 7 —r)"" = (207 + 21 — 7)) "'} dr
2n7r+i7r

6(1—7)15 37 /4 ) T /4 )
= 1+o0(1 / r’ dr—/ r’7 dr
\/§ ( ( )) w/4 57 /4

whence the reverse inequality wo((k, *e®sine®)(-)) = wo(A) > 1 —~ follows.

(IV) Finally we prove that o(k, * u) = 0 for all v € [1, 2). Since (k; *
(k1 % u))(t) = f(t) = —cose’ on the interval [log%, co), it follows that
wo (k1 * (k1 *xw)) =0, and limy_, o (k1 * (k1 *u))(t) does not exists. Thus, by
Theorem 1.4.3 of [1], o (k1 * u) = wo(ky * (k1 *w)) = 0. If v € (1, 2), then,
since o(ky * u) = 0, it follows that o(ky * u) < 0. Here, if we assume that
o(ky*u) <0, then, since 0 < 2 —~ < 1, the argument in the above Remark
(a) yields that (ks * u) = 0, which contradicts o(ke x u) = —1. Thus we
must have o(k, *u) = 0.

The next lemma is formulated and proved in [3] (see Lemma 2.5 therein).

Lemma 2.6. Suppose assumption (B) holds. Let A >0, v >0 and z € X.

Then
oo b
/ e Mu(t) dt (:: lim / e Mu(t) dt) =z
0 b—o0 0
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if and only if
> A
N\ .
)\7/ e (kyxu)(t)dt = x.
0

Theorem 2.7. (Cf. Theorem 2.6 of [3].) Suppose assumption (B) holds.
Then o(ky * u) = o(u) for all v > 0 if o(u) > 0, and o(ky *u) = 0 for all
v >0 ifo(u) <0 and u # 0.

Proof. Suppose o(u) > 0. Then it follows from Lemma 2.6 that o(k, *xu) =
o(u) > 0 for all v > 0. Next, suppose o(u) < 0 with u # 0, and let
’y > 0. Then o(ky * u) < 0 by Lemma 2.6 (or Theorem 2.5(i)). Since

< fo s)ds = u(t) € X* for almost all t > 0, it follows that the X*-
valued functlon t— fo s)ds is non-zero, increasing, and contlnuous on
[0,00). Thus [;"e ()dt > 0 for all A > 0. Hence [~ e Mu(t)dt >
JoZ e Plu(t)dt > 0 if B> X > 0. Therefore, by Lemma 2.6

/OOO e Mu(t) dt“ = 00,

which implies o(k, * u) > 0. Consequently o(ky * u) = 0. This completes
the proof. O

lim

A0 A0

/ooo e M (ky % u)(t) dtH — lim A7

The following proposition may be regarded as a continuous version of the
classical theorem of Abel for power series (cf. [15, §1.22], [16, Chapters 2
and 5)).

Pr0p081t10n 2.8. Suppose assumption (A) or (B) holds. Assume that
Jo uls)ds == lim_,oo fo s)ds ewists. Then, for any 0 < & < 7/2,

I e >‘$ u(s)ds = limyeo foe Su(s)ds exists uniformly for all X\ in
D(0;6), where D(0;9) := {A € C : ReX > 0, Jarg\| < 6}. Consequently,
the function X — [ e *u(s)ds is continuous on {0} U D(0;6).

Proof By hypothesis, given an € > 0, there exists K > 0 such that
Hf s)ds|| < e for all K < a < b < oo. Let a > K. Since o(u) =
o(u— ua) < 0, where u,(s) == X0, a)(s)u(s) as before, we have

/ e Mu(s)ds = / e (U —ug)(s)ds = /\/ e (ky % (u — ug))(s)ds
a 0 0
for all A € D(0;6). Since

061 % (=) = | | Xaooyrutr) ar (5> 0),
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it follows that

[ [ =] [~

sLMAme*m”W@a*w—uwx@nw

Al 1
Re © cos )
completing the proof. O

€ (a > K),

Remarks. (a) The following example shows that Proposition 2.8 does not
hold when the condition 0 < § < /2 is replaced with § = 7/2.

Ezxample 6. Let X = {(an);":1 ca, € C, limy_ooap = 0}. Then X
becomes a Banach space with the norm |[(a,)|| := sup,,>1 |an|. Choose a
strictly positive continuous function f on [0,00) such that f is decreasing
n [0,00), f(0) = 1, limy_,o f(t) = 0, and JoS f(t)dt = oo. For n > 1,
define a function u, on [0,00) by uy(s) := /" n=2f(s), and put

u(s) = (un(s)) ooy = (/" n72f(s)) 72, (€ X).

It is clear that u : [0,00) — X is continuous. Let B > 0. Then we have

o0

/OB u(s) ds — (/OB ttn(s) ds> .
and

B B B/n
/ up(s)ds = 1 M f(s)ds = l/ €' f(ns) ds
0 0

n? J, n

B/n B/n
= % (/0 f(ns)cossds—i—i/O f(ns)sinsds)

1 1

where, as is easily seen, limp_,o I,(B) and limp_,, I1,,(B) exist. Further

B/n w/2 /2
—ggln(B):/O f(ns)cossdsg/o f(ns)cossdsg/o f(s)ds <

ol

and B/
oglln(B):/ f(ns)sinsdsg/ f(ns)sinsds < .
0 0

Therefore
B
1 1 3
| was| < o)+ @) < L Fsm =5 (B0

l\-’>|>1

1
n
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and hence | [ un(s) ds| = limp_ | fOB un(s) ds| < (2n)~'3x for each n >
1. It follows that

/OOo u(s)ds = Bli_1:ﬂoo OB u(s)ds = Bli_1r>nC>O </OB Un(s) ds)oo = (/Ooo Un(s) ds) :0:1

n=1

exists in X. Next, let \y = 0 + ik~! for k > 1, where §; > 0 will be
determined later. Then

oo o P | &
/ e 5y (s) ds = (/ e~ Ortik™s o) () ds) € X,
0 0 n=1

where, in particular,

/ e~ Ontik™)s un(s)ds = / e % k72 f(s)ds when n = k.
0 0

Since lim, |0 fooo e Ok f(s)ds = fooo f(s)ds = oo, we can choose d so that
0 <, < k=t and

/ e R k2 f(s)ds > k.
0

Then the sequence {0y + ik~ 1}2° | satisfies that & + ik™' € D(0;7/2) for
all k> 1, limp_,00 (0 + k1) = 0, and

oo o0 o0
lim e_(5k+’k_1)su(s) ds = lim </ e_(‘skﬂk_l)sun(s) d3>
k—oo Jo k—o0 0 n=1

does not exist in X, because

[e.e] S o0
lim H (/ e Okt sy, () d8> > lim e O k72 f(s) ds
k—o0 0 n=1 k—o0 0
>  lim k= oc.
k—o0

This proves that the function A — [;* e™*u(s) ds from {0}UD(0;7/2) to X
is not continuous at 0. Thus the uniform convergence of fooo e Mu(s) ds =
limy o0 f(f e~*$u(s) ds does not hold on the domain D(0;7/2).

(b) The existence of the limit,

lim / e Mu(s)ds
D(0;7/2)52—0 Jg

does not imply the existence of lim;_, fg u(s)ds. For example, let u(t) :=
sint for t > 0. Then

o.¢} oo 1
/ e Mu(s)ds = / e Msinsds =
0 0 1+ A2
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for all A with ReA > 0. Thus limgexso a0 fy € “u(s)ds = 1. On the

other hand, lim;_ fg sin s ds = limy_, o (1 — cost) does not exist.

Theorem 2.9. (Cf. Theorem 2.4 of [3].) Suppose assumption (A) or (B)
holds. Then the following hold.

(1) If 0 < o(u) < 00, then sup,,.rcx llar]| < oo for all o(u) < w < K <
00.

(ii) If o(u) < 0, then supysq [[A"tay|| < 0o and supgorck |lar]| < oo for
all 0 < K < 0.

Proof. (i) By Proposition 2.8 (or [1, Theorem 1.5.1]), the function A —
o e Mu(t)dt is continous on the interval (o(u),c0). Thus, if o(u) > 0,
then the function A — ay = A [ e *Mu(t)dt is continuous on (o(u),o0).
Hence (i) follows.

(ii) By Theorem 2.5
ay =\ / e~ My(t) dt = \2 / M1 ) (1) dt
0 0

for all A > 0. Since lim¢,oo(1 % u)(t) = [;° u(s)ds exists, we have M :=
sup; [|(1 # u)(t)]| < oo and [lax|| < A2 [[Ze MM dt = M for all A > 0.
Hence supy- [|[A"tay|| < M. By this and (i), supger<g |lax]| < oo for all
0 < K < oco. The proof is complete. O

Remarks. (a) The hypothesis 0 < o(u) < w < K < oo cannot be sharp-
ened as 0 < o(u) =w < K < oo, or 0 <o(u) <w < K = oo in Theorem
2.9(i). To see this, let \g > 0 and § > 0. Define u(s) := e**s°~! for s > 0.
Then o(u) = Ag and, for all A > A,

o0 [o.@)
ay = )\/ e Mu(s)ds = )\/ e~ (Am20)s 01 g
0 0

A > —s,0—1 A
= S )

Thus if § > 1, then limyy, [Jax| = limy;, T(6)A/(A — Ag)? = co. Similarly,
if 1 >8>0, then limy o, ||ay]| = co.

(b) From the proof of Theorem 2.9(ii) we see that if the limit [° u(s) ds
= limy_o fg u(s)ds exists, then ag(a.) < —1, and in particular if
JoTu(s)ds # 0, then ag(a.) = —1. Further, the condition 0 < K < oo
cannot be sharpened as K = oo in Theorem 2.9(ii). To see this, let v(s) :=
e=20559=1 for s > 0, where A\g > 0 and 1 > ¢ > 0. Then o(v) = —\g < 0,
and for all A >0

o0 A
=\ ~AFA0)s =l g = ZT'(§).
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Thus lim yje0 [|ax]|| = o0

Theorem 2.10. (Cf. Theorem 2.7 of [3].) Suppose assumption (A) or (B)
holds. Let v >0, « > —1 —~, and M > 0. Assume that ||c}| < Mt* for
dt-almost all t > 0. Then the following hold.

(i) If B > 0, then for dt-almost all t > 0

+B|| I‘(’y+a+1) F(y+56+1) sa

(15) e} F'v+1) TI'v+a+p5+1)

Y

where the right-hand side of (15) can be replaced with Mt“ when o > 0.
(i) If o(u) <0, then for all X >0

(16) NE M”;;—j;” -
Proof. (i) Since
(1) kOl < oM - %kmﬂw

for dt-almost all ¢ > 0, it follows that

120 = [ (kypea (8) " (g % (Byn ) (0]
I(y+a+1)D(y+ 5+
= ¥W+U) wmw ks rsasn)0)

Ty+a+DT(y+B+1
(F(’y+ 1) ) Y8 )kv+a+/3+1(t) (by Lemma 2.1)

Fy+a+1) T(y+p8+1) sa
I'v+1) T'(v+a+pB+1)

for dt-almost all ¢ > 0. In particular if a > 0, then ||cd|| < Ms* < Mt® for
ds-almost all 0 < s < t, so that

1T = R pa () g # (hyaa )
< (gt (1) g # by ) (6) Mt® = M°

for dt-almost all ¢ > 0. (It is possible to prove directly that I'(y+a+1)I'(y+
B+D{T(v+ ) (y+a+ B8+ 1)}_1 < 1if o > 0 (cf. the proof of Theorem
2.7(1) in [3]).)
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(ii) Since o(u) < 0, we can apply Theorem 2.5(ii), together with (17) and
Lemma 2.1, to obtain the following estimation for all A > 0:

oo o0
ol = 41| [T ek ar] <00 [T @l
0 0
Fy+a+1) [ _
< Nty — = / M t)dt
= P(’)/"’ 1) 0 € ’y+a+1( )
— )\”/—i—lMF(’y +a+ 1) )\—(’y—i-oc—‘rl) — MF(,-}/ +a+ ]‘) A—Oc-
I(y+1) I'(y+1)
This completes the proof. O

Remarks. (a) The assumption [|¢]|| < Mt® for dt-almost all ¢ > 0
does not imply o(u) < 0 in the case where assumption (A) holds. For
example, the function u in Example 5 satisfies o(u) = 1 by (12) and
7 = (ks(t)) (ko * u)(t) = T(3)t72f(t) = —2t 2cose’ on [log§,00) by
(13). Hence sup;~g |t™%c}| < oo whenever o > —2, since ¢ = f(t) = 0 on
[0, §]. On the other hand, if 0 < v < 1 and ||¢/| = O(t%) (mod dt) as
t — o0, then o(u) < 0. This can be proved by using Theorems 2.5(i) and
2.4 as follows.

o(u) < max{co(u), 0} = max{wo(c}), 0} < max{wy(c?), 0} <O0.

