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AN EXPLICIT PSp4(3)-POLYNOMIAL WITH 3

PARAMETERS OF DEGREE 40

Hidetaka Kitayama

Abstract. We will give an explicit polynomial over Q with 3 param-
eters of degree 40 as a result of the inverse Galois problem. Its Ga-
lois group over Q (resp. Q(

√

−3)) is isomorphic to PGSp4(3) (resp.
PSp4(3)) and it is a regular PSp4(3)-polynomial over Q(

√

−3). To con-
struct the polynomial and prove its properties above we use some results
of Siegel modular forms and permutation group theory.

1. Introduction

In this paper, we will construct an explicit polynomial with 3 parameters
of degree 40 which has properties in Theorem 1.1 below. In this section, we
will explain its background.

Definition 1.1. Let G be a finite group and K be a field. An extension L/K
is called G-extension over K if L/K is a Galois extension and the Galois
group Gal(L/K) is isomorphic to G. A polynomial f(X) ∈ K[X] is called a
G-polynomial over K if the Galois group Gal(f(X)/K) is isomorphic to G.

The inverse Galois problem asks whether there exists a G-extension over
K for a given field K and a finite group G. This problem has been studied
by many mathematicians as one of the most important problems in number
theory, especially for the case of the rational number field Q. It is still
unknown whether this problem is affirmative for every finite group, but it
has been proven affirmatively for a lot of kinds of finite groups. (See [10].
) In this paper, we will consider the constructive aspects of this problem.
Our problem is formulated as follows:

Problem 1.1. Construct an explicit polynomial having G as the Galois
group for a given transitive permutation group G.

Note that Problem 1.1 for groups which are not conjugate as subgroups
of the symmetric group are distinct from each other even if they are isomor-
phic as abstract groups. Complete results of Problem 1.1 for all transitive
permutation groups of degree up to 15 were given in [8]. The purpose of
this paper is to give results for transitive permutation groups of degree 40.
Our main theorem is as follows. We will prove this theorem in section 5.
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Theorem 1.1. A polynomial F (x, y, z; X) ∈ Q(x, y, z)[X] with 3 parame-
ters x, y, z of degree 40, constructed in section 4, has the following properties:
(1) the Galois group of F (x, y, z; X) over Q(x, y, z) is conjugate to the prim-
itive group (40, 4) in the GAP code. It is isomorphic to PGSp4(3),
(2) the Galois group of F (x, y, z; X) over Q(

√
−3)(x, y, z) is conjugate to

the primitive group (40, 3) in the GAP code. It is isomorphic to PSp4(3),
(3) F (x, y, z; X) is a regular PSp4(3)-polynomial over Q(

√
−3).

Here a regular G-polynomial is defined as follows:

Definition 1.2. A polynomial f(t; X) ∈ K(t)[X] with some parameters
t = (t1, · · · , tn) is called regular if it satisfies Spl(f(t; X)/K(t)) ∩ K = K,
where Spl(f(t; X)/K(t)) is the splitting field of f(t; X) over K(t) and K is
an algebraic closure of K.

We give some remarks concerning Theorem 1.1.

Remark 1.1. Explicit polynomials over Q with 1 parameter for PSp4(3)
and PGSp4(3) as transitive permutation groups of degree 27 are given in
p.412 of [10] and they are regular PSp4(3)- and PGSp4(3)-polynomials over
Q. As mentioned in Theorem 1.1 our polynomial F (x, y, z; X) is just a
regular PSp4(3)-polynomial over Q(

√
−3). But our result is new because

explicit polynomials with 3 parameters for these two groups as transitive
permutation groups of degree 40 have not been known before.

Remark 1.2. We will construct our polynomial by using some results of
Siegel modular forms in section 4. Note that we only have its Galois group
over C(x, y, z) at this stage and it is a difficult problem to descend fields of
definition to Q. In the case of SL2(Z), Shih studied this problem in [12] by
using the theory of canonical systems of models and achieved regular Galois
extensions over Q. In our case, so far, we can not improve our polynomial
to have regularity over Q.

Notation. The groups PSp4(3) and PGSp4(3) are defined as follows. We
define the symplectic group by

Sp4(Z) := {g ∈ M4(Z)|tg · J · g = J}

where J:=

(

02 12

−12 02

)

and 12 is the unit matrix. The following two sub-

groups of Sp4(Z) will be important.

