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ON ALMOST N-SIMPLE-PROJECTIVES

Yoshitomo BABA and Takeshi YAMAZAKI

Abstract. The concept of almost N -projectivity is defined in [5] by
M. Harada and A. Tozaki to translate the concept “lifting module” in
terms of homomorphisms. In [6, Theorem 1] M. Harada defined a little
weaker condition “almost N -simple-projecive” and gave the following
relationship between them:

For a semiperfect ring R and R-modules M and N of finite length,

M is almost N-projective if and only if M is almost N-simple-

projective.

We remove the assumption “of finite length” and give the result in The-
orem 5 as follows:

For a semiperfect ring R, a finitely generated right R-module M

and an indecomposable right R-module N of finite Loewy length,

M is almost N-projective if and only if M is almost N-simple-

projective.

We also see that, for a semiperfect ring R, a finitely generated R-module
M and an R-module N of finite Loewy length, M is N -simple-projective
if and only if M is N -projective.

Throughout this paper, we let R be a semiperfect ring unless otherwise
stated and R-modules unitary. For an R-module M , we denote the Loewy
length and the composition length of M by L(M) and |M |, respectively.

Let M and N be R-modules. We say that M is N -projective if, for any
submodule L of N and an R-homomorphism ϕ : M → N/L, there exists
an R-homomorphism ϕ̃ : M → N with νϕ̃ = ϕ, where ν : N → N/L
is the natural epimorphism. If, in this definition, we only consider the R-
homomorphisms ϕ with simple images, M is said to be N -simple-projective.

First we give a lemma in which N -simple-projectivity is investigated for
an R-homomorphism with its image semisimple artinian.

Lemma 1. Let R be a ring, M and N R-modules, L a submodule of N
and ϕ : M → N/L an R-homomorphism with Imϕ semisimple artinian. If

M is N -simple-projective, then there exists an R-homomorphism ϕ̃ : M →
N with νϕ̃ = ϕ, where ν : N → N/L is the natural epimorphism.
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Proof. Let Imϕ = N ′/L, where N ′ is a submodule of N . Then M is N ′-
simple-projective by assumption. So the statement follows from [6, Lemma
1]. �

Using Lemma 1 we obtain the following result which is a generalization
of [6, Lemma 1]. And we also note that, in [2, Proposition 2], Baba and
Oshiro gave the dual result which played an important role to characterize
Fuller’s theorem for injective modules.

Proposition 2. Let M be a finitely generated right R-module and N a

right R-module with L(N) < ∞. If M is N -simple-projective, then M is

N -projective.

Proof. Let L be a submodule of N , ϕ : M → N/L an R-homomorphism
and ν : N → N/L the natural epimorphism. Since L(N) < ∞, there exists
n1 ∈ N such that Imϕ ⊆ (N/L)Jn1−1 but Imϕ 6⊆ (N/L)Jn1. Then (Imϕ+
(N/L)Jn1)/(N/L)Jn1 is semisimple artinian since R is semiperfect and M
is finitely generated. So, by Lemma 1, there exists an R-homomorphism
ϕ̃1 : M → N with ν1νϕ̃1 = ν1ϕ, where ν1 : N/L→ (N/L)/(N/L)Jn1 is the
natural epimorphism.

We assume that ϕ 6= νϕ̃1. Since Im(ϕ − νϕ̃1) ⊆ (N/L)Jn1, there exists
n2 ∈ N with n2 > n1, Im(ϕ − νϕ̃1) ⊆ (N/L)Jn2−1 but Im(ϕ − νϕ̃1) 6⊆
(N/L)Jn2 . Then (Im(ϕ − νϕ̃1) + (N/L)Jn2)/(N/L)Jn2 is semisimple ar-
tinian. So, by Lemma 1, there exists an R-homomorphism ϕ̃2 : M → N
with ν2νϕ̃2 = ν2(ϕ − νϕ̃1), where ν2 : N/L → (N/L)/(N/L)Jn2 is the
natural epimorphism.

