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ABSTRACT LOCAL COHOMOLOGY FUNCTORS

Yuji Yoshino and Takeshi Yoshizawa

Abstract. We propose to define the notion of abstract local cohomol-
ogy functors. The ordinary local cohomology functor RΓI with support
in the closed subset defined by an ideal I and the generalized local co-
homology functor RΓI,J defined in [16] are characterized as elements of
the set of all the abstract local cohomology functors.

Introduction

Let R be a commutative noetherian ring and I be an ideal of R. We denote
the category of all R-modules by R-Mod and also denote the derived cate-
gory consisting of all left bounded complexes of R-modules by D+(R-Mod).
Then the section functor ΓI : R-Mod → R-Mod and its derived functor
RΓI : D+(R-Mod) → D+(R-Mod) (called the local cohomology functor)
are basic tools not only for the theory of commutative algebras but also for
algebraic geometry. They are actually extensively studied by many authors.
See, for example, [3], [4], [7] and [8].

To give a way of generalizing such classical local cohomology functors, the
authors have introduced, together with Ryo Takahashi in the paper [16], the
generalized section functor ΓI,J : R-Mod→ R-Mod and the generalized local
cohomology functor RΓI,J : D+(R-Mod) → D+(R-Mod) associated with a
given pair of ideals I, J . The aim of this paper is to characterize these
functors among the set of functors, and show how naturally the functors
ΓI,J and RΓI,J appear in the context of functors.

Our strategy is the following.
As for the section functors ΓI and ΓI,J , we consider the set S(R) of all the

left exact radical functors on R-Mod. Actually, ΓI and ΓI,J are elements
of S(R). A radical functor, or more generally a preradical functor, has its
own long history in the theory of categories and functors. See [6] or [11]
for the case of module category. One of the most useful and important
facts is that there is a bijective correspondence between S(R) and the set of
hereditary torsion theories for R-Mod ([15, Chapter VI, Proposition 3.1]).
In this paper, after giving some characterizations of elements of S(R), we
shall show that S(R) is a complete lattice, and we can define a product and
a quotient for a couple of elements of S(R). As a consequence, we shall
prove that a left exact radical functor γ is of the form ΓI for an ideal I of
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R if and only if γ satisfies a kind of ascending chain condition inside the
set S(R) (Theorem 5.2). Moreover we also prove that ΓI,J is nothing but a
quotient of ΓI by ΓJ (Theorem 5.5).

As for the derived functors RΓI and RΓI,J , we consider the set of isomor-
phism classes of abstract local cohomology functors, which we shall define
in Definition 4. We say a triangle functor δ : D+(R-Mod) → D+(R-Mod)
is an abstract local cohomology functor if it defines a stable t-structure on
D+(R-Mod) which divides indecomposable injective R-modules. (See Def-
inition 4 for the precise meaning.) Actually RΓI and RΓI,J are abstract
local cohomology functors. We note here that the notion of t-structure was
introduced and studied first in the paper [1], but what we need in this paper
is the notion of stable t-structure introduced by Miyachi [13]. We denote
by A(R) the set of all the isomorphism classes of abstract local cohomology
functors on D+(R-Mod). We shall show that A(R) bijectively corresponds
to the set of specialization-closed subsets of Spec(R). In fact, we prove in
Theorem 2.10 that each abstract local cohomology functor is of the form
RΓW with W being a specialization-closed subset of Spec(R). After these
observation, we define a product and a quotient for a couple of elements of
A(R), in section 3. Finally we shall prove that the functor RΓI is char-
acterized as an element of A(R) which satisfies a kind of ascending chain
condition (Theorem 5.3). Moreover, RΓI,J is a quotient of RΓI by RΓJ in
A(R) (Theorem 5.6).

The organization of the paper is the following.
In section 1, we recall some basic concepts and properties from the theory

of functors and the torsion theory, and we give the definition of abstract local
cohomology functors (Definition 4). Since Miyachi’s results [13] concerning
stable t-structure is essential for this definition, we include the precise state-
ment and a rough proof of Miyachi’s Theorem in section 1 (Theorem 1.3).

In section 2, we observe some necessary and sufficient conditions for a
functor to be left exact radical functor (Theorem 2.6) and prove that an
abstract local cohomology functor is always a derived functor of a section
functor with support in a specialization-closed subset (Theorem 2.10).

In section 3, we define the closure operation for preradical functor in the
set of left exact radical functors (Definition 7), and define the quotient in
S(R) and A(R) as mentioned above.

In section 4, we give characterization of the section functors ΓI and ΓI,J

as elements of S(R), respectively in Theorem 5.2 and Theorem 5.5. We
also characterize the derived functors RΓI and RΓI,J as elements of A(R),
respectively in Theorem 5.3 and Theorem 5.6.
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1. Preliminaries on functors and the definition of abstract

local cohomology functors

Throughout the paper, R always denotes a commutative noetherian ring,
and R-Mod denotes the category consisting of all R-modules and R-module
homomorphisms.

In the first half of this section, we are interested in covariant functors from
R-Mod to itself. Let γ1 and γ2 be such functors. Recall that γ1 is said to be
a subfunctor of γ2, denoted by γ1 ⊆ γ2, if γ1(M) is a submodule of γ2(M)
for all M ∈ R-Mod and if γ1(f) is a restriction of γ2(f) to γ1(M) for all f ∈
HomR(M, N). Let 1 denote the identity functor on R-Mod. Note from the
definition that if γ ⊆ 1, then γ(M) is a submodule of M for all M ∈ R-Mod
and γ(f) is a restriction of f onto γ(M) for all f ∈ HomR(M, N). First of
all we shall make several remarks about subfunctors of 1.

Remark 1. (1) If γ is a subfunctor of 1, then γ is an additive R-linear functor
from R-Mod to R-Mod.

In fact, the mapping HomR(M, N) → HomR(γ(M), γ(N)), which is in-
duced by γ, maps f to its restriction f |γ(M) as explained above. It is obvious
that the restriction mapping is additive and R-linear.

(2) If γ1 and γ2 are subfunctors of 1, then their composition functor γ1 · γ2

is also a subfunctor of 1.
In fact, for an R-module M , since γ2(M) ⊆ M , we have γ1 · γ2(M) ⊆

γ2(M) ⊆ M . If f ∈ HomR(M, N), then it is easily seen that γ1 · γ2(f) =
f |γ1·γ2(M). It therefore follows γ1 · γ2 ⊆ 1.

The following observations will be used later in this paper.

Lemma 1.1. Let γ, γ1 and γ2 be subfunctors of 1 and assume that they are
left exact functors on R-Mod.

(1) If N is an R-submodule of M , then the equality γ(N) = N ∩ γ(M)
holds.

(2) For all R-module M , we have γ1 · γ2(M) = γ1(M) ∩ γ2(M) =
γ2 · γ1(M). In particular, the equality γ1 · γ2 = γ2 · γ1 holds.

(3) The idempotent property holds for γ, i.e. γ2 = γ.
(4) If γ1 is isomorphic to γ2 as functors on R-Mod, then γ1 is identical

with γ2 as subfunctors of 1, i.e. γ1
∼= γ2 implies γ1 = γ2.

Proof. (1) The equality γ(N) = N ∩ γ(M) easily follows from the following
commutative diagram with exact rows.

0 −−−−→ N −−−−→ M −−−−→ M/N −−−−→ 0
x

x
x

0 −−−−→ γ(N) −−−−→ γ(M) −−−−→ γ(M/N)
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(2) Applying the functor γ1 to a submodule γ2(M) ⊆ M and using (1),
we have γ1 ·γ2(M) = γ1(M)∩γ2(M). Similarly γ2 ·γ1(M) = γ2(M)∩γ1(M).
Therefore γ1 · γ2(M) = γ2 · γ1(M) holds for all M ∈ R-Mod, hence we have
γ1 · γ2 = γ2 · γ1.

(3) Apply the result of (2) and we see that γ2(M) = γ · γ(M) = γ(M) ∩
γ(M) = γ(M) for all M ∈ R-Mod. Hence γ2 = γ.

(4) Suppose φ : γ1 → γ2 is an isomorphism of functors. Then, φ(M) :
γ1(M) → γ2(M) is an isomorphism of R-modules for any R-module M .
Applying the functor γ1 to this R-module homomorphism, we have the fol-
lowing commutative diagram.

