ON ALMOST *N*-SIMPLE-PROJECTIVES

YOSHITOMO BABA AND TAKESHI YAMAZAKI

ABSTRACT. The concept of almost N-projectivity is defined in [5] by M. Harada and A. Tozaki to translate the concept "lifting module" in terms of homomorphisms. In [6, Theorem 1] M. Harada defined a little weaker condition "almost N-simple-projecive" and gave the following relationship between them:

For a semiperfect ring R and R-modules M and N of finite length, M is almost N-projective if and only if M is almost N-simple-projective.

We remove the assumption "of finite length" and give the result in Theorem 5 as follows:

For a semiperfect ring R, a finitely generated right R-module Mand an indecomposable right R-module N of finite Loewy length, M is almost N-projective if and only if M is almost N-simpleprojective.

We also see that, for a semiperfect ring R, a finitely generated R-module M and an R-module N of finite Loewy length, M is N-simple-projective if and only if M is N-projective.

Throughout this paper, we let R be a semiperfect ring unless otherwise stated and R-modules unitary. For an R-module M, we denote the Loewy length and the composition length of M by L(M) and |M|, respectively.

Let M and N be R-modules. We say that M is N-projective if, for any submodule L of N and an R-homomorphism $\varphi : M \to N/L$, there exists an R-homomorphism $\tilde{\varphi} : M \to N$ with $\nu \tilde{\varphi} = \varphi$, where $\nu : N \to N/L$ is the natural epimorphism. If, in this definition, we only consider the Rhomomorphisms φ with simple images, M is said to be N-simple-projective.

First we give a lemma in which N-simple-projectivity is investigated for an R-homomorphism with its image semisimple artinian.

Lemma 1. Let R be a ring, M and N R-modules, L a submodule of N and $\varphi: M \to N/L$ an R-homomorphism with Im φ semisimple artinian. If M is N-simple-projective, then there exists an R-homomorphism $\tilde{\varphi}: M \to$ N with $\nu \tilde{\varphi} = \varphi$, where $\nu: N \to N/L$ is the natural epimorphism.

Mathematics Subject Classification. Primary 16D40; Secondary 16D10.

Key words and phrases. ring, module, almot projective, almost simple-projective.

The first author was supported by Grant-in-Aid for Scientific Research (No.19540029), JSPS.

Proof. Let $\operatorname{Im} \varphi = N'/L$, where N' is a submodule of N. Then M is N'-simple-projective by assumption. So the statement follows from [6, Lemma 1].

Using Lemma 1 we obtain the following result which is a generalization of [6, Lemma 1]. And we also note that, in [2, Proposition 2], Baba and Oshiro gave the dual result which played an important role to characterize Fuller's theorem for injective modules.

Proposition 2. Let M be a finitely generated right R-module and N a right R-module with $L(N) < \infty$. If M is N-simple-projective, then M is N-projective.

Proof. Let L be a submodule of N, $\varphi : M \to N/L$ an R-homomorphism and $\nu : N \to N/L$ the natural epimorphism. Since $L(N) < \infty$, there exists $n_1 \in \mathbb{N}$ such that $\operatorname{Im} \varphi \subseteq (N/L)J^{n_1-1}$ but $\operatorname{Im} \varphi \not\subseteq (N/L)J^{n_1}$. Then $(\operatorname{Im} \varphi + (N/L)J^{n_1})/(N/L)J^{n_1}$ is semisimple artinian since R is semiperfect and M is finitely generated. So, by Lemma 1, there exists an R-homomorphism $\tilde{\varphi}_1 : M \to N$ with $\nu_1 \nu \tilde{\varphi}_1 = \nu_1 \varphi$, where $\nu_1 : N/L \to (N/L)/(N/L)J^{n_1}$ is the natural epimorphism.

