
Math. J. Okayama Univ. 53 (2011), 111–127

NOTE ON SYMMETRIC HILBERT SERIES

Yuji Kamoi

Introduction

Let A =
⊕

n≥0 An be a d-dimensional Noetherian graded ring over an
Artinian local ring A0. In this paper, we study a relationship between
a symmetric Hilbert series P (A, t) and its Hilbert coefficients ei(A). A
symmetric Hilbert series is closely related to a Gorenstein property of A.
Stanley[9] proves that if A is a domain, then a symmetricity of Hilbert
series is equivalent to a Gorenstein property. Also, due to Ooishi[7], if
A is a graded ring associate to a maximal primary ideal of some Cohen-
Macaulay local ring, then a similar statement holds for A. Moreover, Hyry
and Järvilehto[5] gave a characterization of a Gorenstein property of such
A in terms of Hilbert coefficients under certain assumptions.

We characterize a symmetric Hilbert series in terms of Hilbert coeffi-
cients in (2.1) and determine Hilbert coefficients of Gorenstein graded rings.
Applying our result for a graded ring associate to an ideal, we generalize
Hyry-Järvilehto[5]’s result in (2.4). Also, we explain conditions of (2.1) by
an example arising from well-known formula of Stirling numbers of the sec-
ond kind. In the last section, we will see that combinatrial informations
from Hilbert series are not enough to determine a ring structure of graded
rings in general.

1. Preliminary

Let A =
⊕

n≥0 An be a d-dimensional Noetherian graded ring over an
Artinian local ring A0. For a finitely generated graded A-module M , we
denote by hM (n) = ℓA0(Mn) (n ∈ Z) and by P (M, t) =

∑

n∈Z
hM (n)tn ∈

Z[[t]][t−1]. hM (resp. P (M, t)) is called the Hilbert function (resp. the
Hilbert series) of M . Through out this paper, we always assume that M

has the Hilbert series of the form P (M, t) = QM (t)
(1−t)s , where s = dim(M). In

this section, we recall some basic properties of Hilbert functions and Hilbert
series.

Definition 1.1. For all i ∈ Z, we define ei(M) = 1
i!Q

(i)
M (1) and call it the

i-th Hilbert coefficient of M . A Hilbert polynomial pM (T ) of M is defined
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by pM (T ) =
∑s−1

i=0 (−1)s−1−ies−1−i(M)
(

T+i
i

)

, where
(

T+i
i

)

= 1
i!

∏i
j=1(T + j).

It is well-known that hM (n) = pM (n) for all n >> 0.

We put P (M, t−1) = (−1)s tsQM (t−1)
(1−t)s . Then we have the following impor-

tant property, which gives interaction between rational generating functions
and graded rings.

Lemma 1.2. (Serre[8]) The following equalities hold.

(1)
∑

n∈Z
{hM (n) − pM (n)} tn =

∑

n∈Z

{

∑s
i=0(−1)iℓ

(

Hi
A+

(M)n

)}

tn,

(2) P (M, t−1) =
∑

n∈Z

{

∑s
i=0(−1)iℓ

(

Hi
A+

(M)−n

)}

tn.

(See (2.1) of [7] and (4.4.5) of [2].) �

We denote by h∗
M (n) =

∑s
i=0(−1)s−iℓ(Hi

A+
(M)−n) for n ∈ Z and by

p∗M (T ) =
s−1
∑

i=0

es−1−i(M)

(

T − 1

i

)

.

Since
(

−n+i
i

)

= (−1)i
(

n−1
i

)

for all n > 0, it follows p∗M (T ) = (−1)s−1pM (−T ).
Note that h∗

M (T ) = hKM
(T ) and p∗M (T ) = pKM

(T ), if M is Cohen-Macaulay.

Corollary 1.3. Put ã(M) = max{n |
∑s

i=0(−1)iℓ(Hi
A+

(M)n) 6= 0} and

b(M) = min{n | Mn 6= 0}. Then we have the following.

(1) hM (n) = pM (n) for all n > ã(M).
(2) h∗

M (n) = p∗M (n) for all n > −b(M).

ã(M) plays important role in the theory of Hilbert series as above. More-
over, we also have ã(M) = deg(QM (t)) + s (cf. (4.4.1) of [2]).

Definition 1.4. Let f : Z −→ Z be a function on Z. We define functions
∆f and ∇f on Z by ∆f(n) = f(n + 1) − f(n) and ∇f(n) = f(n) − f(n −
1) for n ∈ Z. It follows that ∆if(n) =

∑i
j=0(−1)j

(i
j

)

f(n + i − j) and

∇if(n) =
∑i

j=0(−1)j
(i
j

)

f(n− j) for all i and all n ∈ Z. This conclude that

∆if(n) = ∇if(n + i) for all i and all n ∈ Z.