Further we note that if assumption (B) holds, then, for any + > 0, the
condition [|¢}]| = O(t*) (mod dt) as t — oo implies o(u) < 0, and thus
Theorem 2.10(ii) holds without the assumption o(u) < 0. This can be
proved by using Theorems 2.7, 2.5(i), and 2.4 as follows.

o(u) < max{o(u),0} = max{c(k, *u),0} = max{wy(c™),0}
< max{wp(c?),0} = 0.

(b) Suppose assumption (A) or (B) holds. Then o(u) = o(w), where
w(t) := tPu(t) for t > 0 with B > 0. This follows from an easy modification
of the argument in [1, Proposition 1.4.1]. (For the details, see the proof of
Theorem 2.3(i) in [3].) This will be used implicitely in Theorem 3.3 below.

Theorem 2.11. (Cf. Corollary 2.8 of [3].) Suppose assumption (A) or (B)
holds. Let v > 0, and o > —1 — . Assume that ||c]| = O(t*) (mod dt) as
t — oo. Then the following hold.

(i) For all g > 0, ||cz+ﬁ|| = O(t*) (mod dt) as t — oo.

(ii) If o(u) <0, then |lay]| = O(A™%) as A | 0.

Proof. By the assumption there exist M > 0 and K > 0 such that ||¢/| <
Mt* for dt-almost all ¢t > K.
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(i) For dt-almost all ¢ > 0 we have

G = (kyrpe ()T kg * (ky % w)) (1)

= (ke () (/ /)kzﬁt—s (ke % u)(s)ds = I+ I1.

To estimate ||I||, first suppose assumption (B) holds. Then, for all t > 2K,

Mab K B—1
= 22 [T e e
= th315 i (1—;) (ky xu)(s)ds

t

< 2 w12y | [ euas

Next suppose assumption (A) holds. Then

11 < 3 maxt1/2 1) [ 10 swlas (> 28),
Thus, in either case,
1I]| = O 1) (t > 2K).
The estimation of ||II|| is done as follows (see (17)).

1 = Gppana )™ | [ hate = ) ea()) s

< (hyppia (D) /0 Ba(t — )k 4 () (M) ds

F'v+a+1) T(y+p8+1) sa
'y+1) T(v+a+p+1)

for all t > K. Thus a > —1 — y implies
172 < |1I)| + 111 = Ot 1) + O(*) = O(t*) (mod dt) as t — oco.

(ii) Since o(u) < 0, we have

K o
ay = A7 (/ ~|—/ )e_’\t(k:v*u)(t)dt =111+ 1V
0 K

for all A > 0. Here if assumption (B) holds, then

K
\1T1] < X0+ / (k% w)(s) ds|| = OON*Y) (A > 0):
0
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and if assumption (A) holds, then
K
I < /\”1/ I(ky *u)(s)[[ds = ON*1) - (A>0).
0
The estimation of ||[IV]| is done as follows.

vy < a0t /K ey (1)) | e

r 1 o

Fy+a+1) _,

: (y+1)

Thus a@ > —1 — ~ implies
lax]| < LI + V]| = O(XF) + O(A™*) = O(A™*) as A L0.

This completes the proof. (]

Remark. If the assumption “||¢/| = O(t*) (mod dt) as t — oo in Theorem
2.11 is replaced with the local assumption “||¢/|| = O(t*) (mod dt) as t | 07,
then the following hold.

(i) For all 8 > 0, ||cz+6|| = O(t*) as t — +0.

(ii) If o(u) < oo, then ||ay|| = O(A™%) as A T oc.

For, by the assumption, there exist M > 0 and K > 0 such that [|¢]] <
Mt® for dt-almost all 0 < ¢t < K. Then, as in the proof of Theorem 2.11(i),

I (haa ()™ [ Ralt = k() (57) s

F'y+a+1) T(y+6+1) a
I'y+1) T(y+a+pB8+1)

for dt-almost all 0 < ¢t < K, so that (i) follows. To prove (ii), note that
17| = O(t*) (mod dt) as t — 40 by (i), whence there exist M; > 0 and

K > 0 such that ||cg+1|| < M;t® for dt-almost all 0 < ¢t < K. Then for all
A > max {o(u),0} we have

K 00
ay = AWH(/ Jr/ )e_”km(t)c?“ dt = I+ 11,
0 K
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where

K
1] < /\V“/ e Mo (t) (Mt®) dt
0

F(’7+04+2)/°° —A
< N2y, AL T2 e ME ato(t) dt
= 1 F(7—|—2) 0 ’Y++()
Fy+a+2) _ _
= M| ——— XN “=0(\"9).
YTy +2) (A7)

As for |[11]], since wo(ky41 * u) < max{o(u),0} by Theorem 2.5(i), we see
that

1| < A /K (kg1 # ) ()] dt

< NI [k w0)]
K

= NP2 VDK 5(1) = o(A7Y)  as A1 oo,
Consequently |[ax|| < ||| + [[II]] = OA™Y) +0o(A™%) = O(A™%) as A T oo,
which is the desired result.

As an immediate consequence of Theorem 2.11 we have the next corollary.

Corollary 2.12. Suppose assumption (A) or (B) holds. Then the following
hold.

(i) If v/ > v > 0, then ap(c! ) < max{ap(c’), —1 —~}.

(i) If o(u) <0, then ap(a.) < max{ag(c’),—1 —~} for all v > 0.

Remark. Let Ao > 0. Then the function u(t) := t*~! for ¢t > 0 satisfies

t 1
=L [ (t—s)tsromlds = ytro! / (1—s)7"ts* " ds = v 271 B(v, Ao)
0

7 Jo
for all v > 0 and ¢ > 0, and
a = A /OO e Mo~ L gt = \~(o—1) /OO et gt = o=l ))
0 0

for all A > 0. Thus we have ag(c¢’) = ag(u) = Ao — 1 = ag(a.) for all v > 0.
Of course this is a special case. In general the function v +— ag(c') is not
constant on [0,00). To see this the following examples would be interesting.

Ezample 7. Let u(t) :=sint for ¢ > 0. Then ag(a.) = —1, and

— 0 1),
w@={ 7 05
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To see this we first note that

o0
a, = )\/ e Msintdt =
0

1+ A2
for all A > 0, whence ap(a.) = —1. On the other hand, since ¢ =
t1 fot sinsds = t~1(1 — cost) for all t > 0, it follows that ag(c!) = —1.

Therefore, by Corollary 2.12, ag(¢’) = —1 for all v > 1. It is clear that
ap(c?) = ap(u) = 0. Next suppose 0 < vy < 1. Then, for ¢t > 47, we have

t

c2=1<

t— K ) o
= 5 (/ / > (t—s)" 51nsds::t7(l+[]),

where K is defined to be the constant such that 27 < K < 47 and (¢t —
K)(27)~! is a positive integer. Then

s)  Lsinsds

t K
KY  (47)7
|II|§/ (t—s)7_1|sins|ds§/ 7 ds = — < (4r) .
t—K 0 v v

Since t—K = 2rl for some integer [ > 1, and since the function s — (t—s)?
is positive and strictly increasing on [0, t], it follows that

25 29m+m
/ (t—s)"tsinsds <0 < / (t —s) tsinsds
2jm—2m 2jm—m

—1

for all 1 < j <1 —1. Therefore, using [y (t — )7 sinsds > 0, we have

t—K 2l
0 < —/ (t —s) 'sinsds = —/ (t —s) Lsinsds
0 0

T 2jm+m 2l
= - / + / (t —s)7 'sinsds
0 2jm—m 2w —m

2l 2l
< —/ (t —s) tsinsds < / (t—s)"tds
2

lr—m 2l —m

< wt—2r) 1t =aK7 < w(2m) 7L,

t—K
/ (t —s)" tsinsds
0

i Y _ (4m)7
¢/ < o (|1 + |11]) < = (W(27r)7 1y =)

so that

|I| = < w(2m)7 7L

Hence
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and thus ag(c¢!) < —~v. By a similar argument,

t 2nm+m
lim sup/ (t —s)7 'sinsds > lim sup/ (2nm + 7 — 5)7 'sinsds
0 2

t—o00 n—o0 nmT—1
3
> / (3m —5)" tsinsds > 0,
™

so that limsup,_ . [t7¢/| > 0, and hence ap(¢c’) > —v. Consequently
Oé()(Cty) = —7.
Using Example 7 we prove here that the function u(t) = sint satisfies
o(ky *u) = o(u) = 0 for all v > 0 (cf. Example 4). It is obvious that

o(u) = 0. Next suppose v > 0. Since v+ 1 > 1, we have ag(¢? ') = —1 by
Example 7. Hence the equation

o+l

t
L(y+1) (kyg1 xu)(t) = / (t—s)Ysinsds = G (> 0)
0 v+1

shows that wg(ky4+1 * v) = 0 and that limy_,oo(ky4+1 * u)(t) does not exist.
Hence, by Theorem 1.4.3 of [1], o(ky*u) = wo(1*(ky*u)) = wo(ky41*u) = 0.

Ezample 8. For n > 1 let H, be the linear subspace of Ls([0, 1],R) deter-
mined by the functions v;(¢) := ¢ on [0, 1] with I = 0,1,...,n — 1. Denote
by P, the orthogonal projection operator from Lo ([0, 1], R) to H,, and define

(18) u = v, — Pyuy,.

u can be regarded as a continuous function on [0, 1]. Also we can regard u as
a function on [0, 00) by setting u(t) := 0 for all ¢ > 1. Then u € L1([0,00),R)
and the following hold.

. —00 if’)/:(),l,...,n,
(19) Oéo(C.)—{ —1—n if vy €[0,00)\{0,1,...,n},

and ag(a.) = —1 — n. (We note that o(u) = —oo. See Remark (b) under
Theorem 2.9.)

To see this we first note that o(u) = —oo and ag(¢?) = agp(u) = —o0,
since u(t) = 0 for all ¢t > 1 by definition. If v = k, where k is an integer
satisfying 1 < k < n, then, using the equation

/Ot su(s) ds = /01 stu(s) ds = /01 s (v — Povn)(s)ds = 0

forallt>1and [ =0,1,...,k — 1, we obtain that

& = k/(t— sk _ ﬁ,fz( _1)tk 11 1)Z/Otslu(s)d3:O
=0
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for all t > 1. It follows that ag(c¥) = —oco. On the other hand, since

L[ e
gt = o2 / (1~ s)"u(s)ds = °- 1 / (t — s)"u(s) ds
0 0
ntl sl
= - (—1) /0 s"u(s) ds (t>1),
and
1 1
s"u(s)ds = / (v, — Pyup)*(s)ds > 0,
0 0
it follows that agp(¢"™1) = —1 — n. Further,
1 ! n (_1)n ! n
(kpy1xu)(t) = — [ (t—9)"u(s)ds = s"u(s)ds # 0 (t>1).
n! 0 n! 0

Thus, by Theorem 2.5(ii), for all A > 0

ay = )\"+2/ e M (kppq *w)(t)dt
0

_ a2 /O Y ((kn+1>:<u)(t) _ e /0 L erus) ds) dt

n!

4 A2 /Ooo e M ((—nl|)" /01 s"u(s) ds) dt
_ e {/\ /O gy ((an Fu)(t) — % /O ' srus) ds) dt
+ (—nl|)" /01 s"u(s) ds} :

lim A /O 1 e M <(kn+1 s« u)(t) — =" /0 1 s"u(s) ds) dt =0,

A0 n!
it follows that

Since

1 =" [
1)1\%1 AT May = T/o s"u(s)ds # 0.
Hence ag(a.) = —1 — n. Combining this with the result that ag(¢"*!) =
—1—n, and using Corollary 2.12, we have ay(¢’) = —1—n for all v > n+1.
Finally, suppose k =0,1,...,nand 0 < 8 < 1. Then

kB k+p3 [

t th+5 0
k+8 (! S

= T i (t — 3)]C (1 — ;)B_l u(s) ds

(t —s)*(t — s)PLu(s) ds
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for all ¢ > 1. We write

(-8 3 ) A ) s ot
k

l

Since f(s) is a polynomial function with degree max{n —k — 1, 0}, and

gls) = E=AE AR B (5 (o) as v

it follows that

and
1

/ (t — 5 g(shu(s) ds
0

1 _ _ n_k— n—
:/O (t— 5L =0 (5)_']{)? g 5)( )" 1+ () u(s) ds
_ (1-5)(2 _(n)_ )fn_k 6 t (n— k:)/ (14 o0(1))u(s) ds

as t — oo. Thus

lim tn—i—l k+ﬁ — (k—i_ﬁ)(l - 6)(2 - B) cee (n —k - 6) (_1)k /01 Snu(S) ds

t—00 (n —k)!
#+ 0,

which shows that aq(¢c

(FPy = —1—n.
Theorem 2.13. (Cf. Theorem 2.9 of [3].) Suppose assumption (B) holds.
Let v > 1, and o« > —1 — . Then the following hold.
(i) supysg |[t7%¢/|| < oo if and only if o(u) < 0 and supysg ||\ *ay]|| < co.
(ii) |Ic] |l = O(t*) as t — oo if and only if o(u) < 0 and |lay]] = O(A™?)
as A ] 0.

