NOTE ON THE HOMOTOPY OF THE SPACE OF MAPS BETWEEN REAL PROJECTIVE SPACES

Kohhei Yamaguchi

ABSTRACT. We study the homotopy types of the space consisting of all base-point preseving continuous maps from the m dimensional real projective space into the n dimensional real projective space. When $2 \leq m < n$, it has two path connected components and we investigate whether these two path-components have the same homotopy type or not.

1. INTRODUCTION

1.1. Notation and introduction of the previous works. Let $2 \leq m < n$ be integers and we choose $\mathbf{e}_k = [1:0:0:\cdots:0] \in \mathbb{RP}^k$ as the base point of \mathbb{RP}^k (k = m, n). We denote by $\operatorname{Map}(\mathbb{RP}^m, \mathbb{RP}^n)$ (resp. $\operatorname{Map}^*(\mathbb{RP}^m, \mathbb{RP}^n)$) the space consisting of all maps $f : \mathbb{RP}^m \to \mathbb{RP}^n$ (resp. of all base-point preserving maps $f : (\mathbb{RP}^m, \mathbf{e}_m) \to (\mathbb{RP}^n, \mathbf{e}_n)$). For each $\epsilon \in \mathbb{Z}/2 = \{0, 1\} = \pi_0(\operatorname{Map}(\mathbb{RP}^m, \mathbb{RP}^n))$, let $\operatorname{Map}_{\epsilon}(\mathbb{RP}^m, \mathbb{RP}^n)$ denote the corresponding path component of $\operatorname{Map}(\mathbb{RP}^m, \mathbb{RP}^n)$. Similarly, we denote by $\operatorname{Map}^*_{\epsilon}(\mathbb{RP}^m, \mathbb{RP}^n)$ the corresponding path component of $\operatorname{Map}^*(\mathbb{RP}^m, \mathbb{RP}^n)$. It is known that there is an isomorphism $\widetilde{KO}(\mathbb{RP}^m) \cong \mathbb{Z}/2^{a(m)}$, where a(m) denotes the Hurewicz-Radon number given by

$$a(m) = \begin{cases} 4k + \epsilon & \text{if } m = 8k + \epsilon & (\epsilon = 0, 1), \\ 4k + 2 & \text{if } m = 8k + 2 + \epsilon & (\epsilon = 0, 1), \\ 4k + 3 & \text{if } m = 8k + l & (4 \le l \le 7). \end{cases}$$

Now we recall the following two results.

Theorem 1.1 (M.C. Crabb and W.A. Sutherland, [1]). Let $2 \le m < n$ be integers.

- (i) If $m \le n-2$, there is a homotopy equivalence $\operatorname{Map}_0(\mathbb{R}P^m, \mathbb{R}P^n) \simeq \operatorname{Map}_1(\mathbb{R}P^m, \mathbb{R}P^n)$ if and only if $n+1 \equiv 0 \pmod{2^{a(m)}}$.
- (ii) If $n \ge 3$ and $n+1 \equiv 0 \pmod{2^{a(n-1)}}$, there is a homotopy equivalence $\operatorname{Map}_0(\mathbb{R}P^{n-1},\mathbb{R}P^n) \simeq \operatorname{Map}_1(\mathbb{R}P^{n-1},\mathbb{R}P^n).$
- (iii) If $n \equiv 0 \pmod{2}$, two components $\operatorname{Map}_{\epsilon}^{*}(\mathbb{R}P^{m}, \mathbb{R}P^{n})$ for $\epsilon \in \{0, 1\}$ have the different rational homotopy types. \Box

Mathematics Subject Classification. Primary 55P15, 55P35; Secondly 55R80.

Key words and phrases. homotopy type, algebraic map, Hurewicz-Radon numbers.

Theorem 1.2 ([10]). Let $2 \le m < n$ be integers.

- (i) If $n \equiv 1$ and $m \equiv 0 \pmod{2}$, there are rational homotopy equivalences $\operatorname{Map}_1^*(\mathbb{R}P^m, \mathbb{R}P^n) \simeq_{\mathbb{Q}} \{*\}$ and $\operatorname{Map}_1(\mathbb{R}P^m, \mathbb{R}P^n) \simeq_{\mathbb{Q}} S^n$.
- (ii) If $n \equiv 1$ and $m \equiv 1 \pmod{2}$,

$$\pi_k(\operatorname{Map}_1^*(\mathbb{R}\mathrm{P}^m, \mathbb{R}\mathrm{P}^n)) \otimes \mathbb{Q} = \begin{cases} \mathbb{Q} & \text{if } k = n - m, \\ 0 & \text{otherwise.} \end{cases}$$
$$\pi_k(\operatorname{Map}_1(\mathbb{R}\mathrm{P}^m, \mathbb{R}\mathrm{P}^n)) \otimes \mathbb{Q} = \begin{cases} \mathbb{Q} & \text{if } k = n - m, \ k = n, \\ 0 & \text{otherwise.} \end{cases}$$