We assume that $\varphi \neq \nu \tilde{\varphi}_1$. Since $\operatorname{Im}(\varphi - \nu \tilde{\varphi}_1) \subseteq (N/L)J^{n_1}$, there exists $n_2 \in \mathbb{N}$ with $n_2 > n_1$, $\operatorname{Im}(\varphi - \nu \tilde{\varphi}_1) \subseteq (N/L)J^{n_2-1}$ but $\operatorname{Im}(\varphi - \nu \tilde{\varphi}_1) \not\subseteq (N/L)J^{n_2}$. Then $(\operatorname{Im}(\varphi - \nu \tilde{\varphi}_1) + (N/L)J^{n_2})/(N/L)J^{n_2}$ is semisimple artinian. So, by Lemma 1, there exists an *R*-homomorphism $\tilde{\varphi}_2 : M \to N$ with $\nu_2 \nu \tilde{\varphi}_2 = \nu_2(\varphi - \nu \tilde{\varphi}_1)$, where $\nu_2 : N/L \to (N/L)/(N/L)J^{n_2}$ is the natural epimorphism.

We assume that $\varphi \neq \nu(\tilde{\varphi}_1 + \tilde{\varphi}_2)$. Since $\operatorname{Im}(\varphi - \nu(\tilde{\varphi}_1 + \tilde{\varphi}_2)) \subseteq (N/L)J^{n_2}$, we have $n_3 \in \mathbb{N}$ such that $n_3 > n_2$, $\operatorname{Im}(\varphi - \nu(\tilde{\varphi}_1 + \tilde{\varphi}_2)) \subseteq (N/L)J^{n_3-1}$ but $\operatorname{Im}(\varphi - \nu(\tilde{\varphi}_1 + \tilde{\varphi}_2)) \not\subseteq (N/L)J^{n_3}$.

Continuing this argument, we have $k \in \mathbb{N}$ with $\varphi = \nu(\tilde{\varphi}_1 + \dots + \tilde{\varphi}_k)$ because $L(N) < \infty$.

Now we define "almost N-projective" and "almost N-simple-projective". Let M and N be R-modules. We say that M is almost N-projective if, for any submodule L of N and an R-homomorphism $\varphi : M \to N/L$, letting $\nu : N \to N/L$ be the natural epimorphism, either the following (I) or (II) holds:

- (I) There exists an *R*-homomorphism $\tilde{\varphi}: M \to N$ with $\nu \tilde{\varphi} = \varphi$.
- (II) There exist a non-zero direct summand N' of N and an R-homomorphism $\tilde{\psi}: N' \to M$ with $\phi \tilde{\psi} = \nu|_{N'}$.

If, in this definition, we only consider the *R*-homomorphisms φ with simple images, *M* is said to be *almost N*-simple-projective.

We note that, in these definitions, if N is indecomposable, the condition (II) is as follows:

(II') There exists an *R*-homomorphism $\tilde{\psi}: N \to M$ with $\phi \tilde{\psi} = \nu$.

In this paper, we consider the case that N is indecomposable.

The following in which almost N-simple projective is investigated for an R-homomorphism with its image semisimple artinian is the first step to prove Theorem 5.

Lemma 3. Let M be an R-module, N an indecomposable R-module, L a submodule of N and $\varphi : M \to N/L$ an R-homomorphism with $\operatorname{Im} \varphi$ semisimple artinian. We consider the following three conditions:

- (1) φ is not epic.
- (2) $|\operatorname{Im} \varphi| \ge 2.$
- (3) $L \not\ll N$.

If M is almost N-simple-projective and, at least, one of the above three conditions holds, then there exists an R-homomorphism $\tilde{\varphi} : M \to N$ with $\nu \tilde{\varphi} = \varphi$, where $\nu : N \to N/L$ is the natural epimorphism.

