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THE TANGENT BUNDLES

OVER EQUIVARIANT REAL PROJECTIVE SPACES

Yan Qi

Abstract. let G be a nontrivial cyclic group of odd order. In the
present paper, we will prove that the fourfold Whitney sum of the tan-
gent bundle of real projective plane of any three dimensional nontrivial
real G-representation is equivariantly a product bundle.

1. Introduction

In this paper, let G be a finite group. For a real G-module V (of finite
dimension), let S(V ) denote the unit sphere of V with respect to some
G-invariant inner product, and set P (V ) = S(V )/{±1} the equivariant real
projective space. For a G-spaceM and a real G-module V , let εM (V ) denote
the product bundle with total space M × V over M , and let Rn denote the
n-dimensional Euclidean vector space with trivial G-action. When M is a
smooth manifold, let T (M) denote the tangent bundle ofM . ForM = P (V ),
let γM denote the equivariant canonical line bundle over M and γ⊥M the
orthogonal complement of γM in εM (V ), therefore the total space E(γM ) of
γM is

{({±x}, v) | x ∈ S(V ), v ∈ R · x(⊂ V )},
and γM ⊕ γ⊥M = εM (V ). We obtain the following three theorems.

Theorem 1. For a G-module V , let M = P (V ) and γ = γM . Then the

following hold.

(1) Hom(γ, γ) = εM (R).
(2) Hom(γ, εM (R)) = γ.
(3) T (M) = Hom(γ, γ⊥).
(4) T (M)⊕ εM (R) = Hom(γ, εM (V )).
(5) Hom(γ, εM (V )) = γ ⊗ εM (V ).

Theorem 2. Let G be a cyclic group of odd order and V a 2-dimensional

real G-module with free G-action except the origin. Let M = P (R⊕ V ) and
γ = γM . Then the 4-fold Whitney sum γ⊕4 of γ is G-isomorphic to the

G-vector bundle εM (R4).
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Remark For any natural number k, (even if forgetting the G-action) γ⊕2⊕
εM (Rk) is not isomorphic to εM (Rk+2) as real vector bundles. This fact
follows from that the total Stiefel-Whitney class of γ⊕2 is not trivial (cf.
Chapter 4 in [1]).

Theorem 3. Let G be a cyclic group of odd order and V a 2-dimensional

real G-module with free G-action except the origin. Let T (M) denote the

tangent bundle of M = P (R⊕V ). Then T (M)⊕4⊕εM (R4) is G-isomorphic

to εM (V ⊕4)⊕ εM (R4). Hence,

4[T (M)] = 0 in K̃OG(M).

Since these theorems are important to study of G-actions on spheres,
especially study of Smith Problem (see [2]), we describe concrete proofs in
the present paper. We also show in Theorem 5 that Theorems 2 and 3 do
not hold for cyclic groups G of even order.

2. Proof of Theorem 1

Theorem 1 will be proved in this section. Let G be a finite group and V
a real G-module (of finite dimension). Set M = P (V ). For x ∈ S(V ), let
L[x] denote the line through the points ±x in V , and let L⊥

[x] be orthogonal

complement.

2.1 GGG-vector bundle Hom(γM , γM )Hom(γM , γM )Hom(γM , γM ). The total space E(ξ) of the vec-

tor bundle ξ = Hom(γM , γM ) is
⋃

[x]∈M

Hom(F[x](γM ), F[x](γM )). Now for

x ∈ S(V ), let F[x](γM ) denote the fiber of γM over the point [x]. The pro-
jection map π : E(ξ) → M of vector bundle ξ is defined by π(f) = [x]
for f ∈ Hom(F[x](γM ), F[x](γM )). The G-action on E(ξ) is given by gf ∈
Hom(F[gx](γM ), F[gx](γM ));

(gf)([gx], gv) = ([gx], gf(g−1(gv)) = ([gx], gf(v))

for g ∈ G and f ∈ Hom(F[x](γM ), F[x](γM )). Hence ξ is a G-vector bundle.