Γ0(3) := {g ∈ Sp4(Z)|g ≡
(

A B
02 D

)

mod 3},

Γ(3) := {g ∈ Sp4(Z)|g ≡ 14 mod 3}.
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By definition, we have Γ(3) < Γ0(3) < Sp4(Z). It is known that the index
(Sp4(Z) : Γ0(3)) = 40 and (Sp4(Z) : Γ(3)) = 51840. Γ(3) is a normal
subgroup of Sp4(Z), so we put Sp4(3) := Sp4(Z)/Γ(3) and define

PSp4(3) := Sp4(3)/{±14}.
This is a non-abelian simple group of order 25920. We also define

PGSp4(3) := {g ∈ GL(4, F3) | tg · J · g = v · J , v ∈ F×

3 }/{±14}.
This is a non-abelian group of order 51840 which is isomorphic to PSp4(3)⋊

C2.

2. Preliminaries from Siegel modular forms

We will consider a PSp4(3)-extension by using some results of Siegel mod-
ular forms. So we review Siegel modular forms to fix notation. We denote
by H2 the Siegel upper half plane of degree 2, that is,

H2 := {Z ∈ M2(C)|tZ = Z, Im(Z) > 0}.
The group Sp4(Z) acts on H2 by

gZ = (AZ + B)(CZ + D)−1

for any g =

(

A B
C D

)

∈ Sp4(Z) and any Z ∈ H2. For any natural number

k and a holomorphic function F on H2, we put

F |[g]k(Z) = det(CZ + D)−kF (gZ).

For a finite index subgroup Γ of Sp4(Z), we denote by Ak(Γ) the space of
all Siegel modular forms of weight k of Γ, that is,

Ak(Γ) = {F : a holomorphic function on H2 | F |[g]k = F for all g ∈ Γ}.
We put A(Γ) = ⊕∞

k=0Ak(Γ). The space A(Γ) is a graded ring. The explicit
structure of A(Sp4(Z)) and A(Γ0(3)) is known as in the following theorems.

Theorem 2.1 (Igusa[6]).
∞

⊕

k=0

Ak(Sp4(Z)) = C[φ4, φ6, χ10, χ12] ⊕ χ35C[φ4, φ6, χ10, χ12].

φ4, φ6, χ10, χ12 are algebraically independent over C.

Theorem 2.2 (Ibukiyama[5], Aoki and Ibukiyama[1]). We put

B := C[α1, β3, γ4, δ3] , C := C[α2
1, β

2
3 , γ4, δ

2
3]

then
∞

⊕

k=0

Ak(Γ0(3)) = B(even) ⊕ Cα1χ14 ⊕ Cβ3χ14 ⊕ Cδ3χ14 ⊕ Cα1β3δ3χ14.
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α1, β3, γ4, δ3 are algebraically independent over C.

3. Preliminaries from permutation group theory

In this section, we review permutation group theory. A subgroup G of
Sn, the symmetric group of degree n, is called transitive if arbitrary two
elements in {1, · · · , n} can be permuted each other by G-action. It is well
known that the Galois group of an irreducible separable polynomial of degree
n is a transitive subgroup of Sn. GAP[2] has data bases of classification of
transitive subgroups of Sn for n up to 30. These are based on Hulpke[4]. By
using the data, we see the following fact.

Lemma 3.1. The least degree of which PSp4(3) can be realized as a tran-
sitive subgroup of the symmetric group is 27.

Next we consider primitive groups, which are of special type in transitive
groups.

Definition 3.1. Let G be a transitive subgroup of Sn. G is called primi-
tive if there are no partitions of {1, · · · , n} which satisfy the following two
conditions.

(1) {1, · · · , n} = ∪r
i=1Bi, r ≥ 2,

♯Bi ≥ 2 (i = 1, . . . , r) and Bi ∩ Bj = ∅ (i 6= j).
(2) G induces a transitive action on {B1, . . . , Br}.

GAP[2] has data bases of classification of primitive subgroups of Sn for n
up to 2499. These are based on Colva M. Roney-Dougal [11]. Among these,
we will use the following.

Lemma 3.2. Primitive groups of degree 40 are one of the following 8 groups
up to conjugacy.

PSp4(3)a, PSp4(3)b, PGSp4(3)a, PGSp4(3)b,

PSL4(3), PGL4(3), A40, S40.

(The symbols “a” and “b” mean that one group is isomorphic but is not
conjugate to the other.)

4. Construction of a PSp4(3)-polynomial

In this section, we will consider PSp4(3)-extension by using Theorem 2.1
and 2.2 and construct a polynomial which has PSp4(3) as its Galois group
over the rational function field over C of dimension 3.