Proof. First we note that, since v > 1 by assumption, ¢ — ¢, becomes a
continuous function on (0, c0), as was remarked in §1. Then each of the first
conditions of (i) and (ii) implies o(u) < 0 (cf. Remark (a) under Theorem
2.10), so that the necessity parts of (i) and (ii) follow from Theorems 2.10(ii)
and 2.11(ii), respectively.

To show the sufficiency part of (i), suppose A[|ay|| < M for all A > 0.
By Lemma 2.6 we have

Aay = )\O‘J"V/ e (ky_1 * u)(s) ds
0
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for all A > 0. Since wu is positive, it follows that

)\O‘a,\

Vv

t
)\O‘J”'Y/ e (ky_y * u)(s) ds
0

> XM wu)(t) = AN Te My ()] >0 (> 0).

Thus A*Te™ME, 1 (t)|c]/]| < M for all A > 0 and ¢ > 0. Fix any ¢ > 0 and
let A\ = 1/t. Then we have that t~%||c/|| < MeT'(y+ 1) for all ¢ > 0, i.e.
that sup;~g [|[t7%¢/|| < co. This proof also shows the sufficiency part of (ii),
since A = 1/t | 0 is equivalent to t — oo. O

Remarks. (a) Assumption (B) cannot be replaced with (A) in Theorem
2.13; further, the hypothesis v > 1 cannot be replaced with v > 1 —¢, where
0 < e < 1. For these and more we refer the reader to [3].

(b) Suppose assumption (B) holds. Let v > 1 and @ > —1 — . Then,
under the additional assumption that o(u) < oo, we have ||¢/| = O(t%) as
t — +0 if and only if [jay| = O(A™%) as A T co. This follows easily from
Remark under Theorem 2.11 and the argument given in Theorem 2.13. We
note that assumption (B) cannot be replaced with (A), here. To see this we
give the following example.

Ezxample 9. Let u be the real-valued function on [0,00) defined by u(t) :=
Yooy fa(t), where f,, has the form

Fn() = an (Xpo—6,,60) (£) = X[bn, bu+30) (1)) 5
with ay, by, 0, > 0 (6, is sufficiently small), and satisfies

/OOO fa(®)]dt = an(26,) =02 (n>1).

(b, and §,, will be determined below.) Hence / lu(t)| dt < Z/ | fn(t)] dt
n=1"0

0
< 00, and

1 1 bn —2

o == Folt)dt = —.
Thus, if1>b >by>... , limy, 0o n_2/2bn = 00, and by, —0p > bn_|_1 +5n+17
then lim sup,_,o ¢ > lim, o0 c%n = oo.

On the other hand, since 0 < te™* < e~ forallt > 0 and lim;_, . te~* = 0,

it follows that

bn—l

oo
1
0< /\/ e Mfa(t)dt < / Me M 2| fu(t)] dt — 0
0 bnt1 t
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as A T oco. Hence there exists A\,, > 0 so that if A > \,, then
0
0< )\/ e ML (t)dt <n”2
0

Now, suppose 0 < A < A,,. Then we have
A/ e*an(t) dt < la,o, (e*’\(b”*‘sn) — e*A(b”M"))
0

— 2\ A (exan _ efxan)
2
n—2
< A\ 5 (eMndn — g=Andn) (because 0 < A < Ay).
Since limg g eMd — =20 — () if §,, > 0 is sufficiently small, then

An nT (e’\”6" — e_’\”én) <n 2 (n>1).

Thus we have

oo
0< )\/ e Mf(t)dt <n™2 forall A>0 and n > 1,
0

so that
00 o0 00
sup |ay| = sup )\/ e Mu(t) dt = sup Z )\/ e M fu(t)dt < oo.
A>0 x>0 Jo x>0 = Jo

Consequently we have: o(u) < 0, |jay]| = O(1) as A 1 oo, and ||c}|| # O(1)
as t — +0.

(c) Suppose assumption (A) or (B) holds. Assume that z = lim;_o ¢
(mod dt) exists for some 7 > 0. Then

(i) limyeo cfrﬁ =z (mod dt) for all 5 > 0;

(ii) limyypay = = whenever o(u) < 0.

For, by considering the function ¢ — wu(t) — z, it is sufficient to check the
case where ||¢/|| = o(1) (mod dt) as t — oo. Then the proof of Theorem 2.11
with a = 0 shows that ch+'BH = 0(1) (mod dt) as t — oo for all 5 > 0, and
lax]l = o(1) as A L 0. (For these and more we refer the reder to [2], [5]-[6],
12].

Here, if the assumption “z = lim;_,~ ¢/ (mod dt)” is replaced with the
local assumption “z = lim;_,o¢;” (mod dt), then the same proof together
with Remark under Theorem 2.11 yields that

(iii) limy0 )™ =2 (mod dt) for all 8 > 0;

(iv) limypeo ay = & whenever o(u) < oo.

Corollary 2.14. (Cf. Corollary 2.10 of [3].) Suppose assumption (B) holds.
Then the following hold.



176 RYOTARO SATO

(i) If v > 1 and a > =2, then supsg [|[t~%] || < 00 & supsg [t} <
00 < o(u) <0 and supysq|[[A“ay| < oco.

(i) If u # 0 and o(u) <0, then the function v — ag(c)) is decreasing on
(0,00) and satisfies ap(c!) = ap(a.) > —1 for all v > 1.

Proof. (i) This is direct from Theorem 2.13(i).
(ii) For A > 0 and K > 0 we have

o) K K
ay = )\/ e Mu(t)dt > A/ e Mu(t) dt > )\e)‘K/ u(t) dt > 0.
0 0 0

By the hypothesis u # 0,
K K
lim e)‘K/ u(t) dt :/ u(t)dt >0
A0 0 0
for some K > 0. Tt follows that ag(a.) > —1, whence ap(c!) = ag(a.) > —1
for all v+ > 1 by Theorem 2. 13( i). In particular, ag(c!) > —1. Thus, by
Y

Corollary 2.12(i), ag(c?) > ap(c? ) > ag(c!) > —1if 0 <y <+ < 1.
This completes the proof. [

Remark. The following examples explain the behaviour of the function
v — ap(c?) on [0,00) for u € L™ P1¢([0,00), XT) with X a Banach
lattice. (Cf. Corollary 2.14(ii).)

Ezxzample 10. The nonnegative real-valued function u on [0, 00) defined by

1 if teu [n™—1,n",
u(t) _{ 0 otherwise.
satisfies o(u) = 0, ag(c!) = —y for 0 < v < 1, and ap(c!) = —1 = ag(a.)

for all ¥ > 1. (Indeed, it is clear that u € L{Y¢([0,00),R"), o(u) = 0, and
ap(u) = ap(cV) = 0. If 0 < v < 1, then, using the relation fol 7 1ds =
> f;ﬂ s7=1ds for all a > 0, we obtain that, for all n® < t < (n+1)"+1,

t

¢ = % (t — )" tu(s) ds
1 ' 1
= (t—s)7" ds—i—/ (t—s)" "ds
ﬂ Z/k (n+1)n+1-1
1 2 2

and
1

(n™)7

,_y n
Cn = / (n"™ — 5)7  u(s) ds >
0
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It follows that ag(c)) = —v if 0 < v < 1. Hence, by Corollary 2.14(ii),
ag(c?) = =1 = ap(a.) for all v > 1.)

Ezample 11. The nonnegative real-valued function u on [0,00) defined by
u(t) == xp,(t) satisfies ap(u) = ap(c”) = —oo and ag(c!) = —1 = ap(a.)
for all v > 0. (Indeed, it is clear that ag(u) = —oco. If v > 0, ¢ > 1 and
A > 0, then

1 1 -1
y_ oy lge T 1_§v ~ 71 1
@ =g | s tds t/o< t) ds = (14 o(1))

as t — oo, and

1 1_67/\
aA:)\/ e M ds = A — = A1 +0(1))
0

as A} 0. Tt follows that ag(c!) = —1 = ag(a.) for all v > 0.)

Finally, we characterize the condition sup,- ||¢}|| < oo under assumption
(A) by using the partial Abel means A fé) e Mu(t)dt (\, b>0) as follows.

Theorem 2.15. Suppose assumption (A) holds. Let M > 0. Then the
following hold.

. b _
(i) If supysg llei] < M, th@n SUpy, b0 A Jo e~ ult) dtf| < M.
(i) If supy o0 A Jy e Mu(t)dt]| < M, then supyq |[c}]| < (2¢ = 1)M

Proof. (i) Let b > 0. Then the function wuy(t) = Xxjo,5(t)u(t) satisfies
et (up)|| < M for all t > 0. Since )\fob e Mu(t) dt = ay(up) for all X > 0, it

now follows from Theorem 2.10(ii) (with ov = 0) that ||A fOb e Mu(t)dt| < M
for all A > 0.
(ii) Let A, t > 0. Integration by parts gives

/Ot u(s)ds = /Ot eMe Mu(s) ds
— M /Ot e_ASu(s) / / u(r) dr ds
— e%t )\/Ot e_)‘su(s) ds / ()\/ "u(r) dr) ds,

t At t 2 )\t_l
H/ u(s)ds” < (e—+/ eASdS)M: ¢ M.
0 A

Here, putting A = 1/¢, we obtain ||t~! fo s)ds|| < (2¢ —1)M for all t > 0.
This completes the proof. [

so that
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Remark. Suppose assumption (A) holds. Let a4+ 1 > 0. Then the next
results follow easily from the proofs of Theorems 2.10, 2.11 and 2.15. (We
omit the details.)

(i) suppsg ||t ~%ct|| < oo if and only if supy.q [|[A* fb A ( ) dt]] < .

(ii) [ci|| = O(t*) as t — oo if and only if sup,.g [|A fo e Mu(t)dt| =
OA ) as A ]0.

(iii) ||cf|| = O(t*) ast — +0 if and only if there exist constants K, M > 0
such that supg g [|A fob e Mu(t)dt]| < MA~ for all A > 0. (The latter

condition is equivalent to supg .y« ||A fob e Mu(t) dt]| = O(A™%) as A T oo,
since a +1 > 0.)

3. OPERATOR-VALUED FUNCTIONS

In this section we consider strongly measurable operator-valued functions
T :[0,00) — B(X), where B(X) denotes the Banach algebra of all bounded
linear operators on a Banach space X, with the usual operator norm. We
assume that T is strongly locally integrable. This means by definition that
f0b||T(t)x||dt < oo forall z € X and 0 < b < co. When X is a Banach
lattice and T is positive (i.e. T'(t) is a positive operator on X for all ¢ > 0),
we also assume that T is improperly strongly locally mtegmble This means
by deﬁmtlon that for all x € X and 0 < a < b < oo, f |T(t)x| dt < oo

and fo t)zdt = lim, f T(t)zdt exists. Thus, unless the contrary is
mentloned expllcltely, we will assume below that

(OA) T is strongly locally integrable, or

(OB) X is a Banach lattice and T' is positive and improperly strongly
locally integrable.

Under assumption (OA) or (OB), fO t)dt denotes the operator x +—

fob (t)zdt on X. Similarly, for v > 1 and t >0, C] = C/(T) denotes the
operator z — ¢ (uy) = (ky41(t)) " (ky * ug)(t) on X, where u,(s) := T(s)z.
C, is called the y-th order Cesaro mean of T over [0, t]. We note that if
0 < v < 1, then the integral (K, * uz)(t) fo (t — 5)771T(s)x ds may fail
to exist for some r € X and t > 0, so that the y-th order Cesaro mean
C, cannot be defined as an operator on X in general. But, if we assume
that T satisfies sup{||T'(s)|| : a < s < b} < oo foral 0 < a < b < 0,
then ¢/ (u,) exists for all x € X and ¢ > 0. Thus in this case the operator
C/ : z + ¢/(u;) can be defined as an operator on X for all v > 0 and ¢ > 0.
In the following we set CP := T'(t) for t > 0, and C{ := T'(0) for v > 0.
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We recall (see §1) that
(20)
wo(T) = inf {w € R : | T(t)]| = O(e*?) (mod dt) as t — oo},

i Is° e T (s)x ds = limy_y o0 fg e~ MT(s)xds
o(T) = inf {Re)\ exists for all z € X

= sup{o(uy) : z € X}.