2.2 GGG-vector bundle εM (Rn)εM (Rn)εM (Rn). For a natural number n, the total space
E(ε) of the vector bundle ε = εM (Rn) is {([x], b) | [x] ∈ M, b ∈ R

n}.
The projection map π : E(ε) → M of ε is π([x], b) = [x]. For [x] ∈ M ,
b ∈ R

n. The G-action on E(ε) is given by g([x], b) = ([gx], b) for g ∈ G and
([x], b) ∈ E(ε). Therefore ε is a G-vector bundle.



EQUIVARIANT REAL PROJECTIVE SPACES 89

2.3 Isomorphism Hom(γM , γM ) → εM (R)Hom(γM , γM ) → εM (R)Hom(γM , γM ) → εM (R). We define a bundle map ϕ :
Hom(γM , γM ) → εM (R) as follows. Let x ∈ S(V ) and f ∈ Hom(F[x]γM ,
F[x]γM ). Then a unique real number t is determined by f(x) = tx. In
fact, using a certain G-equivariant inner product 〈−,−〉 on V , we have
t = 〈f(x), x〉. Let

ϕ(f) = ([x], t).

It is easy to check that the map ϕ : Hom(γM , γM ) → εM (R) is an isomor-
phism of G-vector bundles.

2.4 GGG-vector bundle Hom(γM , εM (Rn))Hom(γM , εM (Rn))Hom(γM , εM (Rn)). For a natural number n, the
total space E(η) of the vector bundle η = Hom(γM , εM (Rn)) is given by

⋃

[x]∈M

Hom(F[x](γM ), F[x](εM (Rn))).

The projection map π : E(η) → M of η is π(f) = [x]. The G-action on the
total space E(η) is given by gf ∈ Hom(F[gx](γM ), F[gx](εM (Rn)));

(gf)([gx], gv) = ([gx], f(g−1(gv))) = ([gx], f(v)) (v ∈ F[x](γM ))

for g ∈ G and f ∈ Hom(F[x](γM ), F[x](εM (Rn))). With this structure, clearly
η is a G-vector bundle.

2.5 Isomorphism Hom(γM , εM (R)) → γMHom(γM , εM (R)) → γMHom(γM , εM (R)) → γM . For f ∈ Hom(F[x]γM , F[x]εM (R)),

x ∈ S(V ), let the bundle map ϕ : Hom(γM , εM (R)) → γM be defined by

ϕ(f) = ([x], (f(x))x).

It is easy to check that the map ϕ : Hom(γM , εM (R)) → γM is an isomor-
phism of G-vector bundles.

2.6 GGG-vector bundle T (M)T (M)T (M). Let M be a G-manifold equivariantly em-
bedded in a real G-module W . Then the tangent vector space T[x](M) at
[x] ∈ M can be regarded as a subspace of W . The total space E(τ) of the
tangent bundle τ = T (M) overM is {([x], v) | [x] ∈M, v ∈ T[x](M)}, where
T[x](M) is the tangent space at [x] ∈M . The projection map π : E(τ) →M
of τ is π([x], v) = [x]. For g ∈ G, v ∈ T[x](M), the G-action on the total
space E(τ) is given by g([x], v) = ([gx], gv). For v ∈ W , gv belongs to W .
Thus T (M) is a G-vector bundle.

2.7 GGG-vector bundle Hom(γM , γ
⊥
M )Hom(γM , γ
⊥
M )Hom(γM , γ
⊥
M ). The total space E(γ′) of the vector

bundle γ′ = γ⊥M is {([x], v) ∈ M × V | 〈x, v〉 = 0}, and the projection
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map is ([x], v) 7→ [x]. Meanwhile the total space E(ξ) of the vector bundle
ξ = Hom(γM , γ

⊥
M ) is

⋃

[x]∈M

Hom(F[x](γM ), F[x](γ
⊥
M ))

and the projection map π : E(ξ) →M is π(f) = [x]. TheG-action on the to-
tal space E(ξ) is given by gf ∈ Hom(F[gx](γM ), F[gx](γ

⊥
M )); (gf)([gx], gv) =

([gx], gf(g−1(gv)) = ([gx], gf(v)), v ∈ F[x](γM ) for g ∈ G and f ∈
Hom(F[x](γM ), F[x](εM (R))). Therefore ξ is a G-vector bundle.