γ1(M)
φ(M)
−−−−→ γ2(M)

S

|

x S

|

x

γ2
1(M)

γ1(φ(M))
−−−−−−→ γ1 · γ2(M),

where the left vertical arrow is an equality by (3). Thus it follows that
γ2(M) = γ1 · γ2(M) for all M ∈ R-Mod, hence γ2 = γ1 · γ2 as functors.
Considering φ−1, we can show that γ1 = γ2 ·γ1 as well. Since γ1 ·γ2 = γ2 ·γ1

as we have shown in (2), we have γ1 = γ2 as desired. �

Let us recall some definitions for functors from the theory of categories.

Definition 1. Let γ be a functor R-Mod→ R-Mod.

(1) A functor γ is called a preradical functor if γ is a subfunctor of 1.
(2) A preradical functor γ is called a radical functor if γ(M/γ(M)) = 0

for every R-module M .
(3) A functor γ is said to preserve injectivity if γ(I) is an injective

R-module whenever I is an injective R-module.

We should remark that a left exact radical functor is sometimes called
a torsion radical or an idempotent kernel functor, which depends on the
authors. (E.g. O. Goldman [6], J. Lambek [10]).

Example 1.2. Let W be a subset of Spec(R). Recall that W is said to be
closed under specialization (or specialization-closed) if p ∈ W and p ⊆ q ∈
Spec(R) imply q ∈W .

When W is closed under specialization, we can define the section functor
ΓW with support in W as

ΓW (M) = {x ∈M | Supp(Rx) ⊆W},

for all M ∈ R-Mod. Then it is easy to see that ΓW is a left exact radical
functor that preserves injectivity.



ABSTRACT LOCAL COHOMOLOGY FUNCTORS 133

For the later use we need the notion of torsion theory. See [14] or [15] for
the detail of the torsion theory.

Definition 2. A torsion theory for R-Mod is a pair (T ,F) of classes of
R-modules satisfying the following conditions:

(1) HomR(T ,F) = 0.
(2) If HomR(M,F) = 0, then M ∈ T .
(3) If HomR(T , M) = 0, then M ∈ F .

A torsion theory (T ,F) for R-Mod is called hereditary if T is closed under
submodules.

Remark 2. It is easily observed that the following hold for a torsion theory
(T ,F) for R-Mod. (Cf. [14] or [15].)

(1) T is closed under quotient modules, direct sums and extensions.
(2) F is closed under submodules, direct products and extensions.
(3) For every R-module M , there is a unique exact sequence 0→ T →

M → F → 0 with T ∈ T and F ∈ F .

It is well known that there is a one-to-one correspondence between the
set of left exact radical functors and the set of hereditary torsion theories.
In fact, if γ is a left exact radical functor, then one obtains a hereditary
torsion theory (Tγ ,Fγ) by setting

(∗)

{
Tγ = {T ∈ R-Mod | γ(T ) = T},

Fγ = {F ∈ R-Mod | γ(F ) = 0}.

Conversely, given a hereditary torsion theory (T ,F) for R-Mod, one can
define a left exact radical functor γ in such a way that the submodule γ(M)
of an R-module M is the sum of all submodules of M which belong to the
class T .

We denote by D+(R-Mod) the derived category of R-Mod consisting of
all left-bounded complexes of R-modules. It is known that D+(R-Mod) has
structure of triangulated category. We always regard an R-module M as a
complex · · · → 0 → M → 0 → · · · in D+(R-Mod) concentrated in degree
zero. In this way, R-Mod is a full subcategory of D+(R-Mod).

We recall some definitions and notation from the theory of triangulated
categories. Let T and T ′ be general triangulated categories. An additive
functor δ : T → T ′ is called a triangle functor provided that δ(X[1]) ∼=
δ(X)[1] for any X ∈ T , and the diagram δ(X) → δ(Y ) → δ(Z) → δ(X)[1]
is a triangle in T ′ whenever X → Y → Z → X[1] is a triangle in T . For
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any functor δ : T → T ′, we denote

Im(δ) = {X ′ ∈ T ′ | X ′ ∼= δ(X) for some X ∈ T },

Ker(δ) = {X ∈ T | δ(X) ∼= 0},

which we regard as full subcategories of T and T ′ respectively. For a full
subcategory U ⊆ T , the perpendicular full subcategories are defined as

U⊥ = {X ∈ T | HomT (U, X) = 0 for all U ∈ U},
⊥U = {X ∈ T | HomT (X, U) = 0 for all U ∈ U}.

The notion of stable t-structure is introduced by Miyachi [13]. Recall
that a full subcategory of a triangulated category is called a triangulated
subcategory if it is closed under the shift functor [1] and making triangles.

Definition 3. A pair (U ,V) of full triangulated subcategories of a triangu-
lated category T is called a stable t-structure on T if it satisfies the following
conditions:

(i) HomT (U ,V) = 0.

(ii) For any X ∈ T , there is a triangle U → X → V → U [1] with U ∈ U
and V ∈ V.

The following theorem proved by Miyachi is a key to our argument. We
shall refer to this theorem as Miyachi’s Theorem.

Theorem 1.3. [13, Proposition 2.6] Let T be a triangulated category and
U a full triangulated subcategory of T . Then the following conditions are
equivalent for U .

(1) There is a full subcategory V of T such that (U ,V) is a stable t-
structure on T .

(2) The natural embedding functor i : U → T has a right adjoint ρ :
T → U .

If it is the case, setting δ = i ◦ ρ : T → T , we have the equalities

U = Im(δ) and V = U⊥ = Ker(δ).

Proof. Although a proof of the theorem is given in [13, Proposition 2.6], we
need in the later part of the present paper how the adjoint functor corre-
sponds to the subcategory. For this reason we briefly recall the proof of the
theorem.

Assume that (U ,V) is a stable t-structure on T . Then, for any X ∈ T ,
there is a triangle U → X → V → U [1] with U ∈ U and V ∈ V. We first
note that U is uniquely determined by X up to isomorphisms. In fact, this
can be easily proved only by using the conditions (i) and (ii) in the definition
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of a stable t-structure. Similarly, given a morphism f : X1 → X2 in T , we
can easily see that it induces a morphism of triangles

U1 −−−−→ X1 −−−−→ V1 −−−−→ U1[1]

g

y f

y
y g[1]

y

U2 −−−−→ X2 −−−−→ V2 −−−−→ U2[1],

where U1, U2 ∈ U and V1, V2 ∈ V, and the morphism g is uniquely deter-
mined, so that it depends only on f . In such a way we can define a functor
ρ : T → U by setting ρ(X) = U and ρ(f) = g under the notation above.
By this construction, every X ∈ T is embedded in a triangle of the form
i ◦ ρ(X)→ X → V → i ◦ ρ(X)[1], where V ∈ V. Then, for any U ∈ U , since
HomT (i(U), V ) = 0, we have

HomU(U, ρ(X)) = HomT (i(U), i ◦ ρ(X)) ∼= HomT (i(U), X).

Therefore ρ is a right adjoint of i. In this case, if X ∈ Ker(δ) where δ = i◦ρ,
then the above triangle shows that X ∼= V ∈ V. Hence we have Ker(δ) ⊆ V.

Conversely assume that i has a right adjoint ρ : T → U . Then there is
an adjunction morphism φ : i ◦ ρ→ 1, where 1 is the identity functor on T .
Therefore every X ∈ T can be embedded in a triangle of the form

(1.1) i ◦ ρ(X)
φ(X)
−−−−→ X −−−−→ VX −−−−→ i ◦ ρ(X)[1].

It follows from the property of adjunction morphisms that for any U ∈ U ,
HomT (i(U), φ(X)) is an isomorphism, and hence HomT (i(U), VX) = 0. This
implies that VX ∈ U

⊥. Thus one can see that (U ,U⊥) is a stable t-structure
on T .

Let (U ,V) be a stable t-structure on T , and let ρ be a right adjoint of
i : U → T . Set δ = i ◦ ρ as above. Then we have shown that Ker(δ) ⊆ V,
and the inclusion V ⊆ U⊥ holds obviously from the definition. Now assume
X ∈ U⊥. Then φ(X) = 0 in the triangle (1.1), as it is an element of
HomT (i ◦ ρ(X), X) and ρ(X) ∈ U . Therefore the triangle splits off and
we have VX

∼= X ⊕ i ◦ ρ(X)[1]. However HomT (i ◦ ρ(X)[1], VX) = 0, since
i ◦ ρ(X)[1] ∈ U and VX ∈ U

⊥. This implies that i ◦ ρ(X) = 0, hence
X ∈ Ker(δ). Thus it follows that U⊥ ⊆ Ker(δ). Hence we have shown
Ker(δ) = V = U⊥.