Proof. First we consider the case that either the condition (1) or (2) holds. Let $\operatorname{Im} \varphi = \overline{S}_1 \oplus \cdots \oplus \overline{S}_n$, where \overline{S}_i is simple for any $i = 1, \ldots, n$. Further, for each $i = 1, \ldots, n$, we let $\pi_i : \bigoplus_{j=1}^n \overline{S}_j \to \overline{S}_i$ be the projection and $\iota_i : \overline{S}_i \to N/L$ the injection. Then $\operatorname{Im} \iota_i \pi_i \varphi$ is simple and a proper submodule of N/L by the condition (1) or (2). So, because M is almost N-simpleprojective, there exists an R-homomorphism $\tilde{\varphi}_i : M \to N$ with $\nu \tilde{\varphi}_i = \iota_i \pi_i \varphi$. Put $\tilde{\varphi} := \tilde{\varphi}_1 + \cdots + \tilde{\varphi}_n$. Then $\nu \tilde{\varphi} = \varphi$.

Next we consider the case that the condition (3) holds. Since $L \ll N$, there exists a proper submodule L' of N with L + L' = N. We consider an R-isomorphism $\eta : N/L = (L+L')/L \to L'/(L \cap L')$ naturally. Let $\nu' : N \to N/(L \cap L')$ be the natural epimorphism and $\iota : L'/(L \cap L') \to N/(L \cap L')$ the inclusion map. The condition (1) holds for $\iota\eta\varphi$, and so there exists an R-homomorphism $\tilde{\varphi}' : M \to N$ with $\nu'\tilde{\varphi}' = \iota\eta\varphi$. Then Im $\tilde{\varphi}' \subseteq L'$. Hence $\nu\tilde{\varphi}' = \varphi$ since $\nu|_{L'} = \eta^{-1}\nu'|_{L'}$.

Using Lemma 3, we obtain the following.

Lemma 4. Let M be a finitely generated right R-module, N an indecomposable right R-module with $L(N) < \infty$, L a proper submodule of Nand $\varphi : M \to N/L$ an R-homomorphism. Suppose that M is almost Nsimple-projective and let $\nu : N \to N/L$ be the natural epimorphism.

(1) If φ is not epic, then there exists an *R*-homomorphism $\tilde{\varphi} : M \to N$ with $\nu \tilde{\varphi} = \varphi$.

Y. BABA AND T. YAMAZAKI

(2) Suppose that there exist a proper submodule N'/L of N/L and an R-homomorphism φ̃': M → N with (ν'ν)φ̃' = ν'φ, where ν': N/L → N/N' is the natural epimorphism. Then there exists an R-homomorphism φ̃'': M → N with νφ̃'' = φ.

Proof. (1) Since $L(N) < \infty$, there exists $n_1 \in \mathbb{N}$ such that $\operatorname{Im} \varphi \not\subseteq (NJ^{n_1} + L)/L$ but $\operatorname{Im} \varphi \subseteq (NJ^{n_1-1} + L)/L$. Let $\nu_1 : N/L \to N/(NJ^{n_1} + L)$ be the natural epimorphism and let $\operatorname{Im} \varphi = L'_0/L$, where L'_0 is a submodule of N. Then $\operatorname{Im} \nu_1 \varphi = (L'_0 + NJ^{n_1})/(NJ^{n_1} + L)$ and it is semisimple artinian because M is finitely generated. Hence we claim that there exists an R-homomorphism $\tilde{\varphi}_1 : M \to N$ with $\nu_1 \nu \tilde{\varphi}_1 = \nu_1 \varphi$. If $\nu_1 \varphi$ is not epic, then the condition (1) in Lemma 3 holds. Assume that $\nu_1 \varphi$ is epic and, further, $NJ^{n_1} + L \ll N$, i.e., the condition (3) in Lemma 3 does not hold for $\nu_1 \varphi$. Then $\operatorname{Ker} \nu_1 = (NJ^{n_1} + L)/L \ll N/L$. Since $\nu_1 \varphi$ is epic, we see that φ is also epic, a contradiction. In consequence, either the condition (1) or (3) in Lemma 3 holds for $\nu_1 \varphi$ and we obtain the desired $\tilde{\varphi}_1$.