For n ∈ Z, if x ∈ A1 is a nonzero divisor of M , then

(*) ∆hM (n) = hM/xM (n + 1) and ∇hM (n) = hM/xM (n).
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Taking long exact sequence of local cohomologies with respect to a short
exact sequence of the multiplication of x, we have h∗

M (n + 1) = h∗
M (n) +

h∗
M/xM (n) and, thus,

(**) ∆h∗
M (n) = h∗

M/xM (n) and ∇h∗
M (n) = h∗

M/xM (n − 1).

Using the identity
(T+i

i

)

=
(T+i−1

i

)

+
(T+i−1

i−1

)

, it is easy to compute

∇ipM (T ) =
s−1−i
∑

j=0

(−1)s−1−ies−1−i−j(M)

(

T + j

j

)

and ∆ip∗M (T ) =
∑s−1−i

j=0 es−1−i−j

(

T−1
j

)

. Hence we have

es−1−i(M) = (−1)s−1−i∇ipM (−1) = ∆ip∗M (1)

= (−1)s−1−i∆ipM (−i − 1) = ∇ip∗M (i + 1) ( by (1.4))
(***)

for 0 ≤ i ≤ s − 1, since
(

T+i
i

)

have roots −1, · · · ,−i.

Example 1.5. For an integer m, a graded A-module M(m) is defined
by M(m)n = Mn+m for all n ∈ Z. Immediately, we have pM(m)(T ) =
pM (T + m) and its Hilbert coefficients can be computed as

es−1−i(M(m)) = (−1)s−1−i∇ipM (m − 1)

=

{

∑s−1−i
j=0 (−1)s−1−i−jes−1−i−j(M)

(

m−1+j
j

)

(m > 0)
∑s−1−i

j=0 es−1−i−j(M)
(

−m
j

)

(m ≤ 0)

for 0 ≤ i ≤ s−1. In particular, es−1−i(M(−1)) = es−1−i(M)+es−1−i−1(M).

�

Example 1.6. Let R and S be graded rings such that dim(R) = r and
dim(S) = s. Suppose that R0 = S0 is a field. Hilbert coefficients of the
Segre product R#S of R and S are described as follows. By (***) and
Leibniz’s rule of ∇i,

er+s−2−i(R#S) = (−1)r+s−2−i∇i(pR · pS)(−1)

=
i

∑

j=0

(

i

j

)

(−1)r−1−i+j∇i−jpR(−1 − j)(−1)s−1−j∇jpS(−1)

=

i
∑

j=0

(

i

j

)

∆i−jp∗R(j + 1)es−1−j(S)
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for 0 ≤ i ≤ r + s − 2. Since
(

j
k

)

= 0 for k > j,

∆i−jp∗R(j + 1) =

r−1−i+j
∑

k=0

er−1−i+j−k(R)

(

j

k

)

=

j
∑

k=0

er−1−i+j−k(R)

(

j

k

)

=

j
∑

k=0

er−1−i+k(R)

(

j

k

)

.

Hence we have

er+s−2−i(R#S) =
i

∑

j=0

j
∑

k=0

(

i

j

)(

j

k

)

er−1−(i−k)(R)es−1−j(S)

for 0 ≤ i ≤ r + s − 2.

�

In the following, we determine Hilbert coefficients by local cohomologies.

Proposition 1.7. We put a = ã(M) and suppose that b(M) ≥ 0. Then
we have the following;

ei(M) =



























s−1−i
∑

j=0

(−1)s−1−i−j

(

d − 1 − i

j

)

h∗
M (j + 1) (0 ≤ i ≤ s − 1)

s+a−i
∑

j=0

(

a − j

i − s

)

h∗
M (j − a) (0 ≤ a and s ≤ i ≤ s + a)

for 0 ≤ i ≤ s + a. In particular, es(M) =
∑a

j=0 h∗
M (j)(cf. [1],[4]).

Proof. Let A[X1, · · · , Xp] be a polynomial extension of A. We consider
A[X1, · · · , Xp] as a graded ring by deg(Xi) = 1 for 1 ≤ i ≤ p. If we put
M [X1, · · · , Xp] = M ⊗A A[X1, · · · , Xp], then b(M [X1 · · · , Xp]) = b(M) and
P (M [X1, · · · , Xp], t) = (1 − t)−pP (M, t). It follows that QM [X1,··· ,Xp](t) =
QM (t) and ei(M [X1 · · · , Xp]) = ei(M) for all i ≥ 0.

First, we claim that

h∗
M [X1,··· ,Xp](n) =

n+a−p
∑

j=0

(

n + a − j − 1

p − 1

)

h∗
M (j − a)
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for all n. In fact, it is easy to see that h∗
M [X1··· ,Xp](p−a) = h∗

M (−a) and, by

induction, we have, for all n ≥ p − a,

h∗
M [X1··· ,Xp](n) = h∗

M [X1··· ,Xp](n − 1) + h∗
M [X1,··· ,Xp−1](n − 1)

=

n−1+a−p
∑

j=0

(

n + a − j − 2

p − 1

)

h∗
M (j − a)

+

n−1+a−p+1
∑

j=0

(

n + a − j − 2

p − 2

)

h∗
M (j − a)

=

n+a−p
∑

j=0

(

n + a − j − 1

p − 1

)

h∗
M (j − a).