To prove that U ⊆ Im(δ), let X ∈ U . Then the morphism X → VX in
the triangle (1.1) is zero, since VX ∈ U

⊥. Therefore we have i ◦ ρ(X) ∼=
X ⊕ VX [−1]. Since HomT (i ◦ ρ(X), VX [−1]) = 0, this implies VX = 0 and
φ(X) is an isomorphism. Thus X ∈ Im(δ). �

Remark 3. Let (U ,V) be a stable t-structure on T , and let ρ be a right
adjoint functor of i : U → T . Set δ = i ◦ ρ as in the theorem.
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(1) It is known and is easy to see that the functors ρ and δ are triangle
functors.

(2) The functor ρ, hence δ as well, is unique up to isomorphisms, by the
uniqueness of right adjoint functors.

(3) As we have shown in the last paragraph of the proof, an object X ∈ T
belongs to U = Im(δ) if and only if the morphism φ(X) : δ(X)→ X
is an isomorphism.

Now we can define an abstract local cohomology functor which is a main
theme of this paper.

Definition 4. We denote T = D+(R-Mod) in this definition. Let δ : T → T
be a triangle functor. We call that δ is an abstract local cohomology functor
if the following conditions are satisfied:

(1) The natural embedding functor i : Im(δ) → T has a right adjoint
ρ : T → Im(δ) and δ ∼= i ◦ ρ. (Hence, by Miyachi’s Theorem,
(Im(δ), Ker(δ)) is a stable t-structure on T .)

(2) The t-structure (Im(δ), Ker(δ)) divides indecomposable injective R-
modules, by which we mean that each indecomposable injective R-
module belongs to either Im(δ) or Ker(δ).

Example 1.4. We denote by ER(R/p) the injective hull of an R-module R/p

for a prime ideal p ∈ Spec(R). Note that any indecomposable injective R-
module is isomorphic to ER(R/p) for some p ∈ Spec(R), since R is assumed
to be noetherian.

Let W be a specialization-closed subset of Spec(R). As we have ex-
plained in Example 1.2, the section functor ΓW : R-Mod → R-Mod is a
left exact radical functor. Hence we can define the right derived functor
RΓW : D+(R-Mod) → D+(R-Mod). We claim that RΓW is an abstract
local cohomology functor.

In fact, it is known that D+(R-Mod) is triangle-equivalent to the trian-
gulated category K+(Inj(R)), which is the homotopy category consisting of
all left-bounded injective complexes over R. Through this equivalence, for
any injective complex I ∈ K+(Inj(R)), RΓW (I) = ΓW (I) is the subcomplex
of I consisting of injective modules supported in W . Hence every object
of Im(RΓW ) (resp. Ker(RΓW )) is an injective complex whose components
are direct sums of ER(R/p) with p ∈ W (resp. p ∈ Spec(R)\W ). In par-
ticular, if p ∈ W (resp. p ∈ Spec(R)\W ), then ER(R/p) ∈ Im(RΓW )
(resp. ER(R/p) ∈ Ker(RΓW )). Since HomR(ER(R/p), ER(R/q)) = 0
for p ∈ W and q ∈ Spec(R)\W , we can see that HomK+(Inj(R))(I, J) =

HomK+(Inj(R))(I, ΓW (J)) for any I ∈ Im(RΓW ) and J ∈ K+(Inj(R)). Hence
it follows from the above equivalence that RΓW is a right adjoint of the
natural embedding i : Im(RΓW )→ D+(R-Mod).
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Remark 4. Even if R is a non-commutative ring, Definition 4 is valid for
defining an abstract local cohomology functor over R. We can give such an
example over non-commutative rings in a similar way to Example 1.4.

For this, let R be a non-commutative ring. We define Spec(R) to be the
set of isomorphism classes of all indecomposable injective left R-modules.
Assume that a subset W of Spec(R) satisfies that HomR(E, E′) = 0 for
all E ∈ W and E′ ∈ Spec(R)\W. For an injective left R-module I, if I
decomposes as I =

⊕
i Ei with every Ei being indecomposable, then we

define ΓW(I) to be the submodule
⊕

Ei∈W
Ei. For an injective complex

I ∈ K+(Inj(R)) we also define ΓW(I) just by applying the functor ΓW on each
component of I. Then, through the equivalence D+(R-Mod) ∼= K+(Inj(R)),
it defines the triangle functor RΓW onD+(R-Mod). Then it is quite similarly
proved that RΓW satisfies the conditions in Definition 4.

2. Characterization of abstract local cohomology functors

Let W be a specialization-closed subset of Spec(R) and ΓW be a section
functor with support in W . We have pointed out in Example 1.4 that the
right derived functor RΓW is an abstract local cohomology functor. In this
section we shall prove that every abstract local cohomology functor is of this
form. We will do this after a sequence of lemmas and propositions.

First of all we shall show every left exact radical functor preserves injec-
tivity.

Lemma 2.1. Let γ be a left exact radical functor and let p ∈ Spec(R). Then
γ(ER(R/p)) is identical to either ER(R/p) or 0.

Proof. Let (Tγ ,Fγ) be a hereditary torsion theory for R-Mod corresponding
to γ, which is defined in (∗) after Remark 2. Then there is an exact sequence
0 → T → ER(R/p) → F → 0 with T ∈ Tγ and F ∈ Fγ . If T = 0, then
ER(R/p) ∼= F ∈ Fγ , therefore γ(ER(R/p)) = 0. If T 6= 0, then there is an
element x ∈ T ∩ R/p such that Rx ∼= R/p. Since Tγ is closed under taking
submodules, we have R/p ∈ Tγ . Let y be an arbitrary element of ER(R/p).
Then there is a filtration of the R-module Ry;

0 = Mn ( Mn−1 ( · · · ( M0 = Ry,

such that Mi/Mi+1
∼= R/qi for some qi ∈ Spec(R) (0 ≤ i < n). See [12,

Theorem 6.4]. It is known that pny = 0 for n≫ 1, hence all the qi (0 ≤ i <
n) contain p. Since Tγ is closed under quotients and extensions, it results
that Ry ∈ Tγ . Therefore it follows that y ∈ Ry = γ(Ry) ⊆ γ(ER(R/p)) = T .
Since this holds for every y ∈ ER(R/p), we have ER(R/p) = T ∈ Tγ , hence
γ(ER(R/p)) = ER(R/p). �

As a result of this lemma we have the following.



138 Y. YOSHINO AND T. YOSHIZAWA

Proposition 2.2. If γ is a left exact radical functor on R-Mod, then γ
preserves injectivity.

Proof. As in the proof of the lemma, let (Tγ ,Fγ) be a hereditary torsion
theory for R-Mod corresponding to γ. For an injective R-module E, it
is known that it has a decomposition into indecomposable injective R-
modules, say E =

⊕
λ∈Λ ER(R/pλ). We set E1 =

⊕
λ∈Λ1

ER(R/pλ) and
E2 =

⊕
λ∈Λ2

ER(R/pλ), where

Λ1 = {λ ∈ Λ | γ(ER(R/pλ)) = ER(R/pλ)},

Λ2 = {λ ∈ Λ | γ(ER(R/pλ)) = 0}.

It follows from Lemma 2.1 that E = E1⊕E2. Since Tγ is closed under taking
direct sums and Fγ is closed under taking direct products and submodules,
we have E1 ∈ Tγ and E2 ∈ Fγ . Therefore we have an equality γ(E) =
γ(E1)⊕ γ(E2) = E1, which is an injective R-module. �

Next we shall show that every left exact preradical functor which preserves
injectivity is of the form ΓW for a specialization-closed subset W of Spec(R).
We begin with the following lemma.

Lemma 2.3. Let γ be a left exact preradical functor which preserves injec-
tivity. Then the following hold for a prime ideal p of R.

(1) γ(ER(R/p)) is either ER(R/p) or 0.

(2) γ(R/p) is either R/p or 0.

Proof. (1) Since γ(ER(R/p)) is an injective submodule of an indecomposable
injective module ER(R/p), it is a direct summand of ER(R/p). Thus the
indecomposability of ER(R/p) forces γ(ER(R/p)) is either ER(R/p) or 0.
(2) It follows from Lemma 1.1(1) that γ(R/p) = R/p∩ γ(ER(R/p)). There-
fore γ(R/p) is either R/p or 0 by (1). �

Definition 5. For a left exact preradical functor γ which preserves injec-
tivity, we define a subset Wγ of Spec(R) as follows:

Wγ = {p ∈ Spec(R) | γ(R/p) = R/p}.