Assume that $\nu \tilde{\varphi}_1 \neq \varphi$. There exists $n_2 \in \mathbb{N}$ such that $n_2 > n_1$, $\operatorname{Im}(\varphi - \nu \tilde{\varphi}_1) \not\subseteq (NJ^{n_2} + L)/L$ but $\operatorname{Im}(\varphi - \nu \tilde{\varphi}_1) \subseteq (NJ^{n_2-1} + L)/L$. Let $\nu_2 : N/L \to N/(NJ^{n_2} + L)$ be the natural epimorphism. Then, since $\operatorname{Im}(\varphi - \nu \tilde{\varphi}_1) \subseteq (NJ^{n_1} + L)/L < N/L$, there exists an *R*-homomorphism $\tilde{\varphi}_2 : M \to N$ with $\nu_2 \nu \tilde{\varphi}_2 = \nu_2(\varphi - \nu \tilde{\varphi}_1)$ by Lemma 3.

Assume that $\nu(\tilde{\varphi}_1 + \tilde{\varphi}_2) \neq \varphi$. Then there exists $n_3 \in \mathbb{N}$ such that $n_3 > n_2$, $\operatorname{Im}(\varphi - \nu(\tilde{\varphi}_1 + \tilde{\varphi}_2)) \not\subseteq (NJ^{n_3} + L)/L$ but $\operatorname{Im}(\varphi - \nu(\tilde{\varphi}_1 + \tilde{\varphi}_2)) \subseteq (NJ^{n_3-1} + L)/L$. Using this procedure finite times, since $L(N) < \infty$, we have $m \in \mathbb{N}$ with $\nu(\tilde{\varphi}_1 + \cdots + \tilde{\varphi}_m) = \varphi$.

(2) $\nu'(\varphi - \nu \tilde{\varphi}') = 0$. So $\operatorname{Im}(\varphi - \nu \tilde{\varphi}') \leq \operatorname{Ker} \nu' = N'/L < N/L$. Therefore, from (1) which we already show, there exists an *R*-homomorphism $\tilde{\varphi} : M \to N$ with $\nu \tilde{\varphi} = \varphi - \nu \tilde{\varphi}'$. Hence $\nu(\tilde{\varphi} + \tilde{\varphi}') = \varphi$.

Now we give a theorem which is a generalization of [6, Theorem 1].

Theorem 5. Let M be a finitely generated right R-module and N an indecomposable right R-module with $L(N) < \infty$. Suppose that M is almost N-simple-projective. Then M is almost N-projective.

Proof. We consider the following diagram:

$$\begin{array}{ccc} & M \\ & \downarrow \varphi \\ N & \xrightarrow{\nu} & N/L \to 0 \end{array},$$

where L is a proper submodule of N and ν is the natural epimorphism. If φ is not epic, then, by Lemma 4 (1), there exists an R-homomorphism $\tilde{\varphi}: M \to N$ with $\nu \tilde{\varphi} = \varphi$. So we may assume that φ is epic.

104

First we consider the case that $L \not\ll N$. Then there exists a proper submodule N' of N with N = N' + L. So we can define an R-isomorphism $\eta : N/(L \cap N') \to (N/L) \oplus (N/N')$ naturally. Further define an R-homomorphism $\varphi' : M \to (N/L) \oplus (N/N')$ by $\varphi(m) = (\varphi(m), \overline{0})$ for any $m \in M$ and let $\nu_1 : N \to N/(L \cap N')$ be the natural epimorphism. Since φ' is not epic, by Lemma 4 (1), there exists an R-homomorphism $\tilde{\varphi} : M \to N$ with $\eta \nu_1 \tilde{\varphi} = \varphi'$. Then, for any $m \in M$, $(\varphi(m), \overline{0}) = \varphi'(m) = \eta \nu_1 \tilde{\varphi}(m) = (\overline{\tilde{\varphi}(m)}, \overline{\tilde{\varphi}(m)})$. So $\varphi(m) = \nu \tilde{\varphi}(m)$. Hence $\nu \tilde{\varphi} = \varphi$.