(iii) If
$$n \equiv 0$$
 and $m \equiv 0 \pmod{2}$,

$$\pi_k(\operatorname{Map}_1^*(\mathbb{R}\mathrm{P}^m, \mathbb{R}\mathrm{P}^n)) \otimes \mathbb{Q} = \begin{cases} \mathbb{Q} & \text{if } k = n - 1, \ k = n - m, \\ 0 & \text{otherwise.} \end{cases}$$
$$\pi_k(\operatorname{Map}_1(\mathbb{R}\mathrm{P}^m, \mathbb{R}\mathrm{P}^n)) \otimes \mathbb{Q} = \begin{cases} \mathbb{Q} & \text{if } k = n - m, \ k = 2n - 1, \\ 0 & \text{otherwise.} \end{cases}$$

(iv) If
$$n \equiv 0$$
 and $m \equiv 1 \pmod{2}$,

$$\pi_k(\operatorname{Map}_1^*(\mathbb{R}P^m, \mathbb{R}P^n)) \otimes \mathbb{Q} = \begin{cases} \mathbb{Q} & \text{if } k = n-1, \ k = 2n-m-1, \\ 0 & \text{otherwise.} \end{cases}$$
$$\pi_k(\operatorname{Map}_1(\mathbb{R}P^m, \mathbb{R}P^n)) \otimes \mathbb{Q} = \begin{cases} \mathbb{Q} & \text{if } k = 2n-m-1, \ k = 2n-1, \\ 0 & \text{otherwise.} \end{cases}$$

(v) If
$$m \le n - 2$$
,
 $\pi_{n-m}(\operatorname{Map}_1(\mathbb{R}P^m, \mathbb{R}P^n)) = \begin{cases} \mathbb{Z} & \text{if } n - m \equiv 0 \pmod{2}, \\ \mathbb{Z}/2 & \text{if } n - m \equiv 1 \pmod{2}, \end{cases}$
(vi) If $m = n - 1 \ge 2$,

$$\pi_1(\operatorname{Map}_1(\mathbb{R}\mathrm{P}^m, \mathbb{R}\mathrm{P}^n)) = \begin{cases} \mathbb{Z}/4 & \text{if } m \equiv 0, 1 \pmod{4}, \\ \mathbb{Z}/2 \oplus \mathbb{Z}/2 & \text{if } m \equiv 2, 3 \pmod{4}. \end{cases}$$

1.2. The main results. As stated as Theorem 1.1 above, it was already known when two path components $\operatorname{Map}_{\epsilon}(\mathbb{R}P^m, \mathbb{R}P^n)$ ($\epsilon = 0 \text{ or } 1$) homotopy equivalent or not. However, it is difficult to construct the explicit homotopy equivalences between them. So we cannot apply it for studying whether two components $\operatorname{Map}_{\epsilon}^*(\mathbb{R}P^m, \mathbb{R}P^n)$ ($\epsilon = 0, 1$) of based maps are homotopy equivalent to each other. In this paper, we shall study the homotopy types of path-components $\operatorname{Map}_{\epsilon}^*(\mathbb{R}P^m, \mathbb{R}P^n)$ ($\epsilon = 0 \text{ or } 1$).

Next, note that the rational homotopy types of path-components of spaces of maps between complex or quaternion projective spaces are well studied ([6], [7], [8]), but the case of real projective spaces is not well studied until now (cf. [4], [10]). So we shall also investigate the rational homotopy types of them explicitly. In fact, the main results of this paper are as follows. **Theorem 1.3.** Let $2 \le m < n$ be integers and $\epsilon \in \{0, 1\}$.

(i) The space $\operatorname{Map}_{\epsilon}^{*}(\mathbb{RP}^{m}, \mathbb{RP}^{n})$ is (n - m - 1)-connected, and $\pi_{n-m}(\operatorname{Map}_{0}^{*}(\mathbb{RP}^{m}, \mathbb{RP}^{n})) = \begin{cases} \mathbb{Z} & \text{if } m \equiv 1 \pmod{2}, \\ \mathbb{Z}/2 & \text{if } m \equiv 0 \pmod{2}, \\ \mathbb{Z}/2 & \text{if } n - m \equiv 0 \pmod{2}, \\ \mathbb{Z}/2 & \text{if } n - m \equiv 1 \pmod{2}, \end{cases}$ (ii) If $m \leq n - 2,$ $\pi_{k}(\operatorname{Map}_{\epsilon}(\mathbb{RP}^{m}, \mathbb{RP}^{n})) = \begin{cases} \mathbb{Z}/2 & \text{if } k = 1, \\ 0 & \text{if } 2 \leq k < n - m, \\ \pi_{n-m}(\operatorname{Map}_{0}(\mathbb{RP}^{m}, \mathbb{RP}^{n})) = \begin{cases} \mathbb{Z} & \text{if } m \equiv 1 \pmod{2}, \\ \mathbb{Z}/2 & \text{if } m \equiv 0 \pmod{2}, \end{cases}$ (iii) If $m = n - 1 \geq 2,$ $\pi_{1}(\operatorname{Map}_{0}(\mathbb{RP}^{m}, \mathbb{RP}^{n})) = \begin{cases} \mathbb{Z} \oplus \mathbb{Z}/2 & \text{if } m \equiv 1 \pmod{2}, \\ \mathbb{Z}/2 \oplus \mathbb{Z}/2 & \text{if } m \equiv 0 \pmod{2}, \end{cases}$

Theorem 1.4. Let $2 \le m < n$ be integers.