If T is strongly continuous on (0,00) and strongly locally bounded (i.e.,
the function ¢ +— T(t)r is continuous on (0,00) and satisfies
supg<;<; |T(t)z|| < oo for all x € X), then, by the uniform boundedness
principle, supg<;<;, || T(t)|| < oo for all b > 0. In this case we have

wo(uz) = sup {w € R : supysq [[e T (t)z]| < oo},
(21) wo(T) = inf{w € R : sup;5q [|e ™" T(t)|| < oo}
= sup {wo(uy) : v € X}.

Let A € C. If ReA > o(T), then [~ e *T(s)ds is defined as the operator
z = [77e T (s)zds on X; in particular, if ReA > max{c(T), 0}, then
the Abel mean Ay := A\(T) = X [}~ e *T(s)ds of T is defined as Ayz =
A S5 e T (s)xds for all z € X.

We recall that if o(7") < 0, then the growth order ag(A.) of A. (at A =0)
is defined by the right-hand side of (4) with A, instead of ay. Similarly, the
polynomial growth order a(T) of T' (at 0o) is defined by the right-hand side
of (5) with T'(¢) instead of u(t).

It is easily seen (and well-known) that if X is a Banach lattice and P :
X — X is a positive linear operator on X, then P € B(X). But, if X is a
general Banach space with dim X = oo, then there are many linear operators
on X which are not bounded. Therefore the next lemma is of some interest
by itself.

Lemma 3.1. Let T : [0, 1] — B(X) be strongly integrable. Then the
operator fol T(t)dt is in B(X).

Proof. Let z,, € X and lim,_,~ ||z,|| = 0. For the proof it is sufficient to
show that

lim
n—o0

1
/ o dtH 0.
0

To do this we note that, since the functions ¢ — T'(t)x,, are strongly mea-
surable on [0, 1], there exists a separable closed subspace Y of X and a
Lebesgue measurable set D C [0, 1] with Lebesgue measure zero such that
T, T(t)x, € Y for all n > 1 and t € [0, 1] \ D. Choose a countable set
{yn + n>1} C Y, with |ly,|| = 1 for all n > 1, such that it is dense in
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{y €Y : |ly|| = 1}. Define

1Ty ==sup {[|T @)yl : y €Y, |lyl| =1},

Since [|T(t)|ly = sup {||T(t)yn|| : n > 1} for t € [0, 1], it follows that the
function ¢ — ||T(t)||y is Lebesgue measurable on [0, 1]. Thus [0, 1] can
be written as a countable union of Lebesgue measurable subsets FE,,, where
E,:={tel0,1] : |T(t)]ly <n}. Then, for n > 1 and y € Y, define

Sny ::/ T(t)y dt.

It follows that each S, is a bounded hnear operator from Y to X, with
|Spll < m. Since limy, o0 Spy = fO (t)ydt for y € Y, we then apply

the uniform boundedness principle to infer that M := sup,; ||S' | < oo.
Hence ||f0 (t)ydt|| < M||y|| for y € Y, so that lim, ||fO t)x, dt|| <
lim,, oo M||zy| = 0. This completes the proof. O

It follows from Lemma 3.1 and the unlform boundedness principle that,
under assumption (OA) or (OB), || fo s) ds|| < oo and || fo e MT(s)ds|| <

oo for all t > 0. Further, we have supg<;<y, || fo s)ds|| < ooforal0<b<
0o, and || [ e T (s) ds|| < oo whenever ReA > O'(T).

Theorem 3.2. Suppose assumption (OA) or (OB) holds. Let S(t) :=
fo s)ds and S be the strong limit of S(t) as t — oo if it exists, and
Soo 1= () otherwise. Then

(i) o(T)=inf {X€R : sup, | fg e MT(s)zds|| < oo forall z€ X}
= wo(S - Soo),

(it) limy—yoo || [ €T (s) ds— [o e T (s) ds|| = 0 whenever ReX > o(T).

Proof. This is an adaptation of the argument in [1, Proposition 1.4.5].
(i) Suppose Ag > o(T') and = € X. Since A\g > o(T') > o(uy), it follows
that [;° e 20T (s)z ds = limy—o fg e~ (s)x ds exists, so that

t
/ e ST (s)x ds
0

Conversely, suppose Ao € R satisfies sup, || fOt e 05T (s)x ds|| < oo for all
x € X. Then put, for x € X,

sup < Q.

t>0

G (t) ::/O e 5T (s)x ds.
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Integration by parts gives

t t
(22) / e MT(s)xds = / e~ (AR5 = Aos T (6) e s
0 0

t
_ e—(/\—Ao)tGm(t) +(A— )\0)/ 6—(>\—/\0)sz(8) ds
0

for all A € C and ¢ > 0. Since sup,q|Gz(t)|] < oo, it follows that
foo e~ T (8)x ds = limy_yog fot e T (s)x ds exists if A\ > A\g. It follows that
Ao > a(uz) for all x € X, and hence \g > o(7T). This proves the first
equality in (i).

To prove the second equality o(T") = wo(S—Sx), let U,(t) := S(t)x— S,
and

f S(t)r —limg_oo S(s)z  if the limit exists,
va(t) = { S(t)x otherwise.

First assume that the strong limit S, exists. Then v, = v, and o(u,) =
o(T(-)x) = wy(vgy) by Theorem 1.4.3 of [1] for all z € X. Since S — Sy is
strongly continuous on [0, 00) and hence strongly locally bounded, we may
apply (21) for S — S, instead of T' to obtain that

o(T) = sup{o(uy) : = € X} =sup{wp(vy) : x € X}
= sup{wp(vy) : * € X} =wp(S — S)-

Next assume that S(¢) does not converge strongly on X as ¢t — co. Then
Seo = 0 by definition, and the set F := {x € X : tlim S(t)x does not exist}
—00

is not empty. If x € E, then v, = v, and o(uz) = wo(vy) > 0. If © € E,
then o(u;) = wo(vy) < 0 (by Theorem 1.4.3 of [1]), and thus wy(v,) < 0
(since v, (t) = Uy (t) — limg 00 S(s)x for all £ > 0). It follows that

0 < o(T) =sup{o(uz) : z € E} =sup{wo(vy) : = € E}
= sup{wo(vy) : x € B} =sup{wy(vy) : € X} = wo(S — Sx).

(ii) Let ReA > X9 > o(T). Since the above-defined function G.(-) is
bounded on (0, c0) for all x € X, the uniform boundedness principle implies

t
/ e 5T (s) ds
0

Hence (ii) follows immediately from the following formula (see (22)):

o0 t t
(24) H/ e_AST(s)xds—/ e T (s)x ds e_(A_AO)t/ e~ 2T (s)z ds
0 0 0

(23) M :=sup
t>0
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+ =20 /too SOk (/0 e (r)z dr) ds|

A — Ao

< —(RGA—AO)tM
e ol + o

e RA Azl (2 € X).

This completes the proof. O

We next investigate the analytic behaviour of the operator-valued function
A= T(N) = [7°e*T(s)ds. Thus we must assume that X is a complex
Banach space. When X is a real Banach space, we complexificate X as
follows (cf. [13, Chapter II, §11]). Set X¢ :={x +iy : z, y € X}, and

|2 + iy|| := sup {||(cos §)z + (sinB)y|| : 0 <6 < 2w}.
Under the usual operations
(a +ib)(x + iy) := (ax — by) + i(ay + bx),
(z +iy) + (¢' +iy') = (2 +2) +i(y +9/),

where a, b € R, X¢ becomes a complex Banach space. Regarding x = x +10
for x € X, we may consider X to be a subset of X¢. When @ € B(X), it can
be extended canonically to Qc € B(Xc) by setting Qc(z+iy) := Qx +iQy.
Since

|Qc(z +1iy)l| = sup {[|Q((cos O)x + (sinB)y)| : 0 <6 < 2m}
< QI +ayll,
it follows that ||Qcl|| = [|Q]|. We will use below the original symbol @ to
denote Qc.

Theorem 3.3.  Suppose assumption (OA) or (OB) holds.  Then the

operator-valued function A — T(\) = Joo e T (s)ds is analytic on the
domain {A € C : Re\ > o(T)} and, for n € N and Re\ > o(T), we have

(25) TM(\) = / e (—s)"T'(s) ds.
0
Proof. From (23) and (24) it follows that

lim [|T(\) /_/\ST ) ds|| = 0
0

t—00

uniformly on compact subsets of {\ € C : ReX > o(T)}. Thus by the

Weierstrass convergence theorem it is sufficient to check that the functions
Qr : C— B(X) (k € N) defined by

k J
(26) Qr(N) == /0 e T (s)ds = ]\}1_{1100 Z A /
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are analytic on C, and Q,gn)(A) = fok e~ (—s)"T'(s) ds for all n € N.
To do this, fix any real G > 0. For A\ € C with |A\| < G, define

N oy j
Qr,N(A) = ]Z:;?/o (—s)’T(s)ds.

We will prove that
(27) A}im 1Qk(A) — Qr,n(A)|| =0 uniformly on |\ < G.
—00

k o . Sj
Qr(\) — Qr.n(N) :/0 (Z ( j!) )T(s)ds,

Note that

j=N—+1
and
0 (=Xs)! . (Gk)
(28) > (j!) < ) (j!) — M(N) =0 (as N — o)
j=N+1 j=N+1

for all [A| < G and 0 < s < k.
First suppose assumption (OA) holds. Define for f € Ly ([0,k],C) an
operator Ty in B(X) by

k
Tz ::/0 f(s)T(s)xds (x e X).

Since |[Tya|| < [EIF (T (s)allds < |l JEIT(s)e] ds < o0 for all x €
X, the uniform boundedness principle implies that
K= sup {[|T¥| : [|f]loc <1} < o0,
whence by (28) we obtain that
1Qr(N) = QNN S M(N)K =0 (as N — 00)

for all |\ < G.
Next suppose assumption (OB) holds. Letting

a(s) = Re( Z (;\!8)j>, and b(s) := Im( Z (;\!S)J),

we have |a(s)|, |b(s)] < M(N) for all [A\| < G and 0 < s <k, and

k
(Qr(N) — Qr.n(N)x = /0 (a(s) +ib(s))T(s)x ds
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for x € X¢ (= the compexification of X). (Note that T'(s) denotes T'(s)c,
as was remarked above.) Here, if z € XT (C X C X¢), then, since
—M(N)T(s)x < a(s)T(s)xr < M(N)T(s)x for all 0 < s < k, we have

k k k
—M(N)/ T(s)xds < / a(s)T(s)xds < M(N)/ T(s)zds.
0 0 0
Since X is a Banach lattice, it follows that
< M(N H/ s)ds

H/ s)xds|| < M(N H/ s)x ds

Similarly
k
H/ b(s)T (s ds|) < M(N) H/ ) ds||lz.
0

It follows that
k
@) QW) = Qua()al < 2| [ 7 sl

By a similar argument we see that (29) holds for x € X (C X¢). Then, for
x + 1y € Xc, we have

k
@) = Qe+l < 20| [*T(s)as (e + i)

< )| kT(s)dsHHxﬂ'yu,

which implies ||Qr(X) — Qr.n(N)|| < AM(N)|| fo s)ds|| = 0 (as N — o0)
for all |\ < G.

Thus, in either case, we have proved that limy_o [|Qk(X) = QN (N)|| =0
uniformly on compact subsets of C. Then, by the Weierstrass conver-

][

gence theorem, (Qj is analytic on C, and Q,(:“)()\) = limn_oeo Q,(cn])v()\) =

fok e *$(—s)"T(s) ds for all n € N. This completes the proof. O

Remarks. (a) The following example shows that there exists a strongly
measurable positive semigroup 1" = (1'(t));>0 of bounded Inear operators
on a Banach lattice X such that it is not strongly locally integrable, but
improperly strongly locally integable.

Ezxzample 12. For n € N, let X, := L1([0,00), frds), where
fu(t) := 1+ n(n+ )X/ m+1),1/n) (D),
and ||z, || == [3° |zn(s)|fn(s)ds for z, € X,,. Next, let
X = (@) ¢ a0 € X, lim [l | = 0}
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and

[(@n)nzs || == sup [lan || for (zn)pZ, € X.
n>1

X becomes a Banach lattice with the usual operations. For ¢ > 0 and
z = (z,)72, € X, define

T(t)z := (T(t)wn)pZs,

where [T'(t)z,](s) := xn(s —t) for n € N. Thus T(t)x, € X, and, by
the definition of T'(t), if ¢ > 1/n then |[|[T(¢t)z,|| < ||zn||. It follows that
Tt)r = (T(t)xn)ye, € X for all z € X. It is obvious that T' := (T'(t))¢>0
becomes a strongly measurable semigroup of positive linear operators on X.