Next we consider the case that $L \ll N$. Suppose that N is not local. Then there exist proper submodules N' and N'' of N such that they contain NJ, N' is a maximal submodule of N and $N/NJ = (N'/NJ) \oplus (N''/NJ)$. Let $\nu' : N/L \to N/NJ$ be the natural epimorphism, $\pi : N/NJ \to N''/NJ$ the projection and $\iota : N''/NJ \to N/NJ$ the injection. Then $\iota \pi \nu' \varphi : M \to N/NJ$ and $\operatorname{Im} \iota \pi \nu' \varphi$ is a simple proper submodule of N/NJ. So, by assumption, there exists an R-homomorphism $\tilde{\varphi}' : M \to N$ with $\nu' \nu \tilde{\varphi}' = \iota \pi \nu' \varphi$. Then, letting $\nu'' : N/L \to N/N'$ be the natural epimorphism, $\nu'' \nu \tilde{\varphi}' = \nu'' \varphi$. Hence, by Lemma 4 (2), there exists an R-homomorphism $\tilde{\varphi} : M \to N$ with $\nu \tilde{\varphi} = \varphi$.

Therefore suppose that $L \ll N$ and N is local. We may assume that N = eR/A and N/L = eR/B, where e is a primitive idempotent in R and A and B are submodules of eR_R with A < B. Let $\nu_0 : eR/B \to eR/eJ$ be the natural epimorphism. By assumption either the following (I) or (II) holds.

- (I) There exists an *R*-homomorphism $\tilde{\varphi}_1 : M \to eR/A$ with $\nu_0 \nu \tilde{\varphi}_1 = \nu_0 \varphi$.
- (II) There exists an *R*-homomorphism $\tilde{\psi}' : eR/A \to M$ with $\nu_0 \varphi \tilde{\psi}' = \nu_0 \nu$.

In the case (I), we obtain an *R*-homomorphism $\tilde{\varphi} : M \to eR/A$ with $\nu \tilde{\varphi} = \varphi$ from Lemma 4 (2). So we consider the case (II). Put $m_1 := \tilde{\psi}'(\overline{e})$. Since *M* is finitely generated, we have $m_2, \ldots, m_n \in M$ such that $M = m_1R + m_2R + \cdots + m_nR$ but $m_1 \notin m_2R + \cdots + m_nR$. Further we let $\varphi(m_1) = \overline{u}$, where $u \in eRe$. Then $e - u \in eJe$ because $\nu_0 \nu = \nu_0 \varphi \tilde{\psi}'$. Therefore $u^{-1} - e \in eJe$. Let $u^{-1} = e + j$, where $j \in eJe$. Then the following claim holds.

Claim. There exists an *R*-homomorphism $\tilde{\zeta} : M \to eR/A$ with $\tilde{\zeta}(m_1) = \overline{j}$.

Proof of Claim. When $j \in A$, $\tilde{\zeta} = 0$ is the desired map. So we assume that $j \notin A$. Then we can define an *R*-homomorphism $\zeta_1 : M \to eR/(jJ+A)$ by $\zeta_1(m_1r_1 + m_2r_2 + \cdots + m_nr_n) = \overline{jr_1}$ since $m_1 \notin m_2R + \cdots + m_nR$ and $m_1e = m_1$. And $\operatorname{Im} \zeta_1$ is a simple proper submodule of eR/(jJ+A). So, by assumption, there exists an *R*-homomorphism $\tilde{\zeta}_1 : M \to eR/A$ with $\nu'_1\tilde{\zeta}_1 = \zeta_1$, where $\nu'_1 : eR/A \to eR/(jJ+A)$ is the natural epimorphism. Let $\tilde{\zeta}_1(m_1) = \overline{\tilde{j}_1}$, where $\tilde{j}_1 \in eRe$. Then $j - \tilde{j}_1 \in jJ + A$ since $\nu'_1\tilde{\zeta}_1 = \zeta_1$. Put $j_2 + a_2 := j - \tilde{j}_1$, where $j_2 \in jJ$ and $a_2 \in A$. Then we note that $j_2 \in J^2$.