(i) If $n \equiv 1$ and $m \equiv 0 \pmod{2}$, there are rational homotopy equivalences

$$\begin{cases} \operatorname{Map}_{0}^{*}(\mathbb{R}P^{m},\mathbb{R}P^{n}) \simeq_{\mathbb{Q}} \{*\},\\ \operatorname{Map}_{0}(\mathbb{R}P^{m},\mathbb{R}P^{n}) \simeq_{\mathbb{Q}} S^{n}. \end{cases}$$

(ii) If
$$n \equiv 1$$
 and $m \equiv 1 \pmod{2}$,
 $\pi_k(\operatorname{Map}_0^*(\mathbb{R}P^m, \mathbb{R}P^n)) \otimes \mathbb{Q} = \begin{cases} \mathbb{Q} & \text{if } k = n - m, \\ 0 & \text{otherwise.} \end{cases}$
 $\pi_k(\operatorname{Map}_0(\mathbb{R}P^m, \mathbb{R}P^n)) \otimes \mathbb{Q} = \begin{cases} \mathbb{Q} & \text{if } k = n - m, \ k = n, \\ 0 & \text{otherwise.} \end{cases}$
iii) If $n \equiv 0$ and $m \equiv 0 \pmod{2}$, there is a rational homoton

(iii) If $n \equiv 0$ and $m \equiv 0 \pmod{2}$, there is a rational homotopy equivalence $\operatorname{Map}_0^*(\mathbb{R}P^m, \mathbb{R}P^n) \simeq_{\mathbb{Q}} \{*\}$ and

$$\pi_k(\operatorname{Map}_0(\mathbb{R}P^m, \mathbb{R}P^n)) \otimes \mathbb{Q} = \begin{cases} \mathbb{Q} & \text{if } k = n, \ k = 2n - 1, \\ 0 & \text{otherwise.} \end{cases}$$
(vi) If $n \equiv 0$ and $m \equiv 1 \pmod{2}$,

$$\pi_{k}(\operatorname{Map}_{0}^{*}(\mathbb{R}P^{m},\mathbb{R}P^{n}))\otimes\mathbb{Q} = \begin{cases} \mathbb{Q} & \text{if } k = n-m, \ k = 2n-m-1, \\ 0 & \text{otherwise.} \end{cases}$$
$$\pi_{k}(\operatorname{Map}_{0}(\mathbb{R}P^{m},\mathbb{R}P^{n}))\otimes\mathbb{Q} = \begin{cases} \mathbb{Q} & \text{if } k \in \{n-m,n,2n-m-1\}, \\ 0 & \text{otherwise.} \end{cases}$$

Corollary 1.5. Let $2 \le m < n$ be integers.

(i) If $n \equiv 1 \pmod{2}$, there are rational homotopy equivalences

$$\begin{aligned} \operatorname{Map}_{0}^{*}(\mathbb{R}\mathrm{P}^{m},\mathbb{R}\mathrm{P}^{n}) &\simeq_{\mathbb{Q}} \operatorname{Map}_{1}^{*}(\mathbb{R}\mathrm{P}^{m},\mathbb{R}\mathrm{P}^{n}), \\ \operatorname{Map}_{0}(\mathbb{R}\mathrm{P}^{m},\mathbb{R}\mathrm{P}^{n}) &\simeq_{\mathbb{Q}} \operatorname{Map}_{1}(\mathbb{R}\mathrm{P}^{m},\mathbb{R}\mathrm{P}^{n}). \end{aligned}$$

- (ii) If $m = n 1 \ge 3$ and $n + 1 \not\equiv 0 \pmod{4}$, $\operatorname{Map}_0(\mathbb{R}P^{n-1}, \mathbb{R}P^n)$ and $\operatorname{Map}_1(\mathbb{R}P^{n-1}, \mathbb{R}P^n)$ have the different homotopy types.
- (iii) If $n \equiv 0 \pmod{2}$, the (n-m)-dimensional rational homotopy groups of $\operatorname{Map}_0^*(\mathbb{R}P^m, \mathbb{R}P^n)$ and $\operatorname{Map}_1^*(\mathbb{R}P^m, \mathbb{R}P^n)$ are different. \Box

This paper is organized as follows. In section 2 we compute the homotopy groups of $\operatorname{Map}_{\epsilon}^*(\mathbb{R}P^m, \mathbb{R}P^n)$ ($\epsilon = 0, 1$) of low dimensions. In section 3 we compute their rational homotopy groups explicitly by using the standard techniques of rational homotopy theory ([2], [9]). Finally in section 4, we give the proofs of Theorem 1.3 and Theorem 1.4.

2. The space $\operatorname{Map}^*_{\epsilon}(\mathbb{R}\mathrm{P}^m, \mathbb{R}\mathrm{P}^n)$.

Definition 1. (i) Let $1 \leq m < n$ be integers, and let $V_{n,m}$ denote the real Stiefel manifold of orthogonal *m*-frames in \mathbb{R}^n .

(ii) Define the map $f_{m,n}: O(n) \to \operatorname{Map}_1^*(\mathbb{R}\mathrm{P}^m, \mathbb{R}\mathrm{P}^n)$ by the matrix multiplication

$$f_{m,n}(A)([x_0:\cdots:x_m] = [x_0:\cdots:x_m:0:\cdots:0] \begin{bmatrix} 1 & \mathbf{0}_n \\ {}^t\mathbf{0} & A \end{bmatrix}$$

for $(A, [x_0 : \cdots : x_m]) \in O(n) \times \mathbb{R}P^m$. Since the subgroup which fixes $\mathbb{R}P^m$ is $\{E_{m+1}\} \times O(n-m)$, the map $f_{m,n}$ induces the map

(2.1)
$$\alpha_{m,n}: V_{n,m} = O(n)/O(n-m) \to \operatorname{Map}_1^*(\mathbb{R}\mathrm{P}^m, \mathbb{R}\mathrm{P}^n),$$

where E_k denotes the $(k \times k)$ -unit matrix.