To prove the existence of fol T(t)xdt = limg fal T(t)zdt for all x € X,
we may assume without of generality that z = (2,)%°, € XT, which is
equivalent to x,, € L] ([0,00), f,ds) for all n € N. Since

oo

/a 1 T(t)x dt = ( / 1 T(t)z, dt) L

1
hfol T(t)zy, dt = / T(t)x,dt € X,, (in X,-norm),
a a 0

and since

H/OlT(t)CCndtH:Al{[)mxn(s—t)fn(s)ds}dt
— /01{/Oooxn(s—t)dS}dt+/01{/1;(/:+1)xn(8—t)n(n+1)ds}dt

1/n 1
< x| + / {n(n + 1)/ Tn(s —1t) dt} ds (by Fubini’s theorem)
1/(n+1) 0

n(n+1)
n(n+1)

(30

~—

<zl + [zn ]l = 2l[znl

it follows that if we set y := (yn)o2,, where y, = fol T(t)xy,dt for each
n € N, then y € X and

1 1
/ T(t)xdt =1lim [ T(t)rdt =y (in X-norm).
0

al0 J,

We next prove that fol |T(t)x| dt = oo for some z € X*. To do this,
choose b, ay,, B, > 0 for each n € N such that

0<b—|—1<1<b—|-1—|-1<1 1-!—1
"a, n+1 "o, n+1l " 2\n4+1 n)’
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0<fBn <ap, &¢0 as n — oo, and Zﬁn:oo
(8% (67

n n=1

Define an element x,, of X, for each n € N by

T = BnX[bn, bp+(1/an)]-

Since ||z | = [y~ @n(s) fu(s)ds = Bn/on, it follows that & := ()22
X*. Further we see that if

! <t<1 ! +1
n+1 2\n+1 n)’

n— 1181Il

then
% <t+by+ (1/an) < % and  T(t)Zn = BaX[t+bn, t+bn+(1/an)]>
so that
0o 1/n
IT (@)l = / T ()] (5) fouls) ds = / ()] (5) fa(5) ds
0 1/(n+1)
— (+nn+1) g—” (n € N).

n

It follows that

1/n 2751/ (n+1)+1/n) B
/ 1T (t)x|| dt > / |T(t)zn||dt > 2712 (neN).
1/(n+1) 1/(n+1) O

Therefore

/ T ()| dt = 2/1 T (t)z|| dt > 2~ 125" —

which is the desired result.

(b) The following example shows that a strongly locally integrable pos-
itive semigroup 7" = (7'(t))s>0 of bounded linear operators on a Banach

lattice X may satisfy lims,o || fObT(t) dt|| = 0 and limyyo ||T(¢)|| = oo

Ezample 13. Let {a,,}2°; be a sequence of real numbers such that

1
0<Oén+1<an<m and Znanzl

Define a nonnegative real-valued integrable function f on [0,00) by

F(8) =14 nX((1/m)—an, 1/m)(5);

n=1
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and X := L1([0,00), fds). Let [T'(t)z](s) := x(s —t) for t > 0 and x € X.
It is clear that if ¢ > 1/n, then |T(t)z| < n|z| for all x € X, so that
T(t) is a positive linear operator on X with [|T(¢)|| < n. It follows that
T := (T'(t))t>0 becomes a strongly measurable semigroup of positive linear
operators on X satisfying limy g || 7(¢)|| = oo, since ||T'(t)|| > n for t > 0
with (n+1)7! <t < n~! by the definitions of T'(t) and X.

To see that fé’ |T(t)z|| dt < oo for all x € X and b > 0, we may assume
that # € XT = L] ([0,00), fds). Given an e > 0, choose n > 0 so that
Jo f(s)ds < e. Then

/0b||T(t)x||dt _ // 2(s — 1) f(s) dsdt
_ /(/ /> (s — £)f (s) dsdt = T+ I1,
where

I = //x(s—t 5) dsdt /n</ba:(s—t)dt>f(s)ds
< /nﬂu dw—WW/f ds = |

Let N(n) :==min{n >1 : 1/n <n}. From the definition of f we see that
f(s) < N(n) for all s > n. Therefore

o= /Ob/noom(s—t)f(s)dsdtg/Ob/noom(s—t)N(n)dsdt

b
sANwww:me.

Hence fob||T(t):U||dt =1+ 11 < (e+bN(n))|z|| < co. Thus if b > 0
satisfies € > bN(n), then fob |T(t) H dt < 2¢||z| for all z € XT. Therefore
| [2T(t) dt|| < 2, and limgo || [ T(¢) dt|| = 0.

(c) The following example shows that there exists a Banach lattice X and
a strongly integrable positive operator valued function 7" : [0,00) — B(X)

such that || [;°T(t)dt|| =1 = || fo T(t) dt|| for all b > 0.
Ezample 1/. Let X =0 = {(xn)22y : m € R, D0 |ay| < oo},
with the norm |[[(z,)02 || == > .2 |zn|. For n > 1, let hy(t) := n(n +

D)X(1/(n+1),1/n)(t). Next, for ¢ > 0, define a positive linear operator T'(t) :
X — X by T(t)x := (hp(t)xn)o2, for x = (z,,)02, € X. It is clear that
IT(t)z]| =n(n+1)|x,| <n(n+1)||z| for 1/(n+1) <t < 1/n, and that the
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function T': t — T'(t) € B(X) is strongly measurable. If x € X, then

(31) H/OOT(t)xdtH:/oo ||T(t):v||dt:/1 \T()] dt

1/n 1/n
—Z / IT(t)a]| dt = Z / Dl = Zrm ]l
/(n+1)

/(n+1)

Hence || [, T'(t)dt|| = 1. Next, given b > 0, choose j > 1 so that 1/j < b.
Then, the element xi= ()02, € X deﬁned by x, = 1ifn =jand 2, = 0if

n # j satisfies [T (t)x dt = fo tx dt = fl/J ) T(t)zdt = x. Tt follows

that 1= || [[5T ﬂﬁ“>wg ﬂﬁ“Zleﬁb>0
Here we would like to note that the positive semigroup 7" = (1'(¢))s>0 in
Example 12 satisfies limy,) || fob T'(t)dt|| = 1. Indeed, by a slight modification

of (30),
| [ a0+ Dl e xtnem,

On the other hand, by the defini-

(To see this, it suffices to estimate

so that limsupy || fob (t) dt||

<
tion of f,, H 1/” n+bp dtH >
H 1/n(n+1

—_ =

a:dtH/Ha: | for elements z = (x,)72; € X of the form z(s) =
1f k- # n, and xx(s) = X{nt1)-1—c (nr1)-1)(8) if & = n.) Hence

. b
hmbw H fO T(t) dt” = 1.
The next theorem is an immdiate consequence of Theorem 2.10.

Theorem 3.4. Suppose (OA) or (OB) holds. Let v > 1, a > —1 —~, and
M > 0. Assume ||C]|| < Mt™ for all t > 0. Then the following hold.
(i) For all >0 and t > 0,

r 1) T 1
”C,;H_ﬂ”SM (FY_I_O‘—I' ) (7"{_54_ ) @
F(y+1) Thy+a+p+1)
where the right-hand side of (32) is less than or equal to Mt® when o > 0.
(ii) If o(T) <0, then, for all X > 0,
Fy+a+1), _
L'(v+1)

(32)

(33) AN < M

Theorem 3.5. Suppose (OA) or (OB) holds. Let v > 1, a > —1 — ~.
Assume that ||C] || = O(t*) as t — co. Then the following hold.

(i) For all g >0, HC’?J”BH = O(t%) as t — oo.

(ii) If o(T) <0, then ||[Ax|| = O(A™) as A | 0.
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Proof. (i) By the assumption there exist M > and K > 0 such that ||C/|| <
Mt® for all ¢ > K. Then ||C/z| < Mt* for all x € X with ||z]| = 1, and
t > K. By the proof of Theorem 2.11(i) we have

M, r 1) T 1
||C;Y+5x” < 1——|—M (f}/—’_a—’_ ) (7+6+ ) o
ti+ I'(v+1) TI'(v+a+pB+1)

for all z € X with ||z|| = 1, and ¢t > 2K, where M, > 0 is a positive constant
depending only on x € X with ||z| = 1. Since @ > —1 — ~, it follows that

sup HC’t%Lﬁ:EHt_O‘ < 00
t>2K

for all x € X with ||z|| = 1. Thus, by the uniform boundedness principle,
suppsor G771t < oo,
(ii) This follows similarly by using the proof of Theorem 2.11(ii). O

Remark. If T satisfies esssupgcgcsp |7(5)]] < oo for all 0 < a < b < oo,
then C}' can be defined as an operator on X for all v > 0 and ¢ > 0, and
the function t — Ctﬁ becomes strongly continuous on (0,00) for all 8 > 0.
Thus, in this case, the hypothesis v > 1 in Theorems 3.4 and 3.5 can be
replaced with v > 0, where in particular, if v = 0, then the assumptions
“NIT )] < Mt for all ¢ > 0” in Theorem 3.4 and “[|T(t)|| = O(t%) as
t — o0” in Theorem 3.5 may be replaced with “||T'(t)|| < Mt® for dt-almost
all £ > 0”7 and “||T'(t)|| = O(t¥) (mod dt) as t — o0”, respectively.

Theorem 3.6. Suppose (OB) holds. Let v > 1 and o > —1 —~. Then

(i) supsg [[t7CY || < o0 if and only if o(T) < 0 and supysq [[A*Ax| < oo;

(i) [|CY]] = O(t%) ast — oo if and only if o(T) < 0 and [|A,|| = O(A™?)
as A ] 0.

(iii) If f(f’T(t) dt # 0 for some b > 0 and o(T) < 0, then CY()(C.'B) =
ag(A) > —1 for all g > 1.

Proof. Since T is positive, each of the first conditions of (i) and (ii) implies
o(T) < 0 (cf. Remark (a) under Theorem 2.10). Then the necessity parts
of (i) and (ii) follow from Theorem 3.4(ii) and Theorem 3.5(ii), respectively.
Also the sufficiency parts of (i) and (ii) follow from the proof of Theorem
2.13, because we may only consider the case r € X with [|z| = 1.

To prove (iii), note that, by the hypotheses of (iii), there exists z € X,

with [|z[| = 1, such that [, T(t)a dt > 0; then for all A > 0

b
INTTAL > AN rAz || > H/ e—AtT(t)xdtH
0

> N /ObT(t):cdt“—> /ObT(t)xdt“>0
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as A | 0. It follows that ag(A.) > —1. Hence, by (i), ao(C?) = ag(A.) > —1
for all B > 1. This completes the proof. (]

Remarks. (a) Assumption (OB) cannot be replaced with (OA) in Theorem
3.6; further, the hypothesis v > 1 cannot be replaced with v > 1 — ¢, where
0 <e<1. (See[3].)

(b) The following example shows that there exists a Banach lattice X and
a strongly integrable positive operator-valued function 7" : [0,00) — B(X)
such that T'(t) # 0 for all t > 0 and [°T'(t)dt = 0.

Example 15. Let X = {(G’L)LER :a, €R forallt € R, and ), pla| <

oo}. With the usual operations and the norm ||(a,)|| := > ,cp |a.|, X be-

comes a Banach lattice. For ¢ > 0, define a non-zero positive linear operator
Tt): X - X by T(t)(a,) := (b,), where b, = a; if « = t, and b, = 0 if
v # t. Since {¢ : a, # 0} is countable for all (a,) € X, the operator-valued
function T' : t — T'(t) becomes strongly integrable on [0, co) and satisfies
JoS T(t)(a,)dt =0 for all (a,) € X.

The next theorem is an immediate consequence of Theorem 2.15.

Theorem 3.7. Suppose (OA) holds. Then sups, ||C}|| < oo if and only
: b _
if supy pso l|A Jo e MT(t) dt]| < oo.

4. THE DISCRETE CASE

In this section we consider a sequence {z,} = {z,}22, in a Banach space
X. If v > 0, we define the y-th order Cesdro mean ¢ of the sequence over
{0,1,... ,k} as

k

1
(34) = ({zn}) = - Jy(k =D,
k k J’y—i—l(k) lz:; !
where
. 1 it n=0,
(35) Jy(n) = { 7(7+1)~-ﬁ(!7+”—1) if n>1.