Note from the proof of Lemma 2.3 that Wγ is the same as the set {p ∈
Spec(R) | γ(ER(R/p)) = ER(R/p)}.

Lemma 2.4. Let γ be a left exact preradical functor which preserves injec-
tivity. Then Wγ is closed under specialization.
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Proof. Let p ∈ Wγ . For any prime ideal q ⊇ p, there is a commutative
diagram

R/p
p

−−−−→ R/q
∥∥∥

xS

|

γ(R/p) −−−−→ γ(R/q),

where p is a natural projection map. Thus it follows from this diagram that
R/q = γ(R/q), hence q ∈Wγ . �

Now we are able to prove the following proposition.

Proposition 2.5. Let γ be a left exact preradical functor which preserves
injectivity. Then the equality γ = ΓWγ holds as subfunctors of 1, where Wγ

is a specialization-closed subset of Spec(R) defined in Definition 5.

Proof. We prove the equality γ(M) = ΓWγ (M) for any R-module M , which
is enough for the proof, since the both functors are subfunctors of 1.

First of all, we consider the case that M is a finite direct sum of inde-
composable injective R-modules

⊕n
i=1 ER(R/pi). Then we have an equality

γ(M) =
⊕

pi∈Wγ
ER(R/pi) = ΓWγ (M) from Lemma 2.3 and Remark 1(1).

(Note that, since γ is an additive functor, γ commutes with finite direct
sums. This is used in the first equality above. )

Next, we consider the case that M is a finitely generated R-module. Since
the injective hull ER(M) of M is a finite direct sum of indecomposable injec-
tive modules, we have already shown that γ(ER(M)) = ΓWγ (ER(M)). Thus,
using Lemma 1.1(1), we have γ(M) = M∩γ(ER(M)) = M∩ΓWγ (ER(M)) =
ΓWγ (M).

Finally, we show the claimed equality for an R-module M without any
assumption. We should notice that an element x ∈ M belongs to γ(M)
if and only if the equality γ(Rx) = Rx holds. In fact, this equivalence is
easily observed from the equality γ(Rx) = Rx ∩ γ(M) that we showed in
Lemma 1.1(1). This equivalence is true for the section functor ΓWγ as well.
So x ∈M belongs to ΓWγ (M) if and only if ΓWγ (Rx) = Rx. Since the claim
is true for finitely generated R-module Rx, we have γ(Rx) = ΓWγ (Rx).
Therefore, we see that x ∈ γ(M) if and only if x ∈ ΓWγ (M), and the proof
is completed. �

Recall that, for a left exact functor γ : R-Mod → R-Mod, we can define
the right derived functor Rγ : D+(R-Mod)→ D+(R-Mod) which is of course
a triangle functor.

Theorem 2.6. The following conditions are equivalent for a left exact pre-
radical functor γ on R-Mod.
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(1) γ is a radical functor.
(2) γ preserves injectivity.
(3) γ is a section functor with support in a specialization-closed subset

of Spec(R).
(4) Rγ is an abstract local cohomology functor.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (1) and (3) ⇒ (4) are already
proved respectively in Propositions 2.2 and 2.5, Examples 1.2 and 1.4. We
have only to prove (4) ⇒(1).

Assume that Rγ is an abstract local cohomology functor. We have to
show that γ(M/γ(M)) = 0 for any R-module M . It is enough to show
that γ(E/γ(E)) = 0 for any injective R-module E. In fact, for any R-
module M , taking the injective hull E(M) of M , we have γ(M/γ(M)) ⊆
γ(E(M)/γ(E(M))) by Lemma 1.1 (1).

We note that the natural inclusion γ ⊂ 1 of functors on R-Mod in-
duces a natural morphism φ : Rγ → 1 of functors on D+(R-Mod). Since
(Im(Rγ), Ker(Rγ)) is a stable t-structure on D+(R-Mod), it follows from
the proof of Miyachi’s Theorem 1.3 that every injective R-module E is em-
bedded in a triangle

Rγ(E)
φ(E)
−−−−→ E −−−−→ V −−−−→ Rγ(E)[1],

with Rγ(E) ∈ Im(Rγ) and V ∈ Ker(Rγ). Since E is an injective R-module
and since Rγ is the right derived functor of a left-exact functor, Rγ(E) =
γ(E) is a submodule of E via the morphism φ(E). Therefore we have V ∼=
E/γ(E) in D+(R-Mod). In particular, H0(Rγ(E/γ(E))) ∼= H0(Rγ(V )) =
0. Since γ is left exact functor, it is concluded that γ(E/γ(E)) = 0 as
desired. This completes the proof of Theorem 2.6. �

Remark 5. (1) The equivalences among the conditions (1), (2) and (3) in
Theorem 2.6 already appear in several literatures, but they are not explicitly
written. A new and significant feature of Theorem 2.6 is that they are
equivalent as well to the condition (4).

(2) It is well known that there is a one-to-one correspondence between the set
of left exact radical functors and the set of Gabriel topologies ([15, Chapter
VI. Theorem 5.1]). Therefore, adding to Theorem 2.6, giving a left ex-
act preradical functor on R-Mod satisfying one of the conditions (1)-(4) is
equivalent to giving a Gabriel topology on the ring R.

More generally than Theorem 2.6, we are able to prove that every abstract
local cohomology functor is the derived functor of a section functor with
support in specialization-closed subset. Before proceeding to this theorem,
we prepare lemmas that will be necessary for its proof.
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Lemma 2.7. Let X ∈ D+(R-Mod) and let W be a specialization-closed
subset of Spec(R).

(1) X ∼= 0 ⇐⇒ RHomR(R/p, X)p = 0 for all p ∈ Spec(R).

(2) X ∈ Im(RΓW ) ⇐⇒ RHomR(R/q, X)q = 0 for all q ∈ Spec(R)\W .

(3) X ∈ Ker(RΓW ) ⇐⇒ RHomR(R/p, X)p = 0 for all p ∈W .

Proof. (1) Suppose X 6∼= 0. Since X is a left bounded complex, there is
an integer i0 such that H i(X) = 0 for i < i0 and H i0(X) 6= 0. Now take
p ∈ AssR(H i0(X)). Since H i0(X) is the initial cohomology of X, we have
isomorphisms of R-modules

H i0(RHomR(R/p, X)p) ∼= HomD+(R-Mod)(R/p, X[i0])p

∼= HomR(R/p, H i0(X))p,

the last term of which is non-trivial. Therefore RHomR(R/p, X)p 6= 0.
(2) Recall from Example 1.4 that X belongs to Im(RΓW ) if and only if

X is quasi-isomorphic to an injective complex whose components are direct
sums of ER(R/p) with p ∈W . Note that

HomR(R/q, ER(R/p))q = 0 if p 6= q. (∗)

Hence if X ∈ Im(RΓW ), then it is easy to see that RHomR(R/q, X)q = 0
for any q ∈ Spec(R)\W .

Conversely assume that RHomR(R/q, X)q = 0 for any q ∈ Spec(R)\W .
Since (Im(RΓW ), Ker(RΓW )) is a stable t-structure on D+(R-Mod), there
is a triangle

RΓW (X)
φ(X)
−−−−→ X −−−−→ V −−−−→ RΓW (X)[1],

as in the proof of Miyachi’s Theorem 1.3. Replacing X with its injective
resolution I, the morphism φ(X) is isomorphic to the natural inclusion
ΓW (I) ⊂ I. Hence V is isomorphic in D+(R-Mod) to the quotient complex
I/ΓW (I), which is an injective complex whose components are direct sums of
ER(R/q) with q ∈ Spec(R)\W . Suppose V 6∼= 0. Then, as in the proof of (1),
we can take an associated prime ideal Q of the initial cohomology H i0(V )
of V and so RHomR(R/Q, V )Q 6= 0. Since H i0(V ) is a submodule of a di-
rect sum of injective modules ER(R/q) with q ∈ Spec(R)\W , the associated
prime Q equals one of those q ∈ Spec(R)\W . Since RΓW (X) is in Im(RΓW ),
it follows from what we have proved in the first half of this proof and the as-
sumption on X that RHomR(R/Q, X)Q = RHomR(R/Q,RΓW (X))Q = 0,
but this forces RHomR(R/Q, V )Q = 0. This is a contradiction, hence we
conclude V ∼= 0 and X ∼= RΓW (X) ∈ Im(RΓW ).