If $j_2 \in A$, then we put $\tilde{\zeta} := \tilde{\zeta}_1$, and this $\tilde{\zeta}$ is the desired map. So assume that $j_2 \notin A$. We define an *R*-homomorphism $\zeta_2 : M \to eR/(j_2J + A)$ by $\zeta_2(m_1r_1 + m_2r_2 + \cdots + m_nr_n) = \overline{j_2r_1}$. Then Im ζ_2 is a simple proper submodule of $eR/(j_2J + A)$. So, by assumption, there exists an *R*-homomorphism $\tilde{\zeta}_2 : M \to eR/A$ with $\nu'_2\tilde{\zeta}_2 = \zeta_2$, where $\nu'_2 : eR/A \to eR/(j_2J + A)$ is the natural epimorphism. We let $\tilde{\zeta}_2(m_1) = \overline{\tilde{j}_2}$, where $\tilde{j}_2 \in eRe$. Then $j_2 - \tilde{j}_2 \in j_2J + A$ since $\zeta_2 = \nu'_2\tilde{\zeta}_2$. Put $j_3 + a_3 := j_2 - \tilde{j}_2$, where $j_3 \in j_2J$ and $a_3 \in A$. Then we note that $j_3 \in J^3$.

Since $L(eR/A) < \infty$, this procedure finitely terminates and there exists $s \in \mathbb{N}$ with $j_s - \tilde{j}_s \in A$, i.e., we may let $j_{s+1} = 0$ and $a_{s+1} = j_s - \tilde{j}_s$. Then we put $\tilde{\zeta} := \tilde{\zeta}_1 + \cdots + \tilde{\zeta}_s$, and $\tilde{\zeta}(m_1) = \tilde{\zeta}_1(m_1) + \tilde{\zeta}_2(m_1) + \cdots + \tilde{\zeta}_s(m_1) = \tilde{j}_1 + \tilde{j}_2 + \cdots + \tilde{j}_s = (j - j_2 - a_2) + (j_2 - j_3 - a_3) + \cdots + (j_s - j_{s+1} - a_{s+1}) = \tilde{j}$. Hence this $\tilde{\zeta}$ is the desired map. Cliam is shown.

Therefore we put $\tilde{\psi} := (1_M + \tilde{\psi}'\tilde{\zeta})\tilde{\psi}' : eR/A \to M$, and $\varphi\tilde{\psi}(\overline{e}) = \varphi(1_M + \tilde{\psi}'\tilde{\zeta})\tilde{\psi}'(\overline{e}) = \varphi(1_M + \tilde{\psi}'\tilde{\zeta})(m_1) = \varphi(m_1 + \tilde{\psi}'(\overline{j})) = \varphi(m_1 + m_1 j) = \varphi(m_1)(e + j) = \varphi(m_1)u^{-1} = \overline{uu^{-1}} = \overline{e} = \nu(\overline{e})$. Hence $\varphi\tilde{\psi} = \nu$.

We say that M has the lifting property of simple module modulo radical (abbriviated LPSM) if, for any simple submodule \overline{S} of M/Rad(M), there exists a decomposition $M = M_1 \oplus M_2$ such that $(M_1 + Rad(M))/Rad(M) = \overline{S}$.

Further, for *R*-modules *M* and *N* and an *R*-homomophism $\varphi : M \to N$, we represent a submodule $\{m + \varphi(m) \mid m \in M\}$ of $M \oplus N$ by $M(\varphi)$.

Relationship between almost N-projectivity and LPSM was given in [4, Proposition 2] by M. Harada and T. Mabuchi as follows:

For a semiperfect ring R, a primitive idempotent e in R and submodules A and B of eR with either eR/A or eR/B noetherian, eR/A is almost eR/B-projective if and only if $eR/A \oplus eR/B$ has LPSM and $eJeA \leq B$

Further in [7, Corollary 9.7] M. Harada showed the following:

Let e be a primitive idempotent in a ring R with eRe a local ring and let A and B be submodules of eR_R with |eR/A|, $|eR/B| < \infty$. Then the following are equivalent:

(a) eR/A is almost eR/B-projective.