We assume that ϕ 6= ν(ϕ̃1 + ϕ̃2). Since Im(ϕ− ν(ϕ̃1 + ϕ̃2)) ⊆ (N/L)Jn2,
we have n3 ∈ N such that n3 > n2, Im(ϕ− ν(ϕ̃1 + ϕ̃2)) ⊆ (N/L)Jn3−1 but
Im(ϕ− ν(ϕ̃1 + ϕ̃2)) 6⊆ (N/L)Jn3.

Continuing this argument, we have k ∈ N with ϕ = ν(ϕ̃1 + · · · + ϕ̃k)
because L(N) <∞. �

Now we define “almost N -projective” and “almost N -simple-projective”.
Let M and N be R-modules. We say that M is almost N -projective if, for
any submodule L of N and an R-homomorphism ϕ : M → N/L, letting
ν : N → N/L be the natural epimorphism, either the following (I) or (II)
holds:

(I) There exists an R-homomorphism ϕ̃ : M → N with νϕ̃ = ϕ.
(II) There exist a non-zero direct summand N ′ of N and an R- homo-

morphism ψ̃ : N ′ →M with φψ̃ = ν|N ′ .

If, in this definition, we only consider the R-homomorphisms ϕ with simple
images, M is said to be almost N -simple-projective.
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We note that, in these definitions, if N is indecomposable, the condition
(II) is as follows:

(II′) There exists an R-homomorphism ψ̃ : N →M with φψ̃ = ν.

In this paper, we consider the case that N is indecomposable.

The following in which almost N -simple projective is investigated for an
R-homomorphism with its image semisimple artinian is the first step to
prove Theorem 5.

Lemma 3. Let M be an R-module, N an indecomposable R-module,

L a submodule of N and ϕ : M → N/L an R-homomorphism with Imϕ
semisimple artinian. We consider the following three conditions:

(1) ϕ is not epic.

(2) | Imϕ | ≥ 2.
(3) L 6≪ N .

If M is almost N -simple-projective and, at least, one of the above three

conditions holds, then there exists an R-homomorphism ϕ̃ : M → N with

νϕ̃ = ϕ, where ν : N → N/L is the natural epimorphism.

Proof. First we consider the case that either the condition (1) or (2) holds.
Let Imϕ = S1 ⊕ · · · ⊕ Sn, where Si is simple for any i = 1, . . . , n. Further,
for each i = 1, . . . , n, we let πi : ⊕n

j=1Sj → Si be the projection and ιi :

Si → N/L the injection. Then Im ιiπiϕ is simple and a proper submodule
of N/L by the condition (1) or (2). So, because M is almost N -simple-
projective, there exists an R-homomorphism ϕ̃i : M → N with νϕ̃i = ιiπiϕ.
Put ϕ̃ := ϕ̃1 + · · · + ϕ̃n. Then νϕ̃ = ϕ.

Next we consider the case that the condition (3) holds. Since L ≪ N ,
there exists a proper submodule L′ of N with L+ L′ = N . We consider an
R-isomorphism η : N/L = (L+L′)/L→ L′/(L∩L′) naturally. Let ν ′ : N →
N/(L ∩ L′) be the natural epimorphism and ι : L′/(L ∩ L′) → N/(L ∩ L′)
the inclusion map. The condition (1) holds for ιηϕ, and so there exists an
R-homomorphism ϕ̃′ : M → N with ν ′ϕ̃′ = ιηϕ. Then Im ϕ̃′ ⊆ L′. Hence
νϕ̃′ = ϕ since ν|L′ = η−1ν ′|L′ . �

Using Lemma 3, we obtain the following.

Lemma 4. Let M be a finitely generated right R-module, N an inde-

composable right R-module with L(N) < ∞, L a proper submodule of N
and ϕ : M → N/L an R-homomorphism. Suppose that M is almost N -

simple-projective and let ν : N → N/L be the natural epimorphism.