Since b(M [X1 · · · , Xp]) ≥ 0, p∗M [X1··· ,Xp](n) = h∗
M [X1··· ,Xp](n) for all n > 0.

Hence, by (***), if p = max{a + 1, 0}, then

ei(M) = ∆s+p−1−ih∗
M [X1,··· ,··· ,Xp](1)

=

{

∆s−1−ih∗
M (1) (0 ≤ i ≤ s − 1)

h∗
M [X1,··· ,Xi+1−s](1) (0 ≤ a and s ≤ i ≤ s + a)

=



























s−1−i
∑

j=0

(−1)s−1−i−j

(

s − 1 − i

j

)

h∗
M (j + 1) (0 ≤ i ≤ s − 1)

s+a−i
∑

j=0

(

a − j

i − s

)

h∗
M (j − a) (0 ≤ a and s ≤ i ≤ s + a).

�

2. A symmetric Hilbert series

In this section, we characterize a symmetric property of P (A, t) in terms of
Hilbert coefficients. We call that P (A, t) is symmetric, if QA(t) is symmetric
(i.e. QA(t) = (−1)dtd+aQA(t−1)). It is easy to see that P (A, t) is symmetric
if and only if P (A, t) = (−1)dtaP (A, t−1). Then we state our result as
follows.

Theorem 2.1. If we put a = ã(A), then the following conditions are equiv-
alent.

(1) P (A, t) is symmetric.
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(2) For 0 ≤ i ≤ d + a,

ei(A) =



























d−1−i
∑

j=0

(−1)d−1−i−j

(

d − 1 − i

j

)

ℓ(Aj+1+a) (0 ≤ i ≤ d − 1)

d+a−i
∑

j=0

(

a − j

i − d

)

ℓ(Aj) (0 ≤ a and d ≤ i ≤ d + a).

(3) For 0 ≤ i ≤ d + a,

ei(A) =
i

∑

j=0

(−1)jej(A)

(

d + a − j

d + a − i

)

.

In particular, {ei(A) | i is odd} is determined by {ej(A) | j is even}.
�

The following lemma is essential for the symmetricity of P (A, t)(cf. (4.24)
of [9]).

Lemma 2.2. We put a = ã(A) and assume that a < 0. Then the follow-
ing conditions are equivalent.

(1) P (A, t) is symmetric.
(2) p∗A(T ) = pA(T + a).
(3) p∗A(i) = pA(i + a) for 1 ≤ i ≤ d.
(4) ∆ip∗A(1) = ∆ipA(1 + a) for −a − 1 ≤ i ≤ d − 1.
(5) ∇ip∗A(i + 1) = ∇ipA(i + 1 + a) for −a − 1 ≤ i ≤ d − 1.

Proof. A symmetricity of P (A, t) is equivalent to h∗
A(n) = hA(n + a)

for all n ∈ Z by (1.2), (2). This condition imples the condition (2), since
pA(T ) and p∗A(T ) are polynomials. Moreover, since a < 0, we have that
h∗

A(n) = 0 = hA(n + a) for all n ≤ 0. Also we have hA(n + a) = pA(n + a)
and h∗

A(n) = p∗A(n) for all n > 0 by (1.3). This shows (2) =⇒ (1). Both
p∗A(X) and pA(X + a) have a degree d − 1, implications (3) ⇐⇒ (2) are
trivial.

Let a0, · · · , an be integers. Clearly, a0 = · · · = an = 0 if and only if
∑i

j=0(−1)i−j
(

i
j

)

aj = 0 for 0 ≤ i ≤ n, by induction. Thus, the condition (3)

is equivalent to the condition that

i
∑

j=0

(−1)i−j

(

i

j

)

p∗A(j + 1) =

i
∑

j=0

(−1)i−j

(

i

j

)

pA(j + 1 + a)
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for 0 ≤ i ≤ d − 1. The left hand side of this equation is coinsides with
∆ip∗A(1) = ∇ip∗A(i + 1) = ed−1−i(A) by (***). Note that, by definition,
ed−1−i(A) = 0 and pA(i + 1 + a) = 0 for i < −a − 1. Namely, the above
equation is automatically satisfied for 0 ≤ i ≤ −a − 1. Hence, we have that
(3) ⇐⇒ (4) and (3) ⇐⇒ (5). The proof is completed. �

Proof of (2.1). The proof of (2.1) is similar to the proof of (1.7). Let
s = max{a + 1, 0} and let B = A[X1, · · · , Xs] be a polynomial ring over A.
We regard B as a graded ring by deg(Xi) = 1 for 1 ≤ i ≤ s. Note that
QB(t) = QA(t) and a(B) = a− s < 0. Hence, by (2.2), P (A, t) is symmetric
if and only if ∆d+s−1−ip∗B(1) = ∆d+s−1−ipB(1 + a − s) for 0 ≤ i ≤ d + a.
(n.b. −a + s − 1 ≤ d + s − 1 − i ≤ d + s − 1 ⇐⇒ 0 ≤ i ≤ d + a.) By
(***), ei(A) = ei(B) = ∆d+s−1−ip∗B(1). On the other hand, by a − s < 0
and (1.3), pB(n + a − s) = hB(n + a − s) for n > 0. This implies that
∆d+s−1−ipB(1 + a − s) = ∆d+s−1−ihB(1 + a − s) for 0 ≤ i ≤ d + a and, by
(*),

∆d+s−1−ihB(1 + a − s)

=

{

∆d−1−ihA(1 + a) (0 ≤ i ≤ d − 1)

hA[X1,··· ,Xs−d−s+1+i](d + a − i) (0 ≤ a and d ≤ i ≤ d + a)

=



























d−1−i
∑

j=0

(−1)d−1−i−j

(

d − 1 − i

j

)

ℓ(Aj+1+a) (0 ≤ i ≤ d − 1)

d+a−i
∑

j=0

(

a − j

i − d

)

ℓ(Aj) (0 ≤ a and d ≤ i ≤ d + a)

Hence, we have (1) ⇐⇒ (2).
Similarly, a symmetricity of P (A, t) is equivalent to∇d+s−1−ip∗B(d + s −

i) = ∇d+s−1−ipB(d + a − i) for 0 ≤ i ≤ d + a. The left hand side of this
equation is ei(A) = ∇d+s−1−ip∗B(d+s− i), by (***), and the right hand side
is

∇d+s−1−ipB(d + a − i) =
i

∑

j=0

(−1)i−jei−j(A)

(

d + a − i + j

j

)

=
i

∑

j=0

(−1)jej

(

d + a − j

d + a − i

)

.

Hence, we have (1) ⇐⇒ (3). �
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Corollary 2.3. If A is a Gorenstein graded ring of a = a(A), then

ei(A) =



























d−1−i
∑

j=0

(−1)d−1−i−j

(

d − 1 − i

j

)

ℓ(Aj+1+a) (0 ≤ i ≤ d − 1)

d+a−i
∑

j=0

(

a − j

i − d

)

ℓ(Aj) (0 ≤ a and d ≤ i ≤ d + a)

for 0 ≤ i ≤ d + a.

�

A symmetricity of P (A, t) is closely related to the Gorenstein property.
In fact, by results of Stanley[9], if A is a Cohen-Macaulay domain, then con-
ditions (2) and (3) of (2.1) are equivalent that A is Gorenstein, respectively.
Also, by results of Ooishi[7], if A is a graded ring associate to some ideal,
then we have similar statements. If we apply (2.1) to A[X], then (2.1), (1)
is also equivalent to

ei(A) =

{

∑d−i
j=0(−1)d−i−j

(

d−i
j

)

ℓ(A≤j+a) (0 ≤ i ≤ d)
∑d+a−i

j=0

(a−1−j
i−d−1

)

ℓ(A≤j) (0 < a and d + 1 ≤ i ≤ d + a)

for 0 ≤ i ≤ d + a, since ℓ(A[X]n) = ℓ(A≤n) =
∑n

i=0 ℓ(Ai). Using this
condition, we generalize the result of Hyry-Järvilehto[5] as follows.

Corollary 2.4. Let (R, n) be a Gorenstein local ring of dimension d and
q ⊂ R be a n-primary ideal. Put a = r(q)− d. If GR(q) is Cohen-Macaulay,
then the following conditions are equivalent.

(1) GR(q) is Gorenstein.
(2) For 0 ≤ i ≤ r(q),

ei(q) =



























d−i
∑

j=0

(−1)d−i−j

(

d − i

j

)

ℓ(R/q
j+a+1) (0 ≤ i ≤ d)

r(q)−i
∑

j=0

(

r(q) − d − 1 − j

i − d − 1

)

ℓ(R/q
j+1) (0 < a and d < i).

(3) For 0 ≤ i ≤ r(q),

ei(q) =
i

∑

j=0

(−1)jej(q)

(

r(q) − j

r(q) − i

)

�
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Remark 2.5. Suppose that A is Cohen-Macaulay. The right hand side
of (2.1), (2) is interpreted as Hilbert coefficients of KA, in general. In fact
pKA

(T ) = p∗A(T ) and, by (***), we have

ei(KA) = (−1)i∇d−1−ip∗A(−1)

= ∆d−1−ipA(1) =
d−1−i
∑

j=0

(−1)d−1−i−j

(

d − 1 − i

j

)

pA(j + 1)

for 0 ≤ i ≤ d − 1.

3. Stirling numbers

In this section, we give a typical example satisfying conditions of (2.1)
such that it shows well-known formula of Stirling numbers of the second
kind.

