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NOTE ON THE HOMOTOPY OF THE SPACE OF MAPS

BETWEEN REAL PROJECTIVE SPACES

Kohhei Yamaguchi

Abstract. We study the homotopy types of the space consisting of
all base-point preseving continuous maps from the m dimensional real
projective space into the n dimensional real projective space. When
2 ≤ m < n, it has two path connected components and we investigate
whether these two path-components have the same homotopy type or
not.

1. Introduction

1.1. Notation and introduction of the previous works. Let 2 ≤ m <
n be integers and we choose ek = [1 : 0 : 0 : · · · : 0] ∈ RPk as the base point
of RPk (k = m,n). We denote by Map(RPm,RPn) (resp. Map∗(RPm,RPn))
the space consisting of all maps f : RPm → RPn (resp. of all base-point
preserving maps f : (RPm, em) → (RPn, en)). For each ǫ ∈ Z/2 = {0, 1} =
π0(Map(RPm,RPn)), let Mapǫ(RP

m,RPn) denote the corresponding path
component of Map(RPm,RPn). Similarly, we denote by Map∗ǫ(RP

m,RPn)
the corresponding path component of Map∗(RPm,RPn). It is known that

there is an isomorphism K̃O(RPm) ∼= Z/2a(m), where a(m) denotes the

Hurewicz-Radon number given by

a(m) =





4k + ǫ if m = 8k + ǫ (ǫ = 0, 1),

4k + 2 if m = 8k + 2 + ǫ (ǫ = 0, 1),

4k + 3 if m = 8k + l (4 ≤ l ≤ 7).

Now we recall the following two results.

Theorem 1.1 (M.C. Crabb and W.A. Sutherland, [1]). Let 2 ≤ m < n be

integers.

(i) If m ≤ n − 2, there is a homotopy equivalence Map0(RP
m,RPn) ≃

Map1(RP
m,RPn) if and only if n+ 1 ≡ 0 (mod 2a(m)).

(ii) If n ≥ 3 and n+1 ≡ 0 (mod 2a(n−1)), there is a homotopy equivalence

Map0(RP
n−1,RPn) ≃ Map1(RP

n−1,RPn).
(iii) If n ≡ 0 (mod 2), two components Map∗ǫ(RP

m,RPn) for ǫ ∈ {0, 1}
have the different rational homotopy types. �
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Theorem 1.2 ([10]). Let 2 ≤ m < n be integers.

(i) If n ≡ 1 and m ≡ 0 (mod 2), there are rational homotopy equiva-

lences Map∗1(RP
m,RPn) ≃Q {∗} and Map1(RP

m,RPn) ≃Q Sn.
(ii) If n ≡ 1 and m ≡ 1 (mod 2),

πk(Map∗1(RP
m,RPn))⊗Q =

{
Q if k = n−m,

0 otherwise.

πk(Map1(RP
m,RPn))⊗Q =

{
Q if k = n−m, k = n,

0 otherwise.

(iii) If n ≡ 0 and m ≡ 0 (mod 2),

πk(Map∗1(RP
m,RPn))⊗Q =

{
Q if k = n− 1, k = n−m,

0 otherwise.

πk(Map1(RP
m,RPn))⊗Q =

{
Q if k = n−m, k = 2n− 1,

0 otherwise.

(iv) If n ≡ 0 and m ≡ 1 (mod 2),

πk(Map∗1(RP
m,RPn))⊗Q =

{
Q if k = n− 1, k = 2n−m− 1,

0 otherwise.

πk(Map1(RP
m,RPn))⊗Q =

{
Q if k = 2n −m− 1, k = 2n− 1,

0 otherwise.