2.8 Isomorphism T (M) → Hom(γM , γ
⊥
M )T (M) → Hom(γM , γ
⊥
M )T (M) → Hom(γM , γ
⊥
M ). Consider the two total spaces

E(τ) and E(τ ′) of the vector bundles τ = T (M) and τ ′ = T (S(V )), respec-
tively. For two points (x, v), (y,w) ∈ E(τ ′), (x, y ∈ S(V ), v ∈ Tx(S(V )),
w ∈ Ty(S(V )), if we define that

(x, v) ∼ (y,w) ⇔ {x = y and v = w} or {x = −y and v = −w},
then a natural identification E(τ) = E(τ ′)/ ∼ can be obtained. In brief,
E(τ) = {±{(x, v)}|x ∈ S(V ), v ∈ TxS(V )}. Let the bundle map ϕ :
T (M) → Hom(γM , γ

⊥
M ) be defined by

ϕ({±(x, v)})(αx) = αv (α ∈ R).

It is easy to check that ϕ : T (M) → Hom(γM , γ
⊥
M ) is an isomorphism of

G-vector bundles.

2.9 GGG- vector bundle Hom(γM , εM (V ))Hom(γM , εM (V ))Hom(γM , εM (V )). The total space E(ξ′) of the
vector bundle ξ′ = Hom(γM , εM (V )) is given by

⋃

[x]∈M

Hom(F[x](γM ), F[x](εM (V ))).

For f ∈ Hom(F[x](γM ), F[x](εM (R))), the projection map π : E → M is
π(f) = [x]. The G-action on the total E(ξ′) is given by gf ∈ Hom(F[gx](γM ),
F[gx](εM (V )));

(gf)([gx], gv) = ([gx], gf(g−1(gv)) = ([gx], gf(v)) (v ∈ L[x])

for g ∈ G and f ∈ Hom(F[x](γM ), F[x](εM (R))). Hence ξ′ is a G-vector
bundle.

2.10 Isomorphism T (M)⊕ εM (R) → Hom(γM , εM (V ))T (M)⊕ εM (R) → Hom(γM , εM (V ))T (M)⊕ εM (R) → Hom(γM , εM (V )). According to 2.3,
2.8, we have

T (M)⊕ εM (R) ∼= Hom(γM , γ
⊥
M )⊕Hom(γM , γM )

∼= Hom(γM , γ
⊥
M ⊕ γM )

∼= Hom(γM , εM (V )).
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2.11 Isomorphism Hom(γM , εM (V )) → γM ⊗ εM (V )Hom(γM , εM (V )) → γM ⊗ εM (V )Hom(γM , εM (V )) → γM ⊗ εM (V ). Let

ϕ : Hom(γM , εM (V )) → γM ⊗ εM (V )

be the bundle map defined by the formula

ϕ(f) = ([x], x⊗ f(x)),

for f ∈ Hom(F[x](γM ), F[x](εM (V ))). It is easy to check that ϕ : Hom(γM ,
εM (V )) → γM ⊗ εM (V ) is an isomorphism of G-vector bundles.

3. Proof of Theorem 2

We will prove Theorem 2 in this section, let us begin with some prepara-
tions.

Let G be a finite group and X a G-space with X = Y ∪Z, where Y and Z
are closed G-subsets of X. Suppose that there exists a closed neighborhood
N of Y ∩ Z in Y with a G-homeomorphism

φ : N → (Y ∩ Z)× [0, 1]

such that

φ(y) = (φ1(y), φ2(y)) (y ∈ N, φ1(y) ∈ Y ∩ Z, φ2(y) ∈ [0, 1])

and that φ−1((Y ∩ Z) × [0, 1)) is an open set of Y and that the equality
φ(y) = (y, 0) holds for y ∈ Y ∩ Z, where G acts on the closed interval [0, 1]
by the trivial action.