(1) If ϕ is not epic, then there exists an R-homomorphism ϕ̃ : M → N
with νϕ̃ = ϕ.
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(2) Suppose that there exist a proper submodule N ′/L of N/L and an

R-homomorphism ϕ̃′ : M → N with (ν ′ν)ϕ̃′ = ν ′ϕ, where ν ′ :
N/L → N/N ′ is the natural epimorphism. Then there exists an

R-homomorphism ϕ̃′′ : M → N with νϕ̃′′ = ϕ.

Proof. (1) Since L(N) <∞, there exists n1 ∈ N such that Imϕ 6⊆ (NJn1 +
L)/L but Imϕ ⊆ (NJn1−1 + L)/L. Let ν1 : N/L → N/(NJn1 + L) be
the natural epimorphism and let Imϕ = L′

0/L, where L′

0 is a submodule of
N . Then Im ν1ϕ = (L′

0 +NJn1)/(NJn1 + L) and it is semisimple artinian
because M is finitely generated. Hence we claim that there exists an R-
homomorphism ϕ̃1 : M → N with ν1νϕ̃1 = ν1ϕ. If ν1ϕ is not epic, then
the condition (1) in Lemma 3 holds. Assume that ν1ϕ is epic and, further,
NJn1 + L≪ N , i.e., the condition (3) in Lemma 3 does not hold for ν1ϕ.
Then Ker ν1 = (NJn1 + L)/L ≪ N/L. Since ν1ϕ is epic, we see that ϕ is
also epic, a contradiction. In consequence, either the condition (1) or (3) in
Lemma 3 holds for ν1ϕ and we obtain the desired ϕ̃1.

Assume that νϕ̃1 6= ϕ. There exists n2 ∈ N such that n2 > n1, Im(ϕ −
νϕ̃1) 6⊆ (NJn2 +L)/L but Im(ϕ−νϕ̃1) ⊆ (NJn2−1 +L)/L. Let ν2 : N/L→
N/(NJn2 + L) be the natural epimorphism. Then, since Im(ϕ − νϕ̃1) ⊆
(NJn1 + L)/L < N/L, there exists an R-homomorphism ϕ̃2 : M → N with
ν2νϕ̃2 = ν2(ϕ− νϕ̃1) by Lemma 3.

Assume that ν(ϕ̃1+ϕ̃2) 6= ϕ. Then there exists n3 ∈ N such that n3 > n2,
Im(ϕ− ν(ϕ̃1 + ϕ̃2)) 6⊆ (NJn3 +L)/L but Im(ϕ− ν(ϕ̃1 + ϕ̃2)) ⊆ (NJn3−1 +
L)/L. Using this procedure finite times, since L(N) < ∞, we have m ∈ N

with ν(ϕ̃1 + · · · + ϕ̃m) = ϕ.
(2) ν ′(ϕ−νϕ̃′) = 0. So Im(ϕ−νϕ̃′) ≤ Ker ν ′ = N ′/L < N/L. Therefore,

from (1) which we already show, there exists an R-homomorphism ϕ̃ : M →
N with νϕ̃ = ϕ− νϕ̃′. Hence ν(ϕ̃+ ϕ̃′) = ϕ. �

Now we give a theorem which is a generalization of [6, Theorem 1].

Theorem 5. Let M be a finitely generated right R-module and N an

indecomposable right R-module with L(N) < ∞. Suppose that M is almost

N -simple-projective. Then M is almost N -projective.

Proof. We consider the following diagram:

M
↓ ϕ

N
ν

−−→ N/L → 0 ,

where L is a proper submodule of N and ν is the natural epimorphism.
If ϕ is not epic, then, by Lemma 4 (1), there exists an R-homomorphism
ϕ̃ : M → N with νϕ̃ = ϕ. So we may assume that ϕ is epic.
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First we consider the case that L 6≪ N . Then there exists a proper
submodule N ′ of N with N = N ′ + L. So we can define an R-isomorphism
η : N/(L∩N ′) → (N/L)⊕(N/N ′) naturally. Further define an R-homomor-
phism ϕ′ : M → (N/L)⊕ (N/N ′) by ϕ(m) = (ϕ(m), 0 ) for any m ∈M and
let ν1 : N → N/(L∩N ′) be the natural epimorphism. Since ϕ′ is not epic, by
Lemma 4 (1), there exists an R-homomorphism ϕ̃ : M → N with ην1ϕ̃ = ϕ′.