(3) Suppose RΓW (X) ∼= 0. Taking an injective resolution I of X, we have
ΓW (I) is a null complex and X is quasi-isomorphic to I/ΓW (I). Replacing
I with I/ΓW (I) if necessary, we may assume that I consists of injective
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modules E(R/q) with q ∈ Spec(R)\W . Therefore it follows from (∗) above
that RHomR(R/p, X)p

∼= HomR(R/p, I)p = 0 for all p ∈W .
Conversely assume that RHomR(R/p, X)p = 0 for all p ∈ W and take a

triangle

RΓW (X) −−−−→ X −−−−→ V −−−−→ RΓW (X)[1],

as in the proof of (2). Then, since RΓW (V ) ∼= 0, it follows from the first part
of this proof that RHomR(R/p, V )p = 0 for all p ∈W . Hence we can deduce
from the triangle that RHomR(R/p,RΓW (X))p = 0 for all p ∈ W as well.
On the other hand we know from (2) that RHomR(R/p,RΓW (X))p = 0
even for p ∈ Spec(R)\W . Thus (1) forces that RΓW (X) = 0, hence X ∈
Ker(RΓW ). �

We have the following corollary as a result of this lemma, in which RΓm

denotes the right derived functor of the section functor with support in the
closed (hence specialization-closed) subset V (m) = {m}.

Corollary 2.8. Let (R, m, k) be a noetherian local ring and let X 6∼= 0 ∈
D+(R-Mod). If X ∈ Im(RΓm), then RHomR(ER(k), X) 6∼= 0.

Proof. Suppose RHomR(ER(k), X) = 0. Then we have

(2.1)
RHomR(ER(k),RHomR(k, X))
∼= RHomR(k,RHomR(ER(k), X)) = 0.

Since X( 6∼= 0) belongs to Im(RΓm), we note from Lemma 2.7(1)(2) that
RHomR(k, X) 6= 0, which is a complex of k-vector spaces, and hence it is
isomorphic to a direct sum of k[n] (n ∈ Z) in D+(R-Mod). Thus the equality
(2.1) forces that RHomR(ER(k), k) = 0. Therefore we have only to prove
that RHomR(ER(k), k) 6= 0 for a noetherian local ring (R, m, k).

By an obvious isomorphism RHomR(k, ER(k)) ∼= k, we have

RHomR(ER(k), k) ∼= RHomR(ER(k),RHomR(k, ER(k)))
∼= RHomR(k,RHomR(ER(k), ER(k)))
∼= RHomR(k, R̂).

Now let F be a minimal free resolution of k which belongs to D−(R-Mod).
Then the last complex in the above isomorphism is isomorphic to the com-

plex HomR(F, R̂) ∼= Hom
bR(F ⊗R R̂, R̂). Since F ⊗R R̂ is a free resolution

of k over R̂, we obtain an isomorphism RHomR(ER(k), k) ∼= RHom
bR
(k, R̂),

which is a nontrivial complex, as it is well-known that its nth cohomology

module Extn
bR
(k, R̂) is nontrivial if n = depth(R̂). �

Lemma 2.9. As in the previous lemma, let X ∈ D+(R-Mod) and let W be
a specialization-closed subset of Spec(R).
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(1) If X ∈ Ker(RΓW ) and RHomR(X, ER(R/q)) = 0 for all prime
ideals q ∈ Spec(R)\W , then X ∼= 0.

(2) If X ∈ Im(RΓW ) and RHomR(ER(R/p), X) = 0 for all prime ideals
p ∈W , then X ∼= 0.

Proof. (1) Assume that X ∈ Ker(RΓW ) and RHomR(X, ER(R/q)) = 0 for
all q ∈ Spec(R)\W . Then, as in the proof of Lemma 2.7 (3), X is isomorphic
in D+(R-Mod) to an injective complex whose components are direct sums
of ER(R/q) with q ∈ Spec(R)\W . Suppose that X 6∼= 0. Then the initial
nontrivial cohomology H i0(X) has an associated prime ideal q which be-
longs to Spec(R)\W , and HomR(H i0(X), ER(R/q)) 6= 0 for such a q. Since
ER(R/q) is an injective module, note that H−i0(RHomR(X, ER(R/q))) ∼=
HomR(H i0(X), ER(R/q)), hence this is a nontrivial module. This contra-
dicts to that RHomR(X, ER(R/q)) = 0.

(2) Assume X ∈ Im(RΓW ) and RHomR(ER(R/p), X) = 0 for all p ∈W .
Suppose X 6∼= 0 and we shall show a contradiction. It follows from Lemma
2.7(1)(2) that there is a prime ideal P ∈W such that RHomR(R/P, X)P 6=
0. Take such a P as maximal among these prime ideals and set Y =
RHomR(R/P, X). Let Q ∈ Spec(R). If P 6⊂ Q, then (R/P )Q = 0, hence

YQ
∼= RHomR(R/P, X)Q

∼= RHomRQ
((R/P )Q, XQ) = 0.

(We should notice that RHomR(R/P,−) commutes with taking localization,
since R/P is a finitely generated R-module. ) Thus RHomR(R/Q, Y )Q =
RHomRQ

((R/Q)Q, YQ) = 0 for all Q ∈ Spec(R)\V (P ), hence we have Y ∈
Im(RΓV (P )) by Lemma 2.7(2). Thus, as in the proof of Lemma 2.7(2), Y
is isomorphic to a complex which consists of injective modules of the form
ER(R/p) with p ∈ V (P ). On the other hand, if P $ Q, then we have

RHomR(R/Q, Y )Q
∼= RHomR (R/Q,RHomR(R/P, X))Q
∼= RHomR (R/P,RHomR(R/Q, X))Q ,
∼= RHomRQ

((R/P )Q,RHomR(R/Q, X)Q) ,

where we notice that RHomR(R/Q, X)Q = 0 by the maximality of P .
Therefore we have RHomR(R/Q, Y )Q = 0 for all Q ∈ V (P )\{P}. Set-
ting W ′ = V (P )\{P}, we see that W ′ is a specialization-closed subset of
Spec(R). It follows from Lemma 2.7(3) that Y ∈ Ker(RΓW ′). As a result,
as in the proof of Lemma 2.7(3), we have that Y is isomorphic to an injective
complex consisting of direct sums of copies of ER(R/P ).

Now we note that RHomR(ER(R/P ), Y ) = 0. In fact, this is isomorphic
to

RHomR(ER(R/P ),RHomR(R/P, X))

∼= RHomR(R/P,RHomR(ER(R/P ), X)),
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which vanishes by the assumption. Note also that ER(R/P ) has a struc-
ture of RP -module. As we have shown above, Y is isomorphic to a com-
plex I consisting of direct sums of ER(R/P ). In general, the equality
HomR(M, N) = HomRP

(M, N) holds for RP -modules M and N . This
equality extends to complexes and we can see that I has a structure of
complex over RP . Therefore we have isomorphisms

RHomR(ER(R/P ), Y ) ∼= HomR(ER(R/P ), I)
= HomRP

(ER(R/P ), I)
∼= RHomRP

(ER(R/P ), Y ).

To sum up we have such a situation that Y ( 6∼= 0) ∈ D+(RP -Mod) belongs to
Im(RΓPRP

) and RHomRP
(ER(R/P ), Y ) = 0. But this contradicts Corol-

lary 2.8. �

Now we are able to prove the following theorem, which is a main result
of this section.

Theorem 2.10. For any abstract local cohomology functor δ on D+(R-Mod),
there exists a specialization-closed subset W ⊆ Spec(R) such that δ is iso-
morphic to the right derived functor RΓW of the section functor ΓW .

Proof. In this proof we denote T = D+(R-Mod). Suppose that δ : T → T is
an abstract local cohomology functor. It then follows that it gives a stable
t-structure (Im(δ), Ker(δ)) on T . We divides the proof into several steps.

(1st step) : Consider the subset W = {p ∈ Spec(R) | ER(R/p) ∈ Im(δ)} of
Spec(R). Then W is a specialization-closed subset.