Let ξ be a G-vector bundle over X of fiber dimension n with some G-
invariant Euclidean metric. Suppose that ξ|Y and ξ|Z are isomorphic to
εY (R

n) and εZ(R
n), respectively. Let (e1, . . . , en) and (f1, . . . , fn) denote

the standard orthonormal framings of ξ|Y and ξ|Z , respectively. Then
(e1, . . . , en) and (f1, . . . , fn) are G-equivariant, that is, ej(gy) = gej(y) and
fj(gz) = gfj(z) for any g ∈ G, y ∈ Y , z ∈ Z. Let A denote the tran-
sition matrix function from (e1, . . . , en) to (f1, . . . , fn) on Y ∩ Z, that is,
A(x) = [aij(x)] is a real n × n-matrix such that the following holds for
x ∈ Y ∩ Z :

fi(x) =

n∑

j=1

aji(x)ej(x) (i = 1, . . . , n).

Since (e1, . . . , en) and (f1, . . . , fn) are orthonormal, the matrix A(x) lies in
O(n). Thus A is a map from Y ∩ Z to O(n). It is easy to see

A(gx) = A(x) (g ∈ G,x ∈ Y ∩ Z).
Thus A is G-invariant. In other words, A can be regarded as a G-map
Y ∩ Z → O(n), where O(n) has the trivial G-action.
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Lemma 4. If A : Y ∩ Z → O(n) is G-homotopic to the constant map with

value I, then ξ is isomorphic to the real G-vector bundle εX(R
n).

Proof. Let B : Y ∩Z → O(n) be the constant map with value I. In the below
we will show that (f1, . . . , fn) can be extended over X as a G-equivariant
framing by using the fact that A is G-homotopic to B.

Since A is G-homotopic to B, there exists a continuous map H : Y ∩
Z × [0, 1] → O(n); H(x, t) = (hij(x, t)), x ∈ Y ∩ Z, t ∈ [0, 1], satisfying the
following: 




H(x, 0) = A(x) (x ∈ Y ∩ Z)
H(x, 1) = B(x) (x ∈ Y ∩ Z)
H(gx, t) = H(x, t) (x ∈ Y ∩ Z, t ∈ [0, 1]).

Now let the framing (k1, . . . , kn) over N be defined by

(k1(x), . . . , kn(x)) = (e1(x), . . . , en(x))H(φ1(x), φ2(x)).

In other words,

ki(x) =

n∑

j=1

hji(φ1(x), φ2(x))ej(x).

Then the following can be checked.

(1) The G-equivariance of (k1, . . . , kn):

(k1(gx), . . . , kn(gx)) = (e1(gx), . . . , en(gx))H(φ1(gx), φ2(gx))

= (ge1(x), . . . , gen(x))H(gφ1(x), gφ2(x))

= (ge1(x), . . . , gen(x))H(φ1(x), φ2(x))

= (gk1(x), . . . , gkn(x)).

(2) When φ2(x) = 0:

(k1(x), . . . , kn(x)) = (e1(x), . . . , en(x))H(x, 0)

= (e1(x), . . . , en(x))A(x)

= (f1(x), . . . , fn(x)).

(3) When φ2(x) = 1:

(k1(x), . . . , kn(x)) = (e1(x), . . . , en(x))H(φ1(x), 1)

= (e1(x), . . . , en(x))B(φ1(x))

= (e1(x), . . . , en(x)).