(v) If m ≤ n− 2,

πn−m(Map1(RP
m,RPn)) =

{
Z if n−m ≡ 0 (mod 2),

Z/2 if n−m ≡ 1 (mod 2),

(vi) If m = n− 1 ≥ 2,

π1(Map1(RP
m,RPn)) =

{
Z/4 if m ≡ 0, 1 (mod 4),

Z/2⊕ Z/2 if m ≡ 2, 3 (mod 4). �

1.2. The main results. As stated as Theorem 1.1 above, it was already
known when two path components Mapǫ(RP

m,RPn) (ǫ = 0 or 1) homotopy
equivalent or not. However, it is difficult to construct the explicit homotopy
equivalences between them. So we cannot apply it for studying whether
two components Map∗ǫ(RP

m,RPn) (ǫ = 0, 1) of based maps are homotopy
equivalent to each other. In this paper, we shall study the homotopy types
of path-components Map∗ǫ(RP

m,RPn) (ǫ = 0 or 1).
Next, note that the rational homotopy types of path-components of spaces

of maps between complex or quaternion projective spaces are well studied
([6], [7], [8]), but the case of real projective spaces is not well studied until
now (cf. [4], [10]). So we shall also investigate the rational homotopy types
of them explicitly. In fact, the main results of this paper are as follows.
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Theorem 1.3. Let 2 ≤ m < n be integers and ǫ ∈ {0, 1}.

(i) The space Map∗ǫ (RP
m,RPn) is (n−m− 1)-connected, and

πn−m(Map∗0(RP
m,RPn)) =

{
Z if m ≡ 1 (mod 2),

Z/2 if m ≡ 0 (mod 2),

πn−m(Map∗1(RP
m,RPn)) =

{
Z if n−m ≡ 0 (mod 2),

Z/2 if n−m ≡ 1 (mod 2).

(ii) If m ≤ n− 2,

πk(Mapǫ(RP
m,RPn)) =

{
Z/2 if k = 1,

0 if 2 ≤ k < n−m,

πn−m(Map0(RP
m,RPn)) =

{
Z if m ≡ 1 (mod 2),

Z/2 if m ≡ 0 (mod 2),

(iii) If m = n− 1 ≥ 2,

π1(Map0(RP
m,RPn)) =

{
Z⊕ Z/2 if m ≡ 1 (mod 2),

Z/2⊕ Z/2 if m ≡ 0 (mod 2),

Theorem 1.4. Let 2 ≤ m < n be integers.

(i) If n ≡ 1 and m ≡ 0 (mod 2), there are rational homotopy equiva-

lences {
Map∗0(RP

m,RPn) ≃Q {∗},

Map0(RP
m,RPn) ≃Q Sn.

(ii) If n ≡ 1 and m ≡ 1 (mod 2),

πk(Map∗0(RP
m,RPn))⊗Q =

{
Q if k = n−m,

0 otherwise.

πk(Map0(RP
m,RPn))⊗Q =

{
Q if k = n−m, k = n,

0 otherwise.

(iii) If n ≡ 0 and m ≡ 0 (mod 2), there is a rational homotopy equiva-

lence Map∗0(RP
m,RPn) ≃Q {∗} and

πk(Map0(RP
m,RPn))⊗Q =

{
Q if k = n, k = 2n− 1,

0 otherwise.

(vi) If n ≡ 0 and m ≡ 1 (mod 2),

πk(Map∗0(RP
m,RPn))⊗Q =

{
Q if k = n−m, k = 2n−m− 1,

0 otherwise.

πk(Map0(RP
m,RPn))⊗Q =

{
Q if k ∈ {n −m,n, 2n−m− 1},

0 otherwise.
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Corollary 1.5. Let 2 ≤ m < n be integers.

(i) If n ≡ 1 (mod 2), there are rational homotopy equivalences
{
Map∗0(RP

m,RPn) ≃Q Map∗1(RP
m,RPn),

Map0(RP
m,RPn) ≃Q Map1(RP

m,RPn).

(ii) If m = n − 1 ≥ 3 and n + 1 6≡ 0 (mod 4), Map0(RP
n−1,RPn) and

Map1(RP
n−1,RPn) have the different homotopy types.