Let FA = {A≥n}n∈N be a filtration of homogeneous ideals and a = ã(A).
We consider a Rees ring R = R(FA) =

⊕

n∈N
A≥nxn ⊂ A[x]. Suppose that

deg(x) = 0. Then Rn = A⊕n+1
n for all n ∈ Z. Thus

P (R, t) =
∑

n≥0

(n + 1)ℓ(An)tn = (tP (A, t))′ =

(

tQA(t)

(1 − t)d

)′

=
(1 + (d − 1)t)QA(t) + t(1 − t)Q′

A(t)

(1 − t)d+1
.

Here we denote the formal derivation by ( )′. By Leibniz’s rule, we have

Q
(i)
R (t) = (t− t2)Q

(i+1)
A (t) + (i + 1 + (d− 1− 2i)t)Q

(i)
A (t) + i(d− i)Q

(i−1)
A (t).

Hence we compute Hilbert coefficients of R as

ei(R) =
d − i

i!

{

Q
(i)
A (1) + iQ

(i−1)
A (1)

}

= (d − i) {ei(A) + ei−1(A)}

for 0 ≤ i ≤ d + a + 1.
Now, we define A(0) = A and A(k) = R(FA(k−1)) for k > 0, inductively.

It follows that dim(A(k)) = d + k, a(A(k)) = a(A), and ℓ(A
(k)
n ) = ℓ(An)(n +

1)k for all n. We put e(k, i) = ei(A
(k)) for 0 ≤ k and 0 ≤ i. As above

computations, this sequence {e(k, i) | k, i ∈ Z, k ≥ 0} is determined by the
following recurrence formula;

e(0, i) =

{

ei(A) (0 ≤ i ≤ d + a)

0 (otherwise)

e(k + 1, i) = (d + k − i) {e(k, i) + e(k, i − 1)} .

In particular, e(k, i) = 0 for d + k + a < i or i < 0.



120 YUJI KAMOI

(2.1) allows that this sequence has a solution, if A(k) is Gorenstein. By

results of Goto-Nishida[3], the Gorenstein property of A(k) is determined

by the property of A. Since G(FA(k−1)) =
⊕

n≥0 A
(k−1)
≥n /A

(k−1)
≥n+1

∼= A(k−1),

A(k) is Cohen-Macaulay if and only if A is Cohen-Macaulay and a < 0.
Furthermore, A(k) is Gorenstein if and only if A is Gornstein and a = −2.

Henceforth, we suppose that A is Gorenstein and a = −2. Then A(k) is
a (d + k)-dimensional Gorenstein ring of a(A(k)) = −2. By (2.2), we have
p∗

A(k)(T ) = pA(k)(T − 2) and

(♣) ℓ(An−1)n
k = p∗

A(k)(n + 1) =
d+k−1
∑

i=1

e(k, d + k − 1 − i)

(

n

i

)

for all n > 0. Similarly, since A[x] is Gorenstein and a(A(k)[x]) = −3, we
also have p∗

A(k)[x]
(T ) = pA(k)[x](T − 3) and

(♦)
n

∑

i=1

ℓ(Ai−1)i
k = p∗

A(k)[x]
(n + 2) =

d+k
∑

i=2

e(k, d + k − i)

(

n + 1

i

)

for all n > 0. Finally, by (2.1), we have solutions

e(k, d + k − i) =
i−1
∑

j=1

(−1)i−1−j

(

i − 1

j

)

ℓ(Aj−1)j
k

for 2 ≤ i ≤ d + k.

Remark 3.1. Similarly, we are able to compute h-vecters. We denote
the h-vecter of A(k) by h(k, i) = 1

i!QA(k)(0) for k ≥ 0 and i ≥ 0. Then we

have h(k + 1, i) = 1
i!

{

(i + 1)Q
(i)

A(k)(0) + i(d − i)Q
(i−1)

A(k) (0)
}

= (i + 1)h(k, i) +

(d + k − i)h(k, i− 1). Namely, {h(k, i) | k, i ∈ Z, k ≥ 0} can be determined
by the recurrence

h(0, i) =

{

hi (0 ≤ i ≤ d + a)

0 (otherwise)

h(k + 1, i) = (i + 1)h(k, i) + (d + k − i)h(k, i − 1),

where hi is a h-vector of A. If A is Cohen-Macaulay, then this sequence

has a solution as follows. Let x ⊂ A
(k)
1 be a liner sop. Then h(k, i) =

ℓ
(

[A(k)/(x)]i
)

= ∇d+khA(k)(i) =
∑i+1

j=1(−1)i−j+1
( d+k
i−j+1

)

ℓ(Aj−1)j
k for 0 ≤

i ≤ d + k + a.

Example 3.2. (Stirling numbers arising from power sum formula)
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Let us recall that well-known formula of power sums. For all natural
number n,

∑n
i=1 ik can be written as a polynomial of n in degree k + 1.