It is well known that $V_{n,1} = S^{n-1}$ and that there is a homeomorphism $V_{n,m} \cong O(n)/O(n-m)$. If we use this homeomorphism, it is easy to see that there is a fibaration sequence

$$(2.2) S^{n-m} \to V_{n,m} \to V_{n,m-1}.$$

Lemma 2.1. Let $1 \le m < n$ be integers.

(i)
$$V_{n,m}$$
 is $(n - m - 1)$ -connected.
(ii) $\pi_{n-m}(V_{n,m}) = \begin{cases} \mathbb{Z} & \text{if } n - m \equiv 0 \pmod{2}, \\ \mathbb{Z}/2 & \text{if } n - m \equiv 1 \pmod{2}. \end{cases}$

Proof. (i) If we use the fibration sequence (i), we can show the assertion (i) very easily by using the induction over m and we omit the detail.

(ii) First, assume that the case $n - m \equiv 1 \pmod{2}$, and note that there are isomorphisms (cf. [5])

$$\begin{cases} H^*(V_{n,m}, \mathbb{Z}/2) = \Delta(e_{n-m}, e_{n-m+1}, \cdots, e_{2n-3}) \\ H^*(V_{n,m}, \mathbf{k}) = \begin{cases} E[x_{2(n-m)+1}, x_{2(n-m)+5}, \cdots, x_{2n-3}] & \text{if } m \equiv 0 \pmod{2}, \\ E[x_{2(n-m)+1}, x_{2(n-m)+5}, \cdots, x_{n-1}] & \text{if } m \equiv 1 \pmod{2}, \end{cases} \end{cases}$$

where $\mathbf{k} = \mathbb{Z}/p$ (p: odd prime) or $\mathbf{k} = \mathbb{Q}$, and $Sq^1(e_{n-m}) = e_{n-m+1}$ (deg $e_k = k$, deg $x_j = j$). Then we can easily see that the (n - m + 1)-skeleton of $V_{n,m}$ is $S^{n-m} \cup_2 e^{n-m+1}$ (up to homotopy equivalence), and we have that $\pi_{n-m}(V_{n,m}) = \mathbb{Z}/2$ if $n - m \equiv 1 \pmod{2}$.

Next, assume that $n - m \equiv 0 \pmod{2}$. Since $V_{n,m-1}$ is (n - m)-connected (by (i)) and $\pi_{n-m+1}(V_{n,m-1}) = \mathbb{Z}/2$, it follows from (2.2) that there is an exact sequence

Hence, $\pi_{n-m}(V_{n,m}) \cong \pi_{n-m}(S^{n-m}) \cong \mathbb{Z}$, and this completes the proof. \Box

Now recall the following:

Theorem 2.2 ([10]). If $1 \le m < n$, $\alpha_{m,n} : V_{n,m} \to \operatorname{Map}_1^*(\mathbb{R}P^m, \mathbb{R}P^n)$ is a homotopy equivalence up to dimension 2(n-m)-1 and there is a homotopy commutative diagram

$$(2.3) \qquad \begin{array}{cccc} S^{n-m} & \longrightarrow & V_{n,m} & \longrightarrow & V_{n,m-1} \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

where two horizontal sequences are fibration sequences and E^m denotes the *m*-fold suspension map.

Lemma 2.3. Let m > 3 be an integer.

(i) If $m \equiv 1 \pmod{2}$, there is a fibration sequence

(2.4)
$$\Omega^{m-1}S^n \times \Omega^m S^n \to \operatorname{Map}_0^*(\mathbb{R}P^m, \mathbb{R}P^n) \xrightarrow{r} \operatorname{Map}_0^*(\mathbb{R}P^{m-2}, \mathbb{R}P^n).$$

(ii) If $m \equiv 0 \pmod{2}$, there is a fibration sequence

(2.5)
$$\operatorname{Map}^*(\Sigma^{m-2}\mathbb{R}\mathrm{P}^2,\mathbb{R}\mathrm{P}^n) \to \operatorname{Map}^*_0(\mathbb{R}\mathrm{P}^m,\mathbb{R}\mathrm{P}^n) \xrightarrow{r} \operatorname{Map}^*_0(\mathbb{R}\mathrm{P}^{m-2},\mathbb{R}\mathrm{P}^n)$$

Proof. The cofiber sequence $\mathbb{R}P^{m-2} \to \mathbb{R}P^n \to \mathbb{R}P^m/\mathbb{R}P^{m-2} = \mathbb{R}P_{m-1}^m$ induces the fibration sequence

$$\operatorname{Map}^*(\mathbb{R}P_{m-1}^m, \mathbb{R}P^n) \to \operatorname{Map}^*_0(\mathbb{R}P^m, \mathbb{R}P^n) \xrightarrow{r} \operatorname{Map}^*_0(\mathbb{R}P^{m-1}, \mathbb{R}P^n).$$