These show that the G-equivariant framing (f1, . . . , fn) can be extended
over X. Hence the G-vector bundle ξ is isomorphic to the trivial G-vector
bundle εX(R

n). �
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In the remainder of this section, let G be a cyclic group of odd order p
and V a 2-dimensional real G-module with free G-action except the origin.
Set W = R ⊕ V , and let γ denote the canonical line bundle over the real
projective space M = P (W ), and let S1 = {z ∈ C | |z| = 1}. Choose g0 the
generator of G and {v1, v2} a basis of V such that they satisfy

g0(v1, v2) = (v1, v2)

(
cos 2π/p − sin 2π/p
sin 2π/p cos 2π/p

)
.

Therefore if V is regarded as a complex vector space C, then

g0z = exp(2π
√
−1/p)z (z ∈ C).

The point [x] in the real projective space M = P (W ) can be written by

[x] = [cos t, (sin t)z],

where z ∈ S1,t ∈ R, 0 ≤ t ≤ π

2
. Now let

Y = {[cos t, (sin t)z] | z ∈ S1, 0 ≤ t ≤ π/4},
Z = {[cos t, (sin t)z] | z ∈ S1, π/4 ≤ t ≤ π/2}.

Then Y is G-homeomorphic to the disk D2, and Z is G-homeomorphic to
the Möbius strip. Let G act on S1 by g0z = exp(2π

√
−1/p)z. Since

Y ∩ Z =

{[√
2

2
,

√
2

2
z

] ∣∣∣∣∣ z ∈ S1

}
,

we define the map ψ : Y ∩ Z → S1 by

ψ

([√
2

2
,

√
2

2
z

])
= z.

Then ψ is clearly a G-homeomorphism. Next we define the G-bundle map
ϕY : εY (R

2) → (γ ⊕ γ)|Y by

(b, r1, r2) → (b, r1a, r2a),

where a = (cos t, (sin t)z), 0 ≤ t ≤ π/4, z ∈ S1, and b = [a] ∈ M . Further
we define the G-bundle map ϕZ : εZ(R

2) → (γ ⊕ γ)|Z by

(b, r1, r2) → (b, (r1 cos(pθ)− r2 sin(pθ))a, (r1 sin(pθ) + r2 cos(pθ))a),

where a = (cos t, (sin t)z), π/4 ≤ t ≤ π/2, z = cos θ + i sin θ ∈ S1, b = [a] ∈
M . Then the canonical framings are

{
e1(b) = ϕY (b, 1, 0)
e2(b) = ϕY (b, 0, 1)

and

{
f1(b) = ϕZ(b, 1, 0)
f2(b) = ϕZ(b, 0, 1).
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Clearly both {e1, e2} and {f1, f2} are G-equivariant. From now on, for
b = [a] = [cos t, (sin t)z] ∈ Y ∩ Z, t = π/4, z = cosθ + i sin θ, we will
determine the matrix function Aγ⊕2 = [aij ] : Y ∩ Z → O(2) such that

(f1(b), f2(b)) = (e1(b), e2(b))Aγ⊕2(b).

Easily we obtain

Aγ⊕2(b) =

(
cos(pθ) − sin(pθ)
sin(pθ) cos(pθ)

)
(b = [a], a = (

1√
2
,
1√
2
(cos θ + i sin θ))).

By this form, for any b ∈ Y ∩Z, it is known that Aγ⊕2(b) belongs to SO(2).
Hence Aγ⊕4 : Y ∩ Z → SO(4) is of the form

Aγ⊕4(b) =

(
Aγ⊕2(b) 0

0 Aγ⊕2(b)

)
(b ∈ Y ∩ Z).