Then, for any m ∈ M , (ϕ(m), 0 ) = ϕ′(m) = ην1ϕ̃(m) = ( ϕ̃(m), ϕ̃(m) ).
So ϕ(m) = νϕ̃(m). Hence νϕ̃ = ϕ.

Next we consider the case that L ≪ N . Suppose that N is not local.
Then there exist proper submodules N ′ and N ′′ of N such that they contain
NJ , N ′ is a maximal submodule of N and N/NJ = (N ′/NJ) ⊕ (N ′′/NJ).
Let ν ′ : N/L → N/NJ be the natural epimorphism, π : N/NJ → N ′′/NJ
the projection and ι : N ′′/NJ → N/NJ the injection. Then ιπν ′ϕ : M →
N/NJ and Im ιπν ′ϕ is a simple proper submodule of N/NJ . So, by assump-
tion, there exists an R-homomorphism ϕ̃′ : M → N with ν ′νϕ̃′ = ιπν ′ϕ.
Then, letting ν ′′ : N/L→ N/N ′ be the natural epimorphism, ν ′′νϕ̃′ = ν ′′ϕ.
Hence, by Lemma 4 (2), there exists an R-homomorphism ϕ̃ : M → N with
νϕ̃ = ϕ.

Therefore suppose that L ≪ N and N is local. We may assume that
N = eR/A and N/L = eR/B, where e is a primitive idempotent in R and A
and B are submodules of eRR with A < B. Let ν0 : eR/B → eR/eJ be the
natural epimorphism. By assumption either the following (I) or (II) holds.

(I) There exists an R-homomorphism ϕ̃1 : M → eR/A with ν0νϕ̃1 =
ν0ϕ.

(II) There exists an R-homomorphism ψ̃′ : eR/A → M with ν0ϕψ̃
′ =

ν0ν.

In the case (I), we obtain an R-homomorphism ϕ̃ : M → eR/A with νϕ̃ = ϕ

from Lemma 4 (2). So we consider the case (II). Put m1 := ψ̃′(e). Since M
is finitely generated, we have m2, . . . ,mn ∈M such that M = m1R+m2R+
· · · +mnR but m1 6∈ m2R + · · · +mnR. Further we let ϕ(m1) = u, where

u ∈ eRe. Then e− u ∈ eJe because ν0ν = ν0ϕψ̃
′. Therefore u−1 − e ∈ eJe.

Let u−1 = e+ j, where j ∈ eJe. Then the following claim holds.

Claim. There exists an R-homomorphism ζ̃ : M → eR/A with ζ̃(m1) =
j.

Proof of Claim. When j ∈ A, ζ̃ = 0 is the desired map. So we assume
that j 6∈ A. Then we can define an R-homomorphism ζ1 : M → eR/(jJ+A)
by ζ1(m1r1 +m2r2 + · · · +mnrn) = jr1 since m1 6∈ m2R + · · · +mnR and
m1e = m1. And Im ζ1 is a simple proper submodule of eR/(jJ + A). So,

by assumption, there exists an R-homomorphism ζ̃1 : M → eR/A with

ν ′1ζ̃1 = ζ1, where ν ′1 : eR/A→ eR/(jJ +A) is the natural epimorphism. Let
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ζ̃1(m1) = j̃1, where j̃1 ∈ eRe. Then j − j̃1 ∈ jJ + A since ν ′1ζ̃1 = ζ1. Put

j2 + a2 := j − j̃1, where j2 ∈ jJ and a2 ∈ A. Then we note that j2 ∈ J2.
If j2 ∈ A, then we put ζ̃ := ζ̃1, and this ζ̃ is the desired map. So assume

that j2 6∈ A. We define an R-homomorphism ζ2 : M → eR/(j2J + A) by
ζ2(m1r1+m2r2+ · · ·+mnrn) = j2r1. Then Im ζ2 is a simple proper submod-
ule of eR/(j2J + A). So, by assumption, there exists an R-homomorphism