Thus, in particular, we have ¢ = z; and ¢, = (k + 1)"' 3.5 2 for all

k € Ny. It follows from (35) that

1 > .
(36) TEDERP Ik
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for all ¢ € C with |t|] < 1. We note that the function j, : Ny = R can be
defined for all v € R by (35), and then (36) holds for all j, with v € R. It
then follows that

k
(37) Jys(k) =Y dy(k = Djs(l) = (y * js) (k) (v, BER, ke Np),
1=0
where j, * jg denotes the convolution of j, and jg. It is known (cf. [17, p.
77]) that if 8 & {0,—1,—2,...}, then

. jg(n) 1
(38) AL BT T T

Therefore there exist constants Bg > Ag > 0 such that
(39) Ag-nPt < ja(n)| < Bg-nf7' (n € Np),

where we let 0°~! := 1 for convenience sake. It is possible to define the y-th
order Cesaro means ¢] for all v & {—1,—2,...} by (34), because j,11(k) # 0
for all £ > 0 whenever v ¢ {—1,—2,...}. But the author thinks that to
treat the Cesaro means of a sequence it would be natural to consider the
case where the terms j,(k —[) in (34) are all nonnegative. (Indeed, there
is a pathological phenomenon when we consider the case —1 < v < 0. See,
for example, Theorem 4.1 of Li-Sato-Shaw [7].) So in this paper we restrict
ourselves to the case v > 0. It should be mentioned here that Shaw and
Chen considered Cesaro means ¢, for v € {—1,—2,... } and obtained some
results (see [14]).

The exponential growth order wo({x,}) of {x,} is defined as
(40) wo({zn}) :=inf{w e R : ||z,] = O(e""™)}.

If wo({zn}) < 00, then {z,} is said to be exponentially bounded.
Let

1
(41) rad({z,}) := T -
im sup,, o [|n V"
It follows easily that
rad({z,}) =sup {r >0 : Zr”H:an < oo} =sup{|r| : Z ", converges},
n=0 n=0

from which we see that rad({z,}) > e~*ol{=nh) If r € C satisfies 0 < |r| <
min {rad({z,}), 1}, then the Abel mean a, of the sequence is defined as

(42) a, = a,({zn}) =1 —7) Zr”xn
n=0
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and, when rad({z,,}) > 1, the growth order ap(a.) of a. (at r = 1) is defined
as

(43) ap(a.) :==inf{a € R : [ja,]| =01 —7r)"%) as 0<r 11}

Similarly, the polynomial growth order ag({x,}) of {z,} (at n = o0) is
defined as

(44) ag({zn}) :=inf{la e R : |z, = O(n)}.

If ap({zn}) < o0, then {x,} is said to be polynomially bounded.
In the following the sequence {x,, }7° , will be considered to be the function
u:n +— x, from Ny to X. We define the convolution j, * u of j, and u as

k

Gy xw)(k) == 3Gy (k= Dull) (k€ No).

=0
Thus we have ¢ = ¢} (u) = (jy41(k)) "' (jy * u)(k) by (34). It follows from
(37) that jg * (jy * u) = (Jig * jy) *u = jy1p *u for all 4, € R.
Lemma 4.1. Let u: Ny — X be a sequence. Define u € L'*°([0,00), X) by
(45) u(t) == u([t]) for t >0,

where [t] denotes the largest integer not exceeding t. Then the following hold.
(i) Yoo oe*u(n) converges if and only if [ e~ u(t)dt converges for
all A € C. -
(ii) rad({u(n)}) = e 7@, wo({u(n)}) = wo(@), and wo({(jr * u)(n) —
Fo}) =wo((1xu) — Fy), where

> qu(n) if it converges,
(46) Foo := { 0 otherwise.

Proof. (i) Since the case A = 0 is immediate, we consider the case A # 0.
Then for ¢t > 0

¢ [t -1 -1
(47) / e U(s) ds — Z e Mu(n) = Z / <e_’\(”+5) - e_)‘”) u(n) ds
0 n=0 n=0 0

-
4 e / e Nu(i]) ds = T+ IT,
0

where
[t]-1

(48) I=3en ( /0 1 (e —1) ds) u(n) = (1 _;A - 1) [jg e u(n),

n=0
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and

_ e[
(49) 1T = 1%6_)‘”]11([25]).

Therefore if Y°0° e *"u(n) converges, then so does [ e *u(s) ds.
Conversely suppose [,~ e~ As ( ) ds converges. Then we apply (47)—(49)
with ¢ = n, and see that > 7° e ""u(n) converges and further that

(50) A /000 e Mu(s)ds = (1 —e” Z e My

(ii) Using (i) we have

rad({u(n)}) = supse " : A eR, Ze_mu(n) converges}
n=0

= sup{ : AeR, / e U(s) ds converges}
0

= exp [ —inf {)\ eER : / e M u(s) ds converges})
0

—U(u)

whence the first equality in (ii) follows. The second equality wo({u(n)}) =
wo(w) is obvious from the definition of w.
To prove the third equality we note that

(Lxu)(t) = Foo) = ((1 *w)([t] = 1) = Fo)

= [ e ds = 3 uim) = (0= eulle)
for all £ > 0. Thus the relation
u(lt]) = (o *w)([t]) — (o w) (] — 1)
implies
[(1 3 @)(2) = Fooll < [|(G1 * w)([t] = 1) = Fooll + [|(J1 * w)([t]) — Fos|
+[Gr * u)(t] = 1) = Fo.
Similarly the relation
(t = [tDu(t]) = (1 a)(t) — (L*u)([t])
implies
G+ w)([t] = 1) = Fooll < I(1 @) (£) — Fooll + [|(1 + w)(£) — Fool|
+ (11 w)([t]) = Fool-
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Therefore it follows that [[(1* @)(t) — Fs)|| = O(e*?) if and only if ||(j; *
u)(n) — Fso|| = O(e®™) for any w € R. Consequently we have wq({(j1 *
u)(n) — Fo}) = wo((1 x u) — Fy), completing the proof. O

Theorem 4.2. Let u: Ny — X be a sequence. Then
rad({u(n)}) = exp (— wo({(Gr * u)(n) — Fx})).
Consequently, min{rad({u(n)}), 1} = exp (— max {wo({(j1 * u)(n)}), 0}).
Proof. By Lemma 4.1, together with Theorem 1.4.3 of [1], we have
rad({u(n)}) = exp(—o(u)) = exp(—wo((1 *u) — Fro))
= exp(—wo({(j1 * u)(n) — Foo})).
Hence
min{rad({u(n)}),1} = exp(—max{wo({(j1 * u)(n) — Fo}),0})
= exp(—max{wo({(j1 * u)(n)}),0}),

where the last equality comes from the fact that if Fi, # 0 then wg({71 *
u)(n) — Fo}) < 0 and wo({j1 *u)(n)}) = 0. This completes the proof. [J

Theorem 4.3. Let u: Ng — X be a sequence. Suppose v > 0 and 3 > 0.
Then:

() || < max{||c]|| : 0 <k <n} for all n € No;

(i) of |[eh]] < Me“™ for some M > 0 and w > 0 and all n € Ny, then
1P| < Mev™ for all n € Ny;

(iii) max{wo({c;}),0} = max{wo({(js *u)(n)}),0} = max{wo({u(n)}),0}.
Proof. By using the relations

(61 & = Gyes1(n) 7 Uryrp * 0)() = (a1 (n) 7 (g * (Gy % w))(n)
= (rap41(n) 7 (G * (Jy10))(n),

(i) and (ii) follow similarly as (i) and (ii) of Theorem 2.4. Hence we may
omit the details.
To prove (iii), first we see from (ii) that

(52) max{wo({e}*7}), 0} < max{wo({c}}), 0}.

Hence, with v = 0, we have max{wo({c}),0} < max{wo({u(n)}),0}. To
prove the reverse inequality, suppose max{wg({c}}),0} < w < oo. Since
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max{wo({jg * u)(n)}),0} = max{wo({cs}),0} by (34) and (38), it then fol-

lows (with 8 = 1) that

> ulk)

k=0

No : |lu(n)]] > e*"}. If No(w) is finite, then it

) < w. If No(w) is infinite, then define ng :=
or G > 0. Thus limg_,, ng = 00, and by (53)

(53) 11 * w) ()| =

= o(e"™).

Now, put Nyo(w) := {n €
is obvious that wy({u(n)}
min{n € No(w) : n > G} fo

we have
(54) 11 * u)(ng — 1)|| = o(e®™671) = o(e¥¢) as G — oo,
so that
11+ u)(ne)ll = [u(ne)ll = [I(71 * w)(ng — 1]
> "G —o(e""9) = (1 —0(1))e""¢  as G — oo,

which is a contradiction, because ||(j1 * u)(ng)|| = o(e*"¢) as G — oo by
(53). Tt follows that wo({u(n)}) < w, and thus we({u(n)}) < max{wy({c}:}),0}.
Consequently max{wy({u(n)}),0} = max{wo({j1 * v)(n)}),0}, and by an
induction argument, max{wg({u(n)}),0} = max{wo({jx *u)(n)}),0} for all
k € N. From (52) we observe that that if 8 < k € N, then

max{wo({u(n)}),0} > max{wo({c;}),0} > max{uwo({(c;}), 0}
= max{wo({ji * u)(n)}),0} = max{wo({u(n)}),0}.

The proof is complete. (]

Theorem 4.4. Let u: Ng — X be a sequence. Then
(i) for all v > 0,

(55)
min{rad({c,}), 1} = min{rad({(j, * u)(n)}), 1} = min{rad({u(n)}), 1};
(ii) for all v € C with 0 < |r| < min{rad({u(n)}), 1} and v > 0,

(56) a, = )7t Z (Jy *u)(n) =(1—r) )t Z " jyt1(n)c)

n=0
Proof. (i) It follows from (38) and (41) that
minfrad({c)}), 1} = min{rad({(jy  u)(n)}), 1}.
On the other hand, by Theorem 4.2 and Theorem 4.3(iii), we have
min{rad({(jy * u)(n)}), 1} = exp (— max {wo({(jy+1*u)(n)}), 0})
= exp (— max {wo({(j1 * u)(n)}), 0})

= min{rad({u(n)}), 1},
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which proves the second equality in (55).

(ii) The case v = 0 is trivial. So we consider the case v > 0. Let r € C be
such that 0 < |r| < min{rad({u(n)}), 1}. Then, since Y >, |r|"[lu(n)| <
00, it follows from (36) that

o ({u(n)}) = (1—r>ir”u<n> V“(Zr (o )Zr u(n

— 7“27“ (jy*u)(n) = (1 —r)7H! Zr Jy+1(n)c)

n=0
whence the proof is complete. O]

Remarks. (a) The equality min{rad({j,*u)(n)}, 1} = min{rad({u(n)}), 1}
holds for all v € R. In fact, the proof of Theorem 4.4(ii) shows that the
inequality min{rad({(j, * «v)(n)}),1} > min{rad({u(n)}),1} holds not only
for v > 0 but also for v € R. Then, by (37), we have min{rad({u(n)}),1} =
min{rad(j_~ * (jy * u))(n),1} > min{(j * u)(n)}),1}. (Note that this also
follows from Theorem 4.4(i), by using (37).)

(b) Let u : Ny — X be a (non-zero) sequence. Then Theorem 4.4(i)
implies that if rad({u(n)}) < 1, then rad({(jy * u)(n)}) = rad({u(n)}) < 1
for all ¥ > 0. On the other hand, if rad({u(n)}) > 1, then the set {y >0 :
rad({(jy * u)(n)}) # 1} is finite. (This can be proved by using arguments
similar to those in Remark (a) under Theorem 2.5. We may omit the details.)
Further we note that for any 0 < v ¢ N there exists a sequence u : Ng — R
such that rad({u(n)}) = 1 < rad({jy * u)(n)}) = oco. For example, let
u : Ng — R be the sequence defined by the equation (1 —¢)7 =>">° ju(n)t"
(i.e., u(n) := j_(n) for n € Np). Then the hypothesis 0 < v & N implies
rad({u(n)}) =1 (see (38)), and for all >0

S g ru)(n) = 3 ¢ Zt” — -t (<),
n=0 n=0
Hence

, 00 if g8 R P B 7 S
a0 ={ GRSy

Lemma 4.5. Let X be a Banach lattice, and u : Ny — X be a positive
X-valued sequence. Let 0 <r <1,y >0 and x € X. Then

(57) Zrnu(n) =x if and only if (1 —r)7 Z " (jy *u)(n) = .

n=0
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Proof. Suppose > > r"u(n) = x. We first prove that
k

weak- klggo (1—r)7 z_;)r”(j7 xu)(n) = x.