For a finite index subgroup Γ of Sp4(Z), we denote by K(Γ) the modular
function field of Γ, that is, the field which consists of meromorphic functions
on H2 which are invariant with respect to the action of Γ. It is known that
K(Γ) is generated by fractions of modular forms for Γ of the same weight.
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(cf. corollary (i) of p.131 of [7]). We consider a sequence of the modular
function fields of Sp4(Z), Γ0(3) and Γ(3):

K(Sp4(Z)) ⊂ K(Γ0(3)) ⊂ K(Γ(3)).

It is known that these three fields are purely transcendental over C of di-
mension 3. (cf. [6],[5],[3]). Note that K(Γ(3))/K(Sp4(Z)) is a PSp4(3)-
extension and K(Γ0(3))/K(Sp4(Z)) is a non-Galois extension of degree 40.
We will compute a polynomial which defines the extension
K(Γ0(3))/K(Sp4(Z)). Then the splitting field of the polynomial over
K(Sp4(Z)) is K(Γ(3)) because the Galois group Gal(K(Γ(3))/K(Sp4(Z))) ≃
PSp4(3) is simple. Thus the polynomial is a PSp4(3)-polynomial over C

with 3 parameters of degree 40. (We will consider the Galois group over Q

in section 5.) To carry out this computation, we need the following three
steps.

1. We will compute transcendental basis over C of K(Sp4(Z)) and
K(Γ0(3)).

2. We will find a primitive element of the extension K(Γ0(3))/
K(Sp4(Z)).

3. We will compute the irreducible polynomial of the element of Step2
over K(Sp4(Z)). This is a polynomial we want.

Step 1. We will compute transcendental basis over C of K(Sp4(Z)) and
K(Γ0(3)) by using Theorem 2.1 and 2.2. By the structure of
⊕∞

k=0Ak(Sp4(Z)), we see that the former (resp. latter) part of it consists
of even (resp. odd) weight functions. We also see that every odd weight
function is a product of χ35 and a even weight function. So we see that
K(Sp4(Z)) consists of fractions of functions of the same weight belonging
to C[φ4, φ6, χ10, χ12]. Hence K(Sp4(Z)) is generated by all functions of the
form

φ4
aφ6

bχ10
cχ12

d, (a, b, c, d ∈ Z, 2a + 3b + 5c + 6d = 0).

We can determine transcendental basis of K(Sp4(Z)) over C by computing
Z-basis of the free Z module of rank 3,

V := {x ∈ Z4|(2 3 5 6)x = 0}
because φ4, φ6, χ10, χ12 are algebraically independent over C.

We put

A :=









1 0 0 0
0 1 0 0
2 3 6 −1
−2 −3 −5 1









.
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Then we have

V = {x ∈ Z4|(0 0 0 1)A−1x = 0}

= ZA









1
0
0
0









⊕ ZA









0
1
0
0









⊕ ZA









0
0
1
0









= Z









1
0
2
−2









⊕ Z









0
1
3
−3









⊕ Z









0
0
6
−5









.

It follows that

K(Sp4(Z)) = C

(

φ4χ10
2

χ12
2

,
φ6χ10

3

χ12
3

,
χ10

6

χ12
5

)

.

Next we will determine transcendental basis of K(Γ0(3)). By the structure
of A(Γ0(3)), we see that the first part of it consists of even weight functions
and the other parts odd weight. We also see that every odd weight function
is a product of χ14 and α1, β3, γ4, δ3. Thus we can see K(Γ0(3)) is generated
by all functions of the form

α1
aβ3

bγ4
cδ3

d, (a, b, c, d ∈ Z, a + 3b + 4c + 3d = 0).

We can determine transcendental basis by the same way as above and get

K(Γ0(3)) = C

(

β3

α3
1

,
γ4

α4
1

,
δ3

α3
1

)

.

For simplicity, we put

a :=
β3

α1
3

, b :=
γ4

α1
4

, c :=
δ3

α1
3

,

x :=
φ4χ10

2

χ12
2

, y :=
φ6χ10

3

χ12
3

, z :=
χ10

6

χ12
5

,

then we have

K(Sp4(Z)) = C(x, y, z) , K(Γ0(3)) = C(a, b, c).

Step 2.