Bernoulli-Seki formula is stated as

n
∑

i=1

ik =
1

k + 1

k
∑

i=0

(

k + 1

i

)

Bi(n + 1)k+1−i

where Bn is the number satisfying conditions B0 = 1 and
∑n

i=0

(

n+1
i

)

Bi = 0
and call it the n-th Bernoulli number. It seems that a Bernoulli number
is not able to describe as a ”simple” linear combination of binomial coeffi-
cients and it is described as a sum of Stirling numbers of the second kind.
Stirling numbers of the second kind are defined by recurrence as S(0, 0) = 1,
S(0, i) = 0 = S(k, 0) for k, i 6= 0, and S(k, i) = S(k − 1, i− 1) + iS(k − 1, i).
Then it is known that

Bk =

k
∑

i=0

(−1)k−i i!S(k, i)

i + 1
=

k
∑

i=0

(−1)i i!S(k + 1, i + 1)

i + 1
.

If we put A = k[x0, x1], then A(k−1) ∼= A#k and it is a Gorenstein ring of

dim(A(k−1)) = k + 1 and a(A(k−1)) = −2. Since ℓ([A(k−1)]n) = (n + 1)k, the

Hilbert function is given by nk = pA(k−1)(n− 1) =
∑k

i=0(−1)k−ie(k − 1, k −
i)

(n+i−1
i

)

. Then, by ♣, we have

nk =
k

∑

i=1

e(k − 1, k − i)

(

n

i

)

.

This shows that our Hilbert coefficient is essentially same as the Stirling
number, namely e(k − 1, k − i) = i!S(k, i). Also, by ♦, we describe power
sums as

n
∑

i=1

ik =
k+1
∑

i=2

e(k − 1, k + 1 − i)

(

n + 1

i

)

=
k

∑

i=1

e(k − 1, k − i)

(

n + 1

i + 1

)

.

Finally, we obtain Hilbert coefficients e(k, i) by e(0, 0) = 1, e(0, i) = 0
(0 < i) and

e(k − 1, k − i) =
i

∑

j=1

(−1)i−j

(

i

j

)

jk

for 0 < k and 1 ≤ i ≤ k.

�
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Remark 3.3. As above example, Stirling numbers give a base change of
Q[T ] between {Tn}n≥0 and {

(

T+n
n

)

}n≥0. Namely, for f(T ) =
∑m

k=0 akT
k =

∑m
k=0 bk

(

T+k
k

)

∈ Q[T ], we can describe bk in terms of {ak} and {e(k, i)}.
Applying (1.5) for A(k−1) and m = −1, ek−i(A

(k−1)(−1)) = e(k − 1, k −
i) + e(k − 1, k − i − 1) = e(k,k−i)

i+1 and

nk = pA(k−1)(−1)(n) =

k
∑

i=0

(−1)k−i e(k, k − i)

i + 1

(

n + i

i

)

.

Replacing T k by this equation, we have

f(T ) =
m

∑

k=0

ak

k
∑

i=0

(−1)k−i e(k, k − i)

i + 1

(

T + i

i

)

=

m
∑

i=0

1

i + 1

m−i
∑

k=0

(−1)kake(k + i, k)

(

T + i

i

)

.

Hence we have

bk =
1

k + 1

m−k
∑

i=0

(−1)iaie(k + i, i).

Using the same shifting trick for A(k−1)(−1)[X], the k-th power sum of 1 to
n can be described as a combination of

(n
1

)

, · · · ,
( n
k+1

)

.

Since pA(k−1)(−1)[X](n) =
∑k+1

i=1 (−1)k+1−i e(k,k+1−i)
i

(

n+i
i

)

, we have

n
∑

i=1

ik = pAk−1[X](n − 1) = p∗Ak−1[X](n + 2) = p∗
A(k−1)(−1)[X]

(n + 1)

=

k+1
∑

i=1

e(k, k + 1 − i)

i

(

n

i

)

Remark 3.4. As in (3.3), it is able to express ak in terms of bk using

Stirling numbers s(k, i) of the first kind. In fact, if we put d(k, i) = s(k,i)
k! ,

then

ak =

m
∑

i=k







m
∑

j=i

(−1)m−jbjd(j, i)







(

i

k

)

.

However, we don’t know that it is necessary to take double summations as
above.
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4. Hilbert series of the polynomial type

In this section, we consider that graded rings possess Hilbert serires of

the form e0(A)
(1−t)d . We call that A has a Hilbert series of the polynomial

type, if P (A, t) = e0(A)
(1−t)d . Clearly, a polynomial ring has a Hilbert series

of the polynomial type . However, we will see that a Hilbert series of the
polynomial type does not imply a polynomial ring. Namely, it is not enough
to determine an algebra structure on A, even if A has such a typical Hilbert
series. This is the purpose of this section.

First, we give an easy example. Let A = k[x1, · · · , xn]/(x1, · · · , xn−1)
2.