For this purpose, since X is a Banach lattice, it is enough to show that
o0 k

(1= 3P Gy (), o) = lim (1)) 37 ((yeu) (), 2%) = (, )
n=0 n=0

for all z* € X* which is a positive linear functional on X. Then, since
(u(n), z*) > 0foralln € Ny and > "> r™(u(n), *) = o7 r"u(n), *) =
(x, z*), it follows from Fubini’s theorem together with (36) that

(L =) Y "™ {(y xu)(n), a*) = (L =r)" Y (Z 7 E gy (n = k) (u(k), w*>>
n=0

n=0 \k=0
=(1-r) (Z r”jw(n)> Zrk(u(k), x*)
n=0 k=0

= Q=)= rFu(k), 2%) = (2, 27).

Hence (1 — 7)Y S°F ™ (jy * u)(n) < x for all k > 0, and

n=0

k
weak- lim (1 —1r)7 Z " (jy * u)(n) = .
n=0

k—o0

By this together with the Corollary of [13, Theorem I1.5.9] we see that

k
: Ny " - .
kli)n;OH(l T) nz:%r (4 *u)(n) :c” =0,
whence (1 —r)7 Y>> r"(jy % u)(n) = .

The converse implication is proved by the same argument, and hence we
may omit the details. 0

Remark. Let X be a Banach lattice, and u : Ny — X be a (non-zero)
positive sequence. If rad({u(n}) < 1, then rad({j, * u)(n)} = rad({u(n)}
for all v > 0 by Lemma 4.5. On the other hand, if rad({u(n}) > 1, then

Z " (4 * u)(n) Z r"u(n)
n=0 n=0

for all v > 0. It follows that rad({j, * u)(n)}) = 1 for all v > 0. Hence the
function v — rad({(jy * u)(n)}) is discontinuous at 0 if rad({u(n)}) > 1.
This is the discrete version of Theorem 2.7.

=lim (1 —7r)7"
T

lim
1

=0




198 RYOTARO SATO

Proposition 4.6. (N.H. Abel) Let u: Ng — X be a sequence. Assume that
> yu(n) converges. Then, for any0 < & < /2, >°° e~ u(n) converges
uniformly for all X\ in D(0;6). Hence the function A — > °° e u(n) is
continuous on {0} U D(0;0).

Proof. By hypothesis, for any € > 0 there exists K > 1 such that n > m > K
implies || > p_, w(k)|| < e. Suppose A € D(0;6). Then we have

Ze_’\” (1—e? Ze A”Z

k=0

by Theorem 4.4(11). Let n > K. Applying the above equality to the sequence
up, : Ng = X defined by u, (k) := 0if 0 < k < n and u, (k) := u(k) otherwise,
we have

00 00 k
d e Mulk)y =1 -e)D e u(l).
k=n k=n l=n
Hence
[ > e um]| < f-e Z (R | Z
k=n
-\
A —(ReA)k [1—e
< }1_6 ‘Z —1_6—Re/\6
11— e ReA IA| |)\| M
= < Mj <
Al |1 — e ReA| ReA €= Reh < cosd
where
11— e ReA
Mg := { :)\GDO;5}<< )
TP e o)y (=
This completes the proof. [

Remarks. (a) The following example shows that Proposition 4.6 does not
hold when 0 < § < 7/2 is replaced with 6 = /2.

Ezample 16. (This is an adaptation of Example 6.) Let X = {(a,)22,
an € C, lim,,_,o, a, = 0} be the same as in Example 6. Choose a real-valued
sequence f : Ny — R such that

(38)  1=/(0)>f(1)>... >0, lim f(n)=0, and ) f(n)=

Define a sequence u : Ng — X by
w(k) == (uw(k)n)2>,, where u(k), := e* /" n=2f (k).

n=1>
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It follows that

K K 00
S (k) = (Zu(k:)n)n_l eX  (K>0)

K K

u(k)e = 3 2 f (k)

k=0 k=0
(Zcos km/2n) f —|—zZsm km/2n) f(k ))

From (58) we easily see that

K
(59) —n <Y cos(km/2n) f(k) < n

k=0
and that

K
(60) 0< sin(km/2n) f(k) < 2n.
Thus
K 3

(61) ‘Zu n+2n) = (K20

k=0

Further > 72 ju(k), conveges for each n > 1. Thus

(i u(k)n)zozl € X,
k=0
and
oo K K
douh) = Jim 3w = Jim (3outhn)
k=0 k=0 k=0
= (Z u(k)n):il (in X-norm).

199
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Next, let \; := §; +imw /2] for [ = 1,2,..., where §; > 0 will be determned
later. Then by the definition of u(k)

o0

Ak _ —5k _—ikm/2l &
Ze u(k) = (Ze e u(k:)n>n_1
k=0 k=0
_ (Z o—0uk o —(ik /20)+(ik /2n) n_2f(k:)>oo € X,
k=0 n=l
where, in particular,
Z o~ 01k o= (ikm/21)+(ikm/2n) n=2f(k) Z 01k n"2f (k) when n = I.

We now determine §; > 0 for each [ > 1 as follows. By (58) there exists ¢
such that 0 < §; < 1/1 and

1 (ee]
= D e f(k) > 1
k=0

Then we have lim;_, o \; = lim;_, o, &; + 9w /2] = 0, and

H ie_AlkU(k)H > ie_‘slkl_Qf(kz) > [ (1>1),
k=0 k=0

so that limy_o > po g e~ MFu(k) does not exists in X. Hence the function

A= S e Mauy(k) from {0} U D(0;7/2) to X is not continuous at 0, and
so the uniform convergence of > 70 e **u(k) fails to hold on D(0;7/2).

(b) The existence of the limit,

lim Z e_A”
D(0;7/2)52A—0

does not imply the convergence of > >° ju(n). For example, let u(n) :=
(—1)" for n > 0. Then

—A\n . —\\n __
E e u(n)—g (—e ) —1+€_>\—>§
n=0 n=0

as A — 0 with ReA > 0. But Y 2 ju(n) = > "7 ;(—1)" does not converge.

Fact 4.7. Let u : Ny — X be a sequence. If 0 < rad({u(n)}) < 1, then
SUPg<|r|<k llar]| < oo for all 0 < K <rad({u(n)}).
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Proof. By (41) and (42)

[e.e] o0 o0
ool = 11 =l D2 rmutm) | <237 i lutn) | < 23 K Ju(n)| < o0
n=0 n=0 n=0
for all r € C with 0 < |r| < K. This completes the proof. O

Remark. The hypothesis 0 < K < rad({u(n)}) cannot be sharpened as
K = rad({u(n)}) in Fact 4.7. To see this, let 0 < rg < 1, and define a
sequence u : Ng = R by u(n) := (n+1)r," for n € Ng. Then rad({u(n)}) =
ro, and

L . > n o__ (1 B T)T%
o = (1=1) L (n+ (/)" = G0
n=0

for all 0 <r <. Thus lim,4,, a, = oo.

Theorem 4.8. Let u: Ny — X be a sequence. Let v >0, a > —1 —, and
M > 0. Assume that ||c|| < Mn® for all n € Ny, where 0% := 1 as before.
Then the following hold.

(i) If B > 0, then there exists Mg > 0 such that

(62) |77 < Mg Mn® — (n € Np),

where we may take Mg =1 when o > 0.
(ii) rad({u(n)}) > 1, and there exists M, > 0 such that

(63) lag]| < Moo M(1—7)"*  (0<7r<1),
where we may take Mo = 1 when a = 0.

Proof. (i) Since v+ 1 > 0 and v+ a + 1 > 0 by hypothesis, it follows from
(39) that

. ) n
69 GG < Byan? Mn® < By b 2ottt
A’y—i—a—i—l
for all n € Ny. Therefore
171 = Gyrsrr ()M * Graa ) ()] (by (51))
1 B 1M
< T+ 98 * jrytatrt)(n
T Aggan P A Up * Jrras1)(n)
1 By 1M . (n)
- Jy+a n
By 1M
< . Byta+p prtots

Ayipr1Aypar ntP

Bv—i—le—i-a—l—ﬁ—&-l Mn®
A7+B+1A7+a+1



202 RYOTARO SATO
This proves (62) with Mﬁ = B’)/+1B’y+oz—|—,3+l(A'7+B+1A’y+a—|—1)_1-

Here if o > 0, then, since |[¢]|| < Mk®* < Mn® for all 0 < k < n, it
follows that

ISP = (ygpar(n) !

Z gp(n —k)jyr1(k)e]
k=0

< (Jyppe1(n)) " Mn® Zjﬂ (n = k)jy+1(F)
k=0

= (Jyapr1(n) ' Mn® i g01(n) = Mn®  (n € Ny).
Hence (62) holds with Mgz =1 when a > 0.

(i) Since ||} ||Y™ < (Mn®)'/™ — 1 as n — oo, it follows that rad({c}}) >
1. Hence rad({u(n)}) > 1 by Theorem 4.4(i). Further, by Theorem 4.4(ii),

[e.e]
a, = (L=r)"™ e (n)e)
n=0

for all 0 < r < 1. Thus

By M X .
lopl| < (1—p)rtt 22— E " jy+at1(n)  (by (64))
YHotl n=0
B M 1 B M
= (1— gyttt = 20 ()

Ayiapr (L—rptetl Ay o

This proves (63) with Moo = By11(Aytat1) "
Here if a = 0, then ||c;}|| < M for all n € Ny, so that

oo
la| < (@ =r)"™ > " r"ja(n)M = M 0<r<1).
n=0

Hence (63) holds with My, = 1 when a = 0. O

Theorem 4.9. Let u: Ny — X be a sequence. Let v >0, a > —1 — 7, and
M > 0. Assume that limsup,,_,. [[n % | < M. Let Mg and My be the
constants in Theorem 4.8. Then the followin hold.

(i) For all B> 0, limsup,_,_ |[n* || < Mg M.

(ii) rad({u(n)}) > 1, and limsup,4 [[(1 —7)%a, || < Mo M.
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Proof. (i) By the assumption there exist € > 0 and K > 1 such that [|c;|| <
(M — e)n® for all n > K. Then

121 = Graprr () MG * Gy ) ()]

< (ytpr(n (kzo Z) R)[[Gy * w) (k)| =: I + 11,

where if n > 2K, then by (39)

. K-1
I < ——— Ba(n — k)71, * u)(k
e I CRIC]
Bﬁ nﬂ_l K-1 51
= — 3 (L= k/n)" " |[(Gy * u) (k)]
Ayypprn o — !
B K-1
< Aiﬁ n~ 7 max{(1/2)7 7111 > 13y u)(B)]
Y+8+1 o
- Mab n_l_'Y,
and
IT = (jyaprr(n) ™" D da(n—k)jsar (B)| ]l
k=K
< ()™ ds(n — k)jyr (k)(M — €k < Mg (M — e)n®,
k=0

where the last inequality comes from the proof of Theorem 4.8(i) . Since
lim n~ 177" = 0, it follows that 11_>m =P < Mg M.

n—oo

(i) Since ||y || = O(n®), we see, as in Theorem 4.8(ii), that rad({u(n)}) >
1. Then by Theorem 4.4(ii)

a, = (1= "y xu)(n)
n=0

for all 0 < r < 1. Hence
K—1

o || < (1 =)' (Z P15 () (n) || + Z ) Hc””) — [IT+ 1V,

n=0

where

K—-1
IIT = (1= )" Y7 Gy # w) ()] = M (1= 7)1,
n=0
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and

IV < (1—r)tt Zr Grp1 () (M — en® < Mo (M — €)(1 — 1)~

by the proof of Theorem 4.8(ii). Hence 1+ v+ a > 0 implies lim,4 [[(1 —
r)*a,|| < Mo M. This completes the proof. O

Corollary 4.10. Let u: Ng — X be a sequence. Then the following hold.

() If v >~ > 0, then ao({c} }) < max{ao({c}}), =1 —~}.
(ii(% If rad({u(n)}) > 1, then ap(a.) < max{ap({ch}), =1 — v} for all
v 2 0.

Remark. The sequence u(n) := n*~! for n > 0, where \g > 0, satisfies
lim,, 0o u(n)/jr,(n) = I'(Ag) > 0 by (38). Thus an easy approximation
argument implies that
lim M Zl o]v( Du(l)
k=00 Jrytao (K) k—)oo Zz o 3+ (k= Dirg (1)
for all v > 0, and that

=T'(Ao)

lim (1 —r) Z r"u(n) = lim 2n=o "%(1) =T'(Ao) (cf. (36)).