We will find a primitive element of the extension K(Γ0(3))/K(Sp4(Z)).
We have the following relations ([1],p.259).
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φ4 = 8α1β3 + 41α4
1 − 162γ4 + 5α1δ3

φ6 = 277α6
1 − 2187α2

1γ4 + 80α3
1β3 +

11

8
δ2
3 + β2

3 +
7

2
β3δ3 +

91

2
α3

1δ3

χ10 = γ4(8α3
1 + 2β3 − δ3)

2/6144

χ12 = (−124416α8
1γ4 − 192α3

1β
2
3δ3 − 768α6

1β3δ3 + 16α3
1δ

3
3 + 256α3

1β
3
3

+4096α9
1β3 + 153α6

1β
2
3 − 1024α9

1δ3 + 16β4
3 − δ4

3 − 16β3
3δ3 + 4β3δ

3
3

+4096α12
1 + 7776α2

1β3δ3γ4 + 10077696α4
1γ

2
4 − 62208α5

1β3γ4

+31104α5
1δ3γ4 + 2519424α1β3γ

2
4 − 1944α2

1δ3γ4 − 7776α2
1β

2
3γ4

−68024448γ3
4 − 1259712α1δ3γ

2
4)/3981312

By definition of a, b and c, it is easy to see that

φ4/α4
1 = 8a − 162b + 5c + 41

φ6/α6
1 = 80a +

91

2
c − 2187b + a2 +

7

2
ac +

11

8
c2 + 277

χ10/α10
1 = b(8 + 2a − c)2/6144

χ12/α12
1 = (16a4 + (−16c + 256)a3 + (−7776b − 192c + 1536)a2

+(2519424b2 + (7776c − 62208)b + (4c3 − 768c + 4096))a

+(−68024448b3 + (−1259712c + 10077696)b2

+(−1944c2 + 31104c − 124416)b + (−c4 + 16c3 − 1024c))

/3981312.

We put

θ :=
χ10α1

2

χ12
.

We will prove that θ is a primitive element of the extension K(Γ0(3))/
K(Sp4(Z)). We have

K(Sp4(Z))(θ) = C(x, y, z, θ)

= C(x/θ2, y/θ3, z/θ5, z/θ6)

= C(φ4/α4
1, φ6/α6

1, χ10/α10
1 , χ12/α12

1 )

= C(s, t, u, v),

where

s := φ4/α4
1 − 41, t := φ6/α6

1 − 277

u := 6144χ10/α10
1 , v := 3981312χ12/α12

1 .
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Note that

s = 8a − 162b + 5c

t = 80a +
91

2
c − 2187b + a2 +

7

2
ac +

11

8
c2

u = b(8 + 2a − c)2

v = 16a4 + (−16c + 256)a3 + (−7776b − 192c + 1536)a2

+(2519424b2 + (7776c − 62208)b + (4c3 − 768c + 4096))a

+(−68024448b3 + (−1259712c + 10077696)b2

+(−1944c2 + 31104c − 124416)b + (−c4 + 16c3 − 1024c)).

We have to show that a, b and c belong to C(s, t, u, v) in order to show
C(s, t, u, v) = C(a, b, c). We define

f := 8a − 162b + 5c − s

g := 80a +
91

2
c − 2187b + a2 +

7

2
ac +

11

8
c2 − t

h := b(8 + 2a − c)2 − u

j := 16a4 + (−16c + 256)a3 + (−7776b − 192c + 1536)a2

+(2519424b2 + (7776c − 62208)b + (4c3 − 768c + 4096))a

+(−68024448b3 + (−1259712c + 10077696)b2

+(−1944c2 + 31104c − 124416)b + (−c4 + 16c3 − 1024c)) − v.

Here we assume a, b, c, s, t, u and v are seven independent variables. We
compute a Gröbner basis of the ideal < f, g, h, j > relative to the lexico-
graphic order with a > c > v > b > u > t > s. Then we get a Gröbner basis
which consists of 14 polynomials. Among them, one finds two polynomials
G1, G2 without a, c from which a linear equation of b over Z[s, t, u, v] can be
obtained. This implies b ∈ C(s, t, u, v). Also one finds another polynomial
which is linear in c over Z[u, v, s, t, b]. Thus we see that c ∈ C(u, v, s, t, b).
Finally, by definition of s: s = 8a − 162b + 5c, we have a ∈ C(s, t, u, v). It
follows that

K(Sp4(Z))(θ) = K(Γ0(3)).

Thus Step2 has been completed.