To see this, we have only to show that ER(R/p) ∈ Im(δ) implies ER(R/q)
∈ Im(δ) for prime ideals p ⊆ q. Assume contrarily that there are prime
ideals p ⊆ q so that ER(R/p) ∈ Im(δ) but ER(R/q) 6∈ Im(δ). Since the
t-structure (Im(δ), Ker(δ)) divides indecomposable injective modules, we
must have ER(R/q) ∈ Ker(δ). Then, from the definition of t-structures,
we have HomT (ER(R/p), ER(R/q)) = 0, which says that there are no non-
trivial R-module homomorphisms from ER(R/p) to ER(R/q). However, a
natural nontrivial map R/p→ R/q →֒ ER(R/q) extends to a non-zero map
ER(R/p)→ ER(R/q). This is a contradiction, hence it is proved that W is
specialization-closed.�

Our final goal is, of course, to show the isomorphism δ ∼= RΓW . Notice
that, since the both functors δ and RΓW are abstract local cohomology func-
tors, we have stable t-structures (Im(δ), Ker(δ)) and (Im(RΓW ), Ker(RΓW ))
on T .

(2nd step) : Note that if p ∈ W , then ER(R/p) ∈ Im(δ) ∩ Im(RΓW ). On
the other hand, if q ∈ Spec(R)\W , then ER(R/q) ∈ Ker(δ) ∩Ker(RΓW ).
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This is clear from the definition of W . �

(3rd step) : To prove the theorem, it is enough to show that Im(δ) =
Im(RΓW ).

In fact, by Miyachi’s Theorem 1.3, an abstract local cohomology functor
δ (resp. RΓW ) is uniquely determined by the full subcategory Im(δ) (resp.
Im(RΓW )). See also Remark 3(2). �

(4th step) : Now we prove the inclusion Im(δ) ⊆ Im(RΓW ).
To do this, assume X ∈ Im(δ). Then there is a triangle in T ; RΓW (X)→

X → V → RΓW (X)[1], where V ∈ Ker(RΓW ). Let q be an arbitrary
element of Spec(R)\W . Since (Im(δ), Ker(δ)) and (Im(RΓW ), Ker(RΓW ))
are stable t-structures and since ER(R/q) belongs to Ker(δ) ∩ Ker(RΓW ),
it follows that

HomT (X, ER(R/q)[n]) = HomT (RΓW (X), ER(R/q)[n]) = 0

for any integer n. Then by the above triangle we have HomT (V, ER(R/q)[n])
= 0 for any n. This is equivalent to RHomR(V, ER(R/q)) ∼= 0. In fact, the
n-th cohomology module of RHomR(V, ER(R/q)) is HomT (V, ER(R/q)[n])
= 0. Since V ∈ Ker(RΓW ), Lemma 2.9(1) forces V ∼= 0, therefore X ∼=
RΓW (X). Hence we have X ∈ Im(RΓW ) as desired. �

(5th step) : For the final step of the proof, we show the inclusion Im(δ) ⊇
Im(RΓW ).

Let X ∈ Im(RΓW ). Then there are triangles δ(X) → X → Y →
δ(X)[1] with Y ∈ Ker(δ), and RΓW (Y ) → Y → V → RΓW (Y )[1] with
V ∈ Ker(RΓW ). Let p be an arbitrary prime ideal belonging to W . Simi-
larly to the proof of the 4th step, since ER(R/p) ∈ Im(δ) ∩ Im(RΓW ), we
see that

HomT (ER(R/p)[n], Y ) = HomT (ER(R/p)[n], V ) = 0

for any integer n, hence we have HomT (ER(R/p)[n],RΓW (Y )) = 0 for any
n. This shows RHomR(ER(R/p),RΓW (Y )) = 0, then by Lemma 2.9(2) we
have RΓW (Y ) = 0. Thus Y ∈ Ker(RΓW ). Since (Im(RΓW ), Ker(RΓW ))
is a stable t-structure, the morphism X → Y in the triangle δ(X) → X →
Y → δ(X)[1] is zero. It then follows that δ(X) ∼= X ⊕ Y [−1]. Since there is
no nontrivial morphisms δ(X)→ Y [−1] in T , it is concluded that δ(X) ∼= X,
hence X ∈ Im(δ) as desired, and the proof is completed. �

3. Lattice structure of the set of abstract local cohomology

functors

For a given commutative noetherian ring R we are considering the follow-
ing sets.
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Definition 6. (1) We denote by S(R) the set of all left exact radical functors
on R-Mod.

(2) We denote by A(R) the set of the isomorphism classes [δ] where δ
ranges over all abstract local cohomology functors on D+(R-Mod).

(3) We denote by sp(R) the set of all specialization-closed subsets of
Spec(R).

All these sets are bijectively corresponding to one another. Actually we
can define mappings among these sets. First of all, by using Definition 5,
we are able to give a mapping

S(R) −→ sp(R) ; γ 7→Wγ ,

which has the inverse mapping

sp(R) −→ S(R) ; W 7→ ΓW .

See Proposition 2.5 and Theorem 2.6. We also have a mapping

S(R) −→ A(R) ; γ 7→ [Rγ],

which is surjective by Theorem 2.10. It is injective as well. In fact, since
γ(M) = H0(Rγ(M)) for γ ∈ S(R) and M ∈ R-Mod, γ is uniquely deter-
mined by Rγ.

To sum up we have the following result as a corollary of Theorems 2.6
and 2.10.

Corollary 3.1. The mapping W 7→ ΓW (resp. γ 7→ [Rγ]) gives a bijection
sp(R)→ S(R) (resp. S(R)→ A(R)).

Note that ΓSpec(R) = 1 and Γ∅ = 0 (the zero functor).

Remark 6. (1) Recall that a subcategory of a triangulated category is said
to be thick if it is a triangulated subcategory and is closed under taking
direct summands.

M. J. Hopkins gave the following theorem in [9]. Let P (R) denote the
thick subcategory of D(R-Mod) consisting of all the complexes which are
quasi-isomorphic to bounded complexes of finitely generated projective R-
modules. Then there are bijective mappings

{
thick subcategories

of P (R)

}
−→
←−

{
specialization-closed
subsets of Spec(R)

}
.

Therefore, taking Corollary 3.1 into account, the set set S(R) bijectively
corresponds to the set of thick subcategories of P (R).

(2) There are bijective maps among the following three sets: S(R), the set
of hereditary torsion theories on R-Mod and the set of specialization-closed
subsets of Spec(R). These bijections have already appeared in the papers
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of M. H. Bijan-Zadeh [2] and P. Cahen [5]. (We should note that a torsion
theory in their papers means a hereditary one in our sense.)

Let γ1, γ2 ∈ S(R). It is easy to see that γ1 ⊆ γ2 as functors if and only if
Wγ1

⊆ Wγ2
as subsets of Spec(R). Hence the one-to-one correspondence in

Corollary 3.1 preserves the inclusion relation.
Recall that a partially ordered set is called a lattice if every couple of

elements have a least upper bound and a greatest lower bound, and a lattice
is called complete if every subset has a least upper bound and a greatest
lower bound.

If {Wλ | λ ∈ Λ} is a set of specialization-closed subsets of Spec(R), then⋂
λ Wλ and

⋃
λ Wλ are also closed under specialization. By this reason sp(R)

is a complete lattice. In view of Corollary 3.1 we can define
⋂

and
⋃

for any
subsets of S(R). Actually, if {γλ | λ ∈ Λ} is a set of elements in S(R), then
γ :=

⋂
λ γλ (resp. δ :=

⋃
λ γλ) is well-defined as an element of S(R) so that

Wγ =
⋂

λ Wγλ
(resp. Wδ =

⋃
λ Wγλ

). In this way we have shown that S(R)
has a structure of complete lattice and the bijective mapping sp(R)→ S(R)
in Corollary 3.1 gives an isomorphism as lattices.

We can define a lattice structure as well on the set A(R) so that the bi-
jection A(R) ∼= S(R) is an isomorphism as complete lattices. More precisely,
we define the order on A(R) by

[Rγ1] ⊆ [Rγ2] ⇐⇒ γ1 ⊆ γ2

for γ1, γ2 ∈ S(R). Notice that
⋂

λ[Rγλ] = [R(
⋂

λ γλ)], and
⋃

λ[Rγλ] =
[R(

⋃
λ γλ)].

Summing all up we have the following result.

Theorem 3.2. The mapping S(R) → A(R) which maps γ to [Rγ] (resp.
sp(R) → A(R) which sends W to [RΓW ]) gives an isomorphism of complete
lattices.

4. Closure operation and quotients

Definition 7. Let γ be a preradical functor on R-Mod, which is not neces-
sarily a left exact radical functor. We can define the closure (or the cover)
γ̄ of γ in S(R) as the smallest left exact radical functor containing γ. By
virtue of Remark 6, γ̄ is the intersection of all the left exact radical functors
which contain γ.

γ̄ =
⋂

γ⊆γ′∈S(R)

γ′.