Because there is a homotopy equivalence

$$\mathbb{R}P_{m-1}^{m} = \mathbb{R}P^{m}/\mathbb{R}P^{m-2} \simeq \begin{cases} S^{m-1} \lor S^{m} & \text{if } m \equiv 1 \pmod{2} \\ S^{m-1} \cup_{2} e^{m} = \Sigma^{m-2}\mathbb{R}P^{2} & \text{if } m \equiv 0 \pmod{2} \end{cases}$$

there is a homotopy equivalence

$$\operatorname{Map}^{*}(\mathbb{R}P_{m-1}^{m},\mathbb{R}P^{n}) \simeq \begin{cases} \Omega^{m-1}S^{n} \times \Omega^{m}S^{n} & \text{if } m \equiv 1 \pmod{2}, \\ \operatorname{Map}^{*}(\Sigma^{m-2}\mathbb{R}P^{2},\mathbb{R}P^{n}) & \text{if } m \equiv 0 \pmod{2}. \end{cases}$$

Hence, the assertions follow.

Theorem 2.4. Let $1 \le m < n$ and $\epsilon \in \{0, 1\}$.

(i)
$$\operatorname{Map}_{\epsilon}^{*}(\mathbb{R}P^{m}, \mathbb{R}P^{n})$$
 is $(n - m - 1)$ -connected.
(ii) $\pi_{n-m}(\operatorname{Map}_{0}^{*}(\mathbb{R}P^{m}, \mathbb{R}P^{n})) = \begin{cases} \mathbb{Z} & \text{if } m \equiv 1 \pmod{2}, \\ \mathbb{Z}/2 & \text{if } m \equiv 0 \pmod{2}. \end{cases}$
(iii) $\pi_{n-m}(\operatorname{Map}_{1}^{*}(\mathbb{R}P^{m}, \mathbb{R}P^{n})) = \begin{cases} \mathbb{Z} & \text{if } n - m \equiv 0 \pmod{2}, \\ \mathbb{Z}/2 & \text{if } n - m \equiv 1 \pmod{2}. \end{cases}$

Proof. (i) By using Theorem 2.2 there is an epimorphism

 $\alpha_{m,n_*}: \pi_k(V_{n,m}) \to \pi_k(\operatorname{Map}_1^*(\mathbb{R}\mathrm{P}^m, \mathbb{R}\mathrm{P}^n))$

for any $k \leq 2(n-m) - 1$. Hence, because $V_{n,m}$ is (n-m-1)-connected, Map₁^{*}($\mathbb{R}P^m, \mathbb{R}P^n$) is also (n-m-1)-connected. So the assertion (i) is true for $\epsilon = 1$.

The proof for $\epsilon = 0$ is based on the induction over m. If m = 1, since there is a homotopy equivalence $\operatorname{Map}_0^*(\mathbb{RP}^1, \mathbb{RP}^n) \simeq \Omega S^n$, the space $\operatorname{Map}_0^*(\mathbb{RP}^1, \mathbb{RP}^n)$ is (n-2)-connected. So the case m = 1 is true. Suppose that the space $\operatorname{Map}_0^*(\mathbb{RP}^{m-1}, \mathbb{RP}^n)$ is (n-m)-connected and consider the restriction fibration sequence

(2.6)
$$\Omega^m S^n \to \operatorname{Map}_0^*(\mathbb{R}P^m, \mathbb{R}P^n) \xrightarrow{r} \operatorname{Map}_0^*(\mathbb{R}P^{m-1}, \mathbb{R}P^n).$$

Since $\Omega^m S^n$ and it is (n-m-1)-connected, by using (2.6) Map₀^{*}($\mathbb{R}P^m$, $\mathbb{R}P^n$) is (n-m-1)-connected. Hence, (i) is proved.

(ii) If m = 1, $\pi_{n-m}(\operatorname{Map}_0^*(\mathbb{R}P^m, \mathbb{R}P^n)) = \pi_{n-1}(\Omega\mathbb{R}P^n) \cong \pi_n(S^n) = \mathbb{Z}$. So the assertion (ii) is true for m = 1. Next, because $\mathbb{R}P^2 = S^1 \cup_2 e^2$, there is a cofibration sequence $S^1 \xrightarrow{2} S^1 \to \mathbb{R}P^2$. Hence, by identifying $\Omega\mathbb{R}P^n = \Omega S^n$ this sequence induces a fibration sequence

(2.7)
$$\operatorname{Map}_{0}^{*}(\mathbb{R}P^{2},\mathbb{R}P^{n}) \to \Omega S^{n} \xrightarrow{|2|}{\to} \Omega S^{n}.$$

Since $\operatorname{Map}_0^*(\mathbb{R}P^2, \mathbb{R}P^n)$ is (n-2)-connected, the exact sequence induced from (2.7) is reduced to the following exact sequence

$$\pi_{n-1}(\Omega S^n) \xrightarrow{[2]_*} \pi_{n-1}(\Omega S^n) \xrightarrow{\partial} \pi_{n-2}(\operatorname{Map}_0^*(\mathbb{R}\mathrm{P}^2, \mathbb{R}\mathrm{P}^n)) \to 0.$$

Because $[2]_*$ is the multiplication by 2, we have $\pi_{n-2}(\operatorname{Map}_0^*(\mathbb{R}\mathrm{P}^2,\mathbb{R}\mathrm{P}^n)) = \mathbb{Z}/2$. So the assertion (ii) is also true for m = 2.