(b) (i) $eR/A \oplus eR/B$ has LPSM.

(ii) eR/A is C/B-projective for any proper submodule C of eR_R with C > B.

As an application of Proposition 2 and Theorem 5, last we give a corollary.

Corollary 6. Let e be a primitive idempotent in R and A and B submodules of eR_R . If $L(eR/B) < \infty$, then the following are equivalent.

- (a) eR/A is almost eR/B-projective.
- (b) eR/A is almost eR/B-simple-projective.
- (c) (i) $eR/A \oplus eR/B$ has LPSM.
 - (ii) eR/A is eJ/B-projective.
- (d) (i) $eR/A \oplus eR/B$ has LPSM.
 - (ii) eR/A is eJ/B-simple-projective.

Proof. (a) \Leftrightarrow (b) This follows from Theorem 5.

(c) \Leftrightarrow (d) This follows from Proposition 2.

(b) \Rightarrow (d) (i) Put $M := (eR/A) \oplus (eR/B)$. Take any simple submodule $S/(eJ \oplus eJ)$ of $(eR/eJ) \oplus (eR/eJ)$. If either $S = eR \oplus eJ$ or $S = eJ \oplus eR$, then $M = (eR/A) \oplus (eR/B)$ is the desired direct decomposition. So we consider the remainder case. Then there exists $\overline{\varphi} \in \operatorname{Aut}(eR/eJ)$ with $S/(eJ \oplus eJ) = (eR/eJ)(\overline{\varphi})$. And we consider the following diagram:

$$\begin{array}{ccc} eR/A & & \downarrow \nu \\ & & \downarrow \nu \\ eR/eJ & \\ & \downarrow \overline{\varphi} \\ eR/B & \xrightarrow{\nu'} & eR/eJ & \rightarrow & 0 \ , \end{array}$$

where ν and ν' are the natural epimorphisms. By assumption, either the following (I) or (II) holds.

- (I) There exists an *R*-homomorphism $\tilde{\varphi} : eR/A \to eR/B$ such that $\nu'\tilde{\varphi} = \overline{\varphi}\nu$.
- (II) There exists an *R*-homomorphism $\tilde{\psi} : eR/B \to eR/A$ such that $\overline{\varphi}\nu\tilde{\psi} = \nu'$.

In the case (I), $M = (eR/A)(\tilde{\varphi}) \oplus (eR/B)$. And let $X/(A \oplus B) = (eR/A)(\tilde{\varphi})$, where X is a submodule of $eR \oplus eR$. Then $(X + (eJ \oplus eJ))/(eJ \oplus eJ) = S/(eJ \oplus eJ)$.

In the case (II), by the similar argument, we see that $M = (eR/A) \oplus (eR/B)(\tilde{\psi})$ is the desired direct decomposition.

Hence $eR/A \oplus eR/B$ has LPSM.

(ii) We consider the following diagram:

$$\begin{array}{ccc} eR/A \\ & \downarrow \varphi \\ eJ/B & \xrightarrow{\nu} & eJ/B' & \rightarrow & 0, \end{array}$$

where Im φ is simple, B' is a submodule of eJ with $B' \geq B$ and ν is the natural epimorphism. Let $\nu' : eR/B \to eR/B'$ be the natural epimorphism. From (b), there exists an *R*-homomorphism $\tilde{\varphi} : eR/A \to eR/B$ with $\nu'\tilde{\varphi} = \varphi$. Then Im $\tilde{\varphi} \subseteq eJ/B$ since Im $\varphi \subseteq eJ/B'$. Hence $\nu'\tilde{\varphi} = \varphi$.