For a preradical functor γ, we define a subset of Spec(R) by the following:

Wγ := {p ∈ Spec(R) | ∃q ⊆ p s.t. γ(R/q) 6= 0},
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which is clearly closed under specialization. Note that this generalizes the
definition of Wγ for a left exact radical functor γ in Definition 5. In fact, if
γ ∈ S(R), then this definition of Wγ agrees with Definition 5.

Proposition 4.1. Let γ be a preradical functor.

(1) Then ΓWγ ⊆ γ̄.
(2) If, in addition, γ is left exact, then γ̄ = ΓWγ .

Proof. (1) By virtue of Corollary 3.1, it is sufficient to prove that Wγ ⊆Wγ̄ .
Suppose p ∈ Wγ and γ ⊆ γ′ ∈ S(R). Then there is a prime ideal q ⊆ p

such that γ(R/q) 6= 0. Since γ(R/q) ⊆ γ′(R/q), we have γ′(R/q) 6= 0,
hence q ∈ Wγ′ . Since Wγ′ is specialization closed, we have p ∈ Wγ′ . This
shows that Wγ ⊆ Wγ′ for any γ′ ∈ S(R) which contains γ. Thus Wγ ⊆⋂

γ⊆γ′∈S(R) Wγ′ = Wγ̄ .

(2) We shall prove γ ⊆ ΓWγ . This is enough to show (2). In fact, if ΓWγ

is a left exact radical functor containing γ, then by (1) it is the minimum
among such functors, hence ΓWγ = γ̄. Now we prove that

(4.1) γ(M) ⊆ ΓWγ (M),

for all M ∈ R-Mod.
First of all, we note that γ(ER(R/p)) = 0 unless p ∈ Wγ . In fact, if

γ(R/p) = 0, then applying Lemma 1.1(1) to R/p ⊆ ER(R/p) we have
R/p ∩ γ(ER(R/p)) = 0. Since R/p ⊆ ER(R/p) is an essential extension, it
follows that γ(ER(R/p)) = 0.

Secondly, we prove the equation (4.1) in the case that M is a finite direct
sum of indecomposable injective R-modules

⊕n
i=1 ER(R/pi). In this case,

by what we remarked above, we have γ(M) =
⊕

pi∈Wγ
γ(ER(R/pi)) and

this is a submodule of
⊕

pi∈Wγ
ER(R/pi) = ΓWγ (M). Thus the claim is true

in this case.
Thirdly, we consider the case that M is a finitely generated R-module.

Since the injective hull ER(M) of M is a finite direct sum of indecomposable
injective modules, we have already shown that γ(ER(M)) ⊆ ΓWγ (ER(M)).
Thus, using Lemma 1.1(1), we have γ(M) = M ∩ γ(ER(M)) ⊆ M ∩
ΓWγ (ER(M)) = ΓWγ (M).

Finally, we show the claim (4.1) for an R-module M without any as-
sumption. We should notice that an element x ∈ M belongs to γ(M) if
and only if the equality γ(Rx) = Rx holds. (See Lemma 1.1(1). Also see
the proof of Proposition 2.5.) This equivalence is true for the left exact
radical functor ΓWγ as well. So x ∈ M belongs to ΓWγ (M) if and only if
ΓWγ (Rx) = Rx. Since the claim (4.1) is true for finitely generated R-module
Rx, we have γ(Rx) ⊆ ΓWγ (Rx). Therefore, we conclude that if x ∈ γ(M),
then x ∈ ΓWγ (M). Hence γ(M) ⊆ ΓWγ (M). �
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Example 4.2. (1) Let (R, m) be a local artinian ring with m 6= 0. Then,
since Spec(R) = {m}, there are only two subsets of Spec(R) which are closed
under specialization, namely ∅ and Spec(R). Therefore, by Corollary 3.1,
we have S(R) = {1,0}, where 0 denotes the zero functor. We define a
functor γ : R-Mod → R-Mod by γ(M) = mM for all M ∈ R-Mod and
γ(f) = f |mM : mM → mN for all f ∈ HomR(M, N). It is clear that γ is
a non-zero functor and γ ⊆ 1. Therefore it follows from the definition that
γ̄ = 1. However, since γ(R/m) = 0, we have Wγ = ∅ and hence ΓWγ = 0.
Thus γ̄ 6= ΓWγ in this case. Note that γ is not a left exact functor.
(2) Let I be an ideal of R. Then HomR(R/I,−) is a left exact preradical
functor. It follows that WHomR(R/I,−) is the set of prime ideals containing I,
which is a closed subset of Spec(R) denoted by V (I). We denote ΓI = ΓV (I).
Thus we obtain from Proposition 4.1 the equality

HomR(R/I,−) = ΓI .

We can show from Lemma 1.1(2) that the set S(R) admits multiplication.

Lemma 4.3. If γ1, γ2 ∈ S(R), then γ1 · γ2 = γ2 · γ1 ∈ S(R).

Proof. It is easy to see that if γ1 and γ2 are left exact preradical functor,
then so is γ1 · γ2. If γ1, γ2 ∈ S(R), and if I is an injective R-module, then,
since γ2(I) is injective as well, we see that γ1 · γ2(I) is also injective. Thus
γ1 · γ2 ∈ S(R). The commutativity of multiplication follows from Lemma
1.1(2). �

We can also define the ‘quotient’ in S(R).

Lemma 4.4. Let γ1, γ2 ∈ S(R). Suppose that γ1 ⊆ γ2. Then the set
Sγ1,γ2

= {γ ∈ S(R) | γ · γ2 = γ1} has a unique maximal element with respect
to inclusion relation.

Proof. First of all we should notice from Lemma 1.1(2) and from the as-
sumption γ1 ⊆ γ2 that Sγ1,γ2

contains γ1, hence Sγ1,γ2
is non-empty. By

virtue of Corollary 3.1, an element γ ∈ S(R) belongs to Sγ1,γ2
if and only if

Wγ ∩Wγ2
= Wγ1

. Therefore, setting W =
⋃

γ∈Sγ1,γ2

Wγ , we can see that it

satisfies W ∩Wγ2
= Wγ1

. It is clear that W is a unique maximal subset of
Spec(R) which is closed under specialization and satisfies W ∩Wγ2

= Wγ1
.

Thus ΓW is a unique maximal element in Sγ1,γ2
. �

Definition 8. For γ1, γ2 ∈ S(R) with γ1 ⊆ γ2, we denote by γ1/γ2 the
unique maximal element of Sγ1,γ2

in Lemma 4.4 and call it the quotient of
γ1 by γ2.

It is easy to verify that γ/1 = γ for all γ ∈ S(R), and 0/γ = 0 if
γ 6= 0 ∈ S(R). (Note from the definition that 0/0 = 1.)
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By virtue of Theorem 3.2 we can also define the quotients for abstract
local cohomology functors in A(R).

Definition 9. Let δ1, δ2 be abstract local cohomology functors D+(R-Mod)
→ D+(R-Mod) and assume that [δ1] ⊆ [δ2] in the lattice structure of A(R).
Then, by Theorem 3.2, there are γ1, γ2 ∈ S(R) such that δi

∼= Rγi (i = 1, 2)
and γ1 ⊆ γ2 in S(R). Under these circumstances we define the abstract local
cohomology functor δ1/δ2 to be the the right derived functor R(γ1/γ2) of
γ1/γ2 ∈ S(R). We call δ1/δ2 the quotient of δ1 by δ2.

5. Characterization of ΓI and ΓI,J

We are concerned with the following two types of subsets in Spec(R)
which are closed under specialization, and their corresponding left exact
radical functors.

Definition 10. (1) Let I be an ideal of R and set V (I) = {p ∈ Spec(R) |
p ⊇ I}. It is known that V (I) is a closed subset of Spec(R) and conversely
every closed subset is of this form. We set ΓI := ΓV (I) the corresponding
left exact radical functor, which we refer to as the section functor with the
closed support defined I. We denote the right derived functor of ΓI by RΓI ,
which we call the local cohomology functor with the closed support defined
by I. See [3].

(2) Let I, J be a pair of ideals of R. We set

W (I, J) = {p ∈ Spec(R) | In ⊆ p + J for some n > 0},

which is closed under specialization. The corresponding left exact radical
functor ΓW (I,J) is denoted by ΓI,J , which is called the section functor defined
by the pair of ideals I, J . We also denote the right derived functor of ΓI,J

by RΓI,J , which we call the (generalized) local cohomology functor defined
by the pair I, J of ideals. See [16].