Now suppose that $m \geq 3$. First, consider the case $m \equiv 1 \pmod{2}$. Since $\operatorname{Map}_0^*(\mathbb{R}P^{m-2}, \mathbb{R}P^n)$ is (n - m + 1)-connected, if we consider the homotopy exact sequence induced from the fibration sequence (2.4), there is an isomorphism

$$\pi_{n-m}(\operatorname{Map}_0^*(\mathbb{R}\mathrm{P}^m,\mathbb{R}\mathrm{P}^n)) \cong \pi_{n-m}(\Omega^{m-1}S^n \times \Omega^m S^n) \cong \mathbb{Z}.$$

Hence, the assertion (ii) is true if $m \equiv 1 \pmod{2}$.

Next consider the case $m \equiv 0 \pmod{2}$. Because $\operatorname{Map}_0^*(\mathbb{R}P^{m-2}, \mathbb{R}P^n)$ is (n-m+1)-connected, if we consider the homotopy exact sequence induced from the fibration sequence (2.5), we also have the isomorphism

$$\pi_{n-m}(\operatorname{Map}_{0}^{*}(\mathbb{R}\mathrm{P}^{m},\mathbb{R}\mathrm{P}^{n})) \cong \pi_{n-m}(\operatorname{Map}^{*}(\Sigma^{m-2}\mathbb{R}\mathrm{P}^{2},\mathbb{R}\mathrm{P}^{n})).$$

On the other hand, the cofiber sequence $S^{m-1} \xrightarrow{2} S^{m-1} \to \Sigma^{m-2} \mathbb{R}P^2$ induces the fibration sequence

(2.8)
$$\operatorname{Map}^*(\Sigma^{m-2}\mathbb{R}\mathrm{P}^2,\mathbb{R}\mathrm{P}^n) \to \Omega^{m-1}S^n \xrightarrow{[2]} \Omega^{m-1}S^n.$$

If we use the exact sequence induced from (2.8), it is easy to see that

$$\pi_{n-m}(\operatorname{Map}^*(\Sigma^{m-2}\mathbb{R}\mathrm{P}^2,\mathbb{R}\mathrm{P}^n)) = \mathbb{Z}/2.$$

Hence, $\pi_{n-m}(\operatorname{Map}_0^*(\mathbb{R}\mathrm{P}^m,\mathbb{R}\mathrm{P}^n)) = \mathbb{Z}/2$ if $m \equiv 0 \pmod{2}$, and (ii) is proved.

(iii) First, consider the case $n-m \ge 2$. Then because 2(n-m)-1 > n-m, by using Theorem 2.2 there is an isomorphism

$$\alpha_{m,n_*}: \pi_{n-m}(V_{n,m}) \xrightarrow{\cong} \pi_{n-m}(\operatorname{Map}_1^*(\mathbb{R}\mathrm{P}^m, \mathbb{R}\mathrm{P}^n)).$$

Hence, (iii) follows from Lemma Lemma 2.1.

So it remains to show (iii) for the case m = n - 1. It suffices to show that $\alpha_{n,n-1_*} : \pi_1(V_{n,n-1}) \xrightarrow{\cong} \pi_1(\operatorname{Map}_1^*(\mathbb{R}P^{n-1},\mathbb{R}P^n))$ is an isomorphism. Because two spaces $V_{n,n-2}$ and $\operatorname{Map}_1^*(\mathbb{R}P^{n-2},\mathbb{R}P^n)$ are 1-connected, the diagram (2.3) for m = n - 1 induces the following commutative exact sequences:

$$\pi_{2}(V_{n,n-2}) \xrightarrow{\partial} \pi_{1}(S^{1}) \longrightarrow \pi_{1}(V_{n,n-1}) \xrightarrow{} 0$$

$$\alpha_{n,n-2*} \downarrow \cong E^{n-1} \downarrow \cong \alpha_{n-1,n*} \downarrow$$

$$\pi_{2}(\operatorname{Map}_{1}^{*}(\mathbb{R}P^{m-2},\mathbb{R}P^{n})) \xrightarrow{\partial'} \pi_{n}(S^{n}) \longrightarrow \pi_{1}(\operatorname{Map}_{1}^{*}(\mathbb{R}P^{n-1},\mathbb{R}P^{n})) \xrightarrow{} 0$$

We already proved that $\alpha_{n,n-2_*}: \pi_2(V_{n,n-2}) \xrightarrow{\cong} \pi_2(\operatorname{Map}_1^*(\mathbb{R}P^{m-2},\mathbb{R}P^n))$ is an isomorphism. Hence, by the Five Lemma we see that the homomorphism $\alpha_{n,n-1_*}: \pi_1(V_{n,n-1}) \xrightarrow{\cong} \pi_1(\operatorname{Map}_1^*(\mathbb{R}P^{n-1},\mathbb{R}P^n))$ is also an isomorphism. \Box

Corollary 2.5. $\alpha_{n-1,n_*} : \pi_1(V_{n,n-1}) \xrightarrow{\cong} \pi_1(\operatorname{Map}_1^*(\mathbb{R}P^{n-1},\mathbb{R}P^n)) \cong \mathbb{Z}/2$ is an isomorphism for $n \geq 2$.