(iii) If n ≡ 0 (mod 2), the (n−m)-dimensional rational homotopy groups

of Map∗0(RP
m,RPn) and Map∗1(RP

m,RPn) are different. �

This paper is organized as follows. In section 2 we compute the homotopy
groups of Map∗ǫ(RP

m,RPn) (ǫ = 0, 1) of low dimensions. In section 3 we
compute their rational homotopy groups explicitly by using the standard
techniques of rational homotopy theory ([2], [9]). Finally in section 4, we
give the proofs of Theorem 1.3 and Theorem 1.4.

2. The space Map∗ǫ(RP
m,RPn).

Definition 1. (i) Let 1 ≤ m < n be integers, and let Vn,m denote the real
Stiefel manifold of orthogonal m-frames in Rn.

(ii) Define the map fm,n : O(n) → Map∗1(RP
m,RPn) by the matrix mul-

tiplication

fm,n(A)([x0 : · · · : xm] = [x0 : · · · : xm : 0 : · · · : 0]

[
1 0n
t0 A

]

for (A, [x0 : · · · : xm]) ∈ O(n) × RPm. Since the subgroup which fixes RPm

is {Em+1} ×O(n−m), the map fm,n induces the map

(2.1) αm,n : Vn,m = O(n)/O(n−m) → Map∗1(RP
m,RPn),

where Ek denotes the (k × k)-unit matrix.

It is well known that Vn,1 = Sn−1 and that there is a homeomorphism
Vn,m

∼= O(n)/O(n − m). If we use this homeomorphism, it is easy to see
that there is a fibaration sequence

(2.2) Sn−m → Vn,m → Vn,m−1.

Lemma 2.1. Let 1 ≤ m < n be integers.

(i) Vn,m is (n−m− 1)-connected.

(ii) πn−m(Vn,m) =

{
Z if n−m ≡ 0 (mod 2),

Z/2 if n−m ≡ 1 (mod 2).
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Proof. (i) If we use the fibration sequence (i), we can show the assertion (i)
very easily by using the induction over m and we omit the detail.

(ii) First, assume that the case n −m ≡ 1 (mod 2), and note that there
are isomorphisms (cf. [5])




H∗(Vn,m,Z/2) = ∆(en−m, en−m+1, · · · , e2n−3)

H∗(Vn,m,k) =

{
E[x2(n−m)+1, x2(n−m)+5, · · · , x2n−3] if m ≡ 0 (mod 2),

E[x2(n−m)+1, x2(n−m)+5, · · · , xn−1] if m ≡ 1 (mod 2),

where k = Z/p (p: odd prime) or k = Q, and Sq1(en−m) = en−m+1 (deg ek =
k, deg xj = j). Then we can easily see that the (n − m + 1)-skeleton of
Vn,m is Sn−m ∪2 e

n−m+1 (up to homotopy equivalence), and we have that
πn−m(Vn,m) = Z/2 if n−m ≡ 1 (mod 2).

Next, assume that n−m ≡ 0 (mod 2). Since Vn,m−1 is (n−m)-connected
(by (i)) and πn−m+1(Vn,m−1) = Z/2, it follows from (2.2) that there is an
exact sequence

πn−m+1(Vn,m−1)
∂

−−−−→ πn−m(Sn−m) −−−−→ πn−m(Vn,m) −−−−→ 0.

‖ ‖

Z/2 Z

Hence, πn−m(Vn,m) ∼= πn−m(Sn−m) ∼= Z, and this completes the proof. �

Now recall the following:

Theorem 2.2 ([10]). If 1 ≤ m < n, αm,n : Vn,m → Map∗1(RP
m,RPn) is a

homotopy equivalence up to dimension 2(n−m)−1 and there is a homotopy

commutative diagram

(2.3)

Sn−m −−−−→ Vn,m −−−−→ Vn,m−1

Em

y αm,n

y αm−1,n

y

ΩmSn −−−−→ Map∗1(RP
m,RPn)

r
−−−−→ Map∗1(RP

m−1,RPn)

where two horizontal sequences are fibration sequences and Em denotes the

m-fold suspension map. �

Lemma 2.3. Let m ≥ 3 be an integer.