ζ̃2 : M → eR/A with ν ′2ζ̃2 = ζ2, where ν ′2 : eR/A → eR/(j2J + A) is

the natural epimorphism. We let ζ̃2(m1) = j̃2, where j̃2 ∈ eRe. Then

j2 − j̃2 ∈ j2J + A since ζ2 = ν ′2ζ̃2. Put j3 + a3 := j2 − j̃2, where j3 ∈ j2J
and a3 ∈ A. Then we note that j3 ∈ J3.

Since L(eR/A) < ∞, this procedure finitely terminates and there exists
s ∈ N with js − j̃s ∈ A, i.e., we may let js+1 = 0 and as+1 = js − j̃s. Then
we put ζ̃ := ζ̃1 + · · · + ζ̃s, and ζ̃(m1) = ζ̃1(m1) + ζ̃2(m1) + · · · + ζ̃s(m1) =

j̃1+ j̃2+· · ·+ j̃s = (j − j2 − a2)+(j2 − j3 − a3)+· · ·+(js − js+1 − as+1) = j.

Hence this ζ̃ is the desired map. Cliam is shown.

Therefore we put ψ̃ := (1M + ψ̃′ζ̃)ψ̃′ : eR/A→M , and ϕψ̃(e) = ϕ(1M +

ψ̃′ζ̃)ψ̃′(e) = ϕ(1M + ψ̃′ζ̃)(m1) = ϕ(m1 + ψ̃′(j)) = ϕ(m1 +m1j) = ϕ(m1)(e+

j) = ϕ(m1)u
−1 = uu−1 = e = ν(e). Hence ϕψ̃ = ν. �

We say that M has the lifting property of simple module modulo radical

(abbriviated LPSM ) if, for any simple submodule S of M/Rad(M), there
exists a decomposition M = M1⊕M2 such that (M1+Rad(M))/Rad(M) =
S.

Further, for R-modules M and N and an R-homomophism ϕ : M → N ,
we represent a submodule {m+ ϕ(m) | m ∈M } of M ⊕N by M(ϕ).

Relationship between almost N -projectivity and LPSM was given in [4,
Proposition 2] by M. Harada and T. Mabuchi as follows:

For a semiperfect ring R, a primitive idempotent e in R and submod-

ules A and B of eR with either eR/A or eR/B noetherian, eR/A is

almost eR/B-projective if and only if eR/A⊕ eR/B has LPSM and

eJeA ≤ B

Further in [7, Corollary 9.7] M. Harada showed the following:

Let e be a primitive idempotent in a ring R with eRe a local ring

and let A and B be submodules of eRR with | eR/A |, | eR/B | <∞.

Then the following are equivalent:

(a) eR/A is almost eR/B-projective.

(b) (i) eR/A⊕ eR/B has LPSM.
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(ii) eR/A is C/B-projective for any proper submodule C of

eRR with C > B.

As an application of Proposition 2 and Theorem 5, last we give a corollary.

Corollary 6. Let e be a primitive idempotent in R and A and B sub-

modules of eRR. If L(eR/B) <∞, then the following are equivalent.

(a) eR/A is almost eR/B-projective.

(b) eR/A is almost eR/B-simple-projective.

(c) (i) eR/A⊕ eR/B has LPSM.

(ii) eR/A is eJ/B-projective.

(d) (i) eR/A⊕ eR/B has LPSM.

(ii) eR/A is eJ/B-simple-projective.