(d) \Rightarrow (b) We consider a diagram:

$$\begin{array}{ccc} eR/A \\ & \downarrow \varphi \\ eR/B & \xrightarrow{\nu} & eR/B' & \rightarrow & 0, \end{array}$$

where Im φ is simple, B' is a submodule of eR with $B' \geq B$ and ν is the natural epimorphism. When φ is not epic, there exists an R-homomorphism $\tilde{\varphi} : eR/A \to eR/B$ with $\nu \tilde{\varphi} = \varphi$ from (d) (ii). So we assume that φ is epic. Then B' = eJ. Put $M := (eR/A) \oplus (eR/B)$. We consider a submodule

$$N := \{ (\overline{x}_1, \overline{x}_2) \mid \overline{x}_1 \in eR/A, \ \overline{x}_2 \in eR/B, \ \varphi(\overline{x}_1) = \nu(\overline{x}_2) \}$$

of M. And we put $M_1 := \{ (\overline{x}_1, \overline{0}) \in M \mid \overline{x}_1 \in eR/A \}$ and $M_2 := \{ (\overline{0}, \overline{x}_2) \in M \mid \overline{x}_2 \in eR/B \}$. Then, by the internal exchange property, either the following (I) or (II) holds:

- (I) $M = N \oplus M_1$.
- (II) $M = N \oplus M_2$.

First we consider the case (II). Let $\pi_2 : M = N \oplus M_2 \to M_2$ be the projection and put $\tilde{\varphi} := -\pi_2|_{M_1} : M_1 \to M_2$. Then we claim that $\nu \tilde{\varphi} = \varphi$. Take any $\overline{x}_1 \in eR/A$. There exist $(\overline{y}_1, \overline{y}_2) \in N$ and $(\overline{0}, \overline{x}_2) \in M_2$ with $(\overline{x}_1, \overline{0}) = (\overline{y}_1, \overline{y}_2) + (\overline{0}, \overline{x}_2)$. Then $\overline{x}_1 = \overline{y}_1, \overline{y}_2 = -\overline{x}_2$ and $\varphi(\overline{y}_1) = \nu(\overline{y}_2)$. So $\nu \tilde{\varphi}(\overline{x}_1) = \nu(-\pi_2(\overline{x}_1)) = \nu((\overline{0}, -\overline{x}_2)) = \nu((\overline{0}, \overline{y}_2)) = \varphi(\overline{y}_1) = \varphi(\overline{x}_1)$.

Next we consider the case (I). Let $\pi'_1 : \tilde{M} = N \oplus \tilde{M}_1 \to \tilde{M}_1$ be the projection and put $\tilde{\psi} := -\pi'_1|_{M_2} : M_2 \to M_1$. Then we see, by the same way as the case (II), that $\varphi \tilde{\psi} = \nu$.

References

- F. W. Anderson and K. R. Fuller, "Rings and categories of modules (second edition)", Graduate Texts in Math. 13, Springer-Verlag (1991)
- [2] Y. Baba and K. Oshiro, On a theorem of Fuller, J. Algebra 154 (1993), no.1, 86-94.
- [3] Y. Baba and K. Oshiro, "Classical artinian rings and related topics", to appear in World Scientific.
- [4] M. Harada and T. Mabuchi, On almost M-projectives, Osaka J. Math. 26 (1989), 837-848.

108

- [5] M. Harada and A. Tozaki, Almost M-projectives and right Nakayama rings, J. Alg. 122 (1989), 337-374.
- [6] M. Harada, Note on almost relative projectives and almost relative injectives, Osaka J. Math. 29 (1992), 91-102.
- [7] M. Harada, Almost relative projective modules and almost relative injective modules, umpublished.
- [8] M. Harada, "Factor categories with applications to direct decomposition of modules," Lecture Note in Pure and Appl. Math., Vol. 88, Dekker, New York, (1983).

Yoshitomo Baba Department of Mathematics Osaka-Kyoiku University Kashiwara, Osaka, 582-8582 Japan *e-mail address*: ybaba@cc.osaka-kyoiku.ac.jp

Takeshi Yamazaki Osaka Prefectual Senriseiun Senior High School Toyonaka, Osaka, 560-0084, Japan *e-mail address*: take-tdc@ezweb.ne.jp

(Received April 9, 2009)