Step 3. We will compute the irreducible polynomial of the element θ of
Step2 over K(Sp4(Z)). We can get a polynomial relation of s, t, u and v by
eliminating b from G1 = 0 and G2 = 0. Then we replace s, t, u and v in
this relation by

s = x/θ2 − 41 , t = y/θ3 − 277

u = 6144z/θ5 , v = 3981312z/θ6 − 4096
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and multiply it by θ40. Then we get a polynomial of θ over Q[x, y, z] which
has degree 40. This is the irreducible polynomial of θ over K(Sp4(Z)) =
C(x, y, z) and its Galois group over C(x, y, z) is isomorphic to PSp4(3). We
omit this polynomial here because it takes up too much space. We give an
explicit form of F (x, y, z; X) in [9].

5. Proof of Theorem 1.1

The polynomial F (x, y, z; X) obtained in the previous section has PSp4(3)
as Galois group over C(x, y, z). Actually, the coefficients of F (x, y, z; X) are
in Q[x, y, z]. What can be said about its Galois group over an intermediate
field of C/Q ? By answering this question, we can prove Theorem 1.1. For
simplicity, we denote Q(x, y, z) and C(x, y, z) by K and K ′ respectively. We
also denote by L and L′ the splitting field of F (x, y, z; X) over K and K ′

respectively.

Lemma 5.1. PSp4(3) is primitive as a transitive group of degree 40.

Proof. Suppose G ≃ PSp4(3) is not primitive. Then G has a partition of
{1, · · · , 40} satisfying the condition of Definition 3.1. The group H := {g ∈
G | gBi = Bi , ∀i = 1, . . . , r} is a normal subgroup of G. Because PSp4(3)
is simple, H is 1 or G. If H = G, then it contradicts transitivity of G. If
H = 1, then G ≃ PSp4(3) as a permutation group of {B1, . . . , Br}. This
implies r | 40 and it contradicts Lemma 3.1. �

By definition of the symbols L′ and K ′, Gal(L′/K ′) is a transitive group
of degree 40. So Gal(L′/K ′) is primitive by Lemma 5.1. Because

Gal(L/(L ∩ K ′)) ≃ Gal(L′/K ′)

and Gal(L/K) has this group as a subgroup, we see that Gal(L/K) is also
a primitive group of degree 40. Thus Gal(L/K) is conjugate to one of the
following 8 groups by Lemma 3.2.

PSp4(3)a , PSp4(3)b , PGSp4(3)a , PGSp4(3)b,

PSL4(3) , PGL4(3) , A40 , S40.

We have to determine Gal(L/K) out of them. Because the intermediate field
L∩K ′ is a Galois extension over K, Gal(L/(L∩K ′)) is a normal subgroup
of Gal(L/K). So we can exclude groups not containing PSp4(3) as their
normal subgroups. Thus Gal(L/K) is conjugate to one of

PSp4(3)a , PSp4(3)b , PGSp4(3)a , PGSp4(3)b.

By consulting the data base of GAP[2], we can see that PGSp4(3)b is the
only group not contained in A40 and the other three groups are contained
in A40. So the discriminant of F (x, y, z; X) determines whether Gal(L/K)
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is conjugate to PGSp4(3)b or not. We denote by d(F (x, y, z; X)) the dis-
criminant of F (x, y, z; X). We can write

d(F (x, y, z; X)) = f(x, y, z)g(x, y, z)2

with some f(x, y, z) and g(x, y, z) ∈ Q[x, y, z]. We can assume that f(x, y, z)
is square free. On the other hand,

d(F (x, y, z; X)) ∈ C[x, y, z]2

because Gal(L′/K ′) ≃ PSp4(3), which is contained in A40. Thus f(x, y, z)
must be constant and

d(F (x, y, z; X)) = r · g(x, y, z)2

for a square free integer r. Whether Gal(L/K) is contained in A40 or not
depends on r. By computation, it turns out that r · g(1, 1, 1)2 = −3 · n2 for
some n ∈ Z. The left hand is the specialization of d(F (x, y, z; X)) and the
other hand is the discriminant of the specialized polynomial F (1, 1, 1; X).
Thus we get r = −3 and d(F (x, y, z; X)) = −3 · g(x, y, z)2. It follows
that if k contains (resp. does not contain)

√
−3 then the Galois group of

F (x, y, z; X) over k(x, y, z) is isomorphic to PSp4(3) (resp.PGSp4(3)) for
an intermediate field k of C/Q . Thus we can see that F (x, y, z; X) is a
regular PSp4(3)-polynomial over Q(

√
−3).
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