11 LY o2 T ()
Hence
o Q@Y L Gy (T
k—o0 ko1 koo kro—1 j’Y+1(k) k—o0 k)‘o_lj,w_l(k)
b (K707 T (v + X)) T(Mo) Ty + DI'(Ao)
S ko1 ]{J’Y/F(’y + 1) n F(’)/ + )\0)
= 73(77 /\0)
for all v > 0, and
. o Yo-1 _ _ ,\0
i (1= ) ({u(n)}) = lim (1= ) Zr u(n) = T(Xo).

It follows that ap({ch}) = Ao — 1 = ap(a.) for all v > 0. Of course this
is a special case. In general, the function v — ag({c,}) is not constant on
[0,00). To see this we give the following examples.

Ezample 17. Let u(n) := (—1)" for n > 0. Then ap(a.) = —1, and
FO0<~y<1,

colien}) = { I ity > 1.
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To see this we first note that

0 =(1-1) 3 (=r)" = 1;; (0<r<1).
n=0

Hence lim, 41 (1—7)"'a, = 3 and ap(a.) = —1. Since ¢}, = (1+(=1)")/2(n+1)
for all n > 0, we have ¢}, = O(n™1) and ag({c.}) = —1. By Theorem 4.9
and Corollary 4.10, ¢;, = O(n™!) and ag(c,) = —1 for all v > 1. Next we
consider the case 0 < v < 1. Then by the definition of j, (see (35)) we have
Jy(n) > jy(n+1) > 0 foralln > 0, so that (j,+u)(n) = 353 jy(n—k)(=1)k
satisfies 0 < jy( ) — j4(1) < (Jy xu)(n) < j,(0) for all n € Ny. Since
& = (Jyr1(n)) "1y * u)(n), it then follows from (38) that ag({ch}) = —7.
It is clear that ap({c)}) = ao({u(n)}) = 0. (Incidentally, we note that
rad({jy * u)(n)}) =rad({u(n)}) =1 for all v > 0. Indeed, if v > 0, then by
Example 17

ao({(jr+1 *w)(n)}) = ao({jy42 *u)(n) - G}
= (v+D)+a({qH=(+1)-1=m

it follows that lim,, o0 (jy+1*u)(n) does not exist and that wg(jy41*u) = 0;
hence, by Theorem 4.2, rad({j, * u)(n)} = e"wo{Ur+rsw)(mM}h) = €0 = 1. Tt is
clear that rad{u(n)}) = 1.)

Example 18. Let N > 1 be an integer and u : Ny — R be the sequence
defined by the equation (1 —#)V=1 =" Ju(n)t", (ie., u(n) := j_ni1(n)
for n € Ny). Then ag(a.) = —N, and

N - —00 lf’y:O,l,,N—l,
ao({cn})—{ _N if v €[0,00)\ {0,1,...,N —1}.

To see this, note that u(n) = 0 for all n > N. It follows that ag({c0}) =
—00. Now suppose K =1,2,..., N — 1. Then

1 1
¢, = ——— (jk * j-N+1)(n) = ———= Jx-N+1(n),
Jr+1(n) Jr+1(n)

and since K — N+1 < 0, it follows that jx_n+1(n) =0foralln > N—K—1.
Thus ap({cX}) = —o0o. Next suppose v > N — 1. Then by (39)

(65) ¢ = % (Jy * J-n+1)(n) = 3—3;]:?(1781)

Jy+11
—-N
Bv—N+1 n’ . B’y—N+1 n_N

Afy_|_1 ny A7+1




206 RYOTARO SATO

for all n > 1. Similarly, ¢, > (A’y—N—I—l)(B’y—I—l)_l n~N for all n > 1. Thus
ao({ch}) = —N. We apply Theorem 4.4(ii) to see that for all 0 < r < 1

a, =L =)™y () = (=) Y v (n) (cf (65))

=1 =)A= = (1= n)",

which shows that ag(a.) = —N. Finally suppose~y € [0, N—1]\{0,1,..., N—
1}. Then, since v — N + 1 is not an integer and ¢, = jy—n+1(n)/jy+1(n) by
(65), we may apply (39) again to obtain that ag({ch}) = —N.

Theorem 4.11. Suppose X is a Banach lattice, and u : Ny — X is a
positive sequence with rad({u(n)}) > 1. Let v > 1, a € R, and M > 0.
Then the following hold.
(1) If supgepy [|(1 — )%, || < M, then sup,ss |[[n~ || < 4M/A, 4.
(ii) If limsup,.4q [[(1=7)%a,|| < M, then limsup,, . [n%cl| < 4M /Ay 1.

Proof. (i) Since u is positive, it follows from Theorem 4.4(ii) and (39) that

00 N
a = A=) S G rw)n) = (L)' S (o u)(n)
n=0 n=0
N
> (1= S () (n) = (L=1)7 e, # u)(N)
n=0

= A=) N (V) & 2 (L)Y AN 2 0

for all 0 < 7 < 1. Thus M > ||(1 —r)%.|| > (1 —r)*rN AL N7 .
Letting r =1 — 1/N, with N > 2, we have

M > N1 = YNV A NIl = (- 1NN A, Nk -

This proves [N~} | < (1 —1/N)™N /A, 11)M < (4/A,11)M for all N >
2.

(ii) Since r =1 —1/N 1 1 is equivalent to N — oo, the above proof of (i)
can be used to prove (ii). We may omit the details. O

Remarks. (a) The hypothesis that u is positive is essential in Theorem
4.11; further, the hypothesis v > 1 cannot be replaced with v > 1 — ¢, where
0 < e < 1. (For these and more we refer the reader to [7].)

(b) Let v : Ny — X be a sequence. Assume that x = lim,_, ¢;, exists
for some v > 0. Then, applying Theorem 4.9 for the sequence {u(n) —x}5
with @ = 0, we have the following well-known results (see e.g. [17, Chapter
3]). (For related topics we refer the reader to [2] and [12].)

(i) limp_yoo cf 7 = 2 for all 8 > 0;
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(ii) rad({u(n)}) > 1 and lim4 a, = 2.

Corollary 4.12. Suppose X is a Banach lattice and v : Ng — X7 is a
positive sequence. Then the following hold.

(i) If y > 1 and o > —2, then sup,;>; |n % || < 00 & sup,,»q [[n %L <
oo < rad({u(n)}) > 1 and supy,q [|(1 — )%, < occ. -

(ii) If u # 0 and rad({u(n)}) > 1, then the function v — ap({c)}) is
decreaing on (0,00) and satisfies ap({ch}) = ap(a.) > —1 for all v > 1.

Proof. (i) is direct from Theorem 4.8 and Theorem 4.11(i).
(ii) For all 0 < r < 1 we have

00 K K
a = (1—r) Zr"u(n) >(1—-r) Zrnu(n) > (1 —7r)rk Zu(n) >0,
n=0 n=0 n=0

and the hypothesis u # 0 implies

K K

lim %) =

lim 7 u(n) u(n) >0
n=0 n=0

for some K € Ny. Thus we have ap(a.) > —1. By this, together with
Theorem 4.11(ii) and Theorem 4.9(ii), ap({ch}) = ap(a.) > —1 for all v > 1.
Since ag({c}}) > —1, we then apply Corollary 4.10(i) to infer that 0 < v <

~ <1 implies ap({c}}) > ao({ch }) > ao({cL}).
This completes the proof. O

Remark. There exists a sequence u : Ng — R such that ag({c}}) = —v
for all 0 < v < 1 and ap({c}}) = —1 = ap(a.) for all ¥ > 1. (See Corollary
4.12(ii).) Here is an example.

Ezample 19. Define a sequence u : Ng — RT by
: k . >
u(n)::{1 if ne{kF: k>1},

0 otherwise.

It is clear that ag({c2}) = 0. Now suppose 0 < v < 1. Then, since 0 <
jy(n) <1 for all n >0 (cf. (35)), k¥ <n < (k+ 1)**! implies

k
= (Jya1(n) " (y xu)(n) = (Gyr1(n) ™ jy(n — §7)
j=1
B S R )

T Jy(n) T Ayn Ay
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and
Ny y . _ 1
! ]V(n” —j7) = (]7+1 (n™)) t> Bt

Con = (Jy41(n")) 7 (n™)™7.

Il
—_

j
It follows that ag({c,}) = —v for all 0 < v < 1. By this and Corollary
4.12(ii), ap({eh}) = =1 = ap(a.) for all v > 1.

The next theorem is a discrete version of Theorem 2.15 (for the case where
u(n) = Q", with @ € B(X), see [4, Theorem 2| and [8, Theorem 3.1}).
Theorem 4.13. Let u: Ng — X be a sequence. Suppose M > 0. Then the
following hold.

(1) If suppo llenll < M, then supoc, <1 nzo (1 —7) Sp_g ru(k)|| < M.

(it) If supg<,<1, nx0 [|(1 = 1) i r*u(k)|| < M, then sup,>q [[en[l < 7M.

Proof. (i) This is an immediate consequence of Theorem 4.8(ii) (with oo = 0)
and the argument in Theorem 2.15(i).

(ii) For 0 < r < 1 and n > 1 we have, by Abel’s partial summation
formula, that

Zu(k) = Zr_krku(k)

n n F
rm TN k() = e 0D ((1 - rl“(l)> ’
k=0 k=0 =0

whence
r— (n+ 1)

H éuwu <(EZ +;0r—<k+1>)M.

Putting » = 1 — (n + 1)~!, we then obtain that

H En:u(k)H <(n+1) (2(1 1 )—(n+1) B 1>M < (n1)TM.
k=0

n—+1

which completes the proof. (]

In the rest of this section we consider operator-valued sequences T : Ny —
B(X). Recall (see (40), (41)) that

wo{T()}) = inf{w e R : [T(n)]| = O(™)},
d({T(n)}) = !

lim sup,, . [|7'(n) ||/
By the uniform boundedness princple we have

(66) wo({T'(n)}) = sup{wo({T'(n)z}) : = € X}.
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Theorem 4.14. Let T : Ny — B(X) be an operator-valued sequence. Define
S(n) = >p_oT(k) forn € N, and let Soo be the strong limit of S(n) as
n — oo if it exists, and So := 0 otherwise. Then

(67) rad({T(n)}) = sup {7“ 20 : sup H irkT(I{:)xH < oo for all z € X}

= exp (—wo({S(n) = Ssc}))-
Consequently, min {rad({T b, 1} = min {e o({Sn}) 1}.
Proof. Suppose rg > 0. If 1o < rad({T'(n)}), then

| rbrme] < (S rbiren)lel <o (e X).
k=0 k=0

Conversely if sup,,> H > o rgT(k)xH < oo for all z € X, then, by the
uniform boundedness principle,
k
= sup H roT (k H
n>0 Z 0

thus if 0 < r < rg, then the equatlon

n

STrkTky = 3 (r/ro)trlT (k)
k=0

k=0
n—1 k n
= (1= (r/r0) D_(r/ro)* D" rT(G) + (/o) Y T (i)
k=0 j=0 j=0

can be used to see that S, o :=limp, 00 Y 1 r*T (k) exists in the operator
norm topology. It follows that rad({7'(n)}) > r9. Hence we have proved the
first equality in (67).

To prove the second equality we define, for z € X, u,(n) := T'(n)x,
Uz(n) := S(n)xr — Seox, and

va(n) = { S(n)x — limy_,o S(k)z if the limit exists,

| S(n)x otherwise.
Since
_ 1 _ , ~
rad({uz(n)}) = Tmsup, o Taa ()7 sup {7’ >0 : sup H Z:r T(k)a:H < oo}

n>0

for each = € X (cf. the above proof of the first equality), it follows that

rad({7'(n)}) = inf {rad({uz(n)}) : z € X}.
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First assume that the strong limit S exists. Then v, = v, for all z € X,
and by Theorem 4.2, rad({u,(n)}) = exp(—wo({vy(n)})). Thus

69 rad({T(m)}) = inf{exp(—un({ee(n)}) : = € X}
exp(—sup {wo({vx(n)}) : z € X})
exp(—sup {wo({vx(n)}) : z € X})

— exp(—wo({S(n) — Sw})  (by (66).

Next assume that S(n) does not converge strongly as n — oo. Then Sy, =
0 by definition, and the set £ := {z € X : lim,,_,, S(n)x does not exist}
is not empty. If x € E, then v, = v, and wo({vy(n)}) > 0. On the other
hand, if © € E, then wo({vz(n)}) < 0 and thus wo({vz(n)}) < 0. It follows
(see (68)) that

rad({T'(n)}) = exp(—sup{wo({ve(n)}) : = € X})
= exp(—sup{wo({vz(n)}) : = € E})
= exp(—sup{wo({vz(n)}) : = € X})
= exp(—wo({S(n)})) = exp(—wo({S(n) — Sx})).
This completes the proof. O
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