(i) If m ≡ 1 (mod 2), there is a fibration sequence

(2.4) Ωm−1Sn × ΩmSn → Map∗0(RP
m,RPn)

r
→ Map∗0(RP

m−2,RPn).

(ii) If m ≡ 0 (mod 2), there is a fibration sequence

(2.5) Map∗(Σm−2RP2,RPn) → Map∗0(RP
m,RPn)

r
→ Map∗0(RP

m−2,RPn).



82 KOHHEI YAMAGUCHI

Proof. The cofiber sequence RPm−2 → RPn → RPm/RPm−2 = RPm
m−1

induces the fibration sequence

Map∗(RPm
m−1,RP

n) → Map∗0(RP
m,RPn)

r
→ Map∗0(RP

m−1,RPn).

Because there is a homotopy equivalence

RPm
m−1 = RPm/RPm−2 ≃

{
Sm−1 ∨ Sm if m ≡ 1 (mod 2)

Sm−1 ∪2 e
m = Σm−2RP2 if m ≡ 0 (mod 2)

there is a homotopy equivalence

Map∗(RPm
m−1,RP

n) ≃

{
Ωm−1Sn × ΩmSn if m ≡ 1 (mod 2),

Map∗(Σm−2RP2,RPn) if m ≡ 0 (mod 2).

Hence, the assertions follow. �

Theorem 2.4. Let 1 ≤ m < n and ǫ ∈ {0, 1}.

(i) Map∗ǫ (RP
m,RPn) is (n −m− 1)-connected.

(ii) πn−m(Map∗0(RP
m,RPn)) =

{
Z if m ≡ 1 (mod 2),

Z/2 if m ≡ 0 (mod 2).

(iii) πn−m(Map∗1(RP
m,RPn)) =

{
Z if n−m ≡ 0 (mod 2),

Z/2 if n−m ≡ 1 (mod 2).

Proof. (i) By using Theorem 2.2 there is an epimorphism

αm,n
∗
: πk(Vn,m) → πk(Map∗1(RP

m,RPn))

for any k ≤ 2(n −m) − 1. Hence, because Vn,m is (n −m − 1)-connected,
Map∗1(RP

m,RPn) is also (n−m− 1)-connected. So the assertion (i) is true
for ǫ = 1.

The proof for ǫ = 0 is based on the induction over m. If m = 1,
since there is a homotopy equivalence Map∗0(RP

1,RPn) ≃ ΩSn, the space
Map∗0(RP

1,RPn) is (n − 2)-connected. So the case m = 1 is true. Suppose
that the space Map∗0(RP

m−1,RPn) is (n − m)-connected and consider the
restriction fibration sequence

(2.6) ΩmSn → Map∗0(RP
m,RPn)

r
→ Map∗0(RP

m−1,RPn).

Since ΩmSn and it is (n−m−1)-connected, by using (2.6) Map∗0(RP
m,RPn)

is (n−m− 1)-connected. Hence, (i) is proved.
(ii) If m = 1, πn−m(Map∗0(RP

m,RPn)) = πn−1(ΩRP
n) ∼= πn(S

n) = Z. So
the assertion (ii) is true for m = 1. Next, because RP2 = S1∪2 e

2, there is a

cofibration sequence S1 2
→ S1 → RP2. Hence, by identifying ΩRPn = ΩSn

this sequence induces a fibration sequence

(2.7) Map∗0(RP
2,RPn) → ΩSn [2]

→ ΩSn.
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Since Map∗0(RP
2,RPn) is (n−2)-connected, the exact sequence induced from

(2.7) is reduced to the following exact sequence

πn−1(ΩS
n)

[2]∗
→ πn−1(ΩS

n)
∂
→ πn−2(Map∗0(RP

2,RPn)) → 0.