We regard A as a graded ring by deg(xi) = i (i = 1, · · · , n). Then P (A, t) =
1

1−t and A does not have a sop in A1 (or
√

A1 6= √
A+). This example shows

that our problem make sense only on standard graded rings. Henceforth,
we assume that A = A0[A1]. In the following, we characterize polynomial
rings by Hilbert series of the polynomial type with extra assumptions.

Theorem 4.1. Let A be a standard graded ring of dim(A) = d. We denote

PA(T ) =
∑d

i=0(−1)d−ied−i(A)
(

T+i
i

)

and a(A) = max{n ∈ Z | Hd
A+

(A)n 6=
0}. Then the following conditions are equivalent.

(1) A ∼= A0[X1, · · · , Xd].
(2) A is Cohen-Macaulay and a(A) = −d.

(3) P(A, t) =
e0(A)

(1 − t)d
and a(A) = −d.

(4) PA(T ) = e0(A)
(

T+d
d

)

and a(A) = −d.

(5) a(A) = −d and, if d > 0, then
∑d−1

i=1 (−1)iℓ(Hi
A+

(A)−n) = 0 for

1 ≤ n ≤ d − 1 and ed(A) = 0.

(6) a(A) = −d and, if d > 0, then
∑d−1

i=1 (−1)iℓ(Hi
A+

(A)−n) = 0 for

1 ≤ n ≤ d − 1 and depth(A) > 0.

Proof . To prove our result, we may assume that A0 has an infinite
residue field, without loss of generality. Implications (1) ⇔ (2), (3) ⇒ (4),
(2) ⇒ (5), (6) are trivial. If A is Cohen-Macaulay, then we have a(A) = ã(A)
and deg QA(t) = a(A) + d. This shows the implication (2) ⇒ (3).

(4) =⇒ (5) Since pA(T ) = ∇PA(T ) = e0(A)
(T+d−1

d−1

)

, p∗A(T ) = e0(A)
(T−1

d−1

)

and it vanishes at T = 1, · · · , d−1. Hence, by (1.3),
∑d−1

i=1 (−1)iℓ(Hi
A+

(A)−n)

= (−1)dh∗
A(n) = 0 for 1 ≤ n ≤ d − 1.

We prove (5) =⇒ (2) by induction on d. If d = 0, then A = A0, since
a(A) = 0. Suppose that d > 0 and the statement is true for d − 1. Let
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A′ = A/H0
A+

(A) and B = A′/xA′, where x ∈ A1 is a nonzero divisor of

A′. Note that Hi
A+

(A′) ∼= Hi
A+

(A) for 1 ≤ i ≤ d and a(B) = a(A′) + 1 =

a(A) + 1 = −d + 1. Then we have

d−2
∑

i=1

(−1)iℓ(Hi
B+

(B)−n) = (−1)d−1h∗
B(n) = (−1)d−1∆h∗

A(n) = 0

for 1 ≤ n ≤ d − 2. On the other hand, ℓ(A′
≤n) = ℓ(A≤n) − ℓ(H0

A+
(A)) =

PA(n) − ℓ(H0
A+

(A)) for all sufficiently large n and, by the uniqueness of

Hilbert polynomial, PA′(T ) = PA(T ) − ℓ(H0
A+

(A)). Since x is a nonzero

divisor of A′, we have PB(T ) = ∆PA′(T ) = ∆PA(T ) and

ed−1(B) = ed−1(A) =

d
∑

i=1

(−1)iℓ(Hi
A+

(A)−1) = 0.

Hence, by induction hypothesis, B is a Cohen-Macaulay ring of dimension
d − 1. Since A′ is Cohen-Macaulay, Hi

A+
(A) = 0 for 1 ≤ i ≤ d − 1 and

ã(A) = a(A) = −d. This implies that

0 = ed(A) =
d

∑

i=0

(−1)d−iℓA0(H
i
A+

(A)≥0) = (−1)dℓA0(H
0
A+

(A))

and H0
A+

(A) = 0, by (1.7). This conclude that A = A′ is Cohen-Macaulay.

(6) =⇒ (2) The assertion is clear for d ≤ 1. We may assume that d > 1.
Let x ∈ A1 be a non zero divisor of A and B = A/xA. Similar to the

proof of (5) ⇒ (2), we have a(B) = −d + 1,
∑d−2

i=1 (−1)iℓB0(H
i
B+

(B)−n) = 0

(1 ≤ n ≤ d − 2) and ed−1(B) = ed−1(A) =
∑d

i=1(−1)iℓA0(H
i
A+

(A)−1) = 0.

Hence, by (5) =⇒ (2), B is Cohen-Macaulay and so is A. �

Remark 4.2. Assume that A satisfy one of the following conditions;

• A is flat over A0

• A is Cohen-Macaulay
• A ∼= G(p) for some parameter ideal p of a Noetherian local ring

(R, n)
• A ∼= G(q) for some n-primary ideal q of a Cohen-Macaulay local ring

(R, n)(cf. [6])

Then e0(A)
(1−t)d implies that A is a polynomial ring without any other condition.