Corollary 2.6 ([1]). If $2 \le m < n$ and $n \equiv 0 \pmod{2}$, $\operatorname{Map}_0^*(\mathbb{R}P^m, \mathbb{R}P^n)$ and $\operatorname{Map}_1^*(\mathbb{R}P^m, \mathbb{R}P^n)$ are never homotopy equivalent.

Proof. By Theorem 2.4, $\pi_{n-m}(\operatorname{Map}_0^*(\mathbb{R}P^m, \mathbb{R}P^n)) \not\cong \pi_{n-m}(\operatorname{Map}_1^*(\mathbb{R}P^m, \mathbb{R}P^n))$ if $2 \leq m < n$ and $n \equiv 0 \pmod{2}$, and the assertion follows. \Box

Remark. Crabb and Sutherland show that $\pi_{n-1}(\operatorname{Map}_1^*(\mathbb{R}P^m, \mathbb{R}P^n)) \otimes \mathbb{Q} = \mathbb{Q}$ and $\pi_{n-1}(\operatorname{Map}_0^*(\mathbb{R}P^m, \mathbb{R}P^n)) \otimes \mathbb{Q} = 0$ in [1], and they obtain the above result.

3. Rational homotopy types.

Definition 2. Let $\gamma_n : S^n \to \mathbb{R}P^n$ denote the usual double covering and define the map $\gamma_{n\#} : \operatorname{Map}^*(\mathbb{R}P^m, S^n) \to \operatorname{Map}^*_0(\mathbb{R}P^m, \mathbb{R}P^n)$ by $\gamma_{n\#}(f) = \gamma_n \circ f$.

Lemma 3.1. If $1 \le m < n$, $\gamma_{n\#} : \operatorname{Map}^*(\mathbb{R}P^m, S^n) \xrightarrow{\simeq} \operatorname{Map}^*_0(\mathbb{R}P^m, \mathbb{R}P^n)$ is a homotopy equivalence.

Proof. The proof is based on the induction over m. Because $\mathbb{RP}^1 = S^1$, the assertion clearly holds for m = 1. Assume that the assertion is true for the case m - 1, and note that $\Omega^m \gamma_n : \Omega^m S^n \xrightarrow{\simeq} \Omega^m \mathbb{RP}^n$ is a homotopy equivalence. If we consider the commutative diagram of fibration sequences

$$\Omega^{m}S^{n} \longrightarrow \operatorname{Map}^{*}(\mathbb{R}P^{m}, S^{n}) \xrightarrow{r} \operatorname{Map}^{*}(\mathbb{R}P^{m-1}, S^{n})$$

$$\Omega^{m}\gamma_{n} \downarrow \simeq \qquad \gamma_{n\#} \downarrow \qquad \gamma'_{n\#} \downarrow \simeq$$

$$\Omega^{m}\mathbb{R}P^{n} \longrightarrow \operatorname{Map}^{*}_{0}(\mathbb{R}P^{m}, \mathbb{R}P^{n}) \xrightarrow{r} \operatorname{Map}^{*}_{0}(\mathbb{R}P^{m-1}, \mathbb{R}P^{n})$$
the assertion easily follows. \Box

We denote by $X_{(0)}$ the Q-localization of a nilpotent space X. Then by using Lemma 3.1, there is a rational homotopy equivalence (cf. [2])

(3.1)
$$\operatorname{Map}_{0}^{*}(\mathbb{R}P^{m},\mathbb{R}P^{n}) \simeq_{\mathbb{Q}} \operatorname{Map}_{0}^{*}(\mathbb{R}P^{m},S_{(0)}^{n}).$$

It is easy to see that there are homotopy equivalences

(3.2)
$$S_{(0)}^n \simeq \begin{cases} K(\mathbb{Q}, n) & \text{if } n \equiv 1 \pmod{2}, \\ K(\mathbb{Q}, n) \times K(\mathbb{Q}, 2n - 1) & \text{if } n \equiv 0 \pmod{2}, \end{cases}$$

(3.3)
$$\operatorname{Map}_{0}^{*}(X, K(G, n)) \simeq \prod_{i=1}^{n} K(H^{n-i}(X, G), i)$$

for a connected space X ([9]). Then we have:

Lemma 3.2. If $2 \le m < n$ and $m \equiv 0 \pmod{2}$, there is a rational homotopy equivalence $\operatorname{Map}_0^*(\mathbb{R}\mathrm{P}^m, \mathbb{R}\mathrm{P}^n) \simeq_{\mathbb{Q}} \{*\}.$

Proof. Since $\tilde{H}^*(\mathbb{R}P^m, \mathbb{Q}) = 0$, the assertion follows from (3.1), (3.2) and (3.3).

Lemma 3.3. Let $2 \le m < n$ be integers such that $m \equiv 1 \pmod{2}$.

(i) If
$$n \equiv 0 \pmod{2}$$
,
 $\pi_k(\operatorname{Map}_0^*(\mathbb{R}P^m, \mathbb{R}P^n)) \otimes \mathbb{Q} = \begin{cases} \mathbb{Q} & \text{if } k = n - m, \ k = 2n - m - 1, \\ 0 & \text{otherwise.} \end{cases}$

(ii) If $n \equiv 1 \pmod{2}$, $\pi_k(\operatorname{Map}_0^*(\mathbb{R}P^m, \mathbb{R}P^n)) \otimes \mathbb{Q} = \begin{cases} \mathbb{Q} & \text{if } k = n - m, \\ 0 & \text{otherwise.} \end{cases}$

Proof. Since the proof is completely analogous to that of Lemma 3.2, we omit the detail. \Box

Corollary 3.4. Let $2 \le m < n$ be integers.