Because [2]∗ is the multiplication by 2, we have πn−2(Map∗0(RP
2,RPn)) =

Z/2. So the assertion (ii) is also true for m = 2.
Now suppose that m ≥ 3. First, consider the case m ≡ 1 (mod 2). Since

Map∗0(RP
m−2,RPn) is (n −m+ 1)-connected, if we consider the homotopy

exact sequence induced from the fibration sequence (2.4), there is an iso-
morphism

πn−m(Map∗0(RP
m,RPn)) ∼= πn−m(Ωm−1Sn × ΩmSn) ∼= Z.

Hence, the assertion (ii) is true if m ≡ 1 (mod 2).
Next consider the case m ≡ 0 (mod 2). Because Map∗0(RP

m−2,RPn) is
(n−m+1)-connected, if we consider the homotopy exact sequence induced
from the fibration sequence (2.5), we also have the isomorphism

πn−m(Map∗0(RP
m,RPn)) ∼= πn−m(Map∗(Σm−2RP2,RPn)).

On the other hand, the cofiber sequence Sm−1 2
→ Sm−1 → Σm−2RP2 induces

the fibration sequence

(2.8) Map∗(Σm−2RP2,RPn) → Ωm−1Sn [2]
→ Ωm−1Sn.

If we use the exact sequence induced from (2.8), it is easy to see that

πn−m(Map∗(Σm−2RP2,RPn)) = Z/2.

Hence, πn−m(Map∗0(RP
m,RPn)) = Z/2 if m ≡ 0 (mod 2), and (ii) is proved.

(iii) First, consider the case n−m ≥ 2. Then because 2(n−m)−1 > n−m,
by using Theorem 2.2 there is an isomorphism

αm,n∗ : πn−m(Vn,m)
∼=
→ πn−m(Map∗1(RP

m,RPn)).

Hence, (iii) follows from Lemma Lemma 2.1.
So it remains to show (iii) for the case m = n− 1. It suffices to show that

αn,n−1
∗
: π1(Vn,n−1)

∼=
→ π1(Map∗1(RP

n−1,RPn)) is an isomorphism. Because

two spaces Vn,n−2 and Map∗1(RP
n−2,RPn) are 1-connected, the diagram

(2.3) for m = n− 1 induces the following commutative exact sequences:

π2(Vn,n−2)
∂

−−−−−→ π1(S
1) −−−−−→ π1(Vn,n−1) −−−−−→ 0

αn,n−2∗

?

?

y

∼= En−1

?

?

y

∼= αn−1,n∗

?

?

y

π2(Map∗

1(RP
m−2,RPn))

∂′

−−−−−→ πn(S
n) −−−−−→ π1(Map∗

1(RP
n−1,RPn)) −−−−−→ 0
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We already proved that αn,n−2∗ : π2(Vn,n−2)
∼=
→ π2(Map∗1(RP

m−2,RPn))
is an isomorphism. Hence, by the Five Lemma we see that the homomor-

phism αn,n−1
∗
: π1(Vn,n−1)

∼=
→ π1(Map∗1(RP

n−1,RPn)) is also an isomor-
phism. �

Corollary 2.5. αn−1,n∗ : π1(Vn,n−1)
∼=
→ π1(Map∗1(RP

n−1,RPn)) ∼= Z/2 is

an isomorphism for n ≥ 2. �

Corollary 2.6 ([1]). If 2 ≤ m < n and n ≡ 0 (mod 2), Map∗0(RP
m,RPn)

and Map∗1(RP
m,RPn) are never homotopy equivalent.

Proof. By Theorem 2.4, πn−m(Map∗0(RP
m,RPn)) 6∼= πn−m(Map∗1(RP

m,RPn)) if
2 ≤ m < n and n ≡ 0 (mod 2), and the assertion follows. �

Remark. Crabb and Sutherland show that πn−1(Map∗1(RP
m,RPn))⊗Q =

Q and πn−1(Map∗0(RP
m,RPn)) ⊗ Q = 0 in [1], and they obtain the above

result.

3. Rational homotopy types.

Definition 2. Let γn : Sn → RPn denote the usual double covering and
define the map γn# : Map∗(RPm, Sn) → Map∗0(RP

m,RPn) by γn#(f) =
γn ◦ f .