As above Remark, Hilbert series of the polynomial type allow polynomial
rings in usual situations. However, in general, the condition on a(A) is



NOTE ON SYMMETRIC HILBERT SERIES 125

necessary. In the following, we give non polynomial rings having Hilbert
series of the polynomial type.

Let B = B0 ⊕ B1 ⊕ · · · ⊕ Ba be an Artinian local graded ring such that
B = B0[B1]. We construct a graded ring A such that An = B for all n ≥ 0
and a(A) = a − 1. Put A0 = B and a = B+ ⊂ A0. Here we regard A0

as an Artinian local ring without gradings. Then we define a graded ring
A′ by A′ = RA0(a)[Y ] = A0[aX, Y ] ⊂ A0[X, Y ] and put A = A′/aY A′.
The grading on A′ (and A) is given by deg(X) = deg(Y ) = 1. For all
n ≥ 0, we have A′

n = A0[aX, Y ]n =
∑n

i=0 B≥iX
iY n−i and (aY A′)n =

B1Y · A0[aX, Y ]n−1 =
∑n−1

i=0 B≥i+1X
iY n−i. Hence that An = B0Y

n ⊕
B1XY n−1 ⊕ B2X

2Y n−2 ⊕ · · · ⊕ Bn−1X
n−1Y ⊕ B≥nXn. It is clear that

[0 :A Y ]n = B≥n+1X
n and there is a short exact sequence

0 −→ [0 :A Y ] −→ A −→ B[y] −→ 0
Y 7−→ y

via an isomorphism B ∼= B0 ⊕ B1X ⊕ · · · ⊕ BaX
a. Here B[y] is a graded

polynomial ring with deg(y) = 1. This conclude that A is a 1-dimensional
graded ring such that depth(A) = 0, e0(A) = ℓ(B), PA(T ) = e0(A)(T + 1),

P(A, t) =
e0(A)

1 − t
, and a(A) = a − 1. Through the polynomial extension of

A, we have the following.

Proposition 4.3. Let e, d be positive integers and let a be an integer
such that e − d ≥ a > −d.

(1) A non Cohen-Macaulay graded ring A such that P(A, t) =
e

(1 − t)d

and a(A) = a exists.

(2) A non Cohen-Macaulay graded ring A such that PA(T ) = e
(

T+d
d

)

and a(A) = a exists.
(3) If d ≥ 2, then there exist a non Cohen-Macaulay graded ring A such

that depth(A) > 0, a(A) = a and
∑d

i=1(−1)iℓ(Hi
A+

(A)−n) = 0 for

1 ≤ n ≤ d − 1.

�

Example 4.4. Let k be a field and k[a, x, y]/((a, x)2, ay) with deg a = 0
and deg x = deg y = 1. Then P (A, t) = 2

1−t and a(A) = 0.

�

Example 4.5. Let k be a field and let B = k[x, y, z, w]/(x, y)(x, y2, z, w)+
(z3), with deg x = deg y = deg z = deg w = 1. It is easy to see that w is a
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parameter of B and B/[0 :A w] ∼= k[z, w]/(z3). Hence we have

P (B, t) = tP (B/[0 : w], t) + P (B/(w), t)

= t+t2+t3

1−t + 1 + 3t + 2t2 = 1+3t−t3

1−t

and PB(T ) = 3
(

T+1
1

)

. This shows that (4.1), (4) does not imply (4.1), (3)
without a(A) = −d.

Now, we define a = (a(a2, x, y, z, w, v2, av), (x, y)(x, y2, z, w), z3) and A =
k[a, x, y, z, w, v]/a, with deg a = 0 and deg x = deg y = deg z = deg w =
deg v = 1. Then dimA = 2, depthA = 0 and H0

A+
(A) = aA = ka+ka2 +kv.

Also, we have A/H0
A+

(A) ∼= B[v] and, thus, P(A, t) = 2+t+ 1+3t−t3

(1−t)2
= 3

(1−t)2
.

�

Remark 4.6. Our example shows that a class of graded rings having
Hilbert series of the polynomial type is a relatively large as same as a class
of Artinian graded rings. Also, we can find such a graded ring from any
1-dimensional Cohen-Macaulay graded rings. Maybe it frequently occurs in
the following sense.

We call that a graded ring A is obtained from a graded ring B by the
standard procedure, if there are graded rings A(0), · · · , A(n) such that A =
A(n), B = A(0) and A(i + 1) = A(i)/H0

A(i)+
(A(i)) + (xi) where xi ∈ A(i)1

and xi is a nonzero divisor of A(i)/H0
A(i)+

(A(i)).

(Question) Let A be a graded ring such that pA(T ) = e
(

T+d−1
d−1

)

. Does
there exist a graded ring B having a Hilbert series of the polynomial type
such that A is obtained from B by the standard procedure?
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