Proof. (a) ⇔ (b) This follows from Theorem 5.
(c) ⇔ (d) This follows from Proposition 2.
(b) ⇒ (d) (i) Put M := (eR/A)⊕ (eR/B). Take any simple submodule

S/(eJ⊕eJ) of (eR/eJ)⊕(eR/eJ). If either S = eR⊕eJ or S = eJ⊕eR, then
M = (eR/A) ⊕ (eR/B) is the desired direct decomposition. So we consider
the remainder case. Then there exists ϕ ∈ Aut(eR/eJ) with S/(eJ ⊕ eJ) =
(eR/eJ)(ϕ). And we consider the following diagram:

eR/A
↓ ν

eR/eJ
↓ ϕ

eR/B
ν′

−−→ eR/eJ → 0 ,

where ν and ν ′ are the natural epimorphisms. By assumption, either the
following (I) or (II) holds.

(I) There exists an R-homomorphism ϕ̃ : eR/A → eR/B such that
ν ′ϕ̃ = ϕν.

(II) There exists an R-homomorphism ψ̃ : eR/B → eR/A such that

ϕνψ̃ = ν ′.

In the case (I), M = (eR/A)(ϕ̃) ⊕ (eR/B). And let X/(A ⊕ B) =
(eR/A)(ϕ̃), where X is a submodule of eR⊕eR. Then (X+(eJ⊕eJ))/(eJ⊕
eJ) = S/(eJ ⊕ eJ).

In the case (II), by the similar argument, we see that M = (eR/A) ⊕

(eR/B)(ψ̃) is the desired direct decomposition.
Hence eR/A⊕ eR/B has LPSM.
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(ii) We consider the following diagram:

eR/A
↓ ϕ

eJ/B
ν

−−→ eJ/B′ → 0,

where Imϕ is simple, B′ is a submodule of eJ with B′ ≥ B and ν is the
natural epimorphism. Let ν ′ : eR/B → eR/B′ be the natural epimorphism.
From (b), there exists an R-homomorphism ϕ̃ : eR/A → eR/B with ν ′ϕ̃ =
ϕ. Then Im ϕ̃ ⊆ eJ/B since Imϕ ⊆ eJ/B′. Hence ν ′ϕ̃ = ϕ.

(d) ⇒ (b) We consider a diagram:

eR/A
↓ ϕ

eR/B
ν

−−→ eR/B′ → 0,

where Imϕ is simple, B′ is a submodule of eR with B′ ≥ B and ν is the
natural epimorphism. When ϕ is not epic, there exists an R-homomorphism
ϕ̃ : eR/A → eR/B with νϕ̃ = ϕ from (d) (ii). So we assume that ϕ is epic.
Then B′ = eJ . Put M := (eR/A) ⊕ (eR/B). We consider a submodule

N := { (x1, x2 ) | x1 ∈ eR/A, x2 ∈ eR/B, ϕ(x1) = ν(x2) }

of M . And we put M1 := { (x1, 0) ∈M | x1 ∈ eR/A } and M2 := { (0, x2) ∈
M | x2 ∈ eR/B }. Then, by the internal exchange property, either the
following (I) or (II) holds:

(I) M = N ⊕M1.
(II) M = N ⊕M2.

First we consider the case (II). Let π2 : M = N ⊕ M2 → M2 be the
projection and put ϕ̃ := −π2|M1

: M1 → M2. Then we claim that νϕ̃ = ϕ.
Take any x1 ∈ eR/A. There exist (y1, y2) ∈ N and (0, x2) ∈ M2 with
(x1, 0) = (y1, y2) + (0, x2). Then x1 = y1, y2 = −x2 and ϕ(y1) = ν(y2). So
νϕ̃(x1) = ν(−π2(x1)) = ν( (0, −x2) ) = ν( (0, y2) ) = ϕ(y1) = ϕ(x1).

Next we consider the case (I). Let π′1 : M = N ⊕ M1 → M1 be the

projection and put ψ̃ := −π′1|M2
: M2 →M1. Then we see, by the same way

as the case (II), that ϕψ̃ = ν. �
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