Lemma 3.1. If 1 ≤ m < n, γn# : Map∗(RPm, Sn)
≃

→ Map∗0(RP
m,RPn) is

a homotopy equivalence.

Proof. The proof is based on the induction over m. Because RP1 = S1,
the assertion clearly holds for m = 1. Assume that the assertion is true

for the case m − 1, and note that Ωmγn : ΩmSn ≃

→ ΩmRPn is a homotopy
equivalence. If we consider the commutative diagram of fibration sequences

ΩmSn −−−−→ Map∗(RPm, Sn)
r

−−−−→ Map∗(RPm−1, Sn)

Ωmγn

y≃ γn#

y γ′

n#

y≃

ΩmRPn −−−−→ Map∗0(RP
m,RPn)

r
−−−−→ Map∗0(RP

m−1,RPn)

the assertion easily follows. �

We denote by X(0) the Q-localization of a nilpotent space X. Then by
using Lemma 3.1, there is a rational homotopy equivalence (cf. [2])

(3.1) Map∗0(RP
m,RPn) ≃Q Map∗0(RP

m, Sn
(0)).

It is easy to see that there are homotopy equivalences

Sn
(0) ≃

{
K(Q, n) if n ≡ 1 (mod 2),

K(Q, n)×K(Q, 2n− 1) if n ≡ 0 (mod 2),
(3.2)
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Map∗0(X,K(G,n)) ≃
n∏

i=1

K(Hn−i(X,G), i)(3.3)

for a connected space X ([9]). Then we have:

Lemma 3.2. If 2 ≤ m < n and m ≡ 0 (mod 2), there is a rational homotopy

equivalence Map∗0(RP
m,RPn) ≃Q {∗}.

Proof. Since H̃∗(RPm,Q) = 0, the assertion follows from (3.1), (3.2) and
(3.3). �

Lemma 3.3. Let 2 ≤ m < n be integers such that m ≡ 1 (mod 2).

(i) If n ≡ 0 (mod 2),

πk(Map∗0(RP
m,RPn))⊗Q =

{
Q if k = n−m, k = 2n −m− 1,

0 otherwise.

(ii) If n ≡ 1 (mod 2), πk(Map∗0(RP
m,RPn))⊗Q =

{
Q if k = n−m,

0 otherwise.

Proof. Since the proof is completely analogous to that of Lemma 3.2, we
omit the detail. �

Corollary 3.4. Let 2 ≤ m < n be integers.

(i) If n ≡ 1 (mod 2) and m ≡ 0 (mod 2), there is a rational homotopy

equivalence Map0(RP
m,RPn) ≃Q Sn.

(ii) If n ≡ 1 (mod 2) and m ≡ 1 (mod 2),

πk(Map0(RP
m,RPn))⊗Q =

{
Q if k = n−m, k = n,

0 otherwise.

(iii) If n ≡ 0 and m ≡ 0 (mod 2),

πk(Map0(RP
m,RPn))⊗Q =

{
Q if k = n, k = 2n− 1,

0 otherwise.

(iv) If n ≡ 0 and m ≡ 1 (mod 2),

πk(Map0(RP
m,RPn))⊗Q =

{
Q if k ∈ {n −m,n, 2n−m− 1},

0 otherwise. �

4. Proofs of the main results.

Proof of Theorem 1.3. The assertion (i) follows from Theorem 2.4. Let us
consider the evaluation fibration sequence

Map∗0(RP
m,RPn) → Map0(RP

m,RPn)
ev
−→ RPn,

where ev is defined by ev(f) = f(em) for f ∈ Map0(RP
m,RPn). If we

consider the constant maps RPm → RPn, we can see that there is a splitting
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s : RPm → Map0(RP
m,RPn) such that ev ◦ s = id. Hence, the other

assertions easily follow from (i). �

Proof of Theorem 1.4. The assertions follows from Lemma 3.2, Lemma 3.3
and Corollary 3.4. �
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