Note that, since ΓI , ΓI,J ∈ S(R), the derived functors RΓI and RΓI,J are
abstract local cohomology functors.

The aim of this section is to characterize ΓI and ΓI,J as elements of S(R),
by which we will be able to characterize RΓI and RΓI,J as elements of A(R).

We start with the following observation.

Lemma 5.1. Let W ⊆ Spec(R) be closed under specialization. We set
Min(W ) to be the set of prime ideals which are minimal among the primes
in W , i.e.

Min(W ) = {p ∈W | if q ⊆ p for q ∈W , then q = p}.
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Then W =
⋃

p∈Min(W ) V (p). Furthermore W is a closed subset of Spec(R)

if and only if Min(W ) is a finite set.

Proof. Since W is closed under specialization, a prime ideal q belongs to W
if and only if q contains a prime p in Min(W ). This proves the equality
W =

⋃
p∈Min(W ) V (p).

If W = V (I) for an ideal I of R, then Min(W ) is just a set of minimal
prime ideals of I, which is known to be a finite set. Conversely, if Min(W )
is a finite set {p1, . . . , pn}, then we have W = V (p1)∪ · · · ∪ V (pn) = V (p1 ∩
· · · ∩ pn), which is a closed subset of Spec(R). �

Now we characterize ΓI as elements of S(R).

Theorem 5.2. The following conditions are equivalent for γ ∈ S(R).

(1) γ = ΓI for an ideal I of R.
(2) γ satisfies the ascending chain condition in the following sense: If

there is an ascending chain of left exact radical functors

γ1 ⊆ γ2 ⊆ · · · ⊆ γn ⊆ · · · ⊆ γ

with
⋃

n γn = γ, then there is an integer N > 0 such that γN =
γN+1 = · · · = γ.

(3) If there is an ascending chain of preradical functor

γ′
1 ⊆ γ′

2 ⊆ · · · ⊆ γ′
n ⊆ · · · ⊆ γ

with
⋃

n γ′
n = γ, then there is an integer N > 0 such that γ′

N =

γ′
N+1 = · · · = γ.

Proof. (1) ⇒ (2). Suppose that Γ = ΓI . Note from Corollary 3.1 that we
have

Wγ1
⊆Wγ2

⊆ · · · ⊆Wγn ⊆ · · · ⊆ V (I)

such that
⋃

n Wγn = V (I). Since Min(V (I)) is a finite set, we can take an
enough large integer N > 0 so that WγN

contains all such prime ideals in
Min(V (I)). Then WγN

= WγN+1
= · · · = V (I), hence γN = γN+1 = · · · = γ.

(2) ⇒ (1). By Lemma 5.1 it is sufficient to show that Min(Wγ) is a finite
set. Contrarily, assume that Min(Wγ) is an infinite set. Then, we can
choose infinitely many distinct prime ideals p1, p2, . . . , pn, . . . in Min(Wγ).
Set W ′ =

⋃
p∈Min(Wγ)\{pi|i∈N} V (p), Wn = W ′ ∪ V (p1) ∪ V (p2) ∪ · · · ∪ V (pn)

and γn = ΓWn for each n ∈ N. Note that Wγ =
⋃

n Wn and Wn ( Wn+1 for
each n > 0. Then there is an ascending chain of left exact radical functors

γ1 ⊆ γ2 ⊆ · · · ⊆ γn ⊆ · · · ⊆ γ

with
⋃

n γn = γ. ¿From the condition (2), there is an integer N > 0 such
that γN = γN+1 = · · · = γ. Thus we have WN = WN+1 = · · · = Wγ . But
this is a contradiction. Therefore Min(Wγ) is a finite set.
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(2)⇒ (3). Note that if γ′
1 and γ′

2 are preradical functors and if γ′
1 ⊆ γ′

2, then
γ̄′
1 ⊆ γ̄′

2. Suppose that there is an ascending chain of preradical functor;

γ′
1 ⊆ γ′

2 ⊆ · · · ⊆ γ′
n ⊆ · · · ⊆ γ

with
⋃

n γ′
n = γ. Then we have an ascending chain of left exact radical

functors

γ′
1 ⊆ γ′

2 ⊆ · · · ⊆ γ′
n ⊆ · · · ⊆ γ = γ.

Since γ′
n ⊆ γ′

n for each n, we have
⋃

n γ′
n ⊆

⋃
n γ′

n. Hence γ =
⋃

n γ′
n ⊆⋃

n γ′
n ⊆ γ = γ. Here we should notice that, since

⋃
n γ′

n ∈ S(R), we have

γ =
⋃

n γ′
n =

⋃
n γ′

n. Then, from the condition (2), there is an integer N > 0

such that γ′
N = γ′

N+1 = · · · = γ.
The implication (3) ⇒ (2) is clear. �

By virtue of Theorem 3.2 we can state the same theorem in terms of
abstract local cohomology functors.

Theorem 5.3. The following conditions are equivalent for an abstract local
cohomology functor δ on D+(R-Mod).

(1) δ ∼= RΓI for an ideal I of R.
(2) δ satisfies the ascending chain condition in the following sense: If

there is an ascending chain in A(R)

[δ1] ⊆ [δ2] ⊆ · · · ⊆ [δn] ⊆ · · · ⊆ [δ]

with
⋃

n[δn] = [δ], then there is an integer N > 0 such that [δN ] =
[δN+1] = · · · = [δ].

To characterize the functor ΓI,J for pairs of ideals I and J , we prepare
the following lemma.

Lemma 5.4. Let I and J be ideals of R. Then, W (I, J) is the largest
specialization closed subset W of Spec(R) which satisfies W ∩V (J) = V (I +
J).

Proof. Setting W ′ =
⋃
{W ⊆ Spec(R) |W is specialization closed and W ∩

V (J) = V (I + J)}, we can see that W ′ is also closed under specialization,
and clearly it is the largest among such subsets. To prove the lemma we
show W ′ = W (I, J).

If p ∈ W ′, then there is a specialization closed subset W containing p

such that W ∩V (J) = V (I +J). Then, since V (p) ⊆W , we see V (p+J) =
V (p) ∩ V (J) ⊆ V (I + J), hence (I + J)n ⊆ p + J for a large integer n. In
particular, In ⊆ p + J and thus p ∈W (I, J).
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Conversely, if p ∈W (I, J), then it can be seen that V (p)∩V (J) ⊆ V (I +
J). Therefore a closed subset W = V (p)∪V (I) satisfies W∩V (J) = V (I+J),
hence p ∈W ⊆W ′. �

Theorem 5.5. The following conditions are equivalent for γ ∈ S(R).

(1) γ = ΓI,J for a pair of ideals I, J of R.
(2) γ = γ1/γ2 for left exact radical functors γ1 ⊆ γ2, the both of which

satisfy the ascending chain condition in Theorem 5.2.

Proof. (1)⇒ (2) : Assume that γ = ΓI,J , and set γ1 = ΓI+J , γ2 = ΓJ . Since
W (I, J) ∩ V (J) = V (I + J), it follows from Corollary 3.1 that γ · γ2 = γ1,
hence that γ ∈ Sγ1,γ2

, where we use the notation in Lemma 4.4. Then
Lemma 5.4 forces that γ = ΓI,J is the maximal element of Sγ1,γ2

, thus we
have γ = γ1/γ2.
(2) ⇒ (1) : Suppose γ = γ1/γ2 where γ1 ⊆ γ2 satisfy the ascending chain
condition. By virtue of Theorem 5.2, we may write γ1 = ΓI and γ2 = ΓJ for
some ideals I and J . Note that, since γ1 ⊆ γ2, we must have V (I) ⊆ V (J).
Thus W (I, J)∩V (J) = V (I +J) = V (I) holds, and hence ΓI,J is an element
of Sγ1,γ2

. It then follows from the definition of quotients that ΓI,J ⊆ γ. On
the other hand, since γ ∈ Sγ1,γ2

, we have γ·γ2 = γ1, hence Wγ∩V (J) = V (I).
Then we see from Lemma 5.4 that Wγ ⊆W (I, J). Thus γ ⊆ ΓI,J . �

We can state the same theorem in terms of A(R).

Theorem 5.6. The following conditions are equivalent for an abstract local
cohomology functor δ.

(1) δ ∼= RΓI,J for a pair of ideals I, J of R.
(2) δ ∼= δ1/δ2 for abstract local cohomology functors δ1 ⊆ δ2, the both

of which satisfy the ascending chain condition in Theorem 5.3.
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