In the below, we will show that Aγ⊕4 is G-homotopic to the constant map
with value I. By virtue of the commutative diagram

Y ∩ Z

��

A
γ⊕4

// SO(4)

��

(Y ∩ Z)/G
A

γ⊕4/G
// SO(4)/G = SO(4),

we can determine the G-homotopy class [Aγ⊕4 ] ∈ [Y ∩ Z,SO(4)]G by the
corresponding homotopy class [Aγ⊕4/G] ∈ [(Y ∩ Z)/G, SO(4)]. The G-

manifold Y ∩ Z is identified with S1 by the map ψ : Y ∩ Z → S1 given
above. Thus we have the commutative diagram

Y ∩ Z

��

ψ
// S1

��

(Y ∩ Z)/G ψ/G
// S1/G,

where the orbit space (Y ∩Z)/G is homeomorphic to S1/G ∼= S1. Hence we
obtain [Y ∩ Z,SO(4)]G ∼= [(Y ∩ Z)/G, SO(4)] ∼= π1(SO(4)) ∼= Z/2. By the
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equalities

[
Aγ⊕4/G

]
=

[(
Aγ⊕2/G 0

0 Aγ⊕2/G

)]

=

[(
Aγ⊕2/G 0

0 I

)
·
(
I 0
0 Aγ⊕2/G

)]

= 2

[(
Aγ⊕2/G 0

0 I

)]

= 0

in [(Y ∩Z)/G, SO(4)], we conclude [Aγ⊕4 ] = 0 in [Y ∩Z,SO(4)]G. That is,
Aγ⊕4 is G-homotopic to the constant map with value I. By Lemma 4, the

G-vector bundle γ⊕4 is isomorphic to the G-vector bundle εM (R4).

Next we prove Theorem 3. It follows from Theorem 1 (4) that

T (M)⊕ εM (R) = Hom(γ, εM (V ⊕ R)).

Thus the following equalities hold:

(T (M)⊕ εM (R))⊕4 = Hom(γ⊕4, εM (V ⊕ R))

= γ⊕4 ⊗ εM (V ⊕ R)

= εM (R4)⊗ εM (V ⊕ R)

= (εM (R4)⊗ εM (V ))⊕ (εM (R4)⊗ εM (R))

= εM (V ⊕4)⊕ (εM (R4)).

This completes the proof.

4. The case where G is of even order

In Theorems 2 and 3, we assume that G is a cyclic group of odd order.
This section is devoted to showing these theorems are not valid for G of even
order.

Theorem 5. Let G be a cyclic group of even order 2n and V a 2m-

dimensional real G-module with free G-action except the origin, where m ≥
1. Let γM denote the canonical line bundle over M = P (R ⊕ V ). Then for

any k ∈ N and any real G-modules U , W , the bundle γ⊕kM ⊕εM (U) is not G-

isomorphic to εM (W ). In addition, T (M)⊕k ⊕ εM (U) is not G-isomorphic

to εM (W ).
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Proof. Let G be the cyclic group of order 2n with specified generator g0.
Set a = gn0 . Clearly the group 〈a〉 generated by a has order 2. In order to
prove the theorem, it suffices to show

ResG〈a〉(γ
⊕k
M ⊕ εM (U)) 6∼=〈a〉 Res

G
〈a〉 εM (W )

and
ResG〈a〉(T (M)⊕k ⊕ εM (U)) 6∼=〈a〉 Res

G
〈a〉 εM (W ).

By the context in the theorem, we have ar = r and av = −v for r ∈ R and
v ∈ V .

For the points x0 = (1, 0, . . . , 0) and x1 = (0, 1, 0, . . . , 0) ∈ R⊕ V , we see
without difficulties that the eigenvalue of the transformation a : F[x0](γM ) →
F[x0](γM ) is 1, but that of the transformation a : F[x1](γM ) → F[x1](γM )
is −1, where F[x0](γM ) and F[x1](γM ) denote the fibers of γM over [x0]

and [x1], respectively. Thus ResG〈a〉(γ
⊕k
M ⊕ εM (U)) is not 〈a〉-isomorphic to

ResG〈a〉 εM (W ). The eigenvalues of a on T[x0](M) are −1, . . . ,−1, whereas the

eigenvalues of a on T[x1](M) are −1, 1, . . . , 1. Thus ResG〈a〉(T (M)⊕k⊕εM (U))

is not 〈a〉-isomorphic to ResG〈a〉 εM (W ). �
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