(i) If $n \equiv 1 \pmod{2}$ and $m \equiv 0 \pmod{2}$, there is a rational homotopy equivalence $\operatorname{Map}_0(\mathbb{R}\mathrm{P}^m, \mathbb{R}\mathrm{P}^n) \simeq_{\mathbb{Q}} S^n$.

(ii) If
$$n \equiv 1 \pmod{2}$$
 and $m \equiv 1 \pmod{2}$,
 $\pi_k(\operatorname{Map}_0(\mathbb{R}\mathrm{P}^m, \mathbb{R}\mathrm{P}^n)) \otimes \mathbb{Q} = \begin{cases} \mathbb{Q} & \text{if } k = n - m, \ k = n, \\ 0 & \text{otherwise.} \end{cases}$

(iii) If $n \equiv 0$ and $m \equiv 0 \pmod{2}$,

$$\pi_k(\operatorname{Map}_0(\mathbb{R}\mathrm{P}^m, \mathbb{R}\mathrm{P}^n)) \otimes \mathbb{Q} = \begin{cases} \mathbb{Q} & \text{if } k = n, \ k = 2n - 1, \\ 0 & \text{otherwise.} \end{cases}$$
(iv) If $n \equiv 0$ and $m \equiv 1 \pmod{2}$.

v) If
$$n \equiv 0$$
 and $m \equiv 1 \pmod{2}$,
 $\pi_k(\operatorname{Map}_0(\mathbb{R}P^m, \mathbb{R}P^n)) \otimes \mathbb{Q} = \begin{cases} \mathbb{Q} & \text{if } k \in \{n-m, n, 2n-m-1\}, \\ 0 & \text{otherwise.} \end{cases}$

4. PROOFS OF THE MAIN RESULTS.

Proof of Theorem 1.3. The assertion (i) follows from Theorem 2.4. Let us consider the evaluation fibration sequence

$$\operatorname{Map}_{0}^{*}(\mathbb{R}P^{m},\mathbb{R}P^{n}) \to \operatorname{Map}_{0}(\mathbb{R}P^{m},\mathbb{R}P^{n}) \xrightarrow{ev} \mathbb{R}P^{n},$$

where ev is defined by $ev(f) = f(\mathbf{e}_m)$ for $f \in \operatorname{Map}_0(\mathbb{R}P^m, \mathbb{R}P^n)$. If we consider the constant maps $\mathbb{R}P^m \to \mathbb{R}P^n$, we can see that there is a splitting

KOHHEI YAMAGUCHI

 $s : \mathbb{R}P^m \to \operatorname{Map}_0(\mathbb{R}P^m, \mathbb{R}P^n)$ such that $ev \circ s = \operatorname{id}$. Hence, the other assertions easily follow from (i).

Proof of Theorem 1.4. The assertions follows from Lemma 3.2, Lemma 3.3 and Corollary 3.4. $\hfill \Box$

Acknowledgements. The author is partially supported by Grant-in-Aid for Scientific Research (No. 19540068 (C)), The Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

- M. C. Crabb and W. A. Sutherland, Function spaces and Hurewicz-Radon numbers, Math. Scand. 55 (1984), 67–90.
- [2] P. Hilton, G. Mislin, J. Roitberg and R. Steiner, On free maps and free homotopies into nilpotent spaces, Lecture Notes in Math., Springer Verlag, **673** (1978), 202–218.
- [3] A. Kozlowski and K. Yamaguchi, Spaces of algebraic maps from real projective spaces into complex projective spaces, Contemporary Math. **519** (2010), 145–164.
- [4] W. Meier and R. Strebel, Homotopy group of acyclic spaces, Quart. J. Math. Oxford 32 (1981) 81–95.
- [5] M. Mimura and H. Toda, Topology of Lie groups, I, II, Translation of Math. Monographs, 91, Amer. Math. Soc. Providence, 1991.
- [6] J. M. Møller and M. Rausen, Rational homotopy of spaces of maps into spheres and complex projective spaces, Trans. Amer. Math. Soc. 292 (1985), 721–732.
- [7] S. Sasao, The homotopy of $Map(\mathbb{CP}^m, \mathbb{CP}^n)$, J. London Math. Soc. 8 (1974), 193–197.
- [8] D. Sullivan, Infinitesimal computations in topology, Inst. Hautes. Études Sci. Publ. Math. 47 (1977), 269–331.
- [9] L. Thom, L'homologie des espaces fonctionnels, Colloq. Topol. Algébrique, Louvain, 1956, 29–39.
- [10] K. Yamaguchi, The homotopy of spaces of maps between real projective spaces, J. Math. Soc. Japan 58 (2006), 1163–1184; *ibid.* 59 (2007), 1235–1237.

Kohhei Yamaguchi Department of Mathematics University of Electro-Communications Chofu, Tokyo, 182-8585 Japan *e-mail address*: kohhei@im.uec.ac.jp

(Received